1 ; RUN: opt < %s -loop-reduce -S | FileCheck %s
3 ; LSR shouldn't consider %t8 to be an interesting user of %t6, and it
4 ; should be able to form pretty GEPs.
6 target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
8 define void @Z4() nounwind {
9 ; CHECK-LABEL: define void @Z4(
14 br i1 undef, label %bb10, label %bb2
17 %t = add i64 %t4, 1 ; <i64> [#uses=1]
20 bb3: ; preds = %bb2, %bb
21 %t4 = phi i64 [ %t, %bb2 ], [ 0, %bb ] ; <i64> [#uses=3]
25 ; CHECK-NEXT: %t7 = icmp eq i64 %t4, 0
26 ; Host %t2 computation outside the loop.
27 ; CHECK-NEXT: [[SCEVGEP:%[^ ]+]] = getelementptr i8, i8* undef, i64 %t4
28 ; CHECK-NEXT: br label %bb14
30 %t7 = icmp eq i64 %t4, 0 ; <i1> [#uses=1]
31 %t3 = add i64 %t4, 16 ; <i64> [#uses=1]
35 ; CHECK-NEXT: store i8 undef, i8* [[SCEVGEP]]
36 ; CHECK-NEXT: %t6 = load float*, float** undef
37 ; Fold %t3's add within the address.
38 ; CHECK-NEXT: [[SCEVGEP1:%[^ ]+]] = getelementptr float, float* %t6, i64 4
39 ; CHECK-NEXT: [[SCEVGEP2:%[^ ]+]] = bitcast float* [[SCEVGEP1]] to i8*
40 ; Use the induction variable (%t4) to access the right element
41 ; CHECK-NEXT: [[ADDRESS:%[^ ]+]] = getelementptr i8, i8* [[SCEVGEP2]], i64 %t4
42 ; CHECK-NEXT: store i8 undef, i8* [[ADDRESS]]
43 ; CHECK-NEXT: br label %bb14
44 bb14: ; preds = %bb14, %bb10
45 %t2 = getelementptr inbounds i8, i8* undef, i64 %t4 ; <i8*> [#uses=1]
46 store i8 undef, i8* %t2
47 %t6 = load float*, float** undef
48 %t8 = bitcast float* %t6 to i8* ; <i8*> [#uses=1]
49 %t9 = getelementptr inbounds i8, i8* %t8, i64 %t3 ; <i8*> [#uses=1]
50 store i8 undef, i8* %t9
54 define fastcc void @TransformLine() nounwind {
55 ; CHECK-LABEL: @TransformLine(
60 ; Induction variable is initialized to -2.
61 ; CHECK-NEXT: [[PHIIV:%[^ ]+]] = phi i32 [ [[IVNEXT:%[^ ]+]], %loop0 ], [ -2, %bb ]
62 ; CHECK-NEXT: [[IVNEXT]] = add nuw nsw i32 [[PHIIV]], 1
63 ; CHECK-NEXT: br i1 false, label %loop0, label %bb0
64 loop0: ; preds = %loop0, %bb
65 %i0 = phi i32 [ %i0.next, %loop0 ], [ 0, %bb ] ; <i32> [#uses=2]
66 %i0.next = add i32 %i0, 1 ; <i32> [#uses=1]
67 br i1 false, label %loop0, label %bb0
73 ; CHECK-NEXT: %i1 = phi i32 [ 0, %bb0 ], [ %i1.next, %bb5 ]
74 ; IVNEXT covers the uses of %i0 and %t0.
75 ; Therefore, %t0 has been removed.
76 ; The critical edge has been split.
77 ; CHECK-NEXT: br i1 false, label %bb2, label %[[LOOP1BB6:.+]]
78 loop1: ; preds = %bb5, %bb0
79 %i1 = phi i32 [ 0, %bb0 ], [ %i1.next, %bb5 ] ; <i32> [#uses=4]
80 %t0 = add i32 %i0, %i1 ; <i32> [#uses=1]
81 br i1 false, label %bb2, label %bb6
84 ; Critical edge split.
85 ; CHECK-NEXT: br i1 true, label %[[BB2BB6:[^,]+]], label %bb5
87 br i1 true, label %bb6, label %bb5
90 ; CHECK-NEXT: %i1.next = add i32 %i1, 1
91 ; CHECK-NEXT: br i1 true, label %[[BB5BB6:[^,]+]], label %loop1
93 %i1.next = add i32 %i1, 1 ; <i32> [#uses=1]
94 br i1 true, label %bb6, label %loop1
96 ; bb5 to bb6 split basic block.
98 ; CHECK-NEXT: [[INITIALVAL:%[^ ]+]] = add i32 [[IVNEXT]], %i1.next
99 ; CHECK-NEXT: br label %[[SPLITTOBB6:.+]]
101 ; bb2 to bb6 split basic block.
103 ; CHECK-NEXT: br label %[[SPLITTOBB6]]
105 ; Split basic blocks to bb6.
106 ; CHECK: [[SPLITTOBB6]]:
107 ; CHECK-NEXT: [[INITP8:%[^ ]+]] = phi i32 [ [[INITIALVAL]], %[[BB5BB6]] ], [ undef, %[[BB2BB6]] ]
108 ; CHECK-NEXT: [[INITP9:%[^ ]+]] = phi i32 [ undef, %[[BB5BB6]] ], [ %i1, %[[BB2BB6]] ]
109 ; CHECK-NEXT: br label %bb6
111 ; CHECK: [[LOOP1BB6]]:
112 ; CHECK-NEXT: br label %bb6
115 ; CHECK-NEXT: %p8 = phi i32 [ undef, %[[LOOP1BB6]] ], [ [[INITP8]], %[[SPLITTOBB6]] ]
116 ; CHECK-NEXT: %p9 = phi i32 [ %i1, %[[LOOP1BB6]] ], [ [[INITP9]], %[[SPLITTOBB6]] ]
117 ; CHECK-NEXT: unreachable
118 bb6: ; preds = %bb5, %bb2, %loop1
119 %p8 = phi i32 [ %t0, %bb5 ], [ undef, %loop1 ], [ undef, %bb2 ] ; <i32> [#uses=0]
120 %p9 = phi i32 [ undef, %bb5 ], [ %i1, %loop1 ], [ %i1, %bb2 ] ; <i32> [#uses=0]