[ARM] Generate 8.1-m CSINC, CSNEG and CSINV instructions.
[llvm-core.git] / lib / ExecutionEngine / ExecutionEngine.cpp
bloba425c61210898ef0f357571d6cee1b749c8a0429
1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the common interface used by the various execution engine
10 // subclasses.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ExecutionEngine/ExecutionEngine.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ExecutionEngine/GenericValue.h"
19 #include "llvm/ExecutionEngine/JITEventListener.h"
20 #include "llvm/ExecutionEngine/ObjectCache.h"
21 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Mangler.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/ValueHandle.h"
29 #include "llvm/Object/Archive.h"
30 #include "llvm/Object/ObjectFile.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/DynamicLibrary.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/Host.h"
35 #include "llvm/Support/TargetRegistry.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include <cmath>
39 #include <cstring>
40 #include <mutex>
41 using namespace llvm;
43 #define DEBUG_TYPE "jit"
45 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
46 STATISTIC(NumGlobals , "Number of global vars initialized");
48 ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
49 std::unique_ptr<Module> M, std::string *ErrorStr,
50 std::shared_ptr<MCJITMemoryManager> MemMgr,
51 std::shared_ptr<LegacyJITSymbolResolver> Resolver,
52 std::unique_ptr<TargetMachine> TM) = nullptr;
54 ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)(
55 std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MemMgr,
56 std::shared_ptr<LegacyJITSymbolResolver> Resolver,
57 std::unique_ptr<TargetMachine> TM) = nullptr;
59 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M,
60 std::string *ErrorStr) =nullptr;
62 void JITEventListener::anchor() {}
64 void ObjectCache::anchor() {}
66 void ExecutionEngine::Init(std::unique_ptr<Module> M) {
67 CompilingLazily = false;
68 GVCompilationDisabled = false;
69 SymbolSearchingDisabled = false;
71 // IR module verification is enabled by default in debug builds, and disabled
72 // by default in release builds.
73 #ifndef NDEBUG
74 VerifyModules = true;
75 #else
76 VerifyModules = false;
77 #endif
79 assert(M && "Module is null?");
80 Modules.push_back(std::move(M));
83 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M)
84 : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) {
85 Init(std::move(M));
88 ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M)
89 : DL(std::move(DL)), LazyFunctionCreator(nullptr) {
90 Init(std::move(M));
93 ExecutionEngine::~ExecutionEngine() {
94 clearAllGlobalMappings();
97 namespace {
98 /// Helper class which uses a value handler to automatically deletes the
99 /// memory block when the GlobalVariable is destroyed.
100 class GVMemoryBlock final : public CallbackVH {
101 GVMemoryBlock(const GlobalVariable *GV)
102 : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
104 public:
105 /// Returns the address the GlobalVariable should be written into. The
106 /// GVMemoryBlock object prefixes that.
107 static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
108 Type *ElTy = GV->getValueType();
109 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
110 void *RawMemory = ::operator new(
111 alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlignment(GV)) + GVSize);
112 new(RawMemory) GVMemoryBlock(GV);
113 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
116 void deleted() override {
117 // We allocated with operator new and with some extra memory hanging off the
118 // end, so don't just delete this. I'm not sure if this is actually
119 // required.
120 this->~GVMemoryBlock();
121 ::operator delete(this);
124 } // anonymous namespace
126 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
127 return GVMemoryBlock::Create(GV, getDataLayout());
130 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) {
131 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
134 void
135 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) {
136 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
139 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) {
140 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive.");
143 bool ExecutionEngine::removeModule(Module *M) {
144 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) {
145 Module *Found = I->get();
146 if (Found == M) {
147 I->release();
148 Modules.erase(I);
149 clearGlobalMappingsFromModule(M);
150 return true;
153 return false;
156 Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) {
157 for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
158 Function *F = Modules[i]->getFunction(FnName);
159 if (F && !F->isDeclaration())
160 return F;
162 return nullptr;
165 GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) {
166 for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
167 GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal);
168 if (GV && !GV->isDeclaration())
169 return GV;
171 return nullptr;
174 uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) {
175 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name);
176 uint64_t OldVal;
178 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
179 // GlobalAddressMap.
180 if (I == GlobalAddressMap.end())
181 OldVal = 0;
182 else {
183 GlobalAddressReverseMap.erase(I->second);
184 OldVal = I->second;
185 GlobalAddressMap.erase(I);
188 return OldVal;
191 std::string ExecutionEngine::getMangledName(const GlobalValue *GV) {
192 assert(GV->hasName() && "Global must have name.");
194 std::lock_guard<sys::Mutex> locked(lock);
195 SmallString<128> FullName;
197 const DataLayout &DL =
198 GV->getParent()->getDataLayout().isDefault()
199 ? getDataLayout()
200 : GV->getParent()->getDataLayout();
202 Mangler::getNameWithPrefix(FullName, GV->getName(), DL);
203 return FullName.str();
206 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
207 std::lock_guard<sys::Mutex> locked(lock);
208 addGlobalMapping(getMangledName(GV), (uint64_t) Addr);
211 void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) {
212 std::lock_guard<sys::Mutex> locked(lock);
214 assert(!Name.empty() && "Empty GlobalMapping symbol name!");
216 LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";);
217 uint64_t &CurVal = EEState.getGlobalAddressMap()[Name];
218 assert((!CurVal || !Addr) && "GlobalMapping already established!");
219 CurVal = Addr;
221 // If we are using the reverse mapping, add it too.
222 if (!EEState.getGlobalAddressReverseMap().empty()) {
223 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
224 assert((!V.empty() || !Name.empty()) &&
225 "GlobalMapping already established!");
226 V = Name;
230 void ExecutionEngine::clearAllGlobalMappings() {
231 std::lock_guard<sys::Mutex> locked(lock);
233 EEState.getGlobalAddressMap().clear();
234 EEState.getGlobalAddressReverseMap().clear();
237 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
238 std::lock_guard<sys::Mutex> locked(lock);
240 for (GlobalObject &GO : M->global_objects())
241 EEState.RemoveMapping(getMangledName(&GO));
244 uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV,
245 void *Addr) {
246 std::lock_guard<sys::Mutex> locked(lock);
247 return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr);
250 uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) {
251 std::lock_guard<sys::Mutex> locked(lock);
253 ExecutionEngineState::GlobalAddressMapTy &Map =
254 EEState.getGlobalAddressMap();
256 // Deleting from the mapping?
257 if (!Addr)
258 return EEState.RemoveMapping(Name);
260 uint64_t &CurVal = Map[Name];
261 uint64_t OldVal = CurVal;
263 if (CurVal && !EEState.getGlobalAddressReverseMap().empty())
264 EEState.getGlobalAddressReverseMap().erase(CurVal);
265 CurVal = Addr;
267 // If we are using the reverse mapping, add it too.
268 if (!EEState.getGlobalAddressReverseMap().empty()) {
269 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
270 assert((!V.empty() || !Name.empty()) &&
271 "GlobalMapping already established!");
272 V = Name;
274 return OldVal;
277 uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) {
278 std::lock_guard<sys::Mutex> locked(lock);
279 uint64_t Address = 0;
280 ExecutionEngineState::GlobalAddressMapTy::iterator I =
281 EEState.getGlobalAddressMap().find(S);
282 if (I != EEState.getGlobalAddressMap().end())
283 Address = I->second;
284 return Address;
288 void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) {
289 std::lock_guard<sys::Mutex> locked(lock);
290 if (void* Address = (void *) getAddressToGlobalIfAvailable(S))
291 return Address;
292 return nullptr;
295 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
296 std::lock_guard<sys::Mutex> locked(lock);
297 return getPointerToGlobalIfAvailable(getMangledName(GV));
300 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
301 std::lock_guard<sys::Mutex> locked(lock);
303 // If we haven't computed the reverse mapping yet, do so first.
304 if (EEState.getGlobalAddressReverseMap().empty()) {
305 for (ExecutionEngineState::GlobalAddressMapTy::iterator
306 I = EEState.getGlobalAddressMap().begin(),
307 E = EEState.getGlobalAddressMap().end(); I != E; ++I) {
308 StringRef Name = I->first();
309 uint64_t Addr = I->second;
310 EEState.getGlobalAddressReverseMap().insert(std::make_pair(
311 Addr, Name));
315 std::map<uint64_t, std::string>::iterator I =
316 EEState.getGlobalAddressReverseMap().find((uint64_t) Addr);
318 if (I != EEState.getGlobalAddressReverseMap().end()) {
319 StringRef Name = I->second;
320 for (unsigned i = 0, e = Modules.size(); i != e; ++i)
321 if (GlobalValue *GV = Modules[i]->getNamedValue(Name))
322 return GV;
324 return nullptr;
327 namespace {
328 class ArgvArray {
329 std::unique_ptr<char[]> Array;
330 std::vector<std::unique_ptr<char[]>> Values;
331 public:
332 /// Turn a vector of strings into a nice argv style array of pointers to null
333 /// terminated strings.
334 void *reset(LLVMContext &C, ExecutionEngine *EE,
335 const std::vector<std::string> &InputArgv);
337 } // anonymous namespace
338 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
339 const std::vector<std::string> &InputArgv) {
340 Values.clear(); // Free the old contents.
341 Values.reserve(InputArgv.size());
342 unsigned PtrSize = EE->getDataLayout().getPointerSize();
343 Array = std::make_unique<char[]>((InputArgv.size()+1)*PtrSize);
345 LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n");
346 Type *SBytePtr = Type::getInt8PtrTy(C);
348 for (unsigned i = 0; i != InputArgv.size(); ++i) {
349 unsigned Size = InputArgv[i].size()+1;
350 auto Dest = std::make_unique<char[]>(Size);
351 LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get()
352 << "\n");
354 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get());
355 Dest[Size-1] = 0;
357 // Endian safe: Array[i] = (PointerTy)Dest;
358 EE->StoreValueToMemory(PTOGV(Dest.get()),
359 (GenericValue*)(&Array[i*PtrSize]), SBytePtr);
360 Values.push_back(std::move(Dest));
363 // Null terminate it
364 EE->StoreValueToMemory(PTOGV(nullptr),
365 (GenericValue*)(&Array[InputArgv.size()*PtrSize]),
366 SBytePtr);
367 return Array.get();
370 void ExecutionEngine::runStaticConstructorsDestructors(Module &module,
371 bool isDtors) {
372 StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors");
373 GlobalVariable *GV = module.getNamedGlobal(Name);
375 // If this global has internal linkage, or if it has a use, then it must be
376 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
377 // this is the case, don't execute any of the global ctors, __main will do
378 // it.
379 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
381 // Should be an array of '{ i32, void ()* }' structs. The first value is
382 // the init priority, which we ignore.
383 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
384 if (!InitList)
385 return;
386 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
387 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
388 if (!CS) continue;
390 Constant *FP = CS->getOperand(1);
391 if (FP->isNullValue())
392 continue; // Found a sentinal value, ignore.
394 // Strip off constant expression casts.
395 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
396 if (CE->isCast())
397 FP = CE->getOperand(0);
399 // Execute the ctor/dtor function!
400 if (Function *F = dyn_cast<Function>(FP))
401 runFunction(F, None);
403 // FIXME: It is marginally lame that we just do nothing here if we see an
404 // entry we don't recognize. It might not be unreasonable for the verifier
405 // to not even allow this and just assert here.
409 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
410 // Execute global ctors/dtors for each module in the program.
411 for (std::unique_ptr<Module> &M : Modules)
412 runStaticConstructorsDestructors(*M, isDtors);
415 #ifndef NDEBUG
416 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
417 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
418 unsigned PtrSize = EE->getDataLayout().getPointerSize();
419 for (unsigned i = 0; i < PtrSize; ++i)
420 if (*(i + (uint8_t*)Loc))
421 return false;
422 return true;
424 #endif
426 int ExecutionEngine::runFunctionAsMain(Function *Fn,
427 const std::vector<std::string> &argv,
428 const char * const * envp) {
429 std::vector<GenericValue> GVArgs;
430 GenericValue GVArgc;
431 GVArgc.IntVal = APInt(32, argv.size());
433 // Check main() type
434 unsigned NumArgs = Fn->getFunctionType()->getNumParams();
435 FunctionType *FTy = Fn->getFunctionType();
436 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
438 // Check the argument types.
439 if (NumArgs > 3)
440 report_fatal_error("Invalid number of arguments of main() supplied");
441 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
442 report_fatal_error("Invalid type for third argument of main() supplied");
443 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
444 report_fatal_error("Invalid type for second argument of main() supplied");
445 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
446 report_fatal_error("Invalid type for first argument of main() supplied");
447 if (!FTy->getReturnType()->isIntegerTy() &&
448 !FTy->getReturnType()->isVoidTy())
449 report_fatal_error("Invalid return type of main() supplied");
451 ArgvArray CArgv;
452 ArgvArray CEnv;
453 if (NumArgs) {
454 GVArgs.push_back(GVArgc); // Arg #0 = argc.
455 if (NumArgs > 1) {
456 // Arg #1 = argv.
457 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
458 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
459 "argv[0] was null after CreateArgv");
460 if (NumArgs > 2) {
461 std::vector<std::string> EnvVars;
462 for (unsigned i = 0; envp[i]; ++i)
463 EnvVars.emplace_back(envp[i]);
464 // Arg #2 = envp.
465 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
470 return runFunction(Fn, GVArgs).IntVal.getZExtValue();
473 EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {}
475 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M)
476 : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr),
477 OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr),
478 UseOrcMCJITReplacement(false) {
479 // IR module verification is enabled by default in debug builds, and disabled
480 // by default in release builds.
481 #ifndef NDEBUG
482 VerifyModules = true;
483 #else
484 VerifyModules = false;
485 #endif
488 EngineBuilder::~EngineBuilder() = default;
490 EngineBuilder &EngineBuilder::setMCJITMemoryManager(
491 std::unique_ptr<RTDyldMemoryManager> mcjmm) {
492 auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm));
493 MemMgr = SharedMM;
494 Resolver = SharedMM;
495 return *this;
498 EngineBuilder&
499 EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) {
500 MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM));
501 return *this;
504 EngineBuilder &
505 EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) {
506 Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR));
507 return *this;
510 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
511 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership.
513 // Make sure we can resolve symbols in the program as well. The zero arg
514 // to the function tells DynamicLibrary to load the program, not a library.
515 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr))
516 return nullptr;
518 // If the user specified a memory manager but didn't specify which engine to
519 // create, we assume they only want the JIT, and we fail if they only want
520 // the interpreter.
521 if (MemMgr) {
522 if (WhichEngine & EngineKind::JIT)
523 WhichEngine = EngineKind::JIT;
524 else {
525 if (ErrorStr)
526 *ErrorStr = "Cannot create an interpreter with a memory manager.";
527 return nullptr;
531 // Unless the interpreter was explicitly selected or the JIT is not linked,
532 // try making a JIT.
533 if ((WhichEngine & EngineKind::JIT) && TheTM) {
534 if (!TM->getTarget().hasJIT()) {
535 errs() << "WARNING: This target JIT is not designed for the host"
536 << " you are running. If bad things happen, please choose"
537 << " a different -march switch.\n";
540 ExecutionEngine *EE = nullptr;
541 if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) {
542 EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MemMgr),
543 std::move(Resolver),
544 std::move(TheTM));
545 EE->addModule(std::move(M));
546 } else if (ExecutionEngine::MCJITCtor)
547 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr),
548 std::move(Resolver), std::move(TheTM));
550 if (EE) {
551 EE->setVerifyModules(VerifyModules);
552 return EE;
556 // If we can't make a JIT and we didn't request one specifically, try making
557 // an interpreter instead.
558 if (WhichEngine & EngineKind::Interpreter) {
559 if (ExecutionEngine::InterpCtor)
560 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr);
561 if (ErrorStr)
562 *ErrorStr = "Interpreter has not been linked in.";
563 return nullptr;
566 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) {
567 if (ErrorStr)
568 *ErrorStr = "JIT has not been linked in.";
571 return nullptr;
574 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
575 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
576 return getPointerToFunction(F);
578 std::lock_guard<sys::Mutex> locked(lock);
579 if (void* P = getPointerToGlobalIfAvailable(GV))
580 return P;
582 // Global variable might have been added since interpreter started.
583 if (GlobalVariable *GVar =
584 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
585 EmitGlobalVariable(GVar);
586 else
587 llvm_unreachable("Global hasn't had an address allocated yet!");
589 return getPointerToGlobalIfAvailable(GV);
592 /// Converts a Constant* into a GenericValue, including handling of
593 /// ConstantExpr values.
594 GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
595 // If its undefined, return the garbage.
596 if (isa<UndefValue>(C)) {
597 GenericValue Result;
598 switch (C->getType()->getTypeID()) {
599 default:
600 break;
601 case Type::IntegerTyID:
602 case Type::X86_FP80TyID:
603 case Type::FP128TyID:
604 case Type::PPC_FP128TyID:
605 // Although the value is undefined, we still have to construct an APInt
606 // with the correct bit width.
607 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
608 break;
609 case Type::StructTyID: {
610 // if the whole struct is 'undef' just reserve memory for the value.
611 if(StructType *STy = dyn_cast<StructType>(C->getType())) {
612 unsigned int elemNum = STy->getNumElements();
613 Result.AggregateVal.resize(elemNum);
614 for (unsigned int i = 0; i < elemNum; ++i) {
615 Type *ElemTy = STy->getElementType(i);
616 if (ElemTy->isIntegerTy())
617 Result.AggregateVal[i].IntVal =
618 APInt(ElemTy->getPrimitiveSizeInBits(), 0);
619 else if (ElemTy->isAggregateType()) {
620 const Constant *ElemUndef = UndefValue::get(ElemTy);
621 Result.AggregateVal[i] = getConstantValue(ElemUndef);
626 break;
627 case Type::VectorTyID:
628 // if the whole vector is 'undef' just reserve memory for the value.
629 auto* VTy = dyn_cast<VectorType>(C->getType());
630 Type *ElemTy = VTy->getElementType();
631 unsigned int elemNum = VTy->getNumElements();
632 Result.AggregateVal.resize(elemNum);
633 if (ElemTy->isIntegerTy())
634 for (unsigned int i = 0; i < elemNum; ++i)
635 Result.AggregateVal[i].IntVal =
636 APInt(ElemTy->getPrimitiveSizeInBits(), 0);
637 break;
639 return Result;
642 // Otherwise, if the value is a ConstantExpr...
643 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
644 Constant *Op0 = CE->getOperand(0);
645 switch (CE->getOpcode()) {
646 case Instruction::GetElementPtr: {
647 // Compute the index
648 GenericValue Result = getConstantValue(Op0);
649 APInt Offset(DL.getPointerSizeInBits(), 0);
650 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset);
652 char* tmp = (char*) Result.PointerVal;
653 Result = PTOGV(tmp + Offset.getSExtValue());
654 return Result;
656 case Instruction::Trunc: {
657 GenericValue GV = getConstantValue(Op0);
658 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
659 GV.IntVal = GV.IntVal.trunc(BitWidth);
660 return GV;
662 case Instruction::ZExt: {
663 GenericValue GV = getConstantValue(Op0);
664 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
665 GV.IntVal = GV.IntVal.zext(BitWidth);
666 return GV;
668 case Instruction::SExt: {
669 GenericValue GV = getConstantValue(Op0);
670 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
671 GV.IntVal = GV.IntVal.sext(BitWidth);
672 return GV;
674 case Instruction::FPTrunc: {
675 // FIXME long double
676 GenericValue GV = getConstantValue(Op0);
677 GV.FloatVal = float(GV.DoubleVal);
678 return GV;
680 case Instruction::FPExt:{
681 // FIXME long double
682 GenericValue GV = getConstantValue(Op0);
683 GV.DoubleVal = double(GV.FloatVal);
684 return GV;
686 case Instruction::UIToFP: {
687 GenericValue GV = getConstantValue(Op0);
688 if (CE->getType()->isFloatTy())
689 GV.FloatVal = float(GV.IntVal.roundToDouble());
690 else if (CE->getType()->isDoubleTy())
691 GV.DoubleVal = GV.IntVal.roundToDouble();
692 else if (CE->getType()->isX86_FP80Ty()) {
693 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
694 (void)apf.convertFromAPInt(GV.IntVal,
695 false,
696 APFloat::rmNearestTiesToEven);
697 GV.IntVal = apf.bitcastToAPInt();
699 return GV;
701 case Instruction::SIToFP: {
702 GenericValue GV = getConstantValue(Op0);
703 if (CE->getType()->isFloatTy())
704 GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
705 else if (CE->getType()->isDoubleTy())
706 GV.DoubleVal = GV.IntVal.signedRoundToDouble();
707 else if (CE->getType()->isX86_FP80Ty()) {
708 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
709 (void)apf.convertFromAPInt(GV.IntVal,
710 true,
711 APFloat::rmNearestTiesToEven);
712 GV.IntVal = apf.bitcastToAPInt();
714 return GV;
716 case Instruction::FPToUI: // double->APInt conversion handles sign
717 case Instruction::FPToSI: {
718 GenericValue GV = getConstantValue(Op0);
719 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
720 if (Op0->getType()->isFloatTy())
721 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
722 else if (Op0->getType()->isDoubleTy())
723 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
724 else if (Op0->getType()->isX86_FP80Ty()) {
725 APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal);
726 uint64_t v;
727 bool ignored;
728 (void)apf.convertToInteger(makeMutableArrayRef(v), BitWidth,
729 CE->getOpcode()==Instruction::FPToSI,
730 APFloat::rmTowardZero, &ignored);
731 GV.IntVal = v; // endian?
733 return GV;
735 case Instruction::PtrToInt: {
736 GenericValue GV = getConstantValue(Op0);
737 uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType());
738 assert(PtrWidth <= 64 && "Bad pointer width");
739 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
740 uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType());
741 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth);
742 return GV;
744 case Instruction::IntToPtr: {
745 GenericValue GV = getConstantValue(Op0);
746 uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType());
747 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
748 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
749 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
750 return GV;
752 case Instruction::BitCast: {
753 GenericValue GV = getConstantValue(Op0);
754 Type* DestTy = CE->getType();
755 switch (Op0->getType()->getTypeID()) {
756 default: llvm_unreachable("Invalid bitcast operand");
757 case Type::IntegerTyID:
758 assert(DestTy->isFloatingPointTy() && "invalid bitcast");
759 if (DestTy->isFloatTy())
760 GV.FloatVal = GV.IntVal.bitsToFloat();
761 else if (DestTy->isDoubleTy())
762 GV.DoubleVal = GV.IntVal.bitsToDouble();
763 break;
764 case Type::FloatTyID:
765 assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
766 GV.IntVal = APInt::floatToBits(GV.FloatVal);
767 break;
768 case Type::DoubleTyID:
769 assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
770 GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
771 break;
772 case Type::PointerTyID:
773 assert(DestTy->isPointerTy() && "Invalid bitcast");
774 break; // getConstantValue(Op0) above already converted it
776 return GV;
778 case Instruction::Add:
779 case Instruction::FAdd:
780 case Instruction::Sub:
781 case Instruction::FSub:
782 case Instruction::Mul:
783 case Instruction::FMul:
784 case Instruction::UDiv:
785 case Instruction::SDiv:
786 case Instruction::URem:
787 case Instruction::SRem:
788 case Instruction::And:
789 case Instruction::Or:
790 case Instruction::Xor: {
791 GenericValue LHS = getConstantValue(Op0);
792 GenericValue RHS = getConstantValue(CE->getOperand(1));
793 GenericValue GV;
794 switch (CE->getOperand(0)->getType()->getTypeID()) {
795 default: llvm_unreachable("Bad add type!");
796 case Type::IntegerTyID:
797 switch (CE->getOpcode()) {
798 default: llvm_unreachable("Invalid integer opcode");
799 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
800 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
801 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
802 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
803 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
804 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
805 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
806 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
807 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
808 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
810 break;
811 case Type::FloatTyID:
812 switch (CE->getOpcode()) {
813 default: llvm_unreachable("Invalid float opcode");
814 case Instruction::FAdd:
815 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
816 case Instruction::FSub:
817 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
818 case Instruction::FMul:
819 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
820 case Instruction::FDiv:
821 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
822 case Instruction::FRem:
823 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
825 break;
826 case Type::DoubleTyID:
827 switch (CE->getOpcode()) {
828 default: llvm_unreachable("Invalid double opcode");
829 case Instruction::FAdd:
830 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
831 case Instruction::FSub:
832 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
833 case Instruction::FMul:
834 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
835 case Instruction::FDiv:
836 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
837 case Instruction::FRem:
838 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
840 break;
841 case Type::X86_FP80TyID:
842 case Type::PPC_FP128TyID:
843 case Type::FP128TyID: {
844 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics();
845 APFloat apfLHS = APFloat(Sem, LHS.IntVal);
846 switch (CE->getOpcode()) {
847 default: llvm_unreachable("Invalid long double opcode");
848 case Instruction::FAdd:
849 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven);
850 GV.IntVal = apfLHS.bitcastToAPInt();
851 break;
852 case Instruction::FSub:
853 apfLHS.subtract(APFloat(Sem, RHS.IntVal),
854 APFloat::rmNearestTiesToEven);
855 GV.IntVal = apfLHS.bitcastToAPInt();
856 break;
857 case Instruction::FMul:
858 apfLHS.multiply(APFloat(Sem, RHS.IntVal),
859 APFloat::rmNearestTiesToEven);
860 GV.IntVal = apfLHS.bitcastToAPInt();
861 break;
862 case Instruction::FDiv:
863 apfLHS.divide(APFloat(Sem, RHS.IntVal),
864 APFloat::rmNearestTiesToEven);
865 GV.IntVal = apfLHS.bitcastToAPInt();
866 break;
867 case Instruction::FRem:
868 apfLHS.mod(APFloat(Sem, RHS.IntVal));
869 GV.IntVal = apfLHS.bitcastToAPInt();
870 break;
873 break;
875 return GV;
877 default:
878 break;
881 SmallString<256> Msg;
882 raw_svector_ostream OS(Msg);
883 OS << "ConstantExpr not handled: " << *CE;
884 report_fatal_error(OS.str());
887 // Otherwise, we have a simple constant.
888 GenericValue Result;
889 switch (C->getType()->getTypeID()) {
890 case Type::FloatTyID:
891 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
892 break;
893 case Type::DoubleTyID:
894 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
895 break;
896 case Type::X86_FP80TyID:
897 case Type::FP128TyID:
898 case Type::PPC_FP128TyID:
899 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
900 break;
901 case Type::IntegerTyID:
902 Result.IntVal = cast<ConstantInt>(C)->getValue();
903 break;
904 case Type::PointerTyID:
905 while (auto *A = dyn_cast<GlobalAlias>(C)) {
906 C = A->getAliasee();
908 if (isa<ConstantPointerNull>(C))
909 Result.PointerVal = nullptr;
910 else if (const Function *F = dyn_cast<Function>(C))
911 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
912 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
913 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
914 else
915 llvm_unreachable("Unknown constant pointer type!");
916 break;
917 case Type::VectorTyID: {
918 unsigned elemNum;
919 Type* ElemTy;
920 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
921 const ConstantVector *CV = dyn_cast<ConstantVector>(C);
922 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C);
924 if (CDV) {
925 elemNum = CDV->getNumElements();
926 ElemTy = CDV->getElementType();
927 } else if (CV || CAZ) {
928 VectorType* VTy = dyn_cast<VectorType>(C->getType());
929 elemNum = VTy->getNumElements();
930 ElemTy = VTy->getElementType();
931 } else {
932 llvm_unreachable("Unknown constant vector type!");
935 Result.AggregateVal.resize(elemNum);
936 // Check if vector holds floats.
937 if(ElemTy->isFloatTy()) {
938 if (CAZ) {
939 GenericValue floatZero;
940 floatZero.FloatVal = 0.f;
941 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
942 floatZero);
943 break;
945 if(CV) {
946 for (unsigned i = 0; i < elemNum; ++i)
947 if (!isa<UndefValue>(CV->getOperand(i)))
948 Result.AggregateVal[i].FloatVal = cast<ConstantFP>(
949 CV->getOperand(i))->getValueAPF().convertToFloat();
950 break;
952 if(CDV)
953 for (unsigned i = 0; i < elemNum; ++i)
954 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i);
956 break;
958 // Check if vector holds doubles.
959 if (ElemTy->isDoubleTy()) {
960 if (CAZ) {
961 GenericValue doubleZero;
962 doubleZero.DoubleVal = 0.0;
963 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
964 doubleZero);
965 break;
967 if(CV) {
968 for (unsigned i = 0; i < elemNum; ++i)
969 if (!isa<UndefValue>(CV->getOperand(i)))
970 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>(
971 CV->getOperand(i))->getValueAPF().convertToDouble();
972 break;
974 if(CDV)
975 for (unsigned i = 0; i < elemNum; ++i)
976 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i);
978 break;
980 // Check if vector holds integers.
981 if (ElemTy->isIntegerTy()) {
982 if (CAZ) {
983 GenericValue intZero;
984 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull);
985 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
986 intZero);
987 break;
989 if(CV) {
990 for (unsigned i = 0; i < elemNum; ++i)
991 if (!isa<UndefValue>(CV->getOperand(i)))
992 Result.AggregateVal[i].IntVal = cast<ConstantInt>(
993 CV->getOperand(i))->getValue();
994 else {
995 Result.AggregateVal[i].IntVal =
996 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0);
998 break;
1000 if(CDV)
1001 for (unsigned i = 0; i < elemNum; ++i)
1002 Result.AggregateVal[i].IntVal = APInt(
1003 CDV->getElementType()->getPrimitiveSizeInBits(),
1004 CDV->getElementAsInteger(i));
1006 break;
1008 llvm_unreachable("Unknown constant pointer type!");
1010 break;
1012 default:
1013 SmallString<256> Msg;
1014 raw_svector_ostream OS(Msg);
1015 OS << "ERROR: Constant unimplemented for type: " << *C->getType();
1016 report_fatal_error(OS.str());
1019 return Result;
1022 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
1023 GenericValue *Ptr, Type *Ty) {
1024 const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty);
1026 switch (Ty->getTypeID()) {
1027 default:
1028 dbgs() << "Cannot store value of type " << *Ty << "!\n";
1029 break;
1030 case Type::IntegerTyID:
1031 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
1032 break;
1033 case Type::FloatTyID:
1034 *((float*)Ptr) = Val.FloatVal;
1035 break;
1036 case Type::DoubleTyID:
1037 *((double*)Ptr) = Val.DoubleVal;
1038 break;
1039 case Type::X86_FP80TyID:
1040 memcpy(Ptr, Val.IntVal.getRawData(), 10);
1041 break;
1042 case Type::PointerTyID:
1043 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
1044 if (StoreBytes != sizeof(PointerTy))
1045 memset(&(Ptr->PointerVal), 0, StoreBytes);
1047 *((PointerTy*)Ptr) = Val.PointerVal;
1048 break;
1049 case Type::VectorTyID:
1050 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) {
1051 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
1052 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal;
1053 if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
1054 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal;
1055 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) {
1056 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8;
1057 StoreIntToMemory(Val.AggregateVal[i].IntVal,
1058 (uint8_t*)Ptr + numOfBytes*i, numOfBytes);
1061 break;
1064 if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian())
1065 // Host and target are different endian - reverse the stored bytes.
1066 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
1069 /// FIXME: document
1071 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
1072 GenericValue *Ptr,
1073 Type *Ty) {
1074 const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty);
1076 switch (Ty->getTypeID()) {
1077 case Type::IntegerTyID:
1078 // An APInt with all words initially zero.
1079 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
1080 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
1081 break;
1082 case Type::FloatTyID:
1083 Result.FloatVal = *((float*)Ptr);
1084 break;
1085 case Type::DoubleTyID:
1086 Result.DoubleVal = *((double*)Ptr);
1087 break;
1088 case Type::PointerTyID:
1089 Result.PointerVal = *((PointerTy*)Ptr);
1090 break;
1091 case Type::X86_FP80TyID: {
1092 // This is endian dependent, but it will only work on x86 anyway.
1093 // FIXME: Will not trap if loading a signaling NaN.
1094 uint64_t y[2];
1095 memcpy(y, Ptr, 10);
1096 Result.IntVal = APInt(80, y);
1097 break;
1099 case Type::VectorTyID: {
1100 auto *VT = cast<VectorType>(Ty);
1101 Type *ElemT = VT->getElementType();
1102 const unsigned numElems = VT->getNumElements();
1103 if (ElemT->isFloatTy()) {
1104 Result.AggregateVal.resize(numElems);
1105 for (unsigned i = 0; i < numElems; ++i)
1106 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i);
1108 if (ElemT->isDoubleTy()) {
1109 Result.AggregateVal.resize(numElems);
1110 for (unsigned i = 0; i < numElems; ++i)
1111 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i);
1113 if (ElemT->isIntegerTy()) {
1114 GenericValue intZero;
1115 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth();
1116 intZero.IntVal = APInt(elemBitWidth, 0);
1117 Result.AggregateVal.resize(numElems, intZero);
1118 for (unsigned i = 0; i < numElems; ++i)
1119 LoadIntFromMemory(Result.AggregateVal[i].IntVal,
1120 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8);
1122 break;
1124 default:
1125 SmallString<256> Msg;
1126 raw_svector_ostream OS(Msg);
1127 OS << "Cannot load value of type " << *Ty << "!";
1128 report_fatal_error(OS.str());
1132 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
1133 LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
1134 LLVM_DEBUG(Init->dump());
1135 if (isa<UndefValue>(Init))
1136 return;
1138 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
1139 unsigned ElementSize =
1140 getDataLayout().getTypeAllocSize(CP->getType()->getElementType());
1141 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
1142 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
1143 return;
1146 if (isa<ConstantAggregateZero>(Init)) {
1147 memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType()));
1148 return;
1151 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
1152 unsigned ElementSize =
1153 getDataLayout().getTypeAllocSize(CPA->getType()->getElementType());
1154 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
1155 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
1156 return;
1159 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
1160 const StructLayout *SL =
1161 getDataLayout().getStructLayout(cast<StructType>(CPS->getType()));
1162 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
1163 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
1164 return;
1167 if (const ConstantDataSequential *CDS =
1168 dyn_cast<ConstantDataSequential>(Init)) {
1169 // CDS is already laid out in host memory order.
1170 StringRef Data = CDS->getRawDataValues();
1171 memcpy(Addr, Data.data(), Data.size());
1172 return;
1175 if (Init->getType()->isFirstClassType()) {
1176 GenericValue Val = getConstantValue(Init);
1177 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
1178 return;
1181 LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
1182 llvm_unreachable("Unknown constant type to initialize memory with!");
1185 /// EmitGlobals - Emit all of the global variables to memory, storing their
1186 /// addresses into GlobalAddress. This must make sure to copy the contents of
1187 /// their initializers into the memory.
1188 void ExecutionEngine::emitGlobals() {
1189 // Loop over all of the global variables in the program, allocating the memory
1190 // to hold them. If there is more than one module, do a prepass over globals
1191 // to figure out how the different modules should link together.
1192 std::map<std::pair<std::string, Type*>,
1193 const GlobalValue*> LinkedGlobalsMap;
1195 if (Modules.size() != 1) {
1196 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1197 Module &M = *Modules[m];
1198 for (const auto &GV : M.globals()) {
1199 if (GV.hasLocalLinkage() || GV.isDeclaration() ||
1200 GV.hasAppendingLinkage() || !GV.hasName())
1201 continue;// Ignore external globals and globals with internal linkage.
1203 const GlobalValue *&GVEntry =
1204 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())];
1206 // If this is the first time we've seen this global, it is the canonical
1207 // version.
1208 if (!GVEntry) {
1209 GVEntry = &GV;
1210 continue;
1213 // If the existing global is strong, never replace it.
1214 if (GVEntry->hasExternalLinkage())
1215 continue;
1217 // Otherwise, we know it's linkonce/weak, replace it if this is a strong
1218 // symbol. FIXME is this right for common?
1219 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
1220 GVEntry = &GV;
1225 std::vector<const GlobalValue*> NonCanonicalGlobals;
1226 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1227 Module &M = *Modules[m];
1228 for (const auto &GV : M.globals()) {
1229 // In the multi-module case, see what this global maps to.
1230 if (!LinkedGlobalsMap.empty()) {
1231 if (const GlobalValue *GVEntry =
1232 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) {
1233 // If something else is the canonical global, ignore this one.
1234 if (GVEntry != &GV) {
1235 NonCanonicalGlobals.push_back(&GV);
1236 continue;
1241 if (!GV.isDeclaration()) {
1242 addGlobalMapping(&GV, getMemoryForGV(&GV));
1243 } else {
1244 // External variable reference. Try to use the dynamic loader to
1245 // get a pointer to it.
1246 if (void *SymAddr =
1247 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName()))
1248 addGlobalMapping(&GV, SymAddr);
1249 else {
1250 report_fatal_error("Could not resolve external global address: "
1251 +GV.getName());
1256 // If there are multiple modules, map the non-canonical globals to their
1257 // canonical location.
1258 if (!NonCanonicalGlobals.empty()) {
1259 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
1260 const GlobalValue *GV = NonCanonicalGlobals[i];
1261 const GlobalValue *CGV =
1262 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1263 void *Ptr = getPointerToGlobalIfAvailable(CGV);
1264 assert(Ptr && "Canonical global wasn't codegen'd!");
1265 addGlobalMapping(GV, Ptr);
1269 // Now that all of the globals are set up in memory, loop through them all
1270 // and initialize their contents.
1271 for (const auto &GV : M.globals()) {
1272 if (!GV.isDeclaration()) {
1273 if (!LinkedGlobalsMap.empty()) {
1274 if (const GlobalValue *GVEntry =
1275 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())])
1276 if (GVEntry != &GV) // Not the canonical variable.
1277 continue;
1279 EmitGlobalVariable(&GV);
1285 // EmitGlobalVariable - This method emits the specified global variable to the
1286 // address specified in GlobalAddresses, or allocates new memory if it's not
1287 // already in the map.
1288 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
1289 void *GA = getPointerToGlobalIfAvailable(GV);
1291 if (!GA) {
1292 // If it's not already specified, allocate memory for the global.
1293 GA = getMemoryForGV(GV);
1295 // If we failed to allocate memory for this global, return.
1296 if (!GA) return;
1298 addGlobalMapping(GV, GA);
1301 // Don't initialize if it's thread local, let the client do it.
1302 if (!GV->isThreadLocal())
1303 InitializeMemory(GV->getInitializer(), GA);
1305 Type *ElTy = GV->getValueType();
1306 size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy);
1307 NumInitBytes += (unsigned)GVSize;
1308 ++NumGlobals;