1 //===- MipsAsmPrinter.cpp - Mips LLVM Assembly Printer --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains a printer that converts from our internal representation
10 // of machine-dependent LLVM code to GAS-format MIPS assembly language.
12 //===----------------------------------------------------------------------===//
14 #include "MipsAsmPrinter.h"
15 #include "MCTargetDesc/MipsABIInfo.h"
16 #include "MCTargetDesc/MipsBaseInfo.h"
17 #include "MCTargetDesc/MipsInstPrinter.h"
18 #include "MCTargetDesc/MipsMCNaCl.h"
19 #include "MCTargetDesc/MipsMCTargetDesc.h"
21 #include "MipsMCInstLower.h"
22 #include "MipsMachineFunction.h"
23 #include "MipsSubtarget.h"
24 #include "MipsTargetMachine.h"
25 #include "MipsTargetStreamer.h"
26 #include "TargetInfo/MipsTargetInfo.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/BinaryFormat/ELF.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineJumpTableInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/MC/MCContext.h"
48 #include "llvm/MC/MCExpr.h"
49 #include "llvm/MC/MCInst.h"
50 #include "llvm/MC/MCInstBuilder.h"
51 #include "llvm/MC/MCObjectFileInfo.h"
52 #include "llvm/MC/MCSectionELF.h"
53 #include "llvm/MC/MCSymbol.h"
54 #include "llvm/MC/MCSymbolELF.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/TargetRegistry.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Target/TargetLoweringObjectFile.h"
60 #include "llvm/Target/TargetMachine.h"
70 #define DEBUG_TYPE "mips-asm-printer"
72 extern cl::opt
<bool> EmitJalrReloc
;
74 MipsTargetStreamer
&MipsAsmPrinter::getTargetStreamer() const {
75 return static_cast<MipsTargetStreamer
&>(*OutStreamer
->getTargetStreamer());
78 bool MipsAsmPrinter::runOnMachineFunction(MachineFunction
&MF
) {
79 Subtarget
= &MF
.getSubtarget
<MipsSubtarget
>();
81 MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
82 if (Subtarget
->inMips16Mode())
85 const Mips16HardFloatInfo::FuncSignature
*>::const_iterator
86 it
= MipsFI
->StubsNeeded
.begin();
87 it
!= MipsFI
->StubsNeeded
.end(); ++it
) {
88 const char *Symbol
= it
->first
;
89 const Mips16HardFloatInfo::FuncSignature
*Signature
= it
->second
;
90 if (StubsNeeded
.find(Symbol
) == StubsNeeded
.end())
91 StubsNeeded
[Symbol
] = Signature
;
93 MCP
= MF
.getConstantPool();
95 // In NaCl, all indirect jump targets must be aligned to bundle size.
96 if (Subtarget
->isTargetNaCl())
97 NaClAlignIndirectJumpTargets(MF
);
99 AsmPrinter::runOnMachineFunction(MF
);
106 bool MipsAsmPrinter::lowerOperand(const MachineOperand
&MO
, MCOperand
&MCOp
) {
107 MCOp
= MCInstLowering
.LowerOperand(MO
);
108 return MCOp
.isValid();
111 #include "MipsGenMCPseudoLowering.inc"
113 // Lower PseudoReturn/PseudoIndirectBranch/PseudoIndirectBranch64 to JR, JR_MM,
114 // JALR, or JALR64 as appropriate for the target.
115 void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer
&OutStreamer
,
116 const MachineInstr
*MI
) {
117 bool HasLinkReg
= false;
118 bool InMicroMipsMode
= Subtarget
->inMicroMipsMode();
121 if (Subtarget
->hasMips64r6()) {
122 // MIPS64r6 should use (JALR64 ZERO_64, $rs)
123 TmpInst0
.setOpcode(Mips::JALR64
);
125 } else if (Subtarget
->hasMips32r6()) {
126 // MIPS32r6 should use (JALR ZERO, $rs)
128 TmpInst0
.setOpcode(Mips::JRC16_MMR6
);
130 TmpInst0
.setOpcode(Mips::JALR
);
133 } else if (Subtarget
->inMicroMipsMode())
134 // microMIPS should use (JR_MM $rs)
135 TmpInst0
.setOpcode(Mips::JR_MM
);
137 // Everything else should use (JR $rs)
138 TmpInst0
.setOpcode(Mips::JR
);
144 unsigned ZeroReg
= Subtarget
->isGP64bit() ? Mips::ZERO_64
: Mips::ZERO
;
145 TmpInst0
.addOperand(MCOperand::createReg(ZeroReg
));
148 lowerOperand(MI
->getOperand(0), MCOp
);
149 TmpInst0
.addOperand(MCOp
);
151 EmitToStreamer(OutStreamer
, TmpInst0
);
154 // If there is an MO_JALR operand, insert:
156 // .reloc tmplabel, R_{MICRO}MIPS_JALR, symbol
159 // This is an optimization hint for the linker which may then replace
160 // an indirect call with a direct branch.
161 static void emitDirectiveRelocJalr(const MachineInstr
&MI
,
162 MCContext
&OutContext
,
164 MCStreamer
&OutStreamer
,
165 const MipsSubtarget
&Subtarget
) {
166 for (unsigned int I
= MI
.getDesc().getNumOperands(), E
= MI
.getNumOperands();
168 MachineOperand MO
= MI
.getOperand(I
);
169 if (MO
.isMCSymbol() && (MO
.getTargetFlags() & MipsII::MO_JALR
)) {
170 MCSymbol
*Callee
= MO
.getMCSymbol();
171 if (Callee
&& !Callee
->getName().empty()) {
172 MCSymbol
*OffsetLabel
= OutContext
.createTempSymbol();
173 const MCExpr
*OffsetExpr
=
174 MCSymbolRefExpr::create(OffsetLabel
, OutContext
);
175 const MCExpr
*CaleeExpr
=
176 MCSymbolRefExpr::create(Callee
, OutContext
);
177 OutStreamer
.EmitRelocDirective
179 Subtarget
.inMicroMipsMode() ? "R_MICROMIPS_JALR" : "R_MIPS_JALR",
180 CaleeExpr
, SMLoc(), *TM
.getMCSubtargetInfo());
181 OutStreamer
.EmitLabel(OffsetLabel
);
188 void MipsAsmPrinter::EmitInstruction(const MachineInstr
*MI
) {
189 MipsTargetStreamer
&TS
= getTargetStreamer();
190 unsigned Opc
= MI
->getOpcode();
191 TS
.forbidModuleDirective();
193 if (MI
->isDebugValue()) {
194 SmallString
<128> Str
;
195 raw_svector_ostream
OS(Str
);
197 PrintDebugValueComment(MI
, OS
);
200 if (MI
->isDebugLabel())
203 // If we just ended a constant pool, mark it as such.
204 if (InConstantPool
&& Opc
!= Mips::CONSTPOOL_ENTRY
) {
205 OutStreamer
->EmitDataRegion(MCDR_DataRegionEnd
);
206 InConstantPool
= false;
208 if (Opc
== Mips::CONSTPOOL_ENTRY
) {
209 // CONSTPOOL_ENTRY - This instruction represents a floating
210 // constant pool in the function. The first operand is the ID#
211 // for this instruction, the second is the index into the
212 // MachineConstantPool that this is, the third is the size in
213 // bytes of this constant pool entry.
214 // The required alignment is specified on the basic block holding this MI.
216 unsigned LabelId
= (unsigned)MI
->getOperand(0).getImm();
217 unsigned CPIdx
= (unsigned)MI
->getOperand(1).getIndex();
219 // If this is the first entry of the pool, mark it.
220 if (!InConstantPool
) {
221 OutStreamer
->EmitDataRegion(MCDR_DataRegion
);
222 InConstantPool
= true;
225 OutStreamer
->EmitLabel(GetCPISymbol(LabelId
));
227 const MachineConstantPoolEntry
&MCPE
= MCP
->getConstants()[CPIdx
];
228 if (MCPE
.isMachineConstantPoolEntry())
229 EmitMachineConstantPoolValue(MCPE
.Val
.MachineCPVal
);
231 EmitGlobalConstant(MF
->getDataLayout(), MCPE
.Val
.ConstVal
);
236 case Mips::PATCHABLE_FUNCTION_ENTER
:
237 LowerPATCHABLE_FUNCTION_ENTER(*MI
);
239 case Mips::PATCHABLE_FUNCTION_EXIT
:
240 LowerPATCHABLE_FUNCTION_EXIT(*MI
);
242 case Mips::PATCHABLE_TAIL_CALL
:
243 LowerPATCHABLE_TAIL_CALL(*MI
);
248 (MI
->isReturn() || MI
->isCall() || MI
->isIndirectBranch())) {
249 emitDirectiveRelocJalr(*MI
, OutContext
, TM
, *OutStreamer
, *Subtarget
);
252 MachineBasicBlock::const_instr_iterator I
= MI
->getIterator();
253 MachineBasicBlock::const_instr_iterator E
= MI
->getParent()->instr_end();
256 // Do any auto-generated pseudo lowerings.
257 if (emitPseudoExpansionLowering(*OutStreamer
, &*I
))
260 if (I
->getOpcode() == Mips::PseudoReturn
||
261 I
->getOpcode() == Mips::PseudoReturn64
||
262 I
->getOpcode() == Mips::PseudoIndirectBranch
||
263 I
->getOpcode() == Mips::PseudoIndirectBranch64
||
264 I
->getOpcode() == Mips::TAILCALLREG
||
265 I
->getOpcode() == Mips::TAILCALLREG64
) {
266 emitPseudoIndirectBranch(*OutStreamer
, &*I
);
270 // The inMips16Mode() test is not permanent.
271 // Some instructions are marked as pseudo right now which
272 // would make the test fail for the wrong reason but
273 // that will be fixed soon. We need this here because we are
274 // removing another test for this situation downstream in the
277 if (I
->isPseudo() && !Subtarget
->inMips16Mode()
278 && !isLongBranchPseudo(I
->getOpcode()))
279 llvm_unreachable("Pseudo opcode found in EmitInstruction()");
282 MCInstLowering
.Lower(&*I
, TmpInst0
);
283 EmitToStreamer(*OutStreamer
, TmpInst0
);
284 } while ((++I
!= E
) && I
->isInsideBundle()); // Delay slot check
287 //===----------------------------------------------------------------------===//
289 // Mips Asm Directives
291 // -- Frame directive "frame Stackpointer, Stacksize, RARegister"
292 // Describe the stack frame.
294 // -- Mask directives "(f)mask bitmask, offset"
295 // Tells the assembler which registers are saved and where.
296 // bitmask - contain a little endian bitset indicating which registers are
297 // saved on function prologue (e.g. with a 0x80000000 mask, the
298 // assembler knows the register 31 (RA) is saved at prologue.
299 // offset - the position before stack pointer subtraction indicating where
300 // the first saved register on prologue is located. (e.g. with a
302 // Consider the following function prologue:
305 // .mask 0xc0000000,-8
306 // addiu $sp, $sp, -48
310 // With a 0xc0000000 mask, the assembler knows the register 31 (RA) and
311 // 30 (FP) are saved at prologue. As the save order on prologue is from
312 // left to right, RA is saved first. A -8 offset means that after the
313 // stack pointer subtration, the first register in the mask (RA) will be
314 // saved at address 48-8=40.
316 //===----------------------------------------------------------------------===//
318 //===----------------------------------------------------------------------===//
320 //===----------------------------------------------------------------------===//
322 // Create a bitmask with all callee saved registers for CPU or Floating Point
323 // registers. For CPU registers consider RA, GP and FP for saving if necessary.
324 void MipsAsmPrinter::printSavedRegsBitmask() {
325 // CPU and FPU Saved Registers Bitmasks
326 unsigned CPUBitmask
= 0, FPUBitmask
= 0;
327 int CPUTopSavedRegOff
, FPUTopSavedRegOff
;
329 // Set the CPU and FPU Bitmasks
330 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
331 const TargetRegisterInfo
*TRI
= MF
->getSubtarget().getRegisterInfo();
332 const std::vector
<CalleeSavedInfo
> &CSI
= MFI
.getCalleeSavedInfo();
333 // size of stack area to which FP callee-saved regs are saved.
334 unsigned CPURegSize
= TRI
->getRegSizeInBits(Mips::GPR32RegClass
) / 8;
335 unsigned FGR32RegSize
= TRI
->getRegSizeInBits(Mips::FGR32RegClass
) / 8;
336 unsigned AFGR64RegSize
= TRI
->getRegSizeInBits(Mips::AFGR64RegClass
) / 8;
337 bool HasAFGR64Reg
= false;
338 unsigned CSFPRegsSize
= 0;
340 for (const auto &I
: CSI
) {
341 unsigned Reg
= I
.getReg();
342 unsigned RegNum
= TRI
->getEncodingValue(Reg
);
344 // If it's a floating point register, set the FPU Bitmask.
345 // If it's a general purpose register, set the CPU Bitmask.
346 if (Mips::FGR32RegClass
.contains(Reg
)) {
347 FPUBitmask
|= (1 << RegNum
);
348 CSFPRegsSize
+= FGR32RegSize
;
349 } else if (Mips::AFGR64RegClass
.contains(Reg
)) {
350 FPUBitmask
|= (3 << RegNum
);
351 CSFPRegsSize
+= AFGR64RegSize
;
353 } else if (Mips::GPR32RegClass
.contains(Reg
))
354 CPUBitmask
|= (1 << RegNum
);
357 // FP Regs are saved right below where the virtual frame pointer points to.
358 FPUTopSavedRegOff
= FPUBitmask
?
359 (HasAFGR64Reg
? -AFGR64RegSize
: -FGR32RegSize
) : 0;
361 // CPU Regs are saved below FP Regs.
362 CPUTopSavedRegOff
= CPUBitmask
? -CSFPRegsSize
- CPURegSize
: 0;
364 MipsTargetStreamer
&TS
= getTargetStreamer();
366 TS
.emitMask(CPUBitmask
, CPUTopSavedRegOff
);
369 TS
.emitFMask(FPUBitmask
, FPUTopSavedRegOff
);
372 //===----------------------------------------------------------------------===//
373 // Frame and Set directives
374 //===----------------------------------------------------------------------===//
377 void MipsAsmPrinter::emitFrameDirective() {
378 const TargetRegisterInfo
&RI
= *MF
->getSubtarget().getRegisterInfo();
380 Register stackReg
= RI
.getFrameRegister(*MF
);
381 unsigned returnReg
= RI
.getRARegister();
382 unsigned stackSize
= MF
->getFrameInfo().getStackSize();
384 getTargetStreamer().emitFrame(stackReg
, stackSize
, returnReg
);
387 /// Emit Set directives.
388 const char *MipsAsmPrinter::getCurrentABIString() const {
389 switch (static_cast<MipsTargetMachine
&>(TM
).getABI().GetEnumValue()) {
390 case MipsABIInfo::ABI::O32
: return "abi32";
391 case MipsABIInfo::ABI::N32
: return "abiN32";
392 case MipsABIInfo::ABI::N64
: return "abi64";
393 default: llvm_unreachable("Unknown Mips ABI");
397 void MipsAsmPrinter::EmitFunctionEntryLabel() {
398 MipsTargetStreamer
&TS
= getTargetStreamer();
400 // NaCl sandboxing requires that indirect call instructions are masked.
401 // This means that function entry points should be bundle-aligned.
402 if (Subtarget
->isTargetNaCl())
404 std::max(Log2(MF
->getAlignment()), MIPS_NACL_BUNDLE_LOG_ALIGN
));
406 if (Subtarget
->inMicroMipsMode()) {
407 TS
.emitDirectiveSetMicroMips();
408 TS
.setUsesMicroMips();
409 TS
.updateABIInfo(*Subtarget
);
411 TS
.emitDirectiveSetNoMicroMips();
413 if (Subtarget
->inMips16Mode())
414 TS
.emitDirectiveSetMips16();
416 TS
.emitDirectiveSetNoMips16();
418 TS
.emitDirectiveEnt(*CurrentFnSym
);
419 OutStreamer
->EmitLabel(CurrentFnSym
);
422 /// EmitFunctionBodyStart - Targets can override this to emit stuff before
423 /// the first basic block in the function.
424 void MipsAsmPrinter::EmitFunctionBodyStart() {
425 MipsTargetStreamer
&TS
= getTargetStreamer();
427 MCInstLowering
.Initialize(&MF
->getContext());
429 bool IsNakedFunction
= MF
->getFunction().hasFnAttribute(Attribute::Naked
);
430 if (!IsNakedFunction
)
431 emitFrameDirective();
433 if (!IsNakedFunction
)
434 printSavedRegsBitmask();
436 if (!Subtarget
->inMips16Mode()) {
437 TS
.emitDirectiveSetNoReorder();
438 TS
.emitDirectiveSetNoMacro();
439 TS
.emitDirectiveSetNoAt();
443 /// EmitFunctionBodyEnd - Targets can override this to emit stuff after
444 /// the last basic block in the function.
445 void MipsAsmPrinter::EmitFunctionBodyEnd() {
446 MipsTargetStreamer
&TS
= getTargetStreamer();
448 // There are instruction for this macros, but they must
449 // always be at the function end, and we can't emit and
450 // break with BB logic.
451 if (!Subtarget
->inMips16Mode()) {
452 TS
.emitDirectiveSetAt();
453 TS
.emitDirectiveSetMacro();
454 TS
.emitDirectiveSetReorder();
456 TS
.emitDirectiveEnd(CurrentFnSym
->getName());
457 // Make sure to terminate any constant pools that were at the end
461 InConstantPool
= false;
462 OutStreamer
->EmitDataRegion(MCDR_DataRegionEnd
);
465 void MipsAsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock
&MBB
) {
466 AsmPrinter::EmitBasicBlockEnd(MBB
);
467 MipsTargetStreamer
&TS
= getTargetStreamer();
469 TS
.emitDirectiveInsn();
472 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
473 /// exactly one predecessor and the control transfer mechanism between
474 /// the predecessor and this block is a fall-through.
475 bool MipsAsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock
*
477 // The predecessor has to be immediately before this block.
478 const MachineBasicBlock
*Pred
= *MBB
->pred_begin();
480 // If the predecessor is a switch statement, assume a jump table
481 // implementation, so it is not a fall through.
482 if (const BasicBlock
*bb
= Pred
->getBasicBlock())
483 if (isa
<SwitchInst
>(bb
->getTerminator()))
486 // If this is a landing pad, it isn't a fall through. If it has no preds,
487 // then nothing falls through to it.
488 if (MBB
->isEHPad() || MBB
->pred_empty())
491 // If there isn't exactly one predecessor, it can't be a fall through.
492 MachineBasicBlock::const_pred_iterator PI
= MBB
->pred_begin(), PI2
= PI
;
495 if (PI2
!= MBB
->pred_end())
498 // The predecessor has to be immediately before this block.
499 if (!Pred
->isLayoutSuccessor(MBB
))
502 // If the block is completely empty, then it definitely does fall through.
506 // Otherwise, check the last instruction.
507 // Check if the last terminator is an unconditional branch.
508 MachineBasicBlock::const_iterator I
= Pred
->end();
509 while (I
!= Pred
->begin() && !(--I
)->isTerminator()) ;
511 return !I
->isBarrier();
514 // Print out an operand for an inline asm expression.
515 bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr
*MI
, unsigned OpNum
,
516 const char *ExtraCode
, raw_ostream
&O
) {
517 // Does this asm operand have a single letter operand modifier?
518 if (ExtraCode
&& ExtraCode
[0]) {
519 if (ExtraCode
[1] != 0) return true; // Unknown modifier.
521 const MachineOperand
&MO
= MI
->getOperand(OpNum
);
522 switch (ExtraCode
[0]) {
524 // See if this is a generic print operand
525 return AsmPrinter::PrintAsmOperand(MI
, OpNum
, ExtraCode
, O
);
526 case 'X': // hex const int
527 if ((MO
.getType()) != MachineOperand::MO_Immediate
)
529 O
<< "0x" << Twine::utohexstr(MO
.getImm());
531 case 'x': // hex const int (low 16 bits)
532 if ((MO
.getType()) != MachineOperand::MO_Immediate
)
534 O
<< "0x" << Twine::utohexstr(MO
.getImm() & 0xffff);
536 case 'd': // decimal const int
537 if ((MO
.getType()) != MachineOperand::MO_Immediate
)
541 case 'm': // decimal const int minus 1
542 if ((MO
.getType()) != MachineOperand::MO_Immediate
)
544 O
<< MO
.getImm() - 1;
546 case 'y': // exact log2
547 if ((MO
.getType()) != MachineOperand::MO_Immediate
)
549 if (!isPowerOf2_64(MO
.getImm()))
551 O
<< Log2_64(MO
.getImm());
554 // $0 if zero, regular printing otherwise
555 if (MO
.getType() == MachineOperand::MO_Immediate
&& MO
.getImm() == 0) {
559 // If not, call printOperand as normal.
561 case 'D': // Second part of a double word register operand
562 case 'L': // Low order register of a double word register operand
563 case 'M': // High order register of a double word register operand
567 const MachineOperand
&FlagsOP
= MI
->getOperand(OpNum
- 1);
568 if (!FlagsOP
.isImm())
570 unsigned Flags
= FlagsOP
.getImm();
571 unsigned NumVals
= InlineAsm::getNumOperandRegisters(Flags
);
572 // Number of registers represented by this operand. We are looking
573 // for 2 for 32 bit mode and 1 for 64 bit mode.
575 if (Subtarget
->isGP64bit() && NumVals
== 1 && MO
.isReg()) {
576 Register Reg
= MO
.getReg();
577 O
<< '$' << MipsInstPrinter::getRegisterName(Reg
);
583 unsigned RegOp
= OpNum
;
584 if (!Subtarget
->isGP64bit()){
585 // Endianness reverses which register holds the high or low value
587 switch(ExtraCode
[0]) {
589 RegOp
= (Subtarget
->isLittle()) ? OpNum
+ 1 : OpNum
;
592 RegOp
= (Subtarget
->isLittle()) ? OpNum
: OpNum
+ 1;
594 case 'D': // Always the second part
597 if (RegOp
>= MI
->getNumOperands())
599 const MachineOperand
&MO
= MI
->getOperand(RegOp
);
602 Register Reg
= MO
.getReg();
603 O
<< '$' << MipsInstPrinter::getRegisterName(Reg
);
609 // Print MSA registers for the 'f' constraint
610 // In LLVM, the 'w' modifier doesn't need to do anything.
611 // We can just call printOperand as normal.
616 printOperand(MI
, OpNum
, O
);
620 bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr
*MI
,
622 const char *ExtraCode
,
624 assert(OpNum
+ 1 < MI
->getNumOperands() && "Insufficient operands");
625 const MachineOperand
&BaseMO
= MI
->getOperand(OpNum
);
626 const MachineOperand
&OffsetMO
= MI
->getOperand(OpNum
+ 1);
627 assert(BaseMO
.isReg() && "Unexpected base pointer for inline asm memory operand.");
628 assert(OffsetMO
.isImm() && "Unexpected offset for inline asm memory operand.");
629 int Offset
= OffsetMO
.getImm();
631 // Currently we are expecting either no ExtraCode or 'D','M','L'.
633 switch (ExtraCode
[0]) {
638 if (Subtarget
->isLittle())
642 if (!Subtarget
->isLittle())
646 return true; // Unknown modifier.
650 O
<< Offset
<< "($" << MipsInstPrinter::getRegisterName(BaseMO
.getReg())
656 void MipsAsmPrinter::printOperand(const MachineInstr
*MI
, int opNum
,
658 const MachineOperand
&MO
= MI
->getOperand(opNum
);
661 if (MO
.getTargetFlags())
664 switch(MO
.getTargetFlags()) {
665 case MipsII::MO_GPREL
: O
<< "%gp_rel("; break;
666 case MipsII::MO_GOT_CALL
: O
<< "%call16("; break;
667 case MipsII::MO_GOT
: O
<< "%got("; break;
668 case MipsII::MO_ABS_HI
: O
<< "%hi("; break;
669 case MipsII::MO_ABS_LO
: O
<< "%lo("; break;
670 case MipsII::MO_HIGHER
: O
<< "%higher("; break;
671 case MipsII::MO_HIGHEST
: O
<< "%highest(("; break;
672 case MipsII::MO_TLSGD
: O
<< "%tlsgd("; break;
673 case MipsII::MO_GOTTPREL
: O
<< "%gottprel("; break;
674 case MipsII::MO_TPREL_HI
: O
<< "%tprel_hi("; break;
675 case MipsII::MO_TPREL_LO
: O
<< "%tprel_lo("; break;
676 case MipsII::MO_GPOFF_HI
: O
<< "%hi(%neg(%gp_rel("; break;
677 case MipsII::MO_GPOFF_LO
: O
<< "%lo(%neg(%gp_rel("; break;
678 case MipsII::MO_GOT_DISP
: O
<< "%got_disp("; break;
679 case MipsII::MO_GOT_PAGE
: O
<< "%got_page("; break;
680 case MipsII::MO_GOT_OFST
: O
<< "%got_ofst("; break;
683 switch (MO
.getType()) {
684 case MachineOperand::MO_Register
:
686 << StringRef(MipsInstPrinter::getRegisterName(MO
.getReg())).lower();
689 case MachineOperand::MO_Immediate
:
693 case MachineOperand::MO_MachineBasicBlock
:
694 MO
.getMBB()->getSymbol()->print(O
, MAI
);
697 case MachineOperand::MO_GlobalAddress
:
698 PrintSymbolOperand(MO
, O
);
701 case MachineOperand::MO_BlockAddress
: {
702 MCSymbol
*BA
= GetBlockAddressSymbol(MO
.getBlockAddress());
707 case MachineOperand::MO_ConstantPoolIndex
:
708 O
<< getDataLayout().getPrivateGlobalPrefix() << "CPI"
709 << getFunctionNumber() << "_" << MO
.getIndex();
711 O
<< "+" << MO
.getOffset();
715 llvm_unreachable("<unknown operand type>");
718 if (closeP
) O
<< ")";
721 void MipsAsmPrinter::
722 printMemOperand(const MachineInstr
*MI
, int opNum
, raw_ostream
&O
) {
723 // Load/Store memory operands -- imm($reg)
724 // If PIC target the target is loaded as the
725 // pattern lw $25,%call16($28)
727 // opNum can be invalid if instruction has reglist as operand.
728 // MemOperand is always last operand of instruction (base + offset).
729 switch (MI
->getOpcode()) {
734 opNum
= MI
->getNumOperands() - 2;
738 printOperand(MI
, opNum
+1, O
);
740 printOperand(MI
, opNum
, O
);
744 void MipsAsmPrinter::
745 printMemOperandEA(const MachineInstr
*MI
, int opNum
, raw_ostream
&O
) {
746 // when using stack locations for not load/store instructions
747 // print the same way as all normal 3 operand instructions.
748 printOperand(MI
, opNum
, O
);
750 printOperand(MI
, opNum
+1, O
);
753 void MipsAsmPrinter::
754 printFCCOperand(const MachineInstr
*MI
, int opNum
, raw_ostream
&O
,
755 const char *Modifier
) {
756 const MachineOperand
&MO
= MI
->getOperand(opNum
);
757 O
<< Mips::MipsFCCToString((Mips::CondCode
)MO
.getImm());
760 void MipsAsmPrinter::
761 printRegisterList(const MachineInstr
*MI
, int opNum
, raw_ostream
&O
) {
762 for (int i
= opNum
, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
763 if (i
!= opNum
) O
<< ", ";
764 printOperand(MI
, i
, O
);
768 void MipsAsmPrinter::EmitStartOfAsmFile(Module
&M
) {
769 MipsTargetStreamer
&TS
= getTargetStreamer();
771 // MipsTargetStreamer has an initialization order problem when emitting an
772 // object file directly (see MipsTargetELFStreamer for full details). Work
773 // around it by re-initializing the PIC state here.
774 TS
.setPic(OutContext
.getObjectFileInfo()->isPositionIndependent());
776 // Compute MIPS architecture attributes based on the default subtarget
777 // that we'd have constructed. Module level directives aren't LTO
779 // FIXME: For ifunc related functions we could iterate over and look
780 // for a feature string that doesn't match the default one.
781 const Triple
&TT
= TM
.getTargetTriple();
782 StringRef CPU
= MIPS_MC::selectMipsCPU(TT
, TM
.getTargetCPU());
783 StringRef FS
= TM
.getTargetFeatureString();
784 const MipsTargetMachine
&MTM
= static_cast<const MipsTargetMachine
&>(TM
);
785 const MipsSubtarget
STI(TT
, CPU
, FS
, MTM
.isLittleEndian(), MTM
, 0);
787 bool IsABICalls
= STI
.isABICalls();
788 const MipsABIInfo
&ABI
= MTM
.getABI();
790 TS
.emitDirectiveAbiCalls();
791 // FIXME: This condition should be a lot more complicated that it is here.
792 // Ideally it should test for properties of the ABI and not the ABI
794 // For the moment, I'm only correcting enough to make MIPS-IV work.
795 if (!isPositionIndependent() && STI
.hasSym32())
796 TS
.emitDirectiveOptionPic0();
799 // Tell the assembler which ABI we are using
800 std::string SectionName
= std::string(".mdebug.") + getCurrentABIString();
801 OutStreamer
->SwitchSection(
802 OutContext
.getELFSection(SectionName
, ELF::SHT_PROGBITS
, 0));
804 // NaN: At the moment we only support:
805 // 1. .nan legacy (default)
807 STI
.isNaN2008() ? TS
.emitDirectiveNaN2008()
808 : TS
.emitDirectiveNaNLegacy();
810 // TODO: handle O64 ABI
812 TS
.updateABIInfo(STI
);
814 // We should always emit a '.module fp=...' but binutils 2.24 does not accept
815 // it. We therefore emit it when it contradicts the ABI defaults (-mfpxx or
816 // -mfp64) and omit it otherwise.
817 if ((ABI
.IsO32() && (STI
.isABI_FPXX() || STI
.isFP64bit())) ||
819 TS
.emitDirectiveModuleFP();
821 // We should always emit a '.module [no]oddspreg' but binutils 2.24 does not
822 // accept it. We therefore emit it when it contradicts the default or an
823 // option has changed the default (i.e. FPXX) and omit it otherwise.
824 if (ABI
.IsO32() && (!STI
.useOddSPReg() || STI
.isABI_FPXX()))
825 TS
.emitDirectiveModuleOddSPReg();
827 // Switch to the .text section.
828 OutStreamer
->SwitchSection(getObjFileLowering().getTextSection());
831 void MipsAsmPrinter::emitInlineAsmStart() const {
832 MipsTargetStreamer
&TS
= getTargetStreamer();
834 // GCC's choice of assembler options for inline assembly code ('at', 'macro'
835 // and 'reorder') is different from LLVM's choice for generated code ('noat',
836 // 'nomacro' and 'noreorder').
837 // In order to maintain compatibility with inline assembly code which depends
838 // on GCC's assembler options being used, we have to switch to those options
839 // for the duration of the inline assembly block and then switch back.
840 TS
.emitDirectiveSetPush();
841 TS
.emitDirectiveSetAt();
842 TS
.emitDirectiveSetMacro();
843 TS
.emitDirectiveSetReorder();
844 OutStreamer
->AddBlankLine();
847 void MipsAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo
&StartInfo
,
848 const MCSubtargetInfo
*EndInfo
) const {
849 OutStreamer
->AddBlankLine();
850 getTargetStreamer().emitDirectiveSetPop();
853 void MipsAsmPrinter::EmitJal(const MCSubtargetInfo
&STI
, MCSymbol
*Symbol
) {
855 I
.setOpcode(Mips::JAL
);
857 MCOperand::createExpr(MCSymbolRefExpr::create(Symbol
, OutContext
)));
858 OutStreamer
->EmitInstruction(I
, STI
);
861 void MipsAsmPrinter::EmitInstrReg(const MCSubtargetInfo
&STI
, unsigned Opcode
,
865 I
.addOperand(MCOperand::createReg(Reg
));
866 OutStreamer
->EmitInstruction(I
, STI
);
869 void MipsAsmPrinter::EmitInstrRegReg(const MCSubtargetInfo
&STI
,
870 unsigned Opcode
, unsigned Reg1
,
874 // Because of the current td files for Mips32, the operands for MTC1
875 // appear backwards from their normal assembly order. It's not a trivial
876 // change to fix this in the td file so we adjust for it here.
878 if (Opcode
== Mips::MTC1
) {
879 unsigned Temp
= Reg1
;
884 I
.addOperand(MCOperand::createReg(Reg1
));
885 I
.addOperand(MCOperand::createReg(Reg2
));
886 OutStreamer
->EmitInstruction(I
, STI
);
889 void MipsAsmPrinter::EmitInstrRegRegReg(const MCSubtargetInfo
&STI
,
890 unsigned Opcode
, unsigned Reg1
,
891 unsigned Reg2
, unsigned Reg3
) {
894 I
.addOperand(MCOperand::createReg(Reg1
));
895 I
.addOperand(MCOperand::createReg(Reg2
));
896 I
.addOperand(MCOperand::createReg(Reg3
));
897 OutStreamer
->EmitInstruction(I
, STI
);
900 void MipsAsmPrinter::EmitMovFPIntPair(const MCSubtargetInfo
&STI
,
901 unsigned MovOpc
, unsigned Reg1
,
902 unsigned Reg2
, unsigned FPReg1
,
903 unsigned FPReg2
, bool LE
) {
905 unsigned temp
= Reg1
;
909 EmitInstrRegReg(STI
, MovOpc
, Reg1
, FPReg1
);
910 EmitInstrRegReg(STI
, MovOpc
, Reg2
, FPReg2
);
913 void MipsAsmPrinter::EmitSwapFPIntParams(const MCSubtargetInfo
&STI
,
914 Mips16HardFloatInfo::FPParamVariant PV
,
915 bool LE
, bool ToFP
) {
916 using namespace Mips16HardFloatInfo
;
918 unsigned MovOpc
= ToFP
? Mips::MTC1
: Mips::MFC1
;
921 EmitInstrRegReg(STI
, MovOpc
, Mips::A0
, Mips::F12
);
924 EmitMovFPIntPair(STI
, MovOpc
, Mips::A0
, Mips::A1
, Mips::F12
, Mips::F14
, LE
);
927 EmitInstrRegReg(STI
, MovOpc
, Mips::A0
, Mips::F12
);
928 EmitMovFPIntPair(STI
, MovOpc
, Mips::A2
, Mips::A3
, Mips::F14
, Mips::F15
, LE
);
931 EmitMovFPIntPair(STI
, MovOpc
, Mips::A0
, Mips::A1
, Mips::F12
, Mips::F13
, LE
);
934 EmitMovFPIntPair(STI
, MovOpc
, Mips::A0
, Mips::A1
, Mips::F12
, Mips::F13
, LE
);
935 EmitMovFPIntPair(STI
, MovOpc
, Mips::A2
, Mips::A3
, Mips::F14
, Mips::F15
, LE
);
938 EmitMovFPIntPair(STI
, MovOpc
, Mips::A0
, Mips::A1
, Mips::F12
, Mips::F13
, LE
);
939 EmitInstrRegReg(STI
, MovOpc
, Mips::A2
, Mips::F14
);
946 void MipsAsmPrinter::EmitSwapFPIntRetval(
947 const MCSubtargetInfo
&STI
, Mips16HardFloatInfo::FPReturnVariant RV
,
949 using namespace Mips16HardFloatInfo
;
951 unsigned MovOpc
= Mips::MFC1
;
954 EmitInstrRegReg(STI
, MovOpc
, Mips::V0
, Mips::F0
);
957 EmitMovFPIntPair(STI
, MovOpc
, Mips::V0
, Mips::V1
, Mips::F0
, Mips::F1
, LE
);
960 EmitMovFPIntPair(STI
, MovOpc
, Mips::V0
, Mips::V1
, Mips::F0
, Mips::F1
, LE
);
963 EmitMovFPIntPair(STI
, MovOpc
, Mips::V0
, Mips::V1
, Mips::F0
, Mips::F1
, LE
);
964 EmitMovFPIntPair(STI
, MovOpc
, Mips::A0
, Mips::A1
, Mips::F2
, Mips::F3
, LE
);
971 void MipsAsmPrinter::EmitFPCallStub(
972 const char *Symbol
, const Mips16HardFloatInfo::FuncSignature
*Signature
) {
973 using namespace Mips16HardFloatInfo
;
975 MCSymbol
*MSymbol
= OutContext
.getOrCreateSymbol(StringRef(Symbol
));
976 bool LE
= getDataLayout().isLittleEndian();
977 // Construct a local MCSubtargetInfo here.
978 // This is because the MachineFunction won't exist (but have not yet been
979 // freed) and since we're at the global level we can use the default
980 // constructed subtarget.
981 std::unique_ptr
<MCSubtargetInfo
> STI(TM
.getTarget().createMCSubtargetInfo(
982 TM
.getTargetTriple().str(), TM
.getTargetCPU(),
983 TM
.getTargetFeatureString()));
988 OutStreamer
->EmitSymbolAttribute(MSymbol
, MCSA_Global
);
991 // make the comment field identifying the return and parameter
992 // types of the floating point stub
993 // # Stub function to call rettype xxxx (params)
995 switch (Signature
->RetSig
) {
1003 RetType
= "complex";
1006 RetType
= "double complex";
1013 switch (Signature
->ParamSig
) {
1018 Parms
= "float, float";
1021 Parms
= "float, double";
1027 Parms
= "double, double";
1030 Parms
= "double, float";
1036 OutStreamer
->AddComment("\t# Stub function to call " + Twine(RetType
) + " " +
1037 Twine(Symbol
) + " (" + Twine(Parms
) + ")");
1039 // probably not necessary but we save and restore the current section state
1041 OutStreamer
->PushSection();
1043 // .section mips16.call.fpxxxx,"ax",@progbits
1045 MCSectionELF
*M
= OutContext
.getELFSection(
1046 ".mips16.call.fp." + std::string(Symbol
), ELF::SHT_PROGBITS
,
1047 ELF::SHF_ALLOC
| ELF::SHF_EXECINSTR
);
1048 OutStreamer
->SwitchSection(M
, nullptr);
1052 OutStreamer
->EmitValueToAlignment(4);
1053 MipsTargetStreamer
&TS
= getTargetStreamer();
1058 TS
.emitDirectiveSetNoMips16();
1059 TS
.emitDirectiveSetNoMicroMips();
1061 // .ent __call_stub_fp_xxxx
1062 // .type __call_stub_fp_xxxx,@function
1063 // __call_stub_fp_xxxx:
1065 std::string x
= "__call_stub_fp_" + std::string(Symbol
);
1067 cast
<MCSymbolELF
>(OutContext
.getOrCreateSymbol(StringRef(x
)));
1068 TS
.emitDirectiveEnt(*Stub
);
1070 OutContext
.getOrCreateSymbol("__call_stub_fp_" + Twine(Symbol
));
1071 OutStreamer
->EmitSymbolAttribute(MType
, MCSA_ELF_TypeFunction
);
1072 OutStreamer
->EmitLabel(Stub
);
1074 // Only handle non-pic for now.
1075 assert(!isPositionIndependent() &&
1076 "should not be here if we are compiling pic");
1077 TS
.emitDirectiveSetReorder();
1079 // We need to add a MipsMCExpr class to MCTargetDesc to fully implement
1080 // stubs without raw text but this current patch is for compiler generated
1081 // functions and they all return some value.
1082 // The calling sequence for non pic is different in that case and we need
1083 // to implement %lo and %hi in order to handle the case of no return value
1084 // See the corresponding method in Mips16HardFloat for details.
1086 // mov the return address to S2.
1087 // we have no stack space to store it and we are about to make another call.
1088 // We need to make sure that the enclosing function knows to save S2
1089 // This should have already been handled.
1093 EmitInstrRegRegReg(*STI
, Mips::OR
, Mips::S2
, Mips::RA
, Mips::ZERO
);
1095 EmitSwapFPIntParams(*STI
, Signature
->ParamSig
, LE
, true);
1099 EmitJal(*STI
, MSymbol
);
1101 // fix return values
1102 EmitSwapFPIntRetval(*STI
, Signature
->RetSig
, LE
);
1105 // if (Signature->RetSig == NoFPRet)
1106 // llvm_unreachable("should not be any stubs here with no return value");
1108 EmitInstrReg(*STI
, Mips::JR
, Mips::S2
);
1110 MCSymbol
*Tmp
= OutContext
.createTempSymbol();
1111 OutStreamer
->EmitLabel(Tmp
);
1112 const MCSymbolRefExpr
*E
= MCSymbolRefExpr::create(Stub
, OutContext
);
1113 const MCSymbolRefExpr
*T
= MCSymbolRefExpr::create(Tmp
, OutContext
);
1114 const MCExpr
*T_min_E
= MCBinaryExpr::createSub(T
, E
, OutContext
);
1115 OutStreamer
->emitELFSize(Stub
, T_min_E
);
1116 TS
.emitDirectiveEnd(x
);
1117 OutStreamer
->PopSection();
1120 void MipsAsmPrinter::EmitEndOfAsmFile(Module
&M
) {
1121 // Emit needed stubs
1125 const Mips16HardFloatInfo::FuncSignature
*>::const_iterator
1126 it
= StubsNeeded
.begin();
1127 it
!= StubsNeeded
.end(); ++it
) {
1128 const char *Symbol
= it
->first
;
1129 const Mips16HardFloatInfo::FuncSignature
*Signature
= it
->second
;
1130 EmitFPCallStub(Symbol
, Signature
);
1132 // return to the text section
1133 OutStreamer
->SwitchSection(OutContext
.getObjectFileInfo()->getTextSection());
1136 void MipsAsmPrinter::EmitSled(const MachineInstr
&MI
, SledKind Kind
) {
1137 const uint8_t NoopsInSledCount
= Subtarget
->isGP64bit() ? 15 : 11;
1138 // For mips32 we want to emit the following pattern:
1143 // 11 NOP instructions (44 bytes)
1147 // We need the 44 bytes (11 instructions) because at runtime, we'd
1148 // be patching over the full 48 bytes (12 instructions) with the following
1155 // LUI T9, %hi(__xray_FunctionEntry/Exit)
1156 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit)
1157 // LUI T0, %hi(function_id)
1159 // ORI T0, T0, %lo(function_id)
1164 // We add 52 bytes to t9 because we want to adjust the function pointer to
1165 // the actual start of function i.e. the address just after the noop sled.
1166 // We do this because gp displacement relocation is emitted at the start of
1167 // of the function i.e after the nop sled and to correctly calculate the
1168 // global offset table address, t9 must hold the address of the instruction
1169 // containing the gp displacement relocation.
1170 // FIXME: Is this correct for the static relocation model?
1172 // For mips64 we want to emit the following pattern:
1177 // 15 NOP instructions (60 bytes)
1180 // We need the 60 bytes (15 instructions) because at runtime, we'd
1181 // be patching over the full 64 bytes (16 instructions) with the following
1184 // DADDIU SP, SP, -16
1188 // LUI T9, %highest(__xray_FunctionEntry/Exit)
1189 // ORI T9, T9, %higher(__xray_FunctionEntry/Exit)
1191 // ORI T9, T9, %hi(__xray_FunctionEntry/Exit)
1193 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit)
1194 // LUI T0, %hi(function_id)
1196 // ADDIU T0, T0, %lo(function_id)
1199 // DADDIU SP, SP, 16
1201 OutStreamer
->EmitCodeAlignment(4);
1202 auto CurSled
= OutContext
.createTempSymbol("xray_sled_", true);
1203 OutStreamer
->EmitLabel(CurSled
);
1204 auto Target
= OutContext
.createTempSymbol();
1206 // Emit "B .tmpN" instruction, which jumps over the nop sled to the actual
1207 // start of function
1208 const MCExpr
*TargetExpr
= MCSymbolRefExpr::create(
1209 Target
, MCSymbolRefExpr::VariantKind::VK_None
, OutContext
);
1210 EmitToStreamer(*OutStreamer
, MCInstBuilder(Mips::BEQ
)
1213 .addExpr(TargetExpr
));
1215 for (int8_t I
= 0; I
< NoopsInSledCount
; I
++)
1216 EmitToStreamer(*OutStreamer
, MCInstBuilder(Mips::SLL
)
1221 OutStreamer
->EmitLabel(Target
);
1223 if (!Subtarget
->isGP64bit()) {
1224 EmitToStreamer(*OutStreamer
,
1225 MCInstBuilder(Mips::ADDiu
)
1231 recordSled(CurSled
, MI
, Kind
);
1234 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr
&MI
) {
1235 EmitSled(MI
, SledKind::FUNCTION_ENTER
);
1238 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr
&MI
) {
1239 EmitSled(MI
, SledKind::FUNCTION_EXIT
);
1242 void MipsAsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr
&MI
) {
1243 EmitSled(MI
, SledKind::TAIL_CALL
);
1246 void MipsAsmPrinter::PrintDebugValueComment(const MachineInstr
*MI
,
1251 // Emit .dtprelword or .dtpreldword directive
1252 // and value for debug thread local expression.
1253 void MipsAsmPrinter::EmitDebugValue(const MCExpr
*Value
, unsigned Size
) const {
1254 if (auto *MipsExpr
= dyn_cast
<MipsMCExpr
>(Value
)) {
1255 if (MipsExpr
&& MipsExpr
->getKind() == MipsMCExpr::MEK_DTPREL
) {
1258 OutStreamer
->EmitDTPRel32Value(MipsExpr
->getSubExpr());
1261 OutStreamer
->EmitDTPRel64Value(MipsExpr
->getSubExpr());
1264 llvm_unreachable("Unexpected size of expression value.");
1269 AsmPrinter::EmitDebugValue(Value
, Size
);
1272 // Align all targets of indirect branches on bundle size. Used only if target
1274 void MipsAsmPrinter::NaClAlignIndirectJumpTargets(MachineFunction
&MF
) {
1275 // Align all blocks that are jumped to through jump table.
1276 if (MachineJumpTableInfo
*JtInfo
= MF
.getJumpTableInfo()) {
1277 const std::vector
<MachineJumpTableEntry
> &JT
= JtInfo
->getJumpTables();
1278 for (unsigned I
= 0; I
< JT
.size(); ++I
) {
1279 const std::vector
<MachineBasicBlock
*> &MBBs
= JT
[I
].MBBs
;
1281 for (unsigned J
= 0; J
< MBBs
.size(); ++J
)
1282 MBBs
[J
]->setLogAlignment(MIPS_NACL_BUNDLE_LOG_ALIGN
);
1286 // If basic block address is taken, block can be target of indirect branch.
1287 for (auto &MBB
: MF
) {
1288 if (MBB
.hasAddressTaken())
1289 MBB
.setLogAlignment(MIPS_NACL_BUNDLE_LOG_ALIGN
);
1293 bool MipsAsmPrinter::isLongBranchPseudo(int Opcode
) const {
1294 return (Opcode
== Mips::LONG_BRANCH_LUi
1295 || Opcode
== Mips::LONG_BRANCH_LUi2Op
1296 || Opcode
== Mips::LONG_BRANCH_LUi2Op_64
1297 || Opcode
== Mips::LONG_BRANCH_ADDiu
1298 || Opcode
== Mips::LONG_BRANCH_ADDiu2Op
1299 || Opcode
== Mips::LONG_BRANCH_DADDiu
1300 || Opcode
== Mips::LONG_BRANCH_DADDiu2Op
);
1303 // Force static initialization.
1304 extern "C" void LLVMInitializeMipsAsmPrinter() {
1305 RegisterAsmPrinter
<MipsAsmPrinter
> X(getTheMipsTarget());
1306 RegisterAsmPrinter
<MipsAsmPrinter
> Y(getTheMipselTarget());
1307 RegisterAsmPrinter
<MipsAsmPrinter
> A(getTheMips64Target());
1308 RegisterAsmPrinter
<MipsAsmPrinter
> B(getTheMips64elTarget());