1 //===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file provides a helper that implements much of the TTI interface in
11 /// terms of the target-independent code generator and TargetLowering
14 //===----------------------------------------------------------------------===//
16 #ifndef LLVM_CODEGEN_BASICTTIIMPL_H
17 #define LLVM_CODEGEN_BASICTTIIMPL_H
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/Analysis/TargetTransformInfoImpl.h"
27 #include "llvm/CodeGen/ISDOpcodes.h"
28 #include "llvm/CodeGen/TargetLowering.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CallSite.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/MC/MCSchedule.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/MachineValueType.h"
49 #include "llvm/Support/MathExtras.h"
61 class ScalarEvolution
;
65 extern cl::opt
<unsigned> PartialUnrollingThreshold
;
67 /// Base class which can be used to help build a TTI implementation.
69 /// This class provides as much implementation of the TTI interface as is
70 /// possible using the target independent parts of the code generator.
72 /// In order to subclass it, your class must implement a getST() method to
73 /// return the subtarget, and a getTLI() method to return the target lowering.
74 /// We need these methods implemented in the derived class so that this class
75 /// doesn't have to duplicate storage for them.
77 class BasicTTIImplBase
: public TargetTransformInfoImplCRTPBase
<T
> {
79 using BaseT
= TargetTransformInfoImplCRTPBase
<T
>;
80 using TTI
= TargetTransformInfo
;
82 /// Estimate a cost of Broadcast as an extract and sequence of insert
84 unsigned getBroadcastShuffleOverhead(Type
*Ty
) {
85 assert(Ty
->isVectorTy() && "Can only shuffle vectors");
87 // Broadcast cost is equal to the cost of extracting the zero'th element
88 // plus the cost of inserting it into every element of the result vector.
89 Cost
+= static_cast<T
*>(this)->getVectorInstrCost(
90 Instruction::ExtractElement
, Ty
, 0);
92 for (int i
= 0, e
= Ty
->getVectorNumElements(); i
< e
; ++i
) {
93 Cost
+= static_cast<T
*>(this)->getVectorInstrCost(
94 Instruction::InsertElement
, Ty
, i
);
99 /// Estimate a cost of shuffle as a sequence of extract and insert
101 unsigned getPermuteShuffleOverhead(Type
*Ty
) {
102 assert(Ty
->isVectorTy() && "Can only shuffle vectors");
104 // Shuffle cost is equal to the cost of extracting element from its argument
105 // plus the cost of inserting them onto the result vector.
107 // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from
108 // index 0 of first vector, index 1 of second vector,index 2 of first
109 // vector and finally index 3 of second vector and insert them at index
110 // <0,1,2,3> of result vector.
111 for (int i
= 0, e
= Ty
->getVectorNumElements(); i
< e
; ++i
) {
112 Cost
+= static_cast<T
*>(this)
113 ->getVectorInstrCost(Instruction::InsertElement
, Ty
, i
);
114 Cost
+= static_cast<T
*>(this)
115 ->getVectorInstrCost(Instruction::ExtractElement
, Ty
, i
);
120 /// Estimate a cost of subvector extraction as a sequence of extract and
121 /// insert operations.
122 unsigned getExtractSubvectorOverhead(Type
*Ty
, int Index
, Type
*SubTy
) {
123 assert(Ty
&& Ty
->isVectorTy() && SubTy
&& SubTy
->isVectorTy() &&
124 "Can only extract subvectors from vectors");
125 int NumSubElts
= SubTy
->getVectorNumElements();
126 assert((Index
+ NumSubElts
) <= (int)Ty
->getVectorNumElements() &&
127 "SK_ExtractSubvector index out of range");
130 // Subvector extraction cost is equal to the cost of extracting element from
131 // the source type plus the cost of inserting them into the result vector
133 for (int i
= 0; i
!= NumSubElts
; ++i
) {
134 Cost
+= static_cast<T
*>(this)->getVectorInstrCost(
135 Instruction::ExtractElement
, Ty
, i
+ Index
);
136 Cost
+= static_cast<T
*>(this)->getVectorInstrCost(
137 Instruction::InsertElement
, SubTy
, i
);
142 /// Estimate a cost of subvector insertion as a sequence of extract and
143 /// insert operations.
144 unsigned getInsertSubvectorOverhead(Type
*Ty
, int Index
, Type
*SubTy
) {
145 assert(Ty
&& Ty
->isVectorTy() && SubTy
&& SubTy
->isVectorTy() &&
146 "Can only insert subvectors into vectors");
147 int NumSubElts
= SubTy
->getVectorNumElements();
148 assert((Index
+ NumSubElts
) <= (int)Ty
->getVectorNumElements() &&
149 "SK_InsertSubvector index out of range");
152 // Subvector insertion cost is equal to the cost of extracting element from
153 // the source type plus the cost of inserting them into the result vector
155 for (int i
= 0; i
!= NumSubElts
; ++i
) {
156 Cost
+= static_cast<T
*>(this)->getVectorInstrCost(
157 Instruction::ExtractElement
, SubTy
, i
);
158 Cost
+= static_cast<T
*>(this)->getVectorInstrCost(
159 Instruction::InsertElement
, Ty
, i
+ Index
);
164 /// Local query method delegates up to T which *must* implement this!
165 const TargetSubtargetInfo
*getST() const {
166 return static_cast<const T
*>(this)->getST();
169 /// Local query method delegates up to T which *must* implement this!
170 const TargetLoweringBase
*getTLI() const {
171 return static_cast<const T
*>(this)->getTLI();
174 static ISD::MemIndexedMode
getISDIndexedMode(TTI::MemIndexedMode M
) {
176 case TTI::MIM_Unindexed
:
177 return ISD::UNINDEXED
;
178 case TTI::MIM_PreInc
:
180 case TTI::MIM_PreDec
:
182 case TTI::MIM_PostInc
:
183 return ISD::POST_INC
;
184 case TTI::MIM_PostDec
:
185 return ISD::POST_DEC
;
187 llvm_unreachable("Unexpected MemIndexedMode");
191 explicit BasicTTIImplBase(const TargetMachine
*TM
, const DataLayout
&DL
)
193 virtual ~BasicTTIImplBase() = default;
195 using TargetTransformInfoImplBase::DL
;
198 /// \name Scalar TTI Implementations
200 bool allowsMisalignedMemoryAccesses(LLVMContext
&Context
, unsigned BitWidth
,
201 unsigned AddressSpace
, unsigned Alignment
,
203 EVT E
= EVT::getIntegerVT(Context
, BitWidth
);
204 return getTLI()->allowsMisalignedMemoryAccesses(
205 E
, AddressSpace
, Alignment
, MachineMemOperand::MONone
, Fast
);
208 bool hasBranchDivergence() { return false; }
210 bool isSourceOfDivergence(const Value
*V
) { return false; }
212 bool isAlwaysUniform(const Value
*V
) { return false; }
214 unsigned getFlatAddressSpace() {
215 // Return an invalid address space.
219 bool collectFlatAddressOperands(SmallVectorImpl
<int> &OpIndexes
,
220 Intrinsic::ID IID
) const {
224 bool rewriteIntrinsicWithAddressSpace(IntrinsicInst
*II
,
225 Value
*OldV
, Value
*NewV
) const {
229 bool isLegalAddImmediate(int64_t imm
) {
230 return getTLI()->isLegalAddImmediate(imm
);
233 bool isLegalICmpImmediate(int64_t imm
) {
234 return getTLI()->isLegalICmpImmediate(imm
);
237 bool isLegalAddressingMode(Type
*Ty
, GlobalValue
*BaseGV
, int64_t BaseOffset
,
238 bool HasBaseReg
, int64_t Scale
,
239 unsigned AddrSpace
, Instruction
*I
= nullptr) {
240 TargetLoweringBase::AddrMode AM
;
242 AM
.BaseOffs
= BaseOffset
;
243 AM
.HasBaseReg
= HasBaseReg
;
245 return getTLI()->isLegalAddressingMode(DL
, AM
, Ty
, AddrSpace
, I
);
248 bool isIndexedLoadLegal(TTI::MemIndexedMode M
, Type
*Ty
,
249 const DataLayout
&DL
) const {
250 EVT VT
= getTLI()->getValueType(DL
, Ty
);
251 return getTLI()->isIndexedLoadLegal(getISDIndexedMode(M
), VT
);
254 bool isIndexedStoreLegal(TTI::MemIndexedMode M
, Type
*Ty
,
255 const DataLayout
&DL
) const {
256 EVT VT
= getTLI()->getValueType(DL
, Ty
);
257 return getTLI()->isIndexedStoreLegal(getISDIndexedMode(M
), VT
);
260 bool isLSRCostLess(TTI::LSRCost C1
, TTI::LSRCost C2
) {
261 return TargetTransformInfoImplBase::isLSRCostLess(C1
, C2
);
264 int getScalingFactorCost(Type
*Ty
, GlobalValue
*BaseGV
, int64_t BaseOffset
,
265 bool HasBaseReg
, int64_t Scale
, unsigned AddrSpace
) {
266 TargetLoweringBase::AddrMode AM
;
268 AM
.BaseOffs
= BaseOffset
;
269 AM
.HasBaseReg
= HasBaseReg
;
271 return getTLI()->getScalingFactorCost(DL
, AM
, Ty
, AddrSpace
);
274 bool isTruncateFree(Type
*Ty1
, Type
*Ty2
) {
275 return getTLI()->isTruncateFree(Ty1
, Ty2
);
278 bool isProfitableToHoist(Instruction
*I
) {
279 return getTLI()->isProfitableToHoist(I
);
282 bool useAA() const { return getST()->useAA(); }
284 bool isTypeLegal(Type
*Ty
) {
285 EVT VT
= getTLI()->getValueType(DL
, Ty
);
286 return getTLI()->isTypeLegal(VT
);
289 int getGEPCost(Type
*PointeeType
, const Value
*Ptr
,
290 ArrayRef
<const Value
*> Operands
) {
291 return BaseT::getGEPCost(PointeeType
, Ptr
, Operands
);
294 int getExtCost(const Instruction
*I
, const Value
*Src
) {
295 if (getTLI()->isExtFree(I
))
296 return TargetTransformInfo::TCC_Free
;
298 if (isa
<ZExtInst
>(I
) || isa
<SExtInst
>(I
))
299 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(Src
))
300 if (getTLI()->isExtLoad(LI
, I
, DL
))
301 return TargetTransformInfo::TCC_Free
;
303 return TargetTransformInfo::TCC_Basic
;
306 unsigned getIntrinsicCost(Intrinsic::ID IID
, Type
*RetTy
,
307 ArrayRef
<const Value
*> Arguments
, const User
*U
) {
308 return BaseT::getIntrinsicCost(IID
, RetTy
, Arguments
, U
);
311 unsigned getIntrinsicCost(Intrinsic::ID IID
, Type
*RetTy
,
312 ArrayRef
<Type
*> ParamTys
, const User
*U
) {
313 if (IID
== Intrinsic::cttz
) {
314 if (getTLI()->isCheapToSpeculateCttz())
315 return TargetTransformInfo::TCC_Basic
;
316 return TargetTransformInfo::TCC_Expensive
;
319 if (IID
== Intrinsic::ctlz
) {
320 if (getTLI()->isCheapToSpeculateCtlz())
321 return TargetTransformInfo::TCC_Basic
;
322 return TargetTransformInfo::TCC_Expensive
;
325 return BaseT::getIntrinsicCost(IID
, RetTy
, ParamTys
, U
);
328 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst
&SI
,
329 unsigned &JumpTableSize
) {
330 /// Try to find the estimated number of clusters. Note that the number of
331 /// clusters identified in this function could be different from the actual
332 /// numbers found in lowering. This function ignore switches that are
333 /// lowered with a mix of jump table / bit test / BTree. This function was
334 /// initially intended to be used when estimating the cost of switch in
335 /// inline cost heuristic, but it's a generic cost model to be used in other
336 /// places (e.g., in loop unrolling).
337 unsigned N
= SI
.getNumCases();
338 const TargetLoweringBase
*TLI
= getTLI();
339 const DataLayout
&DL
= this->getDataLayout();
342 bool IsJTAllowed
= TLI
->areJTsAllowed(SI
.getParent()->getParent());
344 // Early exit if both a jump table and bit test are not allowed.
345 if (N
< 1 || (!IsJTAllowed
&& DL
.getIndexSizeInBits(0u) < N
))
348 APInt MaxCaseVal
= SI
.case_begin()->getCaseValue()->getValue();
349 APInt MinCaseVal
= MaxCaseVal
;
350 for (auto CI
: SI
.cases()) {
351 const APInt
&CaseVal
= CI
.getCaseValue()->getValue();
352 if (CaseVal
.sgt(MaxCaseVal
))
353 MaxCaseVal
= CaseVal
;
354 if (CaseVal
.slt(MinCaseVal
))
355 MinCaseVal
= CaseVal
;
358 // Check if suitable for a bit test
359 if (N
<= DL
.getIndexSizeInBits(0u)) {
360 SmallPtrSet
<const BasicBlock
*, 4> Dests
;
361 for (auto I
: SI
.cases())
362 Dests
.insert(I
.getCaseSuccessor());
364 if (TLI
->isSuitableForBitTests(Dests
.size(), N
, MinCaseVal
, MaxCaseVal
,
369 // Check if suitable for a jump table.
371 if (N
< 2 || N
< TLI
->getMinimumJumpTableEntries())
374 (MaxCaseVal
- MinCaseVal
)
375 .getLimitedValue(std::numeric_limits
<uint64_t>::max() - 1) + 1;
376 // Check whether a range of clusters is dense enough for a jump table
377 if (TLI
->isSuitableForJumpTable(&SI
, N
, Range
)) {
378 JumpTableSize
= Range
;
385 bool shouldBuildLookupTables() {
386 const TargetLoweringBase
*TLI
= getTLI();
387 return TLI
->isOperationLegalOrCustom(ISD::BR_JT
, MVT::Other
) ||
388 TLI
->isOperationLegalOrCustom(ISD::BRIND
, MVT::Other
);
391 bool haveFastSqrt(Type
*Ty
) {
392 const TargetLoweringBase
*TLI
= getTLI();
393 EVT VT
= TLI
->getValueType(DL
, Ty
);
394 return TLI
->isTypeLegal(VT
) &&
395 TLI
->isOperationLegalOrCustom(ISD::FSQRT
, VT
);
398 bool isFCmpOrdCheaperThanFCmpZero(Type
*Ty
) {
402 unsigned getFPOpCost(Type
*Ty
) {
403 // Check whether FADD is available, as a proxy for floating-point in
405 const TargetLoweringBase
*TLI
= getTLI();
406 EVT VT
= TLI
->getValueType(DL
, Ty
);
407 if (TLI
->isOperationLegalOrCustomOrPromote(ISD::FADD
, VT
))
408 return TargetTransformInfo::TCC_Basic
;
409 return TargetTransformInfo::TCC_Expensive
;
412 unsigned getOperationCost(unsigned Opcode
, Type
*Ty
, Type
*OpTy
) {
413 const TargetLoweringBase
*TLI
= getTLI();
416 case Instruction::Trunc
:
417 if (TLI
->isTruncateFree(OpTy
, Ty
))
418 return TargetTransformInfo::TCC_Free
;
419 return TargetTransformInfo::TCC_Basic
;
420 case Instruction::ZExt
:
421 if (TLI
->isZExtFree(OpTy
, Ty
))
422 return TargetTransformInfo::TCC_Free
;
423 return TargetTransformInfo::TCC_Basic
;
425 case Instruction::AddrSpaceCast
:
426 if (TLI
->isFreeAddrSpaceCast(OpTy
->getPointerAddressSpace(),
427 Ty
->getPointerAddressSpace()))
428 return TargetTransformInfo::TCC_Free
;
429 return TargetTransformInfo::TCC_Basic
;
432 return BaseT::getOperationCost(Opcode
, Ty
, OpTy
);
435 unsigned getInliningThresholdMultiplier() { return 1; }
437 int getInlinerVectorBonusPercent() { return 150; }
439 void getUnrollingPreferences(Loop
*L
, ScalarEvolution
&SE
,
440 TTI::UnrollingPreferences
&UP
) {
441 // This unrolling functionality is target independent, but to provide some
442 // motivation for its intended use, for x86:
444 // According to the Intel 64 and IA-32 Architectures Optimization Reference
445 // Manual, Intel Core models and later have a loop stream detector (and
446 // associated uop queue) that can benefit from partial unrolling.
447 // The relevant requirements are:
448 // - The loop must have no more than 4 (8 for Nehalem and later) branches
449 // taken, and none of them may be calls.
450 // - The loop can have no more than 18 (28 for Nehalem and later) uops.
452 // According to the Software Optimization Guide for AMD Family 15h
453 // Processors, models 30h-4fh (Steamroller and later) have a loop predictor
454 // and loop buffer which can benefit from partial unrolling.
455 // The relevant requirements are:
456 // - The loop must have fewer than 16 branches
457 // - The loop must have less than 40 uops in all executed loop branches
459 // The number of taken branches in a loop is hard to estimate here, and
460 // benchmarking has revealed that it is better not to be conservative when
461 // estimating the branch count. As a result, we'll ignore the branch limits
462 // until someone finds a case where it matters in practice.
465 const TargetSubtargetInfo
*ST
= getST();
466 if (PartialUnrollingThreshold
.getNumOccurrences() > 0)
467 MaxOps
= PartialUnrollingThreshold
;
468 else if (ST
->getSchedModel().LoopMicroOpBufferSize
> 0)
469 MaxOps
= ST
->getSchedModel().LoopMicroOpBufferSize
;
473 // Scan the loop: don't unroll loops with calls.
474 for (Loop::block_iterator I
= L
->block_begin(), E
= L
->block_end(); I
!= E
;
478 for (BasicBlock::iterator J
= BB
->begin(), JE
= BB
->end(); J
!= JE
; ++J
)
479 if (isa
<CallInst
>(J
) || isa
<InvokeInst
>(J
)) {
480 ImmutableCallSite
CS(&*J
);
481 if (const Function
*F
= CS
.getCalledFunction()) {
482 if (!static_cast<T
*>(this)->isLoweredToCall(F
))
490 // Enable runtime and partial unrolling up to the specified size.
491 // Enable using trip count upper bound to unroll loops.
492 UP
.Partial
= UP
.Runtime
= UP
.UpperBound
= true;
493 UP
.PartialThreshold
= MaxOps
;
495 // Avoid unrolling when optimizing for size.
496 UP
.OptSizeThreshold
= 0;
497 UP
.PartialOptSizeThreshold
= 0;
499 // Set number of instructions optimized when "back edge"
500 // becomes "fall through" to default value of 2.
504 bool isHardwareLoopProfitable(Loop
*L
, ScalarEvolution
&SE
,
506 TargetLibraryInfo
*LibInfo
,
507 HardwareLoopInfo
&HWLoopInfo
) {
508 return BaseT::isHardwareLoopProfitable(L
, SE
, AC
, LibInfo
, HWLoopInfo
);
511 int getInstructionLatency(const Instruction
*I
) {
512 if (isa
<LoadInst
>(I
))
513 return getST()->getSchedModel().DefaultLoadLatency
;
515 return BaseT::getInstructionLatency(I
);
518 virtual Optional
<unsigned>
519 getCacheSize(TargetTransformInfo::CacheLevel Level
) const {
520 return Optional
<unsigned>(
521 getST()->getCacheSize(static_cast<unsigned>(Level
)));
524 virtual Optional
<unsigned>
525 getCacheAssociativity(TargetTransformInfo::CacheLevel Level
) const {
526 Optional
<unsigned> TargetResult
=
527 getST()->getCacheAssociativity(static_cast<unsigned>(Level
));
532 return BaseT::getCacheAssociativity(Level
);
535 virtual unsigned getCacheLineSize() const {
536 return getST()->getCacheLineSize();
539 virtual unsigned getPrefetchDistance() const {
540 return getST()->getPrefetchDistance();
543 virtual unsigned getMinPrefetchStride() const {
544 return getST()->getMinPrefetchStride();
547 virtual unsigned getMaxPrefetchIterationsAhead() const {
548 return getST()->getMaxPrefetchIterationsAhead();
553 /// \name Vector TTI Implementations
556 unsigned getRegisterBitWidth(bool Vector
) const { return 32; }
558 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
559 /// are set if the result needs to be inserted and/or extracted from vectors.
560 unsigned getScalarizationOverhead(Type
*Ty
, bool Insert
, bool Extract
) {
561 assert(Ty
->isVectorTy() && "Can only scalarize vectors");
564 for (int i
= 0, e
= Ty
->getVectorNumElements(); i
< e
; ++i
) {
566 Cost
+= static_cast<T
*>(this)
567 ->getVectorInstrCost(Instruction::InsertElement
, Ty
, i
);
569 Cost
+= static_cast<T
*>(this)
570 ->getVectorInstrCost(Instruction::ExtractElement
, Ty
, i
);
576 /// Estimate the overhead of scalarizing an instructions unique
577 /// non-constant operands. The types of the arguments are ordinarily
578 /// scalar, in which case the costs are multiplied with VF.
579 unsigned getOperandsScalarizationOverhead(ArrayRef
<const Value
*> Args
,
582 SmallPtrSet
<const Value
*, 4> UniqueOperands
;
583 for (const Value
*A
: Args
) {
584 if (!isa
<Constant
>(A
) && UniqueOperands
.insert(A
).second
) {
585 Type
*VecTy
= nullptr;
586 if (A
->getType()->isVectorTy()) {
587 VecTy
= A
->getType();
588 // If A is a vector operand, VF should be 1 or correspond to A.
589 assert((VF
== 1 || VF
== VecTy
->getVectorNumElements()) &&
590 "Vector argument does not match VF");
593 VecTy
= VectorType::get(A
->getType(), VF
);
595 Cost
+= getScalarizationOverhead(VecTy
, false, true);
602 unsigned getScalarizationOverhead(Type
*VecTy
, ArrayRef
<const Value
*> Args
) {
603 assert(VecTy
->isVectorTy());
607 Cost
+= getScalarizationOverhead(VecTy
, true, false);
609 Cost
+= getOperandsScalarizationOverhead(Args
,
610 VecTy
->getVectorNumElements());
612 // When no information on arguments is provided, we add the cost
613 // associated with one argument as a heuristic.
614 Cost
+= getScalarizationOverhead(VecTy
, false, true);
619 unsigned getMaxInterleaveFactor(unsigned VF
) { return 1; }
621 unsigned getArithmeticInstrCost(
622 unsigned Opcode
, Type
*Ty
,
623 TTI::OperandValueKind Opd1Info
= TTI::OK_AnyValue
,
624 TTI::OperandValueKind Opd2Info
= TTI::OK_AnyValue
,
625 TTI::OperandValueProperties Opd1PropInfo
= TTI::OP_None
,
626 TTI::OperandValueProperties Opd2PropInfo
= TTI::OP_None
,
627 ArrayRef
<const Value
*> Args
= ArrayRef
<const Value
*>()) {
628 // Check if any of the operands are vector operands.
629 const TargetLoweringBase
*TLI
= getTLI();
630 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
631 assert(ISD
&& "Invalid opcode");
633 std::pair
<unsigned, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Ty
);
635 bool IsFloat
= Ty
->isFPOrFPVectorTy();
636 // Assume that floating point arithmetic operations cost twice as much as
637 // integer operations.
638 unsigned OpCost
= (IsFloat
? 2 : 1);
640 if (TLI
->isOperationLegalOrPromote(ISD
, LT
.second
)) {
641 // The operation is legal. Assume it costs 1.
642 // TODO: Once we have extract/insert subvector cost we need to use them.
643 return LT
.first
* OpCost
;
646 if (!TLI
->isOperationExpand(ISD
, LT
.second
)) {
647 // If the operation is custom lowered, then assume that the code is twice
649 return LT
.first
* 2 * OpCost
;
652 // Else, assume that we need to scalarize this op.
653 // TODO: If one of the types get legalized by splitting, handle this
654 // similarly to what getCastInstrCost() does.
655 if (Ty
->isVectorTy()) {
656 unsigned Num
= Ty
->getVectorNumElements();
657 unsigned Cost
= static_cast<T
*>(this)
658 ->getArithmeticInstrCost(Opcode
, Ty
->getScalarType());
659 // Return the cost of multiple scalar invocation plus the cost of
660 // inserting and extracting the values.
661 return getScalarizationOverhead(Ty
, Args
) + Num
* Cost
;
664 // We don't know anything about this scalar instruction.
668 unsigned getShuffleCost(TTI::ShuffleKind Kind
, Type
*Tp
, int Index
,
671 case TTI::SK_Broadcast
:
672 return getBroadcastShuffleOverhead(Tp
);
674 case TTI::SK_Reverse
:
675 case TTI::SK_Transpose
:
676 case TTI::SK_PermuteSingleSrc
:
677 case TTI::SK_PermuteTwoSrc
:
678 return getPermuteShuffleOverhead(Tp
);
679 case TTI::SK_ExtractSubvector
:
680 return getExtractSubvectorOverhead(Tp
, Index
, SubTp
);
681 case TTI::SK_InsertSubvector
:
682 return getInsertSubvectorOverhead(Tp
, Index
, SubTp
);
684 llvm_unreachable("Unknown TTI::ShuffleKind");
687 unsigned getCastInstrCost(unsigned Opcode
, Type
*Dst
, Type
*Src
,
688 const Instruction
*I
= nullptr) {
689 const TargetLoweringBase
*TLI
= getTLI();
690 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
691 assert(ISD
&& "Invalid opcode");
692 std::pair
<unsigned, MVT
> SrcLT
= TLI
->getTypeLegalizationCost(DL
, Src
);
693 std::pair
<unsigned, MVT
> DstLT
= TLI
->getTypeLegalizationCost(DL
, Dst
);
695 // Check for NOOP conversions.
696 if (SrcLT
.first
== DstLT
.first
&&
697 SrcLT
.second
.getSizeInBits() == DstLT
.second
.getSizeInBits()) {
699 // Bitcast between types that are legalized to the same type are free.
700 if (Opcode
== Instruction::BitCast
|| Opcode
== Instruction::Trunc
)
704 if (Opcode
== Instruction::Trunc
&&
705 TLI
->isTruncateFree(SrcLT
.second
, DstLT
.second
))
708 if (Opcode
== Instruction::ZExt
&&
709 TLI
->isZExtFree(SrcLT
.second
, DstLT
.second
))
712 if (Opcode
== Instruction::AddrSpaceCast
&&
713 TLI
->isFreeAddrSpaceCast(Src
->getPointerAddressSpace(),
714 Dst
->getPointerAddressSpace()))
717 // If this is a zext/sext of a load, return 0 if the corresponding
718 // extending load exists on target.
719 if ((Opcode
== Instruction::ZExt
|| Opcode
== Instruction::SExt
) &&
720 I
&& isa
<LoadInst
>(I
->getOperand(0))) {
721 EVT ExtVT
= EVT::getEVT(Dst
);
722 EVT LoadVT
= EVT::getEVT(Src
);
724 ((Opcode
== Instruction::ZExt
) ? ISD::ZEXTLOAD
: ISD::SEXTLOAD
);
725 if (TLI
->isLoadExtLegal(LType
, ExtVT
, LoadVT
))
729 // If the cast is marked as legal (or promote) then assume low cost.
730 if (SrcLT
.first
== DstLT
.first
&&
731 TLI
->isOperationLegalOrPromote(ISD
, DstLT
.second
))
734 // Handle scalar conversions.
735 if (!Src
->isVectorTy() && !Dst
->isVectorTy()) {
736 // Scalar bitcasts are usually free.
737 if (Opcode
== Instruction::BitCast
)
740 // Just check the op cost. If the operation is legal then assume it costs
742 if (!TLI
->isOperationExpand(ISD
, DstLT
.second
))
745 // Assume that illegal scalar instruction are expensive.
749 // Check vector-to-vector casts.
750 if (Dst
->isVectorTy() && Src
->isVectorTy()) {
751 // If the cast is between same-sized registers, then the check is simple.
752 if (SrcLT
.first
== DstLT
.first
&&
753 SrcLT
.second
.getSizeInBits() == DstLT
.second
.getSizeInBits()) {
755 // Assume that Zext is done using AND.
756 if (Opcode
== Instruction::ZExt
)
759 // Assume that sext is done using SHL and SRA.
760 if (Opcode
== Instruction::SExt
)
763 // Just check the op cost. If the operation is legal then assume it
765 // 1 and multiply by the type-legalization overhead.
766 if (!TLI
->isOperationExpand(ISD
, DstLT
.second
))
767 return SrcLT
.first
* 1;
770 // If we are legalizing by splitting, query the concrete TTI for the cost
771 // of casting the original vector twice. We also need to factor in the
772 // cost of the split itself. Count that as 1, to be consistent with
773 // TLI->getTypeLegalizationCost().
774 if ((TLI
->getTypeAction(Src
->getContext(), TLI
->getValueType(DL
, Src
)) ==
775 TargetLowering::TypeSplitVector
) ||
776 (TLI
->getTypeAction(Dst
->getContext(), TLI
->getValueType(DL
, Dst
)) ==
777 TargetLowering::TypeSplitVector
)) {
778 Type
*SplitDst
= VectorType::get(Dst
->getVectorElementType(),
779 Dst
->getVectorNumElements() / 2);
780 Type
*SplitSrc
= VectorType::get(Src
->getVectorElementType(),
781 Src
->getVectorNumElements() / 2);
782 T
*TTI
= static_cast<T
*>(this);
783 return TTI
->getVectorSplitCost() +
784 (2 * TTI
->getCastInstrCost(Opcode
, SplitDst
, SplitSrc
, I
));
787 // In other cases where the source or destination are illegal, assume
788 // the operation will get scalarized.
789 unsigned Num
= Dst
->getVectorNumElements();
790 unsigned Cost
= static_cast<T
*>(this)->getCastInstrCost(
791 Opcode
, Dst
->getScalarType(), Src
->getScalarType(), I
);
793 // Return the cost of multiple scalar invocation plus the cost of
794 // inserting and extracting the values.
795 return getScalarizationOverhead(Dst
, true, true) + Num
* Cost
;
798 // We already handled vector-to-vector and scalar-to-scalar conversions.
800 // is where we handle bitcast between vectors and scalars. We need to assume
801 // that the conversion is scalarized in one way or another.
802 if (Opcode
== Instruction::BitCast
)
803 // Illegal bitcasts are done by storing and loading from a stack slot.
804 return (Src
->isVectorTy() ? getScalarizationOverhead(Src
, false, true)
806 (Dst
->isVectorTy() ? getScalarizationOverhead(Dst
, true, false)
809 llvm_unreachable("Unhandled cast");
812 unsigned getExtractWithExtendCost(unsigned Opcode
, Type
*Dst
,
813 VectorType
*VecTy
, unsigned Index
) {
814 return static_cast<T
*>(this)->getVectorInstrCost(
815 Instruction::ExtractElement
, VecTy
, Index
) +
816 static_cast<T
*>(this)->getCastInstrCost(Opcode
, Dst
,
817 VecTy
->getElementType());
820 unsigned getCFInstrCost(unsigned Opcode
) {
821 // Branches are assumed to be predicted.
825 unsigned getCmpSelInstrCost(unsigned Opcode
, Type
*ValTy
, Type
*CondTy
,
826 const Instruction
*I
) {
827 const TargetLoweringBase
*TLI
= getTLI();
828 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
829 assert(ISD
&& "Invalid opcode");
831 // Selects on vectors are actually vector selects.
832 if (ISD
== ISD::SELECT
) {
833 assert(CondTy
&& "CondTy must exist");
834 if (CondTy
->isVectorTy())
837 std::pair
<unsigned, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, ValTy
);
839 if (!(ValTy
->isVectorTy() && !LT
.second
.isVector()) &&
840 !TLI
->isOperationExpand(ISD
, LT
.second
)) {
841 // The operation is legal. Assume it costs 1. Multiply
842 // by the type-legalization overhead.
846 // Otherwise, assume that the cast is scalarized.
847 // TODO: If one of the types get legalized by splitting, handle this
848 // similarly to what getCastInstrCost() does.
849 if (ValTy
->isVectorTy()) {
850 unsigned Num
= ValTy
->getVectorNumElements();
852 CondTy
= CondTy
->getScalarType();
853 unsigned Cost
= static_cast<T
*>(this)->getCmpSelInstrCost(
854 Opcode
, ValTy
->getScalarType(), CondTy
, I
);
856 // Return the cost of multiple scalar invocation plus the cost of
857 // inserting and extracting the values.
858 return getScalarizationOverhead(ValTy
, true, false) + Num
* Cost
;
861 // Unknown scalar opcode.
865 unsigned getVectorInstrCost(unsigned Opcode
, Type
*Val
, unsigned Index
) {
866 std::pair
<unsigned, MVT
> LT
=
867 getTLI()->getTypeLegalizationCost(DL
, Val
->getScalarType());
872 unsigned getMemoryOpCost(unsigned Opcode
, Type
*Src
, unsigned Alignment
,
873 unsigned AddressSpace
, const Instruction
*I
= nullptr) {
874 assert(!Src
->isVoidTy() && "Invalid type");
875 std::pair
<unsigned, MVT
> LT
= getTLI()->getTypeLegalizationCost(DL
, Src
);
877 // Assuming that all loads of legal types cost 1.
878 unsigned Cost
= LT
.first
;
880 if (Src
->isVectorTy() &&
881 Src
->getPrimitiveSizeInBits() < LT
.second
.getSizeInBits()) {
882 // This is a vector load that legalizes to a larger type than the vector
883 // itself. Unless the corresponding extending load or truncating store is
884 // legal, then this will scalarize.
885 TargetLowering::LegalizeAction LA
= TargetLowering::Expand
;
886 EVT MemVT
= getTLI()->getValueType(DL
, Src
);
887 if (Opcode
== Instruction::Store
)
888 LA
= getTLI()->getTruncStoreAction(LT
.second
, MemVT
);
890 LA
= getTLI()->getLoadExtAction(ISD::EXTLOAD
, LT
.second
, MemVT
);
892 if (LA
!= TargetLowering::Legal
&& LA
!= TargetLowering::Custom
) {
893 // This is a vector load/store for some illegal type that is scalarized.
894 // We must account for the cost of building or decomposing the vector.
895 Cost
+= getScalarizationOverhead(Src
, Opcode
!= Instruction::Store
,
896 Opcode
== Instruction::Store
);
903 unsigned getInterleavedMemoryOpCost(unsigned Opcode
, Type
*VecTy
,
905 ArrayRef
<unsigned> Indices
,
906 unsigned Alignment
, unsigned AddressSpace
,
907 bool UseMaskForCond
= false,
908 bool UseMaskForGaps
= false) {
909 VectorType
*VT
= dyn_cast
<VectorType
>(VecTy
);
910 assert(VT
&& "Expect a vector type for interleaved memory op");
912 unsigned NumElts
= VT
->getNumElements();
913 assert(Factor
> 1 && NumElts
% Factor
== 0 && "Invalid interleave factor");
915 unsigned NumSubElts
= NumElts
/ Factor
;
916 VectorType
*SubVT
= VectorType::get(VT
->getElementType(), NumSubElts
);
918 // Firstly, the cost of load/store operation.
920 if (UseMaskForCond
|| UseMaskForGaps
)
921 Cost
= static_cast<T
*>(this)->getMaskedMemoryOpCost(
922 Opcode
, VecTy
, Alignment
, AddressSpace
);
924 Cost
= static_cast<T
*>(this)->getMemoryOpCost(Opcode
, VecTy
, Alignment
,
927 // Legalize the vector type, and get the legalized and unlegalized type
929 MVT VecTyLT
= getTLI()->getTypeLegalizationCost(DL
, VecTy
).second
;
931 static_cast<T
*>(this)->getDataLayout().getTypeStoreSize(VecTy
);
932 unsigned VecTyLTSize
= VecTyLT
.getStoreSize();
934 // Return the ceiling of dividing A by B.
935 auto ceil
= [](unsigned A
, unsigned B
) { return (A
+ B
- 1) / B
; };
937 // Scale the cost of the memory operation by the fraction of legalized
938 // instructions that will actually be used. We shouldn't account for the
939 // cost of dead instructions since they will be removed.
941 // E.g., An interleaved load of factor 8:
942 // %vec = load <16 x i64>, <16 x i64>* %ptr
943 // %v0 = shufflevector %vec, undef, <0, 8>
945 // If <16 x i64> is legalized to 8 v2i64 loads, only 2 of the loads will be
946 // used (those corresponding to elements [0:1] and [8:9] of the unlegalized
947 // type). The other loads are unused.
949 // We only scale the cost of loads since interleaved store groups aren't
950 // allowed to have gaps.
951 if (Opcode
== Instruction::Load
&& VecTySize
> VecTyLTSize
) {
952 // The number of loads of a legal type it will take to represent a load
953 // of the unlegalized vector type.
954 unsigned NumLegalInsts
= ceil(VecTySize
, VecTyLTSize
);
956 // The number of elements of the unlegalized type that correspond to a
957 // single legal instruction.
958 unsigned NumEltsPerLegalInst
= ceil(NumElts
, NumLegalInsts
);
960 // Determine which legal instructions will be used.
961 BitVector
UsedInsts(NumLegalInsts
, false);
962 for (unsigned Index
: Indices
)
963 for (unsigned Elt
= 0; Elt
< NumSubElts
; ++Elt
)
964 UsedInsts
.set((Index
+ Elt
* Factor
) / NumEltsPerLegalInst
);
966 // Scale the cost of the load by the fraction of legal instructions that
968 Cost
*= UsedInsts
.count() / NumLegalInsts
;
971 // Then plus the cost of interleave operation.
972 if (Opcode
== Instruction::Load
) {
973 // The interleave cost is similar to extract sub vectors' elements
974 // from the wide vector, and insert them into sub vectors.
976 // E.g. An interleaved load of factor 2 (with one member of index 0):
977 // %vec = load <8 x i32>, <8 x i32>* %ptr
978 // %v0 = shuffle %vec, undef, <0, 2, 4, 6> ; Index 0
979 // The cost is estimated as extract elements at 0, 2, 4, 6 from the
980 // <8 x i32> vector and insert them into a <4 x i32> vector.
982 assert(Indices
.size() <= Factor
&&
983 "Interleaved memory op has too many members");
985 for (unsigned Index
: Indices
) {
986 assert(Index
< Factor
&& "Invalid index for interleaved memory op");
988 // Extract elements from loaded vector for each sub vector.
989 for (unsigned i
= 0; i
< NumSubElts
; i
++)
990 Cost
+= static_cast<T
*>(this)->getVectorInstrCost(
991 Instruction::ExtractElement
, VT
, Index
+ i
* Factor
);
994 unsigned InsSubCost
= 0;
995 for (unsigned i
= 0; i
< NumSubElts
; i
++)
996 InsSubCost
+= static_cast<T
*>(this)->getVectorInstrCost(
997 Instruction::InsertElement
, SubVT
, i
);
999 Cost
+= Indices
.size() * InsSubCost
;
1001 // The interleave cost is extract all elements from sub vectors, and
1002 // insert them into the wide vector.
1004 // E.g. An interleaved store of factor 2:
1005 // %v0_v1 = shuffle %v0, %v1, <0, 4, 1, 5, 2, 6, 3, 7>
1006 // store <8 x i32> %interleaved.vec, <8 x i32>* %ptr
1007 // The cost is estimated as extract all elements from both <4 x i32>
1008 // vectors and insert into the <8 x i32> vector.
1010 unsigned ExtSubCost
= 0;
1011 for (unsigned i
= 0; i
< NumSubElts
; i
++)
1012 ExtSubCost
+= static_cast<T
*>(this)->getVectorInstrCost(
1013 Instruction::ExtractElement
, SubVT
, i
);
1014 Cost
+= ExtSubCost
* Factor
;
1016 for (unsigned i
= 0; i
< NumElts
; i
++)
1017 Cost
+= static_cast<T
*>(this)
1018 ->getVectorInstrCost(Instruction::InsertElement
, VT
, i
);
1021 if (!UseMaskForCond
)
1024 Type
*I8Type
= Type::getInt8Ty(VT
->getContext());
1025 VectorType
*MaskVT
= VectorType::get(I8Type
, NumElts
);
1026 SubVT
= VectorType::get(I8Type
, NumSubElts
);
1028 // The Mask shuffling cost is extract all the elements of the Mask
1029 // and insert each of them Factor times into the wide vector:
1031 // E.g. an interleaved group with factor 3:
1032 // %mask = icmp ult <8 x i32> %vec1, %vec2
1033 // %interleaved.mask = shufflevector <8 x i1> %mask, <8 x i1> undef,
1034 // <24 x i32> <0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7>
1035 // The cost is estimated as extract all mask elements from the <8xi1> mask
1036 // vector and insert them factor times into the <24xi1> shuffled mask
1038 for (unsigned i
= 0; i
< NumSubElts
; i
++)
1039 Cost
+= static_cast<T
*>(this)->getVectorInstrCost(
1040 Instruction::ExtractElement
, SubVT
, i
);
1042 for (unsigned i
= 0; i
< NumElts
; i
++)
1043 Cost
+= static_cast<T
*>(this)->getVectorInstrCost(
1044 Instruction::InsertElement
, MaskVT
, i
);
1046 // The Gaps mask is invariant and created outside the loop, therefore the
1047 // cost of creating it is not accounted for here. However if we have both
1048 // a MaskForGaps and some other mask that guards the execution of the
1049 // memory access, we need to account for the cost of And-ing the two masks
1052 Cost
+= static_cast<T
*>(this)->getArithmeticInstrCost(
1053 BinaryOperator::And
, MaskVT
);
1058 /// Get intrinsic cost based on arguments.
1059 unsigned getIntrinsicInstrCost(Intrinsic::ID IID
, Type
*RetTy
,
1060 ArrayRef
<Value
*> Args
, FastMathFlags FMF
,
1062 unsigned RetVF
= (RetTy
->isVectorTy() ? RetTy
->getVectorNumElements() : 1);
1063 assert((RetVF
== 1 || VF
== 1) && "VF > 1 and RetVF is a vector type");
1064 auto *ConcreteTTI
= static_cast<T
*>(this);
1068 // Assume that we need to scalarize this intrinsic.
1069 SmallVector
<Type
*, 4> Types
;
1070 for (Value
*Op
: Args
) {
1071 Type
*OpTy
= Op
->getType();
1072 assert(VF
== 1 || !OpTy
->isVectorTy());
1073 Types
.push_back(VF
== 1 ? OpTy
: VectorType::get(OpTy
, VF
));
1076 if (VF
> 1 && !RetTy
->isVoidTy())
1077 RetTy
= VectorType::get(RetTy
, VF
);
1079 // Compute the scalarization overhead based on Args for a vector
1080 // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while
1081 // CostModel will pass a vector RetTy and VF is 1.
1082 unsigned ScalarizationCost
= std::numeric_limits
<unsigned>::max();
1083 if (RetVF
> 1 || VF
> 1) {
1084 ScalarizationCost
= 0;
1085 if (!RetTy
->isVoidTy())
1086 ScalarizationCost
+= getScalarizationOverhead(RetTy
, true, false);
1087 ScalarizationCost
+= getOperandsScalarizationOverhead(Args
, VF
);
1090 return ConcreteTTI
->getIntrinsicInstrCost(IID
, RetTy
, Types
, FMF
,
1093 case Intrinsic::masked_scatter
: {
1094 assert(VF
== 1 && "Can't vectorize types here.");
1095 Value
*Mask
= Args
[3];
1096 bool VarMask
= !isa
<Constant
>(Mask
);
1097 unsigned Alignment
= cast
<ConstantInt
>(Args
[2])->getZExtValue();
1098 return ConcreteTTI
->getGatherScatterOpCost(
1099 Instruction::Store
, Args
[0]->getType(), Args
[1], VarMask
, Alignment
);
1101 case Intrinsic::masked_gather
: {
1102 assert(VF
== 1 && "Can't vectorize types here.");
1103 Value
*Mask
= Args
[2];
1104 bool VarMask
= !isa
<Constant
>(Mask
);
1105 unsigned Alignment
= cast
<ConstantInt
>(Args
[1])->getZExtValue();
1106 return ConcreteTTI
->getGatherScatterOpCost(Instruction::Load
, RetTy
,
1107 Args
[0], VarMask
, Alignment
);
1109 case Intrinsic::experimental_vector_reduce_add
:
1110 case Intrinsic::experimental_vector_reduce_mul
:
1111 case Intrinsic::experimental_vector_reduce_and
:
1112 case Intrinsic::experimental_vector_reduce_or
:
1113 case Intrinsic::experimental_vector_reduce_xor
:
1114 case Intrinsic::experimental_vector_reduce_v2_fadd
:
1115 case Intrinsic::experimental_vector_reduce_v2_fmul
:
1116 case Intrinsic::experimental_vector_reduce_smax
:
1117 case Intrinsic::experimental_vector_reduce_smin
:
1118 case Intrinsic::experimental_vector_reduce_fmax
:
1119 case Intrinsic::experimental_vector_reduce_fmin
:
1120 case Intrinsic::experimental_vector_reduce_umax
:
1121 case Intrinsic::experimental_vector_reduce_umin
:
1122 return getIntrinsicInstrCost(IID
, RetTy
, Args
[0]->getType(), FMF
);
1123 case Intrinsic::fshl
:
1124 case Intrinsic::fshr
: {
1128 TTI::OperandValueProperties OpPropsX
, OpPropsY
, OpPropsZ
, OpPropsBW
;
1129 TTI::OperandValueKind OpKindX
= TTI::getOperandInfo(X
, OpPropsX
);
1130 TTI::OperandValueKind OpKindY
= TTI::getOperandInfo(Y
, OpPropsY
);
1131 TTI::OperandValueKind OpKindZ
= TTI::getOperandInfo(Z
, OpPropsZ
);
1132 TTI::OperandValueKind OpKindBW
= TTI::OK_UniformConstantValue
;
1133 OpPropsBW
= isPowerOf2_32(RetTy
->getScalarSizeInBits()) ? TTI::OP_PowerOf2
1135 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
1136 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
1138 Cost
+= ConcreteTTI
->getArithmeticInstrCost(BinaryOperator::Or
, RetTy
);
1139 Cost
+= ConcreteTTI
->getArithmeticInstrCost(BinaryOperator::Sub
, RetTy
);
1140 Cost
+= ConcreteTTI
->getArithmeticInstrCost(BinaryOperator::Shl
, RetTy
,
1141 OpKindX
, OpKindZ
, OpPropsX
);
1142 Cost
+= ConcreteTTI
->getArithmeticInstrCost(BinaryOperator::LShr
, RetTy
,
1143 OpKindY
, OpKindZ
, OpPropsY
);
1144 // Non-constant shift amounts requires a modulo.
1145 if (OpKindZ
!= TTI::OK_UniformConstantValue
&&
1146 OpKindZ
!= TTI::OK_NonUniformConstantValue
)
1147 Cost
+= ConcreteTTI
->getArithmeticInstrCost(BinaryOperator::URem
, RetTy
,
1148 OpKindZ
, OpKindBW
, OpPropsZ
,
1150 // For non-rotates (X != Y) we must add shift-by-zero handling costs.
1152 Type
*CondTy
= RetTy
->getWithNewBitWidth(1);
1153 Cost
+= ConcreteTTI
->getCmpSelInstrCost(BinaryOperator::ICmp
, RetTy
,
1155 Cost
+= ConcreteTTI
->getCmpSelInstrCost(BinaryOperator::Select
, RetTy
,
1163 /// Get intrinsic cost based on argument types.
1164 /// If ScalarizationCostPassed is std::numeric_limits<unsigned>::max(), the
1165 /// cost of scalarizing the arguments and the return value will be computed
1167 unsigned getIntrinsicInstrCost(
1168 Intrinsic::ID IID
, Type
*RetTy
, ArrayRef
<Type
*> Tys
, FastMathFlags FMF
,
1169 unsigned ScalarizationCostPassed
= std::numeric_limits
<unsigned>::max()) {
1170 auto *ConcreteTTI
= static_cast<T
*>(this);
1172 SmallVector
<unsigned, 2> ISDs
;
1173 unsigned SingleCallCost
= 10; // Library call cost. Make it expensive.
1176 // Assume that we need to scalarize this intrinsic.
1177 unsigned ScalarizationCost
= ScalarizationCostPassed
;
1178 unsigned ScalarCalls
= 1;
1179 Type
*ScalarRetTy
= RetTy
;
1180 if (RetTy
->isVectorTy()) {
1181 if (ScalarizationCostPassed
== std::numeric_limits
<unsigned>::max())
1182 ScalarizationCost
= getScalarizationOverhead(RetTy
, true, false);
1183 ScalarCalls
= std::max(ScalarCalls
, RetTy
->getVectorNumElements());
1184 ScalarRetTy
= RetTy
->getScalarType();
1186 SmallVector
<Type
*, 4> ScalarTys
;
1187 for (unsigned i
= 0, ie
= Tys
.size(); i
!= ie
; ++i
) {
1189 if (Ty
->isVectorTy()) {
1190 if (ScalarizationCostPassed
== std::numeric_limits
<unsigned>::max())
1191 ScalarizationCost
+= getScalarizationOverhead(Ty
, false, true);
1192 ScalarCalls
= std::max(ScalarCalls
, Ty
->getVectorNumElements());
1193 Ty
= Ty
->getScalarType();
1195 ScalarTys
.push_back(Ty
);
1197 if (ScalarCalls
== 1)
1198 return 1; // Return cost of a scalar intrinsic. Assume it to be cheap.
1200 unsigned ScalarCost
=
1201 ConcreteTTI
->getIntrinsicInstrCost(IID
, ScalarRetTy
, ScalarTys
, FMF
);
1203 return ScalarCalls
* ScalarCost
+ ScalarizationCost
;
1205 // Look for intrinsics that can be lowered directly or turned into a scalar
1207 case Intrinsic::sqrt
:
1208 ISDs
.push_back(ISD::FSQRT
);
1210 case Intrinsic::sin
:
1211 ISDs
.push_back(ISD::FSIN
);
1213 case Intrinsic::cos
:
1214 ISDs
.push_back(ISD::FCOS
);
1216 case Intrinsic::exp
:
1217 ISDs
.push_back(ISD::FEXP
);
1219 case Intrinsic::exp2
:
1220 ISDs
.push_back(ISD::FEXP2
);
1222 case Intrinsic::log
:
1223 ISDs
.push_back(ISD::FLOG
);
1225 case Intrinsic::log10
:
1226 ISDs
.push_back(ISD::FLOG10
);
1228 case Intrinsic::log2
:
1229 ISDs
.push_back(ISD::FLOG2
);
1231 case Intrinsic::fabs
:
1232 ISDs
.push_back(ISD::FABS
);
1234 case Intrinsic::canonicalize
:
1235 ISDs
.push_back(ISD::FCANONICALIZE
);
1237 case Intrinsic::minnum
:
1238 ISDs
.push_back(ISD::FMINNUM
);
1240 ISDs
.push_back(ISD::FMINIMUM
);
1242 case Intrinsic::maxnum
:
1243 ISDs
.push_back(ISD::FMAXNUM
);
1245 ISDs
.push_back(ISD::FMAXIMUM
);
1247 case Intrinsic::copysign
:
1248 ISDs
.push_back(ISD::FCOPYSIGN
);
1250 case Intrinsic::floor
:
1251 ISDs
.push_back(ISD::FFLOOR
);
1253 case Intrinsic::ceil
:
1254 ISDs
.push_back(ISD::FCEIL
);
1256 case Intrinsic::trunc
:
1257 ISDs
.push_back(ISD::FTRUNC
);
1259 case Intrinsic::nearbyint
:
1260 ISDs
.push_back(ISD::FNEARBYINT
);
1262 case Intrinsic::rint
:
1263 ISDs
.push_back(ISD::FRINT
);
1265 case Intrinsic::round
:
1266 ISDs
.push_back(ISD::FROUND
);
1268 case Intrinsic::pow
:
1269 ISDs
.push_back(ISD::FPOW
);
1271 case Intrinsic::fma
:
1272 ISDs
.push_back(ISD::FMA
);
1274 case Intrinsic::fmuladd
:
1275 ISDs
.push_back(ISD::FMA
);
1277 // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
1278 case Intrinsic::lifetime_start
:
1279 case Intrinsic::lifetime_end
:
1280 case Intrinsic::sideeffect
:
1282 case Intrinsic::masked_store
:
1283 return ConcreteTTI
->getMaskedMemoryOpCost(Instruction::Store
, Tys
[0], 0,
1285 case Intrinsic::masked_load
:
1286 return ConcreteTTI
->getMaskedMemoryOpCost(Instruction::Load
, RetTy
, 0, 0);
1287 case Intrinsic::experimental_vector_reduce_add
:
1288 return ConcreteTTI
->getArithmeticReductionCost(Instruction::Add
, Tys
[0],
1289 /*IsPairwiseForm=*/false);
1290 case Intrinsic::experimental_vector_reduce_mul
:
1291 return ConcreteTTI
->getArithmeticReductionCost(Instruction::Mul
, Tys
[0],
1292 /*IsPairwiseForm=*/false);
1293 case Intrinsic::experimental_vector_reduce_and
:
1294 return ConcreteTTI
->getArithmeticReductionCost(Instruction::And
, Tys
[0],
1295 /*IsPairwiseForm=*/false);
1296 case Intrinsic::experimental_vector_reduce_or
:
1297 return ConcreteTTI
->getArithmeticReductionCost(Instruction::Or
, Tys
[0],
1298 /*IsPairwiseForm=*/false);
1299 case Intrinsic::experimental_vector_reduce_xor
:
1300 return ConcreteTTI
->getArithmeticReductionCost(Instruction::Xor
, Tys
[0],
1301 /*IsPairwiseForm=*/false);
1302 case Intrinsic::experimental_vector_reduce_v2_fadd
:
1303 return ConcreteTTI
->getArithmeticReductionCost(
1304 Instruction::FAdd
, Tys
[0],
1305 /*IsPairwiseForm=*/false); // FIXME: Add new flag for cost of strict
1307 case Intrinsic::experimental_vector_reduce_v2_fmul
:
1308 return ConcreteTTI
->getArithmeticReductionCost(
1309 Instruction::FMul
, Tys
[0],
1310 /*IsPairwiseForm=*/false); // FIXME: Add new flag for cost of strict
1312 case Intrinsic::experimental_vector_reduce_smax
:
1313 case Intrinsic::experimental_vector_reduce_smin
:
1314 case Intrinsic::experimental_vector_reduce_fmax
:
1315 case Intrinsic::experimental_vector_reduce_fmin
:
1316 return ConcreteTTI
->getMinMaxReductionCost(
1317 Tys
[0], CmpInst::makeCmpResultType(Tys
[0]), /*IsPairwiseForm=*/false,
1318 /*IsUnsigned=*/true);
1319 case Intrinsic::experimental_vector_reduce_umax
:
1320 case Intrinsic::experimental_vector_reduce_umin
:
1321 return ConcreteTTI
->getMinMaxReductionCost(
1322 Tys
[0], CmpInst::makeCmpResultType(Tys
[0]), /*IsPairwiseForm=*/false,
1323 /*IsUnsigned=*/false);
1324 case Intrinsic::sadd_sat
:
1325 case Intrinsic::ssub_sat
: {
1326 Type
*CondTy
= RetTy
->getWithNewBitWidth(1);
1328 Type
*OpTy
= StructType::create({RetTy
, CondTy
});
1329 Intrinsic::ID OverflowOp
= IID
== Intrinsic::sadd_sat
1330 ? Intrinsic::sadd_with_overflow
1331 : Intrinsic::ssub_with_overflow
;
1333 // SatMax -> Overflow && SumDiff < 0
1334 // SatMin -> Overflow && SumDiff >= 0
1336 Cost
+= ConcreteTTI
->getIntrinsicInstrCost(
1337 OverflowOp
, OpTy
, {RetTy
, RetTy
}, FMF
, ScalarizationCostPassed
);
1338 Cost
+= ConcreteTTI
->getCmpSelInstrCost(BinaryOperator::ICmp
, RetTy
,
1340 Cost
+= 2 * ConcreteTTI
->getCmpSelInstrCost(BinaryOperator::Select
, RetTy
,
1344 case Intrinsic::uadd_sat
:
1345 case Intrinsic::usub_sat
: {
1346 Type
*CondTy
= RetTy
->getWithNewBitWidth(1);
1348 Type
*OpTy
= StructType::create({RetTy
, CondTy
});
1349 Intrinsic::ID OverflowOp
= IID
== Intrinsic::uadd_sat
1350 ? Intrinsic::uadd_with_overflow
1351 : Intrinsic::usub_with_overflow
;
1354 Cost
+= ConcreteTTI
->getIntrinsicInstrCost(
1355 OverflowOp
, OpTy
, {RetTy
, RetTy
}, FMF
, ScalarizationCostPassed
);
1356 Cost
+= ConcreteTTI
->getCmpSelInstrCost(BinaryOperator::Select
, RetTy
,
1360 case Intrinsic::smul_fix
:
1361 case Intrinsic::umul_fix
: {
1362 unsigned ExtSize
= RetTy
->getScalarSizeInBits() * 2;
1363 Type
*ExtTy
= RetTy
->getWithNewBitWidth(ExtSize
);
1366 IID
== Intrinsic::smul_fix
? Instruction::SExt
: Instruction::ZExt
;
1369 Cost
+= 2 * ConcreteTTI
->getCastInstrCost(ExtOp
, ExtTy
, RetTy
);
1370 Cost
+= ConcreteTTI
->getArithmeticInstrCost(Instruction::Mul
, ExtTy
);
1372 2 * ConcreteTTI
->getCastInstrCost(Instruction::Trunc
, RetTy
, ExtTy
);
1373 Cost
+= ConcreteTTI
->getArithmeticInstrCost(Instruction::LShr
, RetTy
,
1375 TTI::OK_UniformConstantValue
);
1376 Cost
+= ConcreteTTI
->getArithmeticInstrCost(Instruction::Shl
, RetTy
,
1378 TTI::OK_UniformConstantValue
);
1379 Cost
+= ConcreteTTI
->getArithmeticInstrCost(Instruction::Or
, RetTy
);
1382 case Intrinsic::sadd_with_overflow
:
1383 case Intrinsic::ssub_with_overflow
: {
1384 Type
*SumTy
= RetTy
->getContainedType(0);
1385 Type
*OverflowTy
= RetTy
->getContainedType(1);
1386 unsigned Opcode
= IID
== Intrinsic::sadd_with_overflow
1387 ? BinaryOperator::Add
1388 : BinaryOperator::Sub
;
1390 // LHSSign -> LHS >= 0
1391 // RHSSign -> RHS >= 0
1392 // SumSign -> Sum >= 0
1395 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
1397 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
1399 Cost
+= ConcreteTTI
->getArithmeticInstrCost(Opcode
, SumTy
);
1400 Cost
+= 3 * ConcreteTTI
->getCmpSelInstrCost(BinaryOperator::ICmp
, SumTy
,
1401 OverflowTy
, nullptr);
1402 Cost
+= 2 * ConcreteTTI
->getCmpSelInstrCost(
1403 BinaryOperator::ICmp
, OverflowTy
, OverflowTy
, nullptr);
1405 ConcreteTTI
->getArithmeticInstrCost(BinaryOperator::And
, OverflowTy
);
1408 case Intrinsic::uadd_with_overflow
:
1409 case Intrinsic::usub_with_overflow
: {
1410 Type
*SumTy
= RetTy
->getContainedType(0);
1411 Type
*OverflowTy
= RetTy
->getContainedType(1);
1412 unsigned Opcode
= IID
== Intrinsic::uadd_with_overflow
1413 ? BinaryOperator::Add
1414 : BinaryOperator::Sub
;
1417 Cost
+= ConcreteTTI
->getArithmeticInstrCost(Opcode
, SumTy
);
1418 Cost
+= ConcreteTTI
->getCmpSelInstrCost(BinaryOperator::ICmp
, SumTy
,
1419 OverflowTy
, nullptr);
1422 case Intrinsic::smul_with_overflow
:
1423 case Intrinsic::umul_with_overflow
: {
1424 Type
*MulTy
= RetTy
->getContainedType(0);
1425 Type
*OverflowTy
= RetTy
->getContainedType(1);
1426 unsigned ExtSize
= MulTy
->getScalarSizeInBits() * 2;
1427 Type
*ExtTy
= MulTy
->getWithNewBitWidth(ExtSize
);
1430 IID
== Intrinsic::smul_fix
? Instruction::SExt
: Instruction::ZExt
;
1433 Cost
+= 2 * ConcreteTTI
->getCastInstrCost(ExtOp
, ExtTy
, MulTy
);
1434 Cost
+= ConcreteTTI
->getArithmeticInstrCost(Instruction::Mul
, ExtTy
);
1436 2 * ConcreteTTI
->getCastInstrCost(Instruction::Trunc
, MulTy
, ExtTy
);
1437 Cost
+= ConcreteTTI
->getArithmeticInstrCost(Instruction::LShr
, MulTy
,
1439 TTI::OK_UniformConstantValue
);
1441 if (IID
== Intrinsic::smul_with_overflow
)
1442 Cost
+= ConcreteTTI
->getArithmeticInstrCost(
1443 Instruction::AShr
, MulTy
, TTI::OK_AnyValue
,
1444 TTI::OK_UniformConstantValue
);
1446 Cost
+= ConcreteTTI
->getCmpSelInstrCost(BinaryOperator::ICmp
, MulTy
,
1447 OverflowTy
, nullptr);
1450 case Intrinsic::ctpop
:
1451 ISDs
.push_back(ISD::CTPOP
);
1452 // In case of legalization use TCC_Expensive. This is cheaper than a
1453 // library call but still not a cheap instruction.
1454 SingleCallCost
= TargetTransformInfo::TCC_Expensive
;
1456 // FIXME: ctlz, cttz, ...
1459 const TargetLoweringBase
*TLI
= getTLI();
1460 std::pair
<unsigned, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, RetTy
);
1462 SmallVector
<unsigned, 2> LegalCost
;
1463 SmallVector
<unsigned, 2> CustomCost
;
1464 for (unsigned ISD
: ISDs
) {
1465 if (TLI
->isOperationLegalOrPromote(ISD
, LT
.second
)) {
1466 if (IID
== Intrinsic::fabs
&& LT
.second
.isFloatingPoint() &&
1467 TLI
->isFAbsFree(LT
.second
)) {
1471 // The operation is legal. Assume it costs 1.
1472 // If the type is split to multiple registers, assume that there is some
1473 // overhead to this.
1474 // TODO: Once we have extract/insert subvector cost we need to use them.
1476 LegalCost
.push_back(LT
.first
* 2);
1478 LegalCost
.push_back(LT
.first
* 1);
1479 } else if (!TLI
->isOperationExpand(ISD
, LT
.second
)) {
1480 // If the operation is custom lowered then assume
1481 // that the code is twice as expensive.
1482 CustomCost
.push_back(LT
.first
* 2);
1486 auto MinLegalCostI
= std::min_element(LegalCost
.begin(), LegalCost
.end());
1487 if (MinLegalCostI
!= LegalCost
.end())
1488 return *MinLegalCostI
;
1490 auto MinCustomCostI
=
1491 std::min_element(CustomCost
.begin(), CustomCost
.end());
1492 if (MinCustomCostI
!= CustomCost
.end())
1493 return *MinCustomCostI
;
1495 // If we can't lower fmuladd into an FMA estimate the cost as a floating
1496 // point mul followed by an add.
1497 if (IID
== Intrinsic::fmuladd
)
1498 return ConcreteTTI
->getArithmeticInstrCost(BinaryOperator::FMul
, RetTy
) +
1499 ConcreteTTI
->getArithmeticInstrCost(BinaryOperator::FAdd
, RetTy
);
1501 // Else, assume that we need to scalarize this intrinsic. For math builtins
1502 // this will emit a costly libcall, adding call overhead and spills. Make it
1504 if (RetTy
->isVectorTy()) {
1505 unsigned ScalarizationCost
=
1506 ((ScalarizationCostPassed
!= std::numeric_limits
<unsigned>::max())
1507 ? ScalarizationCostPassed
1508 : getScalarizationOverhead(RetTy
, true, false));
1509 unsigned ScalarCalls
= RetTy
->getVectorNumElements();
1510 SmallVector
<Type
*, 4> ScalarTys
;
1511 for (unsigned i
= 0, ie
= Tys
.size(); i
!= ie
; ++i
) {
1513 if (Ty
->isVectorTy())
1514 Ty
= Ty
->getScalarType();
1515 ScalarTys
.push_back(Ty
);
1517 unsigned ScalarCost
= ConcreteTTI
->getIntrinsicInstrCost(
1518 IID
, RetTy
->getScalarType(), ScalarTys
, FMF
);
1519 for (unsigned i
= 0, ie
= Tys
.size(); i
!= ie
; ++i
) {
1520 if (Tys
[i
]->isVectorTy()) {
1521 if (ScalarizationCostPassed
== std::numeric_limits
<unsigned>::max())
1522 ScalarizationCost
+= getScalarizationOverhead(Tys
[i
], false, true);
1523 ScalarCalls
= std::max(ScalarCalls
, Tys
[i
]->getVectorNumElements());
1527 return ScalarCalls
* ScalarCost
+ ScalarizationCost
;
1530 // This is going to be turned into a library call, make it expensive.
1531 return SingleCallCost
;
1534 /// Compute a cost of the given call instruction.
1536 /// Compute the cost of calling function F with return type RetTy and
1537 /// argument types Tys. F might be nullptr, in this case the cost of an
1538 /// arbitrary call with the specified signature will be returned.
1539 /// This is used, for instance, when we estimate call of a vector
1540 /// counterpart of the given function.
1541 /// \param F Called function, might be nullptr.
1542 /// \param RetTy Return value types.
1543 /// \param Tys Argument types.
1544 /// \returns The cost of Call instruction.
1545 unsigned getCallInstrCost(Function
*F
, Type
*RetTy
, ArrayRef
<Type
*> Tys
) {
1549 unsigned getNumberOfParts(Type
*Tp
) {
1550 std::pair
<unsigned, MVT
> LT
= getTLI()->getTypeLegalizationCost(DL
, Tp
);
1554 unsigned getAddressComputationCost(Type
*Ty
, ScalarEvolution
*,
1559 /// Try to calculate arithmetic and shuffle op costs for reduction operations.
1560 /// We're assuming that reduction operation are performing the following way:
1561 /// 1. Non-pairwise reduction
1562 /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
1563 /// <n x i32> <i32 n/2, i32 n/2 + 1, ..., i32 n, i32 undef, ..., i32 undef>
1564 /// \----------------v-------------/ \----------v------------/
1565 /// n/2 elements n/2 elements
1566 /// %red1 = op <n x t> %val, <n x t> val1
1567 /// After this operation we have a vector %red1 where only the first n/2
1568 /// elements are meaningful, the second n/2 elements are undefined and can be
1569 /// dropped. All other operations are actually working with the vector of
1570 /// length n/2, not n, though the real vector length is still n.
1571 /// %val2 = shufflevector<n x t> %red1, <n x t> %undef,
1572 /// <n x i32> <i32 n/4, i32 n/4 + 1, ..., i32 n/2, i32 undef, ..., i32 undef>
1573 /// \----------------v-------------/ \----------v------------/
1574 /// n/4 elements 3*n/4 elements
1575 /// %red2 = op <n x t> %red1, <n x t> val2 - working with the vector of
1576 /// length n/2, the resulting vector has length n/4 etc.
1577 /// 2. Pairwise reduction:
1578 /// Everything is the same except for an additional shuffle operation which
1579 /// is used to produce operands for pairwise kind of reductions.
1580 /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
1581 /// <n x i32> <i32 0, i32 2, ..., i32 n-2, i32 undef, ..., i32 undef>
1582 /// \-------------v----------/ \----------v------------/
1583 /// n/2 elements n/2 elements
1584 /// %val2 = shufflevector<n x t> %val, <n x t> %undef,
1585 /// <n x i32> <i32 1, i32 3, ..., i32 n-1, i32 undef, ..., i32 undef>
1586 /// \-------------v----------/ \----------v------------/
1587 /// n/2 elements n/2 elements
1588 /// %red1 = op <n x t> %val1, <n x t> val2
1589 /// Again, the operation is performed on <n x t> vector, but the resulting
1590 /// vector %red1 is <n/2 x t> vector.
1592 /// The cost model should take into account that the actual length of the
1593 /// vector is reduced on each iteration.
1594 unsigned getArithmeticReductionCost(unsigned Opcode
, Type
*Ty
,
1596 assert(Ty
->isVectorTy() && "Expect a vector type");
1597 Type
*ScalarTy
= Ty
->getVectorElementType();
1598 unsigned NumVecElts
= Ty
->getVectorNumElements();
1599 unsigned NumReduxLevels
= Log2_32(NumVecElts
);
1600 unsigned ArithCost
= 0;
1601 unsigned ShuffleCost
= 0;
1602 auto *ConcreteTTI
= static_cast<T
*>(this);
1603 std::pair
<unsigned, MVT
> LT
=
1604 ConcreteTTI
->getTLI()->getTypeLegalizationCost(DL
, Ty
);
1605 unsigned LongVectorCount
= 0;
1607 LT
.second
.isVector() ? LT
.second
.getVectorNumElements() : 1;
1608 while (NumVecElts
> MVTLen
) {
1610 Type
*SubTy
= VectorType::get(ScalarTy
, NumVecElts
);
1611 // Assume the pairwise shuffles add a cost.
1612 ShuffleCost
+= (IsPairwise
+ 1) *
1613 ConcreteTTI
->getShuffleCost(TTI::SK_ExtractSubvector
, Ty
,
1615 ArithCost
+= ConcreteTTI
->getArithmeticInstrCost(Opcode
, SubTy
);
1620 NumReduxLevels
-= LongVectorCount
;
1622 // The minimal length of the vector is limited by the real length of vector
1623 // operations performed on the current platform. That's why several final
1624 // reduction operations are performed on the vectors with the same
1625 // architecture-dependent length.
1627 // Non pairwise reductions need one shuffle per reduction level. Pairwise
1628 // reductions need two shuffles on every level, but the last one. On that
1629 // level one of the shuffles is <0, u, u, ...> which is identity.
1630 unsigned NumShuffles
= NumReduxLevels
;
1631 if (IsPairwise
&& NumReduxLevels
>= 1)
1632 NumShuffles
+= NumReduxLevels
- 1;
1633 ShuffleCost
+= NumShuffles
*
1634 ConcreteTTI
->getShuffleCost(TTI::SK_PermuteSingleSrc
, Ty
,
1636 ArithCost
+= NumReduxLevels
*
1637 ConcreteTTI
->getArithmeticInstrCost(Opcode
, Ty
);
1638 return ShuffleCost
+ ArithCost
+
1639 ConcreteTTI
->getVectorInstrCost(Instruction::ExtractElement
, Ty
, 0);
1642 /// Try to calculate op costs for min/max reduction operations.
1643 /// \param CondTy Conditional type for the Select instruction.
1644 unsigned getMinMaxReductionCost(Type
*Ty
, Type
*CondTy
, bool IsPairwise
,
1646 assert(Ty
->isVectorTy() && "Expect a vector type");
1647 Type
*ScalarTy
= Ty
->getVectorElementType();
1648 Type
*ScalarCondTy
= CondTy
->getVectorElementType();
1649 unsigned NumVecElts
= Ty
->getVectorNumElements();
1650 unsigned NumReduxLevels
= Log2_32(NumVecElts
);
1652 if (Ty
->isFPOrFPVectorTy()) {
1653 CmpOpcode
= Instruction::FCmp
;
1655 assert(Ty
->isIntOrIntVectorTy() &&
1656 "expecting floating point or integer type for min/max reduction");
1657 CmpOpcode
= Instruction::ICmp
;
1659 unsigned MinMaxCost
= 0;
1660 unsigned ShuffleCost
= 0;
1661 auto *ConcreteTTI
= static_cast<T
*>(this);
1662 std::pair
<unsigned, MVT
> LT
=
1663 ConcreteTTI
->getTLI()->getTypeLegalizationCost(DL
, Ty
);
1664 unsigned LongVectorCount
= 0;
1666 LT
.second
.isVector() ? LT
.second
.getVectorNumElements() : 1;
1667 while (NumVecElts
> MVTLen
) {
1669 Type
*SubTy
= VectorType::get(ScalarTy
, NumVecElts
);
1670 CondTy
= VectorType::get(ScalarCondTy
, NumVecElts
);
1672 // Assume the pairwise shuffles add a cost.
1673 ShuffleCost
+= (IsPairwise
+ 1) *
1674 ConcreteTTI
->getShuffleCost(TTI::SK_ExtractSubvector
, Ty
,
1677 ConcreteTTI
->getCmpSelInstrCost(CmpOpcode
, SubTy
, CondTy
, nullptr) +
1678 ConcreteTTI
->getCmpSelInstrCost(Instruction::Select
, SubTy
, CondTy
,
1684 NumReduxLevels
-= LongVectorCount
;
1686 // The minimal length of the vector is limited by the real length of vector
1687 // operations performed on the current platform. That's why several final
1688 // reduction opertions are perfomed on the vectors with the same
1689 // architecture-dependent length.
1691 // Non pairwise reductions need one shuffle per reduction level. Pairwise
1692 // reductions need two shuffles on every level, but the last one. On that
1693 // level one of the shuffles is <0, u, u, ...> which is identity.
1694 unsigned NumShuffles
= NumReduxLevels
;
1695 if (IsPairwise
&& NumReduxLevels
>= 1)
1696 NumShuffles
+= NumReduxLevels
- 1;
1697 ShuffleCost
+= NumShuffles
*
1698 ConcreteTTI
->getShuffleCost(TTI::SK_PermuteSingleSrc
, Ty
,
1702 (ConcreteTTI
->getCmpSelInstrCost(CmpOpcode
, Ty
, CondTy
, nullptr) +
1703 ConcreteTTI
->getCmpSelInstrCost(Instruction::Select
, Ty
, CondTy
,
1705 // The last min/max should be in vector registers and we counted it above.
1706 // So just need a single extractelement.
1707 return ShuffleCost
+ MinMaxCost
+
1708 ConcreteTTI
->getVectorInstrCost(Instruction::ExtractElement
, Ty
, 0);
1711 unsigned getVectorSplitCost() { return 1; }
1716 /// Concrete BasicTTIImpl that can be used if no further customization
1718 class BasicTTIImpl
: public BasicTTIImplBase
<BasicTTIImpl
> {
1719 using BaseT
= BasicTTIImplBase
<BasicTTIImpl
>;
1721 friend class BasicTTIImplBase
<BasicTTIImpl
>;
1723 const TargetSubtargetInfo
*ST
;
1724 const TargetLoweringBase
*TLI
;
1726 const TargetSubtargetInfo
*getST() const { return ST
; }
1727 const TargetLoweringBase
*getTLI() const { return TLI
; }
1730 explicit BasicTTIImpl(const TargetMachine
*TM
, const Function
&F
);
1733 } // end namespace llvm
1735 #endif // LLVM_CODEGEN_BASICTTIIMPL_H