[InstCombine] Signed saturation tests. NFC
[llvm-core.git] / include / llvm / ExecutionEngine / RuntimeDyld.h
blobce7024a7f19b7826aaf527660e87a5f2ed16ac5e
1 //===- RuntimeDyld.h - Run-time dynamic linker for MC-JIT -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Interface for the runtime dynamic linker facilities of the MC-JIT.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_EXECUTIONENGINE_RUNTIMEDYLD_H
14 #define LLVM_EXECUTIONENGINE_RUNTIMEDYLD_H
16 #include "llvm/ADT/FunctionExtras.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/DebugInfo/DIContext.h"
20 #include "llvm/ExecutionEngine/JITSymbol.h"
21 #include "llvm/Object/ObjectFile.h"
22 #include "llvm/Support/Error.h"
23 #include <algorithm>
24 #include <cassert>
25 #include <cstddef>
26 #include <cstdint>
27 #include <map>
28 #include <memory>
29 #include <string>
30 #include <system_error>
32 namespace llvm {
34 namespace object {
36 template <typename T> class OwningBinary;
38 } // end namespace object
40 /// Base class for errors originating in RuntimeDyld, e.g. missing relocation
41 /// support.
42 class RuntimeDyldError : public ErrorInfo<RuntimeDyldError> {
43 public:
44 static char ID;
46 RuntimeDyldError(std::string ErrMsg) : ErrMsg(std::move(ErrMsg)) {}
48 void log(raw_ostream &OS) const override;
49 const std::string &getErrorMessage() const { return ErrMsg; }
50 std::error_code convertToErrorCode() const override;
52 private:
53 std::string ErrMsg;
56 class RuntimeDyldImpl;
58 class RuntimeDyld {
59 protected:
60 // Change the address associated with a section when resolving relocations.
61 // Any relocations already associated with the symbol will be re-resolved.
62 void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
64 public:
65 using NotifyStubEmittedFunction = std::function<void(
66 StringRef FileName, StringRef SectionName, StringRef SymbolName,
67 unsigned SectionID, uint32_t StubOffset)>;
69 /// Information about the loaded object.
70 class LoadedObjectInfo : public llvm::LoadedObjectInfo {
71 friend class RuntimeDyldImpl;
73 public:
74 using ObjSectionToIDMap = std::map<object::SectionRef, unsigned>;
76 LoadedObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
77 : RTDyld(RTDyld), ObjSecToIDMap(std::move(ObjSecToIDMap)) {}
79 virtual object::OwningBinary<object::ObjectFile>
80 getObjectForDebug(const object::ObjectFile &Obj) const = 0;
82 uint64_t
83 getSectionLoadAddress(const object::SectionRef &Sec) const override;
85 protected:
86 virtual void anchor();
88 RuntimeDyldImpl &RTDyld;
89 ObjSectionToIDMap ObjSecToIDMap;
92 /// Memory Management.
93 class MemoryManager {
94 friend class RuntimeDyld;
96 public:
97 MemoryManager() = default;
98 virtual ~MemoryManager() = default;
100 /// Allocate a memory block of (at least) the given size suitable for
101 /// executable code. The SectionID is a unique identifier assigned by the
102 /// RuntimeDyld instance, and optionally recorded by the memory manager to
103 /// access a loaded section.
104 virtual uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
105 unsigned SectionID,
106 StringRef SectionName) = 0;
108 /// Allocate a memory block of (at least) the given size suitable for data.
109 /// The SectionID is a unique identifier assigned by the JIT engine, and
110 /// optionally recorded by the memory manager to access a loaded section.
111 virtual uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
112 unsigned SectionID,
113 StringRef SectionName,
114 bool IsReadOnly) = 0;
116 /// Inform the memory manager about the total amount of memory required to
117 /// allocate all sections to be loaded:
118 /// \p CodeSize - the total size of all code sections
119 /// \p DataSizeRO - the total size of all read-only data sections
120 /// \p DataSizeRW - the total size of all read-write data sections
122 /// Note that by default the callback is disabled. To enable it
123 /// redefine the method needsToReserveAllocationSpace to return true.
124 virtual void reserveAllocationSpace(uintptr_t CodeSize, uint32_t CodeAlign,
125 uintptr_t RODataSize,
126 uint32_t RODataAlign,
127 uintptr_t RWDataSize,
128 uint32_t RWDataAlign) {}
130 /// Override to return true to enable the reserveAllocationSpace callback.
131 virtual bool needsToReserveAllocationSpace() { return false; }
133 /// Register the EH frames with the runtime so that c++ exceptions work.
135 /// \p Addr parameter provides the local address of the EH frame section
136 /// data, while \p LoadAddr provides the address of the data in the target
137 /// address space. If the section has not been remapped (which will usually
138 /// be the case for local execution) these two values will be the same.
139 virtual void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr,
140 size_t Size) = 0;
141 virtual void deregisterEHFrames() = 0;
143 /// This method is called when object loading is complete and section page
144 /// permissions can be applied. It is up to the memory manager implementation
145 /// to decide whether or not to act on this method. The memory manager will
146 /// typically allocate all sections as read-write and then apply specific
147 /// permissions when this method is called. Code sections cannot be executed
148 /// until this function has been called. In addition, any cache coherency
149 /// operations needed to reliably use the memory are also performed.
151 /// Returns true if an error occurred, false otherwise.
152 virtual bool finalizeMemory(std::string *ErrMsg = nullptr) = 0;
154 /// This method is called after an object has been loaded into memory but
155 /// before relocations are applied to the loaded sections.
157 /// Memory managers which are preparing code for execution in an external
158 /// address space can use this call to remap the section addresses for the
159 /// newly loaded object.
161 /// For clients that do not need access to an ExecutionEngine instance this
162 /// method should be preferred to its cousin
163 /// MCJITMemoryManager::notifyObjectLoaded as this method is compatible with
164 /// ORC JIT stacks.
165 virtual void notifyObjectLoaded(RuntimeDyld &RTDyld,
166 const object::ObjectFile &Obj) {}
168 private:
169 virtual void anchor();
171 bool FinalizationLocked = false;
174 /// Construct a RuntimeDyld instance.
175 RuntimeDyld(MemoryManager &MemMgr, JITSymbolResolver &Resolver);
176 RuntimeDyld(const RuntimeDyld &) = delete;
177 RuntimeDyld &operator=(const RuntimeDyld &) = delete;
178 ~RuntimeDyld();
180 /// Add the referenced object file to the list of objects to be loaded and
181 /// relocated.
182 std::unique_ptr<LoadedObjectInfo> loadObject(const object::ObjectFile &O);
184 /// Get the address of our local copy of the symbol. This may or may not
185 /// be the address used for relocation (clients can copy the data around
186 /// and resolve relocatons based on where they put it).
187 void *getSymbolLocalAddress(StringRef Name) const;
189 /// Get the section ID for the section containing the given symbol.
190 unsigned getSymbolSectionID(StringRef Name) const;
192 /// Get the target address and flags for the named symbol.
193 /// This address is the one used for relocation.
194 JITEvaluatedSymbol getSymbol(StringRef Name) const;
196 /// Returns a copy of the symbol table. This can be used by on-finalized
197 /// callbacks to extract the symbol table before throwing away the
198 /// RuntimeDyld instance. Because the map keys (StringRefs) are backed by
199 /// strings inside the RuntimeDyld instance, the map should be processed
200 /// before the RuntimeDyld instance is discarded.
201 std::map<StringRef, JITEvaluatedSymbol> getSymbolTable() const;
203 /// Resolve the relocations for all symbols we currently know about.
204 void resolveRelocations();
206 /// Map a section to its target address space value.
207 /// Map the address of a JIT section as returned from the memory manager
208 /// to the address in the target process as the running code will see it.
209 /// This is the address which will be used for relocation resolution.
210 void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress);
212 /// Returns the section's working memory.
213 StringRef getSectionContent(unsigned SectionID) const;
215 /// If the section was loaded, return the section's load address,
216 /// otherwise return None.
217 uint64_t getSectionLoadAddress(unsigned SectionID) const;
219 /// Set the NotifyStubEmitted callback. This is used for debugging
220 /// purposes. A callback is made for each stub that is generated.
221 void setNotifyStubEmitted(NotifyStubEmittedFunction NotifyStubEmitted) {
222 this->NotifyStubEmitted = std::move(NotifyStubEmitted);
225 /// Register any EH frame sections that have been loaded but not previously
226 /// registered with the memory manager. Note, RuntimeDyld is responsible
227 /// for identifying the EH frame and calling the memory manager with the
228 /// EH frame section data. However, the memory manager itself will handle
229 /// the actual target-specific EH frame registration.
230 void registerEHFrames();
232 void deregisterEHFrames();
234 bool hasError();
235 StringRef getErrorString();
237 /// By default, only sections that are "required for execution" are passed to
238 /// the RTDyldMemoryManager, and other sections are discarded. Passing 'true'
239 /// to this method will cause RuntimeDyld to pass all sections to its
240 /// memory manager regardless of whether they are "required to execute" in the
241 /// usual sense. This is useful for inspecting metadata sections that may not
242 /// contain relocations, E.g. Debug info, stackmaps.
244 /// Must be called before the first object file is loaded.
245 void setProcessAllSections(bool ProcessAllSections) {
246 assert(!Dyld && "setProcessAllSections must be called before loadObject.");
247 this->ProcessAllSections = ProcessAllSections;
250 /// Perform all actions needed to make the code owned by this RuntimeDyld
251 /// instance executable:
253 /// 1) Apply relocations.
254 /// 2) Register EH frames.
255 /// 3) Update memory permissions*.
257 /// * Finalization is potentially recursive**, and the 3rd step will only be
258 /// applied by the outermost call to finalize. This allows different
259 /// RuntimeDyld instances to share a memory manager without the innermost
260 /// finalization locking the memory and causing relocation fixup errors in
261 /// outer instances.
263 /// ** Recursive finalization occurs when one RuntimeDyld instances needs the
264 /// address of a symbol owned by some other instance in order to apply
265 /// relocations.
267 void finalizeWithMemoryManagerLocking();
269 private:
270 friend void
271 jitLinkForORC(object::ObjectFile &Obj,
272 std::unique_ptr<MemoryBuffer> UnderlyingBuffer,
273 RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver,
274 bool ProcessAllSections,
275 unique_function<Error(std::unique_ptr<LoadedObjectInfo>,
276 std::map<StringRef, JITEvaluatedSymbol>)>
277 OnLoaded,
278 unique_function<void(Error)> OnEmitted);
280 // RuntimeDyldImpl is the actual class. RuntimeDyld is just the public
281 // interface.
282 std::unique_ptr<RuntimeDyldImpl> Dyld;
283 MemoryManager &MemMgr;
284 JITSymbolResolver &Resolver;
285 bool ProcessAllSections;
286 NotifyStubEmittedFunction NotifyStubEmitted;
289 // Asynchronous JIT link for ORC.
291 // Warning: This API is experimental and probably should not be used by anyone
292 // but ORC's RTDyldObjectLinkingLayer2. Internally it constructs a RuntimeDyld
293 // instance and uses continuation passing to perform the fix-up and finalize
294 // steps asynchronously.
295 void jitLinkForORC(
296 object::ObjectFile &Obj, std::unique_ptr<MemoryBuffer> UnderlyingBuffer,
297 RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver,
298 bool ProcessAllSections,
299 unique_function<Error(std::unique_ptr<RuntimeDyld::LoadedObjectInfo>,
300 std::map<StringRef, JITEvaluatedSymbol>)>
301 OnLoaded,
302 unique_function<void(Error)> OnEmitted);
304 } // end namespace llvm
306 #endif // LLVM_EXECUTIONENGINE_RUNTIMEDYLD_H