[InstCombine] Signed saturation tests. NFC
[llvm-core.git] / include / llvm / CodeGen / MachineInstr.h
blobc94ad292ec964dd282cc00d4760d58ae84ecdbf5
1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declaration of the MachineInstr class, which is the
10 // basic representation for all target dependent machine instructions used by
11 // the back end.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
16 #define LLVM_CODEGEN_MACHINEINSTR_H
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/PointerSumType.h"
20 #include "llvm/ADT/ilist.h"
21 #include "llvm/ADT/ilist_node.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/MachineOperand.h"
25 #include "llvm/CodeGen/TargetOpcodes.h"
26 #include "llvm/IR/DebugLoc.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/MC/MCInstrDesc.h"
29 #include "llvm/MC/MCSymbol.h"
30 #include "llvm/Support/ArrayRecycler.h"
31 #include "llvm/Support/TrailingObjects.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cstdint>
35 #include <utility>
37 namespace llvm {
39 class AAResults;
40 template <typename T> class ArrayRef;
41 class DIExpression;
42 class DILocalVariable;
43 class MachineBasicBlock;
44 class MachineFunction;
45 class MachineMemOperand;
46 class MachineRegisterInfo;
47 class ModuleSlotTracker;
48 class raw_ostream;
49 template <typename T> class SmallVectorImpl;
50 class SmallBitVector;
51 class StringRef;
52 class TargetInstrInfo;
53 class TargetRegisterClass;
54 class TargetRegisterInfo;
56 //===----------------------------------------------------------------------===//
57 /// Representation of each machine instruction.
58 ///
59 /// This class isn't a POD type, but it must have a trivial destructor. When a
60 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
61 /// without having their destructor called.
62 ///
63 class MachineInstr
64 : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
65 ilist_sentinel_tracking<true>> {
66 public:
67 using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator;
69 /// Flags to specify different kinds of comments to output in
70 /// assembly code. These flags carry semantic information not
71 /// otherwise easily derivable from the IR text.
72 ///
73 enum CommentFlag {
74 ReloadReuse = 0x1, // higher bits are reserved for target dep comments.
75 NoSchedComment = 0x2,
76 TAsmComments = 0x4 // Target Asm comments should start from this value.
79 enum MIFlag {
80 NoFlags = 0,
81 FrameSetup = 1 << 0, // Instruction is used as a part of
82 // function frame setup code.
83 FrameDestroy = 1 << 1, // Instruction is used as a part of
84 // function frame destruction code.
85 BundledPred = 1 << 2, // Instruction has bundled predecessors.
86 BundledSucc = 1 << 3, // Instruction has bundled successors.
87 FmNoNans = 1 << 4, // Instruction does not support Fast
88 // math nan values.
89 FmNoInfs = 1 << 5, // Instruction does not support Fast
90 // math infinity values.
91 FmNsz = 1 << 6, // Instruction is not required to retain
92 // signed zero values.
93 FmArcp = 1 << 7, // Instruction supports Fast math
94 // reciprocal approximations.
95 FmContract = 1 << 8, // Instruction supports Fast math
96 // contraction operations like fma.
97 FmAfn = 1 << 9, // Instruction may map to Fast math
98 // instrinsic approximation.
99 FmReassoc = 1 << 10, // Instruction supports Fast math
100 // reassociation of operand order.
101 NoUWrap = 1 << 11, // Instruction supports binary operator
102 // no unsigned wrap.
103 NoSWrap = 1 << 12, // Instruction supports binary operator
104 // no signed wrap.
105 IsExact = 1 << 13, // Instruction supports division is
106 // known to be exact.
107 FPExcept = 1 << 14, // Instruction may raise floating-point
108 // exceptions.
111 private:
112 const MCInstrDesc *MCID; // Instruction descriptor.
113 MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block.
115 // Operands are allocated by an ArrayRecycler.
116 MachineOperand *Operands = nullptr; // Pointer to the first operand.
117 unsigned NumOperands = 0; // Number of operands on instruction.
118 using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
119 OperandCapacity CapOperands; // Capacity of the Operands array.
121 uint16_t Flags = 0; // Various bits of additional
122 // information about machine
123 // instruction.
125 uint8_t AsmPrinterFlags = 0; // Various bits of information used by
126 // the AsmPrinter to emit helpful
127 // comments. This is *not* semantic
128 // information. Do not use this for
129 // anything other than to convey comment
130 // information to AsmPrinter.
132 /// Internal implementation detail class that provides out-of-line storage for
133 /// extra info used by the machine instruction when this info cannot be stored
134 /// in-line within the instruction itself.
136 /// This has to be defined eagerly due to the implementation constraints of
137 /// `PointerSumType` where it is used.
138 class ExtraInfo final
139 : TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *> {
140 public:
141 static ExtraInfo *create(BumpPtrAllocator &Allocator,
142 ArrayRef<MachineMemOperand *> MMOs,
143 MCSymbol *PreInstrSymbol = nullptr,
144 MCSymbol *PostInstrSymbol = nullptr) {
145 bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
146 bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
147 auto *Result = new (Allocator.Allocate(
148 totalSizeToAlloc<MachineMemOperand *, MCSymbol *>(
149 MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol),
150 alignof(ExtraInfo)))
151 ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol);
153 // Copy the actual data into the trailing objects.
154 std::copy(MMOs.begin(), MMOs.end(),
155 Result->getTrailingObjects<MachineMemOperand *>());
157 if (HasPreInstrSymbol)
158 Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol;
159 if (HasPostInstrSymbol)
160 Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] =
161 PostInstrSymbol;
163 return Result;
166 ArrayRef<MachineMemOperand *> getMMOs() const {
167 return makeArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs);
170 MCSymbol *getPreInstrSymbol() const {
171 return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr;
174 MCSymbol *getPostInstrSymbol() const {
175 return HasPostInstrSymbol
176 ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol]
177 : nullptr;
180 private:
181 friend TrailingObjects;
183 // Description of the extra info, used to interpret the actual optional
184 // data appended.
186 // Note that this is not terribly space optimized. This leaves a great deal
187 // of flexibility to fit more in here later.
188 const int NumMMOs;
189 const bool HasPreInstrSymbol;
190 const bool HasPostInstrSymbol;
192 // Implement the `TrailingObjects` internal API.
193 size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const {
194 return NumMMOs;
196 size_t numTrailingObjects(OverloadToken<MCSymbol *>) const {
197 return HasPreInstrSymbol + HasPostInstrSymbol;
200 // Just a boring constructor to allow us to initialize the sizes. Always use
201 // the `create` routine above.
202 ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol)
203 : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol),
204 HasPostInstrSymbol(HasPostInstrSymbol) {}
207 /// Enumeration of the kinds of inline extra info available. It is important
208 /// that the `MachineMemOperand` inline kind has a tag value of zero to make
209 /// it accessible as an `ArrayRef`.
210 enum ExtraInfoInlineKinds {
211 EIIK_MMO = 0,
212 EIIK_PreInstrSymbol,
213 EIIK_PostInstrSymbol,
214 EIIK_OutOfLine
217 // We store extra information about the instruction here. The common case is
218 // expected to be nothing or a single pointer (typically a MMO or a symbol).
219 // We work to optimize this common case by storing it inline here rather than
220 // requiring a separate allocation, but we fall back to an allocation when
221 // multiple pointers are needed.
222 PointerSumType<ExtraInfoInlineKinds,
223 PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>,
224 PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>,
225 PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>,
226 PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>>
227 Info;
229 DebugLoc debugLoc; // Source line information.
231 // Intrusive list support
232 friend struct ilist_traits<MachineInstr>;
233 friend struct ilist_callback_traits<MachineBasicBlock>;
234 void setParent(MachineBasicBlock *P) { Parent = P; }
236 /// This constructor creates a copy of the given
237 /// MachineInstr in the given MachineFunction.
238 MachineInstr(MachineFunction &, const MachineInstr &);
240 /// This constructor create a MachineInstr and add the implicit operands.
241 /// It reserves space for number of operands specified by
242 /// MCInstrDesc. An explicit DebugLoc is supplied.
243 MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl,
244 bool NoImp = false);
246 // MachineInstrs are pool-allocated and owned by MachineFunction.
247 friend class MachineFunction;
249 public:
250 MachineInstr(const MachineInstr &) = delete;
251 MachineInstr &operator=(const MachineInstr &) = delete;
252 // Use MachineFunction::DeleteMachineInstr() instead.
253 ~MachineInstr() = delete;
255 const MachineBasicBlock* getParent() const { return Parent; }
256 MachineBasicBlock* getParent() { return Parent; }
258 /// Return the function that contains the basic block that this instruction
259 /// belongs to.
261 /// Note: this is undefined behaviour if the instruction does not have a
262 /// parent.
263 const MachineFunction *getMF() const;
264 MachineFunction *getMF() {
265 return const_cast<MachineFunction *>(
266 static_cast<const MachineInstr *>(this)->getMF());
269 /// Return the asm printer flags bitvector.
270 uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
272 /// Clear the AsmPrinter bitvector.
273 void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
275 /// Return whether an AsmPrinter flag is set.
276 bool getAsmPrinterFlag(CommentFlag Flag) const {
277 return AsmPrinterFlags & Flag;
280 /// Set a flag for the AsmPrinter.
281 void setAsmPrinterFlag(uint8_t Flag) {
282 AsmPrinterFlags |= Flag;
285 /// Clear specific AsmPrinter flags.
286 void clearAsmPrinterFlag(CommentFlag Flag) {
287 AsmPrinterFlags &= ~Flag;
290 /// Return the MI flags bitvector.
291 uint16_t getFlags() const {
292 return Flags;
295 /// Return whether an MI flag is set.
296 bool getFlag(MIFlag Flag) const {
297 return Flags & Flag;
300 /// Set a MI flag.
301 void setFlag(MIFlag Flag) {
302 Flags |= (uint16_t)Flag;
305 void setFlags(unsigned flags) {
306 // Filter out the automatically maintained flags.
307 unsigned Mask = BundledPred | BundledSucc;
308 Flags = (Flags & Mask) | (flags & ~Mask);
311 /// clearFlag - Clear a MI flag.
312 void clearFlag(MIFlag Flag) {
313 Flags &= ~((uint16_t)Flag);
316 /// Return true if MI is in a bundle (but not the first MI in a bundle).
318 /// A bundle looks like this before it's finalized:
319 /// ----------------
320 /// | MI |
321 /// ----------------
322 /// |
323 /// ----------------
324 /// | MI * |
325 /// ----------------
326 /// |
327 /// ----------------
328 /// | MI * |
329 /// ----------------
330 /// In this case, the first MI starts a bundle but is not inside a bundle, the
331 /// next 2 MIs are considered "inside" the bundle.
333 /// After a bundle is finalized, it looks like this:
334 /// ----------------
335 /// | Bundle |
336 /// ----------------
337 /// |
338 /// ----------------
339 /// | MI * |
340 /// ----------------
341 /// |
342 /// ----------------
343 /// | MI * |
344 /// ----------------
345 /// |
346 /// ----------------
347 /// | MI * |
348 /// ----------------
349 /// The first instruction has the special opcode "BUNDLE". It's not "inside"
350 /// a bundle, but the next three MIs are.
351 bool isInsideBundle() const {
352 return getFlag(BundledPred);
355 /// Return true if this instruction part of a bundle. This is true
356 /// if either itself or its following instruction is marked "InsideBundle".
357 bool isBundled() const {
358 return isBundledWithPred() || isBundledWithSucc();
361 /// Return true if this instruction is part of a bundle, and it is not the
362 /// first instruction in the bundle.
363 bool isBundledWithPred() const { return getFlag(BundledPred); }
365 /// Return true if this instruction is part of a bundle, and it is not the
366 /// last instruction in the bundle.
367 bool isBundledWithSucc() const { return getFlag(BundledSucc); }
369 /// Bundle this instruction with its predecessor. This can be an unbundled
370 /// instruction, or it can be the first instruction in a bundle.
371 void bundleWithPred();
373 /// Bundle this instruction with its successor. This can be an unbundled
374 /// instruction, or it can be the last instruction in a bundle.
375 void bundleWithSucc();
377 /// Break bundle above this instruction.
378 void unbundleFromPred();
380 /// Break bundle below this instruction.
381 void unbundleFromSucc();
383 /// Returns the debug location id of this MachineInstr.
384 const DebugLoc &getDebugLoc() const { return debugLoc; }
386 /// Return the debug variable referenced by
387 /// this DBG_VALUE instruction.
388 const DILocalVariable *getDebugVariable() const;
390 /// Return the complex address expression referenced by
391 /// this DBG_VALUE instruction.
392 const DIExpression *getDebugExpression() const;
394 /// Return the debug label referenced by
395 /// this DBG_LABEL instruction.
396 const DILabel *getDebugLabel() const;
398 /// Emit an error referring to the source location of this instruction.
399 /// This should only be used for inline assembly that is somehow
400 /// impossible to compile. Other errors should have been handled much
401 /// earlier.
403 /// If this method returns, the caller should try to recover from the error.
404 void emitError(StringRef Msg) const;
406 /// Returns the target instruction descriptor of this MachineInstr.
407 const MCInstrDesc &getDesc() const { return *MCID; }
409 /// Returns the opcode of this MachineInstr.
410 unsigned getOpcode() const { return MCID->Opcode; }
412 /// Retuns the total number of operands.
413 unsigned getNumOperands() const { return NumOperands; }
415 const MachineOperand& getOperand(unsigned i) const {
416 assert(i < getNumOperands() && "getOperand() out of range!");
417 return Operands[i];
419 MachineOperand& getOperand(unsigned i) {
420 assert(i < getNumOperands() && "getOperand() out of range!");
421 return Operands[i];
424 /// Returns the total number of definitions.
425 unsigned getNumDefs() const {
426 return getNumExplicitDefs() + MCID->getNumImplicitDefs();
429 /// Returns true if the instruction has implicit definition.
430 bool hasImplicitDef() const {
431 for (unsigned I = getNumExplicitOperands(), E = getNumOperands();
432 I != E; ++I) {
433 const MachineOperand &MO = getOperand(I);
434 if (MO.isDef() && MO.isImplicit())
435 return true;
437 return false;
440 /// Returns the implicit operands number.
441 unsigned getNumImplicitOperands() const {
442 return getNumOperands() - getNumExplicitOperands();
445 /// Return true if operand \p OpIdx is a subregister index.
446 bool isOperandSubregIdx(unsigned OpIdx) const {
447 assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate &&
448 "Expected MO_Immediate operand type.");
449 if (isExtractSubreg() && OpIdx == 2)
450 return true;
451 if (isInsertSubreg() && OpIdx == 3)
452 return true;
453 if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
454 return true;
455 if (isSubregToReg() && OpIdx == 3)
456 return true;
457 return false;
460 /// Returns the number of non-implicit operands.
461 unsigned getNumExplicitOperands() const;
463 /// Returns the number of non-implicit definitions.
464 unsigned getNumExplicitDefs() const;
466 /// iterator/begin/end - Iterate over all operands of a machine instruction.
467 using mop_iterator = MachineOperand *;
468 using const_mop_iterator = const MachineOperand *;
470 mop_iterator operands_begin() { return Operands; }
471 mop_iterator operands_end() { return Operands + NumOperands; }
473 const_mop_iterator operands_begin() const { return Operands; }
474 const_mop_iterator operands_end() const { return Operands + NumOperands; }
476 iterator_range<mop_iterator> operands() {
477 return make_range(operands_begin(), operands_end());
479 iterator_range<const_mop_iterator> operands() const {
480 return make_range(operands_begin(), operands_end());
482 iterator_range<mop_iterator> explicit_operands() {
483 return make_range(operands_begin(),
484 operands_begin() + getNumExplicitOperands());
486 iterator_range<const_mop_iterator> explicit_operands() const {
487 return make_range(operands_begin(),
488 operands_begin() + getNumExplicitOperands());
490 iterator_range<mop_iterator> implicit_operands() {
491 return make_range(explicit_operands().end(), operands_end());
493 iterator_range<const_mop_iterator> implicit_operands() const {
494 return make_range(explicit_operands().end(), operands_end());
496 /// Returns a range over all explicit operands that are register definitions.
497 /// Implicit definition are not included!
498 iterator_range<mop_iterator> defs() {
499 return make_range(operands_begin(),
500 operands_begin() + getNumExplicitDefs());
502 /// \copydoc defs()
503 iterator_range<const_mop_iterator> defs() const {
504 return make_range(operands_begin(),
505 operands_begin() + getNumExplicitDefs());
507 /// Returns a range that includes all operands that are register uses.
508 /// This may include unrelated operands which are not register uses.
509 iterator_range<mop_iterator> uses() {
510 return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
512 /// \copydoc uses()
513 iterator_range<const_mop_iterator> uses() const {
514 return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
516 iterator_range<mop_iterator> explicit_uses() {
517 return make_range(operands_begin() + getNumExplicitDefs(),
518 operands_begin() + getNumExplicitOperands());
520 iterator_range<const_mop_iterator> explicit_uses() const {
521 return make_range(operands_begin() + getNumExplicitDefs(),
522 operands_begin() + getNumExplicitOperands());
525 /// Returns the number of the operand iterator \p I points to.
526 unsigned getOperandNo(const_mop_iterator I) const {
527 return I - operands_begin();
530 /// Access to memory operands of the instruction. If there are none, that does
531 /// not imply anything about whether the function accesses memory. Instead,
532 /// the caller must behave conservatively.
533 ArrayRef<MachineMemOperand *> memoperands() const {
534 if (!Info)
535 return {};
537 if (Info.is<EIIK_MMO>())
538 return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1);
540 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
541 return EI->getMMOs();
543 return {};
546 /// Access to memory operands of the instruction.
548 /// If `memoperands_begin() == memoperands_end()`, that does not imply
549 /// anything about whether the function accesses memory. Instead, the caller
550 /// must behave conservatively.
551 mmo_iterator memoperands_begin() const { return memoperands().begin(); }
553 /// Access to memory operands of the instruction.
555 /// If `memoperands_begin() == memoperands_end()`, that does not imply
556 /// anything about whether the function accesses memory. Instead, the caller
557 /// must behave conservatively.
558 mmo_iterator memoperands_end() const { return memoperands().end(); }
560 /// Return true if we don't have any memory operands which described the
561 /// memory access done by this instruction. If this is true, calling code
562 /// must be conservative.
563 bool memoperands_empty() const { return memoperands().empty(); }
565 /// Return true if this instruction has exactly one MachineMemOperand.
566 bool hasOneMemOperand() const { return memoperands().size() == 1; }
568 /// Return the number of memory operands.
569 unsigned getNumMemOperands() const { return memoperands().size(); }
571 /// Helper to extract a pre-instruction symbol if one has been added.
572 MCSymbol *getPreInstrSymbol() const {
573 if (!Info)
574 return nullptr;
575 if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>())
576 return S;
577 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
578 return EI->getPreInstrSymbol();
580 return nullptr;
583 /// Helper to extract a post-instruction symbol if one has been added.
584 MCSymbol *getPostInstrSymbol() const {
585 if (!Info)
586 return nullptr;
587 if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>())
588 return S;
589 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
590 return EI->getPostInstrSymbol();
592 return nullptr;
595 /// API for querying MachineInstr properties. They are the same as MCInstrDesc
596 /// queries but they are bundle aware.
598 enum QueryType {
599 IgnoreBundle, // Ignore bundles
600 AnyInBundle, // Return true if any instruction in bundle has property
601 AllInBundle // Return true if all instructions in bundle have property
604 /// Return true if the instruction (or in the case of a bundle,
605 /// the instructions inside the bundle) has the specified property.
606 /// The first argument is the property being queried.
607 /// The second argument indicates whether the query should look inside
608 /// instruction bundles.
609 bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
610 assert(MCFlag < 64 &&
611 "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.");
612 // Inline the fast path for unbundled or bundle-internal instructions.
613 if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
614 return getDesc().getFlags() & (1ULL << MCFlag);
616 // If this is the first instruction in a bundle, take the slow path.
617 return hasPropertyInBundle(1ULL << MCFlag, Type);
620 /// Return true if this is an instruction that should go through the usual
621 /// legalization steps.
622 bool isPreISelOpcode(QueryType Type = IgnoreBundle) const {
623 return hasProperty(MCID::PreISelOpcode, Type);
626 /// Return true if this instruction can have a variable number of operands.
627 /// In this case, the variable operands will be after the normal
628 /// operands but before the implicit definitions and uses (if any are
629 /// present).
630 bool isVariadic(QueryType Type = IgnoreBundle) const {
631 return hasProperty(MCID::Variadic, Type);
634 /// Set if this instruction has an optional definition, e.g.
635 /// ARM instructions which can set condition code if 's' bit is set.
636 bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
637 return hasProperty(MCID::HasOptionalDef, Type);
640 /// Return true if this is a pseudo instruction that doesn't
641 /// correspond to a real machine instruction.
642 bool isPseudo(QueryType Type = IgnoreBundle) const {
643 return hasProperty(MCID::Pseudo, Type);
646 bool isReturn(QueryType Type = AnyInBundle) const {
647 return hasProperty(MCID::Return, Type);
650 /// Return true if this is an instruction that marks the end of an EH scope,
651 /// i.e., a catchpad or a cleanuppad instruction.
652 bool isEHScopeReturn(QueryType Type = AnyInBundle) const {
653 return hasProperty(MCID::EHScopeReturn, Type);
656 bool isCall(QueryType Type = AnyInBundle) const {
657 return hasProperty(MCID::Call, Type);
660 /// Returns true if the specified instruction stops control flow
661 /// from executing the instruction immediately following it. Examples include
662 /// unconditional branches and return instructions.
663 bool isBarrier(QueryType Type = AnyInBundle) const {
664 return hasProperty(MCID::Barrier, Type);
667 /// Returns true if this instruction part of the terminator for a basic block.
668 /// Typically this is things like return and branch instructions.
670 /// Various passes use this to insert code into the bottom of a basic block,
671 /// but before control flow occurs.
672 bool isTerminator(QueryType Type = AnyInBundle) const {
673 return hasProperty(MCID::Terminator, Type);
676 /// Returns true if this is a conditional, unconditional, or indirect branch.
677 /// Predicates below can be used to discriminate between
678 /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
679 /// get more information.
680 bool isBranch(QueryType Type = AnyInBundle) const {
681 return hasProperty(MCID::Branch, Type);
684 /// Return true if this is an indirect branch, such as a
685 /// branch through a register.
686 bool isIndirectBranch(QueryType Type = AnyInBundle) const {
687 return hasProperty(MCID::IndirectBranch, Type);
690 /// Return true if this is a branch which may fall
691 /// through to the next instruction or may transfer control flow to some other
692 /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more
693 /// information about this branch.
694 bool isConditionalBranch(QueryType Type = AnyInBundle) const {
695 return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
698 /// Return true if this is a branch which always
699 /// transfers control flow to some other block. The
700 /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
701 /// about this branch.
702 bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
703 return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
706 /// Return true if this instruction has a predicate operand that
707 /// controls execution. It may be set to 'always', or may be set to other
708 /// values. There are various methods in TargetInstrInfo that can be used to
709 /// control and modify the predicate in this instruction.
710 bool isPredicable(QueryType Type = AllInBundle) const {
711 // If it's a bundle than all bundled instructions must be predicable for this
712 // to return true.
713 return hasProperty(MCID::Predicable, Type);
716 /// Return true if this instruction is a comparison.
717 bool isCompare(QueryType Type = IgnoreBundle) const {
718 return hasProperty(MCID::Compare, Type);
721 /// Return true if this instruction is a move immediate
722 /// (including conditional moves) instruction.
723 bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
724 return hasProperty(MCID::MoveImm, Type);
727 /// Return true if this instruction is a register move.
728 /// (including moving values from subreg to reg)
729 bool isMoveReg(QueryType Type = IgnoreBundle) const {
730 return hasProperty(MCID::MoveReg, Type);
733 /// Return true if this instruction is a bitcast instruction.
734 bool isBitcast(QueryType Type = IgnoreBundle) const {
735 return hasProperty(MCID::Bitcast, Type);
738 /// Return true if this instruction is a select instruction.
739 bool isSelect(QueryType Type = IgnoreBundle) const {
740 return hasProperty(MCID::Select, Type);
743 /// Return true if this instruction cannot be safely duplicated.
744 /// For example, if the instruction has a unique labels attached
745 /// to it, duplicating it would cause multiple definition errors.
746 bool isNotDuplicable(QueryType Type = AnyInBundle) const {
747 return hasProperty(MCID::NotDuplicable, Type);
750 /// Return true if this instruction is convergent.
751 /// Convergent instructions can not be made control-dependent on any
752 /// additional values.
753 bool isConvergent(QueryType Type = AnyInBundle) const {
754 if (isInlineAsm()) {
755 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
756 if (ExtraInfo & InlineAsm::Extra_IsConvergent)
757 return true;
759 return hasProperty(MCID::Convergent, Type);
762 /// Returns true if the specified instruction has a delay slot
763 /// which must be filled by the code generator.
764 bool hasDelaySlot(QueryType Type = AnyInBundle) const {
765 return hasProperty(MCID::DelaySlot, Type);
768 /// Return true for instructions that can be folded as
769 /// memory operands in other instructions. The most common use for this
770 /// is instructions that are simple loads from memory that don't modify
771 /// the loaded value in any way, but it can also be used for instructions
772 /// that can be expressed as constant-pool loads, such as V_SETALLONES
773 /// on x86, to allow them to be folded when it is beneficial.
774 /// This should only be set on instructions that return a value in their
775 /// only virtual register definition.
776 bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
777 return hasProperty(MCID::FoldableAsLoad, Type);
780 /// Return true if this instruction behaves
781 /// the same way as the generic REG_SEQUENCE instructions.
782 /// E.g., on ARM,
783 /// dX VMOVDRR rY, rZ
784 /// is equivalent to
785 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
787 /// Note that for the optimizers to be able to take advantage of
788 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
789 /// override accordingly.
790 bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
791 return hasProperty(MCID::RegSequence, Type);
794 /// Return true if this instruction behaves
795 /// the same way as the generic EXTRACT_SUBREG instructions.
796 /// E.g., on ARM,
797 /// rX, rY VMOVRRD dZ
798 /// is equivalent to two EXTRACT_SUBREG:
799 /// rX = EXTRACT_SUBREG dZ, ssub_0
800 /// rY = EXTRACT_SUBREG dZ, ssub_1
802 /// Note that for the optimizers to be able to take advantage of
803 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
804 /// override accordingly.
805 bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
806 return hasProperty(MCID::ExtractSubreg, Type);
809 /// Return true if this instruction behaves
810 /// the same way as the generic INSERT_SUBREG instructions.
811 /// E.g., on ARM,
812 /// dX = VSETLNi32 dY, rZ, Imm
813 /// is equivalent to a INSERT_SUBREG:
814 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
816 /// Note that for the optimizers to be able to take advantage of
817 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
818 /// override accordingly.
819 bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
820 return hasProperty(MCID::InsertSubreg, Type);
823 //===--------------------------------------------------------------------===//
824 // Side Effect Analysis
825 //===--------------------------------------------------------------------===//
827 /// Return true if this instruction could possibly read memory.
828 /// Instructions with this flag set are not necessarily simple load
829 /// instructions, they may load a value and modify it, for example.
830 bool mayLoad(QueryType Type = AnyInBundle) const {
831 if (isInlineAsm()) {
832 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
833 if (ExtraInfo & InlineAsm::Extra_MayLoad)
834 return true;
836 return hasProperty(MCID::MayLoad, Type);
839 /// Return true if this instruction could possibly modify memory.
840 /// Instructions with this flag set are not necessarily simple store
841 /// instructions, they may store a modified value based on their operands, or
842 /// may not actually modify anything, for example.
843 bool mayStore(QueryType Type = AnyInBundle) const {
844 if (isInlineAsm()) {
845 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
846 if (ExtraInfo & InlineAsm::Extra_MayStore)
847 return true;
849 return hasProperty(MCID::MayStore, Type);
852 /// Return true if this instruction could possibly read or modify memory.
853 bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
854 return mayLoad(Type) || mayStore(Type);
857 /// Return true if this instruction could possibly raise a floating-point
858 /// exception. This is the case if the instruction is a floating-point
859 /// instruction that can in principle raise an exception, as indicated
860 /// by the MCID::MayRaiseFPException property, *and* at the same time,
861 /// the instruction is used in a context where we expect floating-point
862 /// exceptions might be enabled, as indicated by the FPExcept MI flag.
863 bool mayRaiseFPException() const {
864 return hasProperty(MCID::MayRaiseFPException) &&
865 getFlag(MachineInstr::MIFlag::FPExcept);
868 //===--------------------------------------------------------------------===//
869 // Flags that indicate whether an instruction can be modified by a method.
870 //===--------------------------------------------------------------------===//
872 /// Return true if this may be a 2- or 3-address
873 /// instruction (of the form "X = op Y, Z, ..."), which produces the same
874 /// result if Y and Z are exchanged. If this flag is set, then the
875 /// TargetInstrInfo::commuteInstruction method may be used to hack on the
876 /// instruction.
878 /// Note that this flag may be set on instructions that are only commutable
879 /// sometimes. In these cases, the call to commuteInstruction will fail.
880 /// Also note that some instructions require non-trivial modification to
881 /// commute them.
882 bool isCommutable(QueryType Type = IgnoreBundle) const {
883 return hasProperty(MCID::Commutable, Type);
886 /// Return true if this is a 2-address instruction
887 /// which can be changed into a 3-address instruction if needed. Doing this
888 /// transformation can be profitable in the register allocator, because it
889 /// means that the instruction can use a 2-address form if possible, but
890 /// degrade into a less efficient form if the source and dest register cannot
891 /// be assigned to the same register. For example, this allows the x86
892 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
893 /// is the same speed as the shift but has bigger code size.
895 /// If this returns true, then the target must implement the
896 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
897 /// is allowed to fail if the transformation isn't valid for this specific
898 /// instruction (e.g. shl reg, 4 on x86).
900 bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
901 return hasProperty(MCID::ConvertibleTo3Addr, Type);
904 /// Return true if this instruction requires
905 /// custom insertion support when the DAG scheduler is inserting it into a
906 /// machine basic block. If this is true for the instruction, it basically
907 /// means that it is a pseudo instruction used at SelectionDAG time that is
908 /// expanded out into magic code by the target when MachineInstrs are formed.
910 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
911 /// is used to insert this into the MachineBasicBlock.
912 bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
913 return hasProperty(MCID::UsesCustomInserter, Type);
916 /// Return true if this instruction requires *adjustment*
917 /// after instruction selection by calling a target hook. For example, this
918 /// can be used to fill in ARM 's' optional operand depending on whether
919 /// the conditional flag register is used.
920 bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
921 return hasProperty(MCID::HasPostISelHook, Type);
924 /// Returns true if this instruction is a candidate for remat.
925 /// This flag is deprecated, please don't use it anymore. If this
926 /// flag is set, the isReallyTriviallyReMaterializable() method is called to
927 /// verify the instruction is really rematable.
928 bool isRematerializable(QueryType Type = AllInBundle) const {
929 // It's only possible to re-mat a bundle if all bundled instructions are
930 // re-materializable.
931 return hasProperty(MCID::Rematerializable, Type);
934 /// Returns true if this instruction has the same cost (or less) than a move
935 /// instruction. This is useful during certain types of optimizations
936 /// (e.g., remat during two-address conversion or machine licm)
937 /// where we would like to remat or hoist the instruction, but not if it costs
938 /// more than moving the instruction into the appropriate register. Note, we
939 /// are not marking copies from and to the same register class with this flag.
940 bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
941 // Only returns true for a bundle if all bundled instructions are cheap.
942 return hasProperty(MCID::CheapAsAMove, Type);
945 /// Returns true if this instruction source operands
946 /// have special register allocation requirements that are not captured by the
947 /// operand register classes. e.g. ARM::STRD's two source registers must be an
948 /// even / odd pair, ARM::STM registers have to be in ascending order.
949 /// Post-register allocation passes should not attempt to change allocations
950 /// for sources of instructions with this flag.
951 bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
952 return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
955 /// Returns true if this instruction def operands
956 /// have special register allocation requirements that are not captured by the
957 /// operand register classes. e.g. ARM::LDRD's two def registers must be an
958 /// even / odd pair, ARM::LDM registers have to be in ascending order.
959 /// Post-register allocation passes should not attempt to change allocations
960 /// for definitions of instructions with this flag.
961 bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
962 return hasProperty(MCID::ExtraDefRegAllocReq, Type);
965 enum MICheckType {
966 CheckDefs, // Check all operands for equality
967 CheckKillDead, // Check all operands including kill / dead markers
968 IgnoreDefs, // Ignore all definitions
969 IgnoreVRegDefs // Ignore virtual register definitions
972 /// Return true if this instruction is identical to \p Other.
973 /// Two instructions are identical if they have the same opcode and all their
974 /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
975 /// Note that this means liveness related flags (dead, undef, kill) do not
976 /// affect the notion of identical.
977 bool isIdenticalTo(const MachineInstr &Other,
978 MICheckType Check = CheckDefs) const;
980 /// Unlink 'this' from the containing basic block, and return it without
981 /// deleting it.
983 /// This function can not be used on bundled instructions, use
984 /// removeFromBundle() to remove individual instructions from a bundle.
985 MachineInstr *removeFromParent();
987 /// Unlink this instruction from its basic block and return it without
988 /// deleting it.
990 /// If the instruction is part of a bundle, the other instructions in the
991 /// bundle remain bundled.
992 MachineInstr *removeFromBundle();
994 /// Unlink 'this' from the containing basic block and delete it.
996 /// If this instruction is the header of a bundle, the whole bundle is erased.
997 /// This function can not be used for instructions inside a bundle, use
998 /// eraseFromBundle() to erase individual bundled instructions.
999 void eraseFromParent();
1001 /// Unlink 'this' from the containing basic block and delete it.
1003 /// For all definitions mark their uses in DBG_VALUE nodes
1004 /// as undefined. Otherwise like eraseFromParent().
1005 void eraseFromParentAndMarkDBGValuesForRemoval();
1007 /// Unlink 'this' form its basic block and delete it.
1009 /// If the instruction is part of a bundle, the other instructions in the
1010 /// bundle remain bundled.
1011 void eraseFromBundle();
1013 bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
1014 bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
1015 bool isAnnotationLabel() const {
1016 return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
1019 /// Returns true if the MachineInstr represents a label.
1020 bool isLabel() const {
1021 return isEHLabel() || isGCLabel() || isAnnotationLabel();
1024 bool isCFIInstruction() const {
1025 return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
1028 // True if the instruction represents a position in the function.
1029 bool isPosition() const { return isLabel() || isCFIInstruction(); }
1031 bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
1032 bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; }
1033 bool isDebugInstr() const { return isDebugValue() || isDebugLabel(); }
1035 /// A DBG_VALUE is indirect iff the first operand is a register and
1036 /// the second operand is an immediate.
1037 bool isIndirectDebugValue() const {
1038 return isDebugValue()
1039 && getOperand(0).isReg()
1040 && getOperand(1).isImm();
1043 /// A DBG_VALUE is an entry value iff its debug expression contains the
1044 /// DW_OP_LLVM_entry_value operation.
1045 bool isDebugEntryValue() const;
1047 /// Return true if the instruction is a debug value which describes a part of
1048 /// a variable as unavailable.
1049 bool isUndefDebugValue() const {
1050 return isDebugValue() && getOperand(0).isReg() && !getOperand(0).getReg().isValid();
1053 bool isPHI() const {
1054 return getOpcode() == TargetOpcode::PHI ||
1055 getOpcode() == TargetOpcode::G_PHI;
1057 bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
1058 bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
1059 bool isInlineAsm() const {
1060 return getOpcode() == TargetOpcode::INLINEASM ||
1061 getOpcode() == TargetOpcode::INLINEASM_BR;
1064 /// FIXME: Seems like a layering violation that the AsmDialect, which is X86
1065 /// specific, be attached to a generic MachineInstr.
1066 bool isMSInlineAsm() const {
1067 return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel;
1070 bool isStackAligningInlineAsm() const;
1071 InlineAsm::AsmDialect getInlineAsmDialect() const;
1073 bool isInsertSubreg() const {
1074 return getOpcode() == TargetOpcode::INSERT_SUBREG;
1077 bool isSubregToReg() const {
1078 return getOpcode() == TargetOpcode::SUBREG_TO_REG;
1081 bool isRegSequence() const {
1082 return getOpcode() == TargetOpcode::REG_SEQUENCE;
1085 bool isBundle() const {
1086 return getOpcode() == TargetOpcode::BUNDLE;
1089 bool isCopy() const {
1090 return getOpcode() == TargetOpcode::COPY;
1093 bool isFullCopy() const {
1094 return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
1097 bool isExtractSubreg() const {
1098 return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
1101 /// Return true if the instruction behaves like a copy.
1102 /// This does not include native copy instructions.
1103 bool isCopyLike() const {
1104 return isCopy() || isSubregToReg();
1107 /// Return true is the instruction is an identity copy.
1108 bool isIdentityCopy() const {
1109 return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
1110 getOperand(0).getSubReg() == getOperand(1).getSubReg();
1113 /// Return true if this instruction doesn't produce any output in the form of
1114 /// executable instructions.
1115 bool isMetaInstruction() const {
1116 switch (getOpcode()) {
1117 default:
1118 return false;
1119 case TargetOpcode::IMPLICIT_DEF:
1120 case TargetOpcode::KILL:
1121 case TargetOpcode::CFI_INSTRUCTION:
1122 case TargetOpcode::EH_LABEL:
1123 case TargetOpcode::GC_LABEL:
1124 case TargetOpcode::DBG_VALUE:
1125 case TargetOpcode::DBG_LABEL:
1126 case TargetOpcode::LIFETIME_START:
1127 case TargetOpcode::LIFETIME_END:
1128 return true;
1132 /// Return true if this is a transient instruction that is either very likely
1133 /// to be eliminated during register allocation (such as copy-like
1134 /// instructions), or if this instruction doesn't have an execution-time cost.
1135 bool isTransient() const {
1136 switch (getOpcode()) {
1137 default:
1138 return isMetaInstruction();
1139 // Copy-like instructions are usually eliminated during register allocation.
1140 case TargetOpcode::PHI:
1141 case TargetOpcode::G_PHI:
1142 case TargetOpcode::COPY:
1143 case TargetOpcode::INSERT_SUBREG:
1144 case TargetOpcode::SUBREG_TO_REG:
1145 case TargetOpcode::REG_SEQUENCE:
1146 return true;
1150 /// Return the number of instructions inside the MI bundle, excluding the
1151 /// bundle header.
1153 /// This is the number of instructions that MachineBasicBlock::iterator
1154 /// skips, 0 for unbundled instructions.
1155 unsigned getBundleSize() const;
1157 /// Return true if the MachineInstr reads the specified register.
1158 /// If TargetRegisterInfo is passed, then it also checks if there
1159 /// is a read of a super-register.
1160 /// This does not count partial redefines of virtual registers as reads:
1161 /// %reg1024:6 = OP.
1162 bool readsRegister(Register Reg,
1163 const TargetRegisterInfo *TRI = nullptr) const {
1164 return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
1167 /// Return true if the MachineInstr reads the specified virtual register.
1168 /// Take into account that a partial define is a
1169 /// read-modify-write operation.
1170 bool readsVirtualRegister(Register Reg) const {
1171 return readsWritesVirtualRegister(Reg).first;
1174 /// Return a pair of bools (reads, writes) indicating if this instruction
1175 /// reads or writes Reg. This also considers partial defines.
1176 /// If Ops is not null, all operand indices for Reg are added.
1177 std::pair<bool,bool> readsWritesVirtualRegister(Register Reg,
1178 SmallVectorImpl<unsigned> *Ops = nullptr) const;
1180 /// Return true if the MachineInstr kills the specified register.
1181 /// If TargetRegisterInfo is passed, then it also checks if there is
1182 /// a kill of a super-register.
1183 bool killsRegister(Register Reg,
1184 const TargetRegisterInfo *TRI = nullptr) const {
1185 return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
1188 /// Return true if the MachineInstr fully defines the specified register.
1189 /// If TargetRegisterInfo is passed, then it also checks
1190 /// if there is a def of a super-register.
1191 /// NOTE: It's ignoring subreg indices on virtual registers.
1192 bool definesRegister(Register Reg,
1193 const TargetRegisterInfo *TRI = nullptr) const {
1194 return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
1197 /// Return true if the MachineInstr modifies (fully define or partially
1198 /// define) the specified register.
1199 /// NOTE: It's ignoring subreg indices on virtual registers.
1200 bool modifiesRegister(Register Reg, const TargetRegisterInfo *TRI) const {
1201 return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
1204 /// Returns true if the register is dead in this machine instruction.
1205 /// If TargetRegisterInfo is passed, then it also checks
1206 /// if there is a dead def of a super-register.
1207 bool registerDefIsDead(Register Reg,
1208 const TargetRegisterInfo *TRI = nullptr) const {
1209 return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
1212 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1213 /// the given register (not considering sub/super-registers).
1214 bool hasRegisterImplicitUseOperand(Register Reg) const;
1216 /// Returns the operand index that is a use of the specific register or -1
1217 /// if it is not found. It further tightens the search criteria to a use
1218 /// that kills the register if isKill is true.
1219 int findRegisterUseOperandIdx(Register Reg, bool isKill = false,
1220 const TargetRegisterInfo *TRI = nullptr) const;
1222 /// Wrapper for findRegisterUseOperandIdx, it returns
1223 /// a pointer to the MachineOperand rather than an index.
1224 MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false,
1225 const TargetRegisterInfo *TRI = nullptr) {
1226 int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
1227 return (Idx == -1) ? nullptr : &getOperand(Idx);
1230 const MachineOperand *findRegisterUseOperand(
1231 Register Reg, bool isKill = false,
1232 const TargetRegisterInfo *TRI = nullptr) const {
1233 return const_cast<MachineInstr *>(this)->
1234 findRegisterUseOperand(Reg, isKill, TRI);
1237 /// Returns the operand index that is a def of the specified register or
1238 /// -1 if it is not found. If isDead is true, defs that are not dead are
1239 /// skipped. If Overlap is true, then it also looks for defs that merely
1240 /// overlap the specified register. If TargetRegisterInfo is non-null,
1241 /// then it also checks if there is a def of a super-register.
1242 /// This may also return a register mask operand when Overlap is true.
1243 int findRegisterDefOperandIdx(Register Reg,
1244 bool isDead = false, bool Overlap = false,
1245 const TargetRegisterInfo *TRI = nullptr) const;
1247 /// Wrapper for findRegisterDefOperandIdx, it returns
1248 /// a pointer to the MachineOperand rather than an index.
1249 MachineOperand *
1250 findRegisterDefOperand(Register Reg, bool isDead = false,
1251 bool Overlap = false,
1252 const TargetRegisterInfo *TRI = nullptr) {
1253 int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI);
1254 return (Idx == -1) ? nullptr : &getOperand(Idx);
1257 const MachineOperand *
1258 findRegisterDefOperand(Register Reg, bool isDead = false,
1259 bool Overlap = false,
1260 const TargetRegisterInfo *TRI = nullptr) const {
1261 return const_cast<MachineInstr *>(this)->findRegisterDefOperand(
1262 Reg, isDead, Overlap, TRI);
1265 /// Find the index of the first operand in the
1266 /// operand list that is used to represent the predicate. It returns -1 if
1267 /// none is found.
1268 int findFirstPredOperandIdx() const;
1270 /// Find the index of the flag word operand that
1271 /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if
1272 /// getOperand(OpIdx) does not belong to an inline asm operand group.
1274 /// If GroupNo is not NULL, it will receive the number of the operand group
1275 /// containing OpIdx.
1277 /// The flag operand is an immediate that can be decoded with methods like
1278 /// InlineAsm::hasRegClassConstraint().
1279 int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
1281 /// Compute the static register class constraint for operand OpIdx.
1282 /// For normal instructions, this is derived from the MCInstrDesc.
1283 /// For inline assembly it is derived from the flag words.
1285 /// Returns NULL if the static register class constraint cannot be
1286 /// determined.
1287 const TargetRegisterClass*
1288 getRegClassConstraint(unsigned OpIdx,
1289 const TargetInstrInfo *TII,
1290 const TargetRegisterInfo *TRI) const;
1292 /// Applies the constraints (def/use) implied by this MI on \p Reg to
1293 /// the given \p CurRC.
1294 /// If \p ExploreBundle is set and MI is part of a bundle, all the
1295 /// instructions inside the bundle will be taken into account. In other words,
1296 /// this method accumulates all the constraints of the operand of this MI and
1297 /// the related bundle if MI is a bundle or inside a bundle.
1299 /// Returns the register class that satisfies both \p CurRC and the
1300 /// constraints set by MI. Returns NULL if such a register class does not
1301 /// exist.
1303 /// \pre CurRC must not be NULL.
1304 const TargetRegisterClass *getRegClassConstraintEffectForVReg(
1305 Register Reg, const TargetRegisterClass *CurRC,
1306 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1307 bool ExploreBundle = false) const;
1309 /// Applies the constraints (def/use) implied by the \p OpIdx operand
1310 /// to the given \p CurRC.
1312 /// Returns the register class that satisfies both \p CurRC and the
1313 /// constraints set by \p OpIdx MI. Returns NULL if such a register class
1314 /// does not exist.
1316 /// \pre CurRC must not be NULL.
1317 /// \pre The operand at \p OpIdx must be a register.
1318 const TargetRegisterClass *
1319 getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
1320 const TargetInstrInfo *TII,
1321 const TargetRegisterInfo *TRI) const;
1323 /// Add a tie between the register operands at DefIdx and UseIdx.
1324 /// The tie will cause the register allocator to ensure that the two
1325 /// operands are assigned the same physical register.
1327 /// Tied operands are managed automatically for explicit operands in the
1328 /// MCInstrDesc. This method is for exceptional cases like inline asm.
1329 void tieOperands(unsigned DefIdx, unsigned UseIdx);
1331 /// Given the index of a tied register operand, find the
1332 /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
1333 /// index of the tied operand which must exist.
1334 unsigned findTiedOperandIdx(unsigned OpIdx) const;
1336 /// Given the index of a register def operand,
1337 /// check if the register def is tied to a source operand, due to either
1338 /// two-address elimination or inline assembly constraints. Returns the
1339 /// first tied use operand index by reference if UseOpIdx is not null.
1340 bool isRegTiedToUseOperand(unsigned DefOpIdx,
1341 unsigned *UseOpIdx = nullptr) const {
1342 const MachineOperand &MO = getOperand(DefOpIdx);
1343 if (!MO.isReg() || !MO.isDef() || !MO.isTied())
1344 return false;
1345 if (UseOpIdx)
1346 *UseOpIdx = findTiedOperandIdx(DefOpIdx);
1347 return true;
1350 /// Return true if the use operand of the specified index is tied to a def
1351 /// operand. It also returns the def operand index by reference if DefOpIdx
1352 /// is not null.
1353 bool isRegTiedToDefOperand(unsigned UseOpIdx,
1354 unsigned *DefOpIdx = nullptr) const {
1355 const MachineOperand &MO = getOperand(UseOpIdx);
1356 if (!MO.isReg() || !MO.isUse() || !MO.isTied())
1357 return false;
1358 if (DefOpIdx)
1359 *DefOpIdx = findTiedOperandIdx(UseOpIdx);
1360 return true;
1363 /// Clears kill flags on all operands.
1364 void clearKillInfo();
1366 /// Replace all occurrences of FromReg with ToReg:SubIdx,
1367 /// properly composing subreg indices where necessary.
1368 void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx,
1369 const TargetRegisterInfo &RegInfo);
1371 /// We have determined MI kills a register. Look for the
1372 /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
1373 /// add a implicit operand if it's not found. Returns true if the operand
1374 /// exists / is added.
1375 bool addRegisterKilled(Register IncomingReg,
1376 const TargetRegisterInfo *RegInfo,
1377 bool AddIfNotFound = false);
1379 /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes
1380 /// all aliasing registers.
1381 void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo);
1383 /// We have determined MI defined a register without a use.
1384 /// Look for the operand that defines it and mark it as IsDead. If
1385 /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
1386 /// true if the operand exists / is added.
1387 bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo,
1388 bool AddIfNotFound = false);
1390 /// Clear all dead flags on operands defining register @p Reg.
1391 void clearRegisterDeads(Register Reg);
1393 /// Mark all subregister defs of register @p Reg with the undef flag.
1394 /// This function is used when we determined to have a subregister def in an
1395 /// otherwise undefined super register.
1396 void setRegisterDefReadUndef(Register Reg, bool IsUndef = true);
1398 /// We have determined MI defines a register. Make sure there is an operand
1399 /// defining Reg.
1400 void addRegisterDefined(Register Reg,
1401 const TargetRegisterInfo *RegInfo = nullptr);
1403 /// Mark every physreg used by this instruction as
1404 /// dead except those in the UsedRegs list.
1406 /// On instructions with register mask operands, also add implicit-def
1407 /// operands for all registers in UsedRegs.
1408 void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
1409 const TargetRegisterInfo &TRI);
1411 /// Return true if it is safe to move this instruction. If
1412 /// SawStore is set to true, it means that there is a store (or call) between
1413 /// the instruction's location and its intended destination.
1414 bool isSafeToMove(AAResults *AA, bool &SawStore) const;
1416 /// Returns true if this instruction's memory access aliases the memory
1417 /// access of Other.
1419 /// Assumes any physical registers used to compute addresses
1420 /// have the same value for both instructions. Returns false if neither
1421 /// instruction writes to memory.
1423 /// @param AA Optional alias analysis, used to compare memory operands.
1424 /// @param Other MachineInstr to check aliasing against.
1425 /// @param UseTBAA Whether to pass TBAA information to alias analysis.
1426 bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const;
1428 /// Return true if this instruction may have an ordered
1429 /// or volatile memory reference, or if the information describing the memory
1430 /// reference is not available. Return false if it is known to have no
1431 /// ordered or volatile memory references.
1432 bool hasOrderedMemoryRef() const;
1434 /// Return true if this load instruction never traps and points to a memory
1435 /// location whose value doesn't change during the execution of this function.
1437 /// Examples include loading a value from the constant pool or from the
1438 /// argument area of a function (if it does not change). If the instruction
1439 /// does multiple loads, this returns true only if all of the loads are
1440 /// dereferenceable and invariant.
1441 bool isDereferenceableInvariantLoad(AAResults *AA) const;
1443 /// If the specified instruction is a PHI that always merges together the
1444 /// same virtual register, return the register, otherwise return 0.
1445 unsigned isConstantValuePHI() const;
1447 /// Return true if this instruction has side effects that are not modeled
1448 /// by mayLoad / mayStore, etc.
1449 /// For all instructions, the property is encoded in MCInstrDesc::Flags
1450 /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1451 /// INLINEASM instruction, in which case the side effect property is encoded
1452 /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1454 bool hasUnmodeledSideEffects() const;
1456 /// Returns true if it is illegal to fold a load across this instruction.
1457 bool isLoadFoldBarrier() const;
1459 /// Return true if all the defs of this instruction are dead.
1460 bool allDefsAreDead() const;
1462 /// Return a valid size if the instruction is a spill instruction.
1463 Optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const;
1465 /// Return a valid size if the instruction is a folded spill instruction.
1466 Optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const;
1468 /// Return a valid size if the instruction is a restore instruction.
1469 Optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const;
1471 /// Return a valid size if the instruction is a folded restore instruction.
1472 Optional<unsigned>
1473 getFoldedRestoreSize(const TargetInstrInfo *TII) const;
1475 /// Copy implicit register operands from specified
1476 /// instruction to this instruction.
1477 void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
1479 /// Debugging support
1480 /// @{
1481 /// Determine the generic type to be printed (if needed) on uses and defs.
1482 LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1483 const MachineRegisterInfo &MRI) const;
1485 /// Return true when an instruction has tied register that can't be determined
1486 /// by the instruction's descriptor. This is useful for MIR printing, to
1487 /// determine whether we need to print the ties or not.
1488 bool hasComplexRegisterTies() const;
1490 /// Print this MI to \p OS.
1491 /// Don't print information that can be inferred from other instructions if
1492 /// \p IsStandalone is false. It is usually true when only a fragment of the
1493 /// function is printed.
1494 /// Only print the defs and the opcode if \p SkipOpers is true.
1495 /// Otherwise, also print operands if \p SkipDebugLoc is true.
1496 /// Otherwise, also print the debug loc, with a terminating newline.
1497 /// \p TII is used to print the opcode name. If it's not present, but the
1498 /// MI is in a function, the opcode will be printed using the function's TII.
1499 void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
1500 bool SkipDebugLoc = false, bool AddNewLine = true,
1501 const TargetInstrInfo *TII = nullptr) const;
1502 void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
1503 bool SkipOpers = false, bool SkipDebugLoc = false,
1504 bool AddNewLine = true,
1505 const TargetInstrInfo *TII = nullptr) const;
1506 void dump() const;
1507 /// @}
1509 //===--------------------------------------------------------------------===//
1510 // Accessors used to build up machine instructions.
1512 /// Add the specified operand to the instruction. If it is an implicit
1513 /// operand, it is added to the end of the operand list. If it is an
1514 /// explicit operand it is added at the end of the explicit operand list
1515 /// (before the first implicit operand).
1517 /// MF must be the machine function that was used to allocate this
1518 /// instruction.
1520 /// MachineInstrBuilder provides a more convenient interface for creating
1521 /// instructions and adding operands.
1522 void addOperand(MachineFunction &MF, const MachineOperand &Op);
1524 /// Add an operand without providing an MF reference. This only works for
1525 /// instructions that are inserted in a basic block.
1527 /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1528 /// preferred.
1529 void addOperand(const MachineOperand &Op);
1531 /// Replace the instruction descriptor (thus opcode) of
1532 /// the current instruction with a new one.
1533 void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
1535 /// Replace current source information with new such.
1536 /// Avoid using this, the constructor argument is preferable.
1537 void setDebugLoc(DebugLoc dl) {
1538 debugLoc = std::move(dl);
1539 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1542 /// Erase an operand from an instruction, leaving it with one
1543 /// fewer operand than it started with.
1544 void RemoveOperand(unsigned OpNo);
1546 /// Clear this MachineInstr's memory reference descriptor list. This resets
1547 /// the memrefs to their most conservative state. This should be used only
1548 /// as a last resort since it greatly pessimizes our knowledge of the memory
1549 /// access performed by the instruction.
1550 void dropMemRefs(MachineFunction &MF);
1552 /// Assign this MachineInstr's memory reference descriptor list.
1554 /// Unlike other methods, this *will* allocate them into a new array
1555 /// associated with the provided `MachineFunction`.
1556 void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs);
1558 /// Add a MachineMemOperand to the machine instruction.
1559 /// This function should be used only occasionally. The setMemRefs function
1560 /// is the primary method for setting up a MachineInstr's MemRefs list.
1561 void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
1563 /// Clone another MachineInstr's memory reference descriptor list and replace
1564 /// ours with it.
1566 /// Note that `*this` may be the incoming MI!
1568 /// Prefer this API whenever possible as it can avoid allocations in common
1569 /// cases.
1570 void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI);
1572 /// Clone the merge of multiple MachineInstrs' memory reference descriptors
1573 /// list and replace ours with it.
1575 /// Note that `*this` may be one of the incoming MIs!
1577 /// Prefer this API whenever possible as it can avoid allocations in common
1578 /// cases.
1579 void cloneMergedMemRefs(MachineFunction &MF,
1580 ArrayRef<const MachineInstr *> MIs);
1582 /// Set a symbol that will be emitted just prior to the instruction itself.
1584 /// Setting this to a null pointer will remove any such symbol.
1586 /// FIXME: This is not fully implemented yet.
1587 void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1589 /// Set a symbol that will be emitted just after the instruction itself.
1591 /// Setting this to a null pointer will remove any such symbol.
1593 /// FIXME: This is not fully implemented yet.
1594 void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1596 /// Clone another MachineInstr's pre- and post- instruction symbols and
1597 /// replace ours with it.
1598 void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI);
1600 /// Return the MIFlags which represent both MachineInstrs. This
1601 /// should be used when merging two MachineInstrs into one. This routine does
1602 /// not modify the MIFlags of this MachineInstr.
1603 uint16_t mergeFlagsWith(const MachineInstr& Other) const;
1605 static uint16_t copyFlagsFromInstruction(const Instruction &I);
1607 /// Copy all flags to MachineInst MIFlags
1608 void copyIRFlags(const Instruction &I);
1610 /// Break any tie involving OpIdx.
1611 void untieRegOperand(unsigned OpIdx) {
1612 MachineOperand &MO = getOperand(OpIdx);
1613 if (MO.isReg() && MO.isTied()) {
1614 getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1615 MO.TiedTo = 0;
1619 /// Add all implicit def and use operands to this instruction.
1620 void addImplicitDefUseOperands(MachineFunction &MF);
1622 /// Scan instructions following MI and collect any matching DBG_VALUEs.
1623 void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues);
1625 /// Find all DBG_VALUEs that point to the register def in this instruction
1626 /// and point them to \p Reg instead.
1627 void changeDebugValuesDefReg(Register Reg);
1629 /// Returns the Intrinsic::ID for this instruction.
1630 /// \pre Must have an intrinsic ID operand.
1631 unsigned getIntrinsicID() const {
1632 return getOperand(getNumExplicitDefs()).getIntrinsicID();
1635 private:
1636 /// If this instruction is embedded into a MachineFunction, return the
1637 /// MachineRegisterInfo object for the current function, otherwise
1638 /// return null.
1639 MachineRegisterInfo *getRegInfo();
1641 /// Unlink all of the register operands in this instruction from their
1642 /// respective use lists. This requires that the operands already be on their
1643 /// use lists.
1644 void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
1646 /// Add all of the register operands in this instruction from their
1647 /// respective use lists. This requires that the operands not be on their
1648 /// use lists yet.
1649 void AddRegOperandsToUseLists(MachineRegisterInfo&);
1651 /// Slow path for hasProperty when we're dealing with a bundle.
1652 bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const;
1654 /// Implements the logic of getRegClassConstraintEffectForVReg for the
1655 /// this MI and the given operand index \p OpIdx.
1656 /// If the related operand does not constrained Reg, this returns CurRC.
1657 const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
1658 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
1659 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
1662 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
1663 /// instruction rather than by pointer value.
1664 /// The hashing and equality testing functions ignore definitions so this is
1665 /// useful for CSE, etc.
1666 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1667 static inline MachineInstr *getEmptyKey() {
1668 return nullptr;
1671 static inline MachineInstr *getTombstoneKey() {
1672 return reinterpret_cast<MachineInstr*>(-1);
1675 static unsigned getHashValue(const MachineInstr* const &MI);
1677 static bool isEqual(const MachineInstr* const &LHS,
1678 const MachineInstr* const &RHS) {
1679 if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1680 LHS == getEmptyKey() || LHS == getTombstoneKey())
1681 return LHS == RHS;
1682 return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
1686 //===----------------------------------------------------------------------===//
1687 // Debugging Support
1689 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1690 MI.print(OS);
1691 return OS;
1694 } // end namespace llvm
1696 #endif // LLVM_CODEGEN_MACHINEINSTR_H