[ARM] Generate 8.1-m CSINC, CSNEG and CSINV instructions.
[llvm-core.git] / lib / Analysis / StratifiedSets.h
blob60ea2451b0ef9a988d56fce1a8ff96e304f15428
1 //===- StratifiedSets.h - Abstract stratified sets implementation. --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_ADT_STRATIFIEDSETS_H
10 #define LLVM_ADT_STRATIFIEDSETS_H
12 #include "AliasAnalysisSummary.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/Optional.h"
15 #include "llvm/ADT/SmallSet.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include <bitset>
18 #include <cassert>
19 #include <cmath>
20 #include <type_traits>
21 #include <utility>
22 #include <vector>
24 namespace llvm {
25 namespace cflaa {
26 /// An index into Stratified Sets.
27 typedef unsigned StratifiedIndex;
28 /// NOTE: ^ This can't be a short -- bootstrapping clang has a case where
29 /// ~1M sets exist.
31 // Container of information related to a value in a StratifiedSet.
32 struct StratifiedInfo {
33 StratifiedIndex Index;
34 /// For field sensitivity, etc. we can tack fields on here.
37 /// A "link" between two StratifiedSets.
38 struct StratifiedLink {
39 /// This is a value used to signify "does not exist" where the
40 /// StratifiedIndex type is used.
41 ///
42 /// This is used instead of Optional<StratifiedIndex> because
43 /// Optional<StratifiedIndex> would eat up a considerable amount of extra
44 /// memory, after struct padding/alignment is taken into account.
45 static const StratifiedIndex SetSentinel;
47 /// The index for the set "above" current
48 StratifiedIndex Above;
50 /// The link for the set "below" current
51 StratifiedIndex Below;
53 /// Attributes for these StratifiedSets.
54 AliasAttrs Attrs;
56 StratifiedLink() : Above(SetSentinel), Below(SetSentinel) {}
58 bool hasBelow() const { return Below != SetSentinel; }
59 bool hasAbove() const { return Above != SetSentinel; }
61 void clearBelow() { Below = SetSentinel; }
62 void clearAbove() { Above = SetSentinel; }
65 /// These are stratified sets, as described in "Fast algorithms for
66 /// Dyck-CFL-reachability with applications to Alias Analysis" by Zhang Q, Lyu M
67 /// R, Yuan H, and Su Z. -- in short, this is meant to represent different sets
68 /// of Value*s. If two Value*s are in the same set, or if both sets have
69 /// overlapping attributes, then the Value*s are said to alias.
70 ///
71 /// Sets may be related by position, meaning that one set may be considered as
72 /// above or below another. In CFL Alias Analysis, this gives us an indication
73 /// of how two variables are related; if the set of variable A is below a set
74 /// containing variable B, then at some point, a variable that has interacted
75 /// with B (or B itself) was either used in order to extract the variable A, or
76 /// was used as storage of variable A.
77 ///
78 /// Sets may also have attributes (as noted above). These attributes are
79 /// generally used for noting whether a variable in the set has interacted with
80 /// a variable whose origins we don't quite know (i.e. globals/arguments), or if
81 /// the variable may have had operations performed on it (modified in a function
82 /// call). All attributes that exist in a set A must exist in all sets marked as
83 /// below set A.
84 template <typename T> class StratifiedSets {
85 public:
86 StratifiedSets() = default;
87 StratifiedSets(StratifiedSets &&) = default;
88 StratifiedSets &operator=(StratifiedSets &&) = default;
90 StratifiedSets(DenseMap<T, StratifiedInfo> Map,
91 std::vector<StratifiedLink> Links)
92 : Values(std::move(Map)), Links(std::move(Links)) {}
94 Optional<StratifiedInfo> find(const T &Elem) const {
95 auto Iter = Values.find(Elem);
96 if (Iter == Values.end())
97 return None;
98 return Iter->second;
101 const StratifiedLink &getLink(StratifiedIndex Index) const {
102 assert(inbounds(Index));
103 return Links[Index];
106 private:
107 DenseMap<T, StratifiedInfo> Values;
108 std::vector<StratifiedLink> Links;
110 bool inbounds(StratifiedIndex Idx) const { return Idx < Links.size(); }
113 /// Generic Builder class that produces StratifiedSets instances.
115 /// The goal of this builder is to efficiently produce correct StratifiedSets
116 /// instances. To this end, we use a few tricks:
117 /// > Set chains (A method for linking sets together)
118 /// > Set remaps (A method for marking a set as an alias [irony?] of another)
120 /// ==== Set chains ====
121 /// This builder has a notion of some value A being above, below, or with some
122 /// other value B:
123 /// > The `A above B` relationship implies that there is a reference edge
124 /// going from A to B. Namely, it notes that A can store anything in B's set.
125 /// > The `A below B` relationship is the opposite of `A above B`. It implies
126 /// that there's a dereference edge going from A to B.
127 /// > The `A with B` relationship states that there's an assignment edge going
128 /// from A to B, and that A and B should be treated as equals.
130 /// As an example, take the following code snippet:
132 /// %a = alloca i32, align 4
133 /// %ap = alloca i32*, align 8
134 /// %app = alloca i32**, align 8
135 /// store %a, %ap
136 /// store %ap, %app
137 /// %aw = getelementptr %ap, i32 0
139 /// Given this, the following relations exist:
140 /// - %a below %ap & %ap above %a
141 /// - %ap below %app & %app above %ap
142 /// - %aw with %ap & %ap with %aw
144 /// These relations produce the following sets:
145 /// [{%a}, {%ap, %aw}, {%app}]
147 /// ...Which state that the only MayAlias relationship in the above program is
148 /// between %ap and %aw.
150 /// Because LLVM allows arbitrary casts, code like the following needs to be
151 /// supported:
152 /// %ip = alloca i64, align 8
153 /// %ipp = alloca i64*, align 8
154 /// %i = bitcast i64** ipp to i64
155 /// store i64* %ip, i64** %ipp
156 /// store i64 %i, i64* %ip
158 /// Which, because %ipp ends up *both* above and below %ip, is fun.
160 /// This is solved by merging %i and %ipp into a single set (...which is the
161 /// only way to solve this, since their bit patterns are equivalent). Any sets
162 /// that ended up in between %i and %ipp at the time of merging (in this case,
163 /// the set containing %ip) also get conservatively merged into the set of %i
164 /// and %ipp. In short, the resulting StratifiedSet from the above code would be
165 /// {%ip, %ipp, %i}.
167 /// ==== Set remaps ====
168 /// More of an implementation detail than anything -- when merging sets, we need
169 /// to update the numbers of all of the elements mapped to those sets. Rather
170 /// than doing this at each merge, we note in the BuilderLink structure that a
171 /// remap has occurred, and use this information so we can defer renumbering set
172 /// elements until build time.
173 template <typename T> class StratifiedSetsBuilder {
174 /// Represents a Stratified Set, with information about the Stratified
175 /// Set above it, the set below it, and whether the current set has been
176 /// remapped to another.
177 struct BuilderLink {
178 const StratifiedIndex Number;
180 BuilderLink(StratifiedIndex N) : Number(N) {
181 Remap = StratifiedLink::SetSentinel;
184 bool hasAbove() const {
185 assert(!isRemapped());
186 return Link.hasAbove();
189 bool hasBelow() const {
190 assert(!isRemapped());
191 return Link.hasBelow();
194 void setBelow(StratifiedIndex I) {
195 assert(!isRemapped());
196 Link.Below = I;
199 void setAbove(StratifiedIndex I) {
200 assert(!isRemapped());
201 Link.Above = I;
204 void clearBelow() {
205 assert(!isRemapped());
206 Link.clearBelow();
209 void clearAbove() {
210 assert(!isRemapped());
211 Link.clearAbove();
214 StratifiedIndex getBelow() const {
215 assert(!isRemapped());
216 assert(hasBelow());
217 return Link.Below;
220 StratifiedIndex getAbove() const {
221 assert(!isRemapped());
222 assert(hasAbove());
223 return Link.Above;
226 AliasAttrs getAttrs() {
227 assert(!isRemapped());
228 return Link.Attrs;
231 void setAttrs(AliasAttrs Other) {
232 assert(!isRemapped());
233 Link.Attrs |= Other;
236 bool isRemapped() const { return Remap != StratifiedLink::SetSentinel; }
238 /// For initial remapping to another set
239 void remapTo(StratifiedIndex Other) {
240 assert(!isRemapped());
241 Remap = Other;
244 StratifiedIndex getRemapIndex() const {
245 assert(isRemapped());
246 return Remap;
249 /// Should only be called when we're already remapped.
250 void updateRemap(StratifiedIndex Other) {
251 assert(isRemapped());
252 Remap = Other;
255 /// Prefer the above functions to calling things directly on what's returned
256 /// from this -- they guard against unexpected calls when the current
257 /// BuilderLink is remapped.
258 const StratifiedLink &getLink() const { return Link; }
260 private:
261 StratifiedLink Link;
262 StratifiedIndex Remap;
265 /// This function performs all of the set unioning/value renumbering
266 /// that we've been putting off, and generates a vector<StratifiedLink> that
267 /// may be placed in a StratifiedSets instance.
268 void finalizeSets(std::vector<StratifiedLink> &StratLinks) {
269 DenseMap<StratifiedIndex, StratifiedIndex> Remaps;
270 for (auto &Link : Links) {
271 if (Link.isRemapped())
272 continue;
274 StratifiedIndex Number = StratLinks.size();
275 Remaps.insert(std::make_pair(Link.Number, Number));
276 StratLinks.push_back(Link.getLink());
279 for (auto &Link : StratLinks) {
280 if (Link.hasAbove()) {
281 auto &Above = linksAt(Link.Above);
282 auto Iter = Remaps.find(Above.Number);
283 assert(Iter != Remaps.end());
284 Link.Above = Iter->second;
287 if (Link.hasBelow()) {
288 auto &Below = linksAt(Link.Below);
289 auto Iter = Remaps.find(Below.Number);
290 assert(Iter != Remaps.end());
291 Link.Below = Iter->second;
295 for (auto &Pair : Values) {
296 auto &Info = Pair.second;
297 auto &Link = linksAt(Info.Index);
298 auto Iter = Remaps.find(Link.Number);
299 assert(Iter != Remaps.end());
300 Info.Index = Iter->second;
304 /// There's a guarantee in StratifiedLink where all bits set in a
305 /// Link.externals will be set in all Link.externals "below" it.
306 static void propagateAttrs(std::vector<StratifiedLink> &Links) {
307 const auto getHighestParentAbove = [&Links](StratifiedIndex Idx) {
308 const auto *Link = &Links[Idx];
309 while (Link->hasAbove()) {
310 Idx = Link->Above;
311 Link = &Links[Idx];
313 return Idx;
316 SmallSet<StratifiedIndex, 16> Visited;
317 for (unsigned I = 0, E = Links.size(); I < E; ++I) {
318 auto CurrentIndex = getHighestParentAbove(I);
319 if (!Visited.insert(CurrentIndex).second)
320 continue;
322 while (Links[CurrentIndex].hasBelow()) {
323 auto &CurrentBits = Links[CurrentIndex].Attrs;
324 auto NextIndex = Links[CurrentIndex].Below;
325 auto &NextBits = Links[NextIndex].Attrs;
326 NextBits |= CurrentBits;
327 CurrentIndex = NextIndex;
332 public:
333 /// Builds a StratifiedSet from the information we've been given since either
334 /// construction or the prior build() call.
335 StratifiedSets<T> build() {
336 std::vector<StratifiedLink> StratLinks;
337 finalizeSets(StratLinks);
338 propagateAttrs(StratLinks);
339 Links.clear();
340 return StratifiedSets<T>(std::move(Values), std::move(StratLinks));
343 bool has(const T &Elem) const { return get(Elem).hasValue(); }
345 bool add(const T &Main) {
346 if (get(Main).hasValue())
347 return false;
349 auto NewIndex = getNewUnlinkedIndex();
350 return addAtMerging(Main, NewIndex);
353 /// Restructures the stratified sets as necessary to make "ToAdd" in a
354 /// set above "Main". There are some cases where this is not possible (see
355 /// above), so we merge them such that ToAdd and Main are in the same set.
356 bool addAbove(const T &Main, const T &ToAdd) {
357 assert(has(Main));
358 auto Index = *indexOf(Main);
359 if (!linksAt(Index).hasAbove())
360 addLinkAbove(Index);
362 auto Above = linksAt(Index).getAbove();
363 return addAtMerging(ToAdd, Above);
366 /// Restructures the stratified sets as necessary to make "ToAdd" in a
367 /// set below "Main". There are some cases where this is not possible (see
368 /// above), so we merge them such that ToAdd and Main are in the same set.
369 bool addBelow(const T &Main, const T &ToAdd) {
370 assert(has(Main));
371 auto Index = *indexOf(Main);
372 if (!linksAt(Index).hasBelow())
373 addLinkBelow(Index);
375 auto Below = linksAt(Index).getBelow();
376 return addAtMerging(ToAdd, Below);
379 bool addWith(const T &Main, const T &ToAdd) {
380 assert(has(Main));
381 auto MainIndex = *indexOf(Main);
382 return addAtMerging(ToAdd, MainIndex);
385 void noteAttributes(const T &Main, AliasAttrs NewAttrs) {
386 assert(has(Main));
387 auto *Info = *get(Main);
388 auto &Link = linksAt(Info->Index);
389 Link.setAttrs(NewAttrs);
392 private:
393 DenseMap<T, StratifiedInfo> Values;
394 std::vector<BuilderLink> Links;
396 /// Adds the given element at the given index, merging sets if necessary.
397 bool addAtMerging(const T &ToAdd, StratifiedIndex Index) {
398 StratifiedInfo Info = {Index};
399 auto Pair = Values.insert(std::make_pair(ToAdd, Info));
400 if (Pair.second)
401 return true;
403 auto &Iter = Pair.first;
404 auto &IterSet = linksAt(Iter->second.Index);
405 auto &ReqSet = linksAt(Index);
407 // Failed to add where we wanted to. Merge the sets.
408 if (&IterSet != &ReqSet)
409 merge(IterSet.Number, ReqSet.Number);
411 return false;
414 /// Gets the BuilderLink at the given index, taking set remapping into
415 /// account.
416 BuilderLink &linksAt(StratifiedIndex Index) {
417 auto *Start = &Links[Index];
418 if (!Start->isRemapped())
419 return *Start;
421 auto *Current = Start;
422 while (Current->isRemapped())
423 Current = &Links[Current->getRemapIndex()];
425 auto NewRemap = Current->Number;
427 // Run through everything that has yet to be updated, and update them to
428 // remap to NewRemap
429 Current = Start;
430 while (Current->isRemapped()) {
431 auto *Next = &Links[Current->getRemapIndex()];
432 Current->updateRemap(NewRemap);
433 Current = Next;
436 return *Current;
439 /// Merges two sets into one another. Assumes that these sets are not
440 /// already one in the same.
441 void merge(StratifiedIndex Idx1, StratifiedIndex Idx2) {
442 assert(inbounds(Idx1) && inbounds(Idx2));
443 assert(&linksAt(Idx1) != &linksAt(Idx2) &&
444 "Merging a set into itself is not allowed");
446 // CASE 1: If the set at `Idx1` is above or below `Idx2`, we need to merge
447 // both the
448 // given sets, and all sets between them, into one.
449 if (tryMergeUpwards(Idx1, Idx2))
450 return;
452 if (tryMergeUpwards(Idx2, Idx1))
453 return;
455 // CASE 2: The set at `Idx1` is not in the same chain as the set at `Idx2`.
456 // We therefore need to merge the two chains together.
457 mergeDirect(Idx1, Idx2);
460 /// Merges two sets assuming that the set at `Idx1` is unreachable from
461 /// traversing above or below the set at `Idx2`.
462 void mergeDirect(StratifiedIndex Idx1, StratifiedIndex Idx2) {
463 assert(inbounds(Idx1) && inbounds(Idx2));
465 auto *LinksInto = &linksAt(Idx1);
466 auto *LinksFrom = &linksAt(Idx2);
467 // Merging everything above LinksInto then proceeding to merge everything
468 // below LinksInto becomes problematic, so we go as far "up" as possible!
469 while (LinksInto->hasAbove() && LinksFrom->hasAbove()) {
470 LinksInto = &linksAt(LinksInto->getAbove());
471 LinksFrom = &linksAt(LinksFrom->getAbove());
474 if (LinksFrom->hasAbove()) {
475 LinksInto->setAbove(LinksFrom->getAbove());
476 auto &NewAbove = linksAt(LinksInto->getAbove());
477 NewAbove.setBelow(LinksInto->Number);
480 // Merging strategy:
481 // > If neither has links below, stop.
482 // > If only `LinksInto` has links below, stop.
483 // > If only `LinksFrom` has links below, reset `LinksInto.Below` to
484 // match `LinksFrom.Below`
485 // > If both have links above, deal with those next.
486 while (LinksInto->hasBelow() && LinksFrom->hasBelow()) {
487 auto FromAttrs = LinksFrom->getAttrs();
488 LinksInto->setAttrs(FromAttrs);
490 // Remap needs to happen after getBelow(), but before
491 // assignment of LinksFrom
492 auto *NewLinksFrom = &linksAt(LinksFrom->getBelow());
493 LinksFrom->remapTo(LinksInto->Number);
494 LinksFrom = NewLinksFrom;
495 LinksInto = &linksAt(LinksInto->getBelow());
498 if (LinksFrom->hasBelow()) {
499 LinksInto->setBelow(LinksFrom->getBelow());
500 auto &NewBelow = linksAt(LinksInto->getBelow());
501 NewBelow.setAbove(LinksInto->Number);
504 LinksInto->setAttrs(LinksFrom->getAttrs());
505 LinksFrom->remapTo(LinksInto->Number);
508 /// Checks to see if lowerIndex is at a level lower than upperIndex. If so, it
509 /// will merge lowerIndex with upperIndex (and all of the sets between) and
510 /// return true. Otherwise, it will return false.
511 bool tryMergeUpwards(StratifiedIndex LowerIndex, StratifiedIndex UpperIndex) {
512 assert(inbounds(LowerIndex) && inbounds(UpperIndex));
513 auto *Lower = &linksAt(LowerIndex);
514 auto *Upper = &linksAt(UpperIndex);
515 if (Lower == Upper)
516 return true;
518 SmallVector<BuilderLink *, 8> Found;
519 auto *Current = Lower;
520 auto Attrs = Current->getAttrs();
521 while (Current->hasAbove() && Current != Upper) {
522 Found.push_back(Current);
523 Attrs |= Current->getAttrs();
524 Current = &linksAt(Current->getAbove());
527 if (Current != Upper)
528 return false;
530 Upper->setAttrs(Attrs);
532 if (Lower->hasBelow()) {
533 auto NewBelowIndex = Lower->getBelow();
534 Upper->setBelow(NewBelowIndex);
535 auto &NewBelow = linksAt(NewBelowIndex);
536 NewBelow.setAbove(UpperIndex);
537 } else {
538 Upper->clearBelow();
541 for (const auto &Ptr : Found)
542 Ptr->remapTo(Upper->Number);
544 return true;
547 Optional<const StratifiedInfo *> get(const T &Val) const {
548 auto Result = Values.find(Val);
549 if (Result == Values.end())
550 return None;
551 return &Result->second;
554 Optional<StratifiedInfo *> get(const T &Val) {
555 auto Result = Values.find(Val);
556 if (Result == Values.end())
557 return None;
558 return &Result->second;
561 Optional<StratifiedIndex> indexOf(const T &Val) {
562 auto MaybeVal = get(Val);
563 if (!MaybeVal.hasValue())
564 return None;
565 auto *Info = *MaybeVal;
566 auto &Link = linksAt(Info->Index);
567 return Link.Number;
570 StratifiedIndex addLinkBelow(StratifiedIndex Set) {
571 auto At = addLinks();
572 Links[Set].setBelow(At);
573 Links[At].setAbove(Set);
574 return At;
577 StratifiedIndex addLinkAbove(StratifiedIndex Set) {
578 auto At = addLinks();
579 Links[At].setBelow(Set);
580 Links[Set].setAbove(At);
581 return At;
584 StratifiedIndex getNewUnlinkedIndex() { return addLinks(); }
586 StratifiedIndex addLinks() {
587 auto Link = Links.size();
588 Links.push_back(BuilderLink(Link));
589 return Link;
592 bool inbounds(StratifiedIndex N) const { return N < Links.size(); }
596 #endif // LLVM_ADT_STRATIFIEDSETS_H