1 //===-- Analysis.cpp --------------------------------------------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
11 #include "BenchmarkResult.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/MC/MCAsmInfo.h"
14 #include "llvm/Support/FormatVariadic.h"
15 #include <unordered_set>
20 static const char kCsvSep
= ',';
24 enum EscapeTag
{ kEscapeCsv
, kEscapeHtml
, kEscapeHtmlString
};
26 template <EscapeTag Tag
>
27 void writeEscaped(llvm::raw_ostream
&OS
, const llvm::StringRef S
);
30 void writeEscaped
<kEscapeCsv
>(llvm::raw_ostream
&OS
, const llvm::StringRef S
) {
31 if (std::find(S
.begin(), S
.end(), kCsvSep
) == S
.end()) {
36 for (const char C
: S
) {
47 void writeEscaped
<kEscapeHtml
>(llvm::raw_ostream
&OS
, const llvm::StringRef S
) {
48 for (const char C
: S
) {
61 void writeEscaped
<kEscapeHtmlString
>(llvm::raw_ostream
&OS
,
62 const llvm::StringRef S
) {
63 for (const char C
: S
) {
73 template <EscapeTag Tag
>
75 writeClusterId(llvm::raw_ostream
&OS
,
76 const InstructionBenchmarkClustering::ClusterId
&CID
) {
78 writeEscaped
<Tag
>(OS
, "[noise]");
79 else if (CID
.isError())
80 writeEscaped
<Tag
>(OS
, "[error]");
85 template <EscapeTag Tag
>
86 static void writeMeasurementValue(llvm::raw_ostream
&OS
, const double Value
) {
87 writeEscaped
<Tag
>(OS
, llvm::formatv("{0:F}", Value
).str());
90 template <typename EscapeTag
, EscapeTag Tag
>
91 void Analysis::writeSnippet(llvm::raw_ostream
&OS
,
92 llvm::ArrayRef
<uint8_t> Bytes
,
93 const char *Separator
) const {
94 llvm::SmallVector
<std::string
, 3> Lines
;
95 // Parse the asm snippet and print it.
96 while (!Bytes
.empty()) {
99 if (!Disasm_
->getInstruction(MI
, MISize
, Bytes
, 0, llvm::nulls(),
101 writeEscaped
<Tag
>(OS
, llvm::join(Lines
, Separator
));
102 writeEscaped
<Tag
>(OS
, Separator
);
103 writeEscaped
<Tag
>(OS
, "[error decoding asm snippet]");
106 Lines
.emplace_back();
107 std::string
&Line
= Lines
.back();
108 llvm::raw_string_ostream
OSS(Line
);
109 InstPrinter_
->printInst(&MI
, OSS
, "", *SubtargetInfo_
);
110 Bytes
= Bytes
.drop_front(MISize
);
112 Line
= llvm::StringRef(Line
).trim().str();
114 writeEscaped
<Tag
>(OS
, llvm::join(Lines
, Separator
));
117 // Prints a row representing an instruction, along with scheduling info and
118 // point coordinates (measurements).
119 void Analysis::printInstructionRowCsv(const size_t PointId
,
120 llvm::raw_ostream
&OS
) const {
121 const InstructionBenchmark
&Point
= Clustering_
.getPoints()[PointId
];
122 writeClusterId
<kEscapeCsv
>(OS
, Clustering_
.getClusterIdForPoint(PointId
));
124 writeSnippet
<EscapeTag
, kEscapeCsv
>(OS
, Point
.AssembledSnippet
, "; ");
126 writeEscaped
<kEscapeCsv
>(OS
, Point
.Key
.Config
);
128 assert(!Point
.Key
.Instructions
.empty());
129 // FIXME: Resolve variant classes.
130 const unsigned SchedClassId
=
131 InstrInfo_
->get(Point
.Key
.Instructions
[0].getOpcode()).getSchedClass();
132 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
133 const auto &SchedModel
= SubtargetInfo_
->getSchedModel();
134 const llvm::MCSchedClassDesc
*const SCDesc
=
135 SchedModel
.getSchedClassDesc(SchedClassId
);
136 writeEscaped
<kEscapeCsv
>(OS
, SCDesc
->Name
);
140 for (const auto &Measurement
: Point
.Measurements
) {
142 writeMeasurementValue
<kEscapeCsv
>(OS
, Measurement
.Value
);
147 Analysis::Analysis(const llvm::Target
&Target
,
148 const InstructionBenchmarkClustering
&Clustering
)
149 : Clustering_(Clustering
) {
150 if (Clustering
.getPoints().empty())
153 const InstructionBenchmark
&FirstPoint
= Clustering
.getPoints().front();
154 InstrInfo_
.reset(Target
.createMCInstrInfo());
155 RegInfo_
.reset(Target
.createMCRegInfo(FirstPoint
.LLVMTriple
));
156 AsmInfo_
.reset(Target
.createMCAsmInfo(*RegInfo_
, FirstPoint
.LLVMTriple
));
157 SubtargetInfo_
.reset(Target
.createMCSubtargetInfo(FirstPoint
.LLVMTriple
,
158 FirstPoint
.CpuName
, ""));
159 InstPrinter_
.reset(Target
.createMCInstPrinter(
160 llvm::Triple(FirstPoint
.LLVMTriple
), 0 /*default variant*/, *AsmInfo_
,
161 *InstrInfo_
, *RegInfo_
));
163 Context_
= llvm::make_unique
<llvm::MCContext
>(AsmInfo_
.get(), RegInfo_
.get(),
165 Disasm_
.reset(Target
.createMCDisassembler(*SubtargetInfo_
, *Context_
));
166 assert(Disasm_
&& "cannot create MCDisassembler. missing call to "
167 "InitializeXXXTargetDisassembler ?");
172 Analysis::run
<Analysis::PrintClusters
>(llvm::raw_ostream
&OS
) const {
173 if (Clustering_
.getPoints().empty())
174 return llvm::Error::success();
177 OS
<< "cluster_id" << kCsvSep
<< "opcode_name" << kCsvSep
<< "config"
178 << kCsvSep
<< "sched_class";
179 for (const auto &Measurement
: Clustering_
.getPoints().front().Measurements
) {
181 writeEscaped
<kEscapeCsv
>(OS
, Measurement
.Key
);
186 const auto &Clusters
= Clustering_
.getValidClusters();
187 for (size_t I
= 0, E
= Clusters
.size(); I
< E
; ++I
) {
188 for (const size_t PointId
: Clusters
[I
].PointIndices
) {
189 printInstructionRowCsv(PointId
, OS
);
193 return llvm::Error::success();
196 std::unordered_map
<unsigned, std::vector
<size_t>>
197 Analysis::makePointsPerSchedClass() const {
198 std::unordered_map
<unsigned, std::vector
<size_t>> PointsPerSchedClass
;
199 const auto &Points
= Clustering_
.getPoints();
200 for (size_t PointId
= 0, E
= Points
.size(); PointId
< E
; ++PointId
) {
201 const InstructionBenchmark
&Point
= Points
[PointId
];
202 if (!Point
.Error
.empty())
204 assert(!Point
.Key
.Instructions
.empty());
205 const auto Opcode
= Point
.Key
.Instructions
[0].getOpcode();
206 // FIXME: Resolve variant classes.
207 PointsPerSchedClass
[InstrInfo_
->get(Opcode
).getSchedClass()].push_back(
210 return PointsPerSchedClass
;
213 // Uops repeat the same opcode over again. Just show this opcode and show the
214 // whole snippet only on hover.
215 static void writeUopsSnippetHtml(llvm::raw_ostream
&OS
,
216 const std::vector
<llvm::MCInst
> &Instructions
,
217 const llvm::MCInstrInfo
&InstrInfo
) {
218 if (Instructions
.empty())
220 writeEscaped
<kEscapeHtml
>(OS
, InstrInfo
.getName(Instructions
[0].getOpcode()));
221 if (Instructions
.size() > 1)
222 OS
<< " (x" << Instructions
.size() << ")";
225 // Latency tries to find a serial path. Just show the opcode path and show the
226 // whole snippet only on hover.
228 writeLatencySnippetHtml(llvm::raw_ostream
&OS
,
229 const std::vector
<llvm::MCInst
> &Instructions
,
230 const llvm::MCInstrInfo
&InstrInfo
) {
232 for (const llvm::MCInst
&Instr
: Instructions
) {
237 writeEscaped
<kEscapeHtml
>(OS
, InstrInfo
.getName(Instr
.getOpcode()));
241 void Analysis::printSchedClassClustersHtml(
242 const std::vector
<SchedClassCluster
> &Clusters
, const SchedClass
&SC
,
243 llvm::raw_ostream
&OS
) const {
244 const auto &Points
= Clustering_
.getPoints();
245 OS
<< "<table class=\"sched-class-clusters\">";
246 OS
<< "<tr><th>ClusterId</th><th>Opcode/Config</th>";
247 assert(!Clusters
.empty());
248 for (const auto &Measurement
:
249 Points
[Clusters
[0].getPointIds()[0]].Measurements
) {
251 if (Measurement
.DebugString
.empty())
252 writeEscaped
<kEscapeHtml
>(OS
, Measurement
.Key
);
254 writeEscaped
<kEscapeHtml
>(OS
, Measurement
.DebugString
);
258 for (const SchedClassCluster
&Cluster
: Clusters
) {
260 << (Cluster
.measurementsMatch(*SubtargetInfo_
, SC
, Clustering_
)
264 writeClusterId
<kEscapeHtml
>(OS
, Cluster
.id());
265 OS
<< "</td><td><ul>";
266 for (const size_t PointId
: Cluster
.getPointIds()) {
267 const auto &Point
= Points
[PointId
];
268 OS
<< "<li><span class=\"mono\" title=\"";
269 writeSnippet
<EscapeTag
, kEscapeHtmlString
>(OS
, Point
.AssembledSnippet
,
272 switch (Point
.Mode
) {
273 case InstructionBenchmark::Latency
:
274 writeLatencySnippetHtml(OS
, Point
.Key
.Instructions
, *InstrInfo_
);
276 case InstructionBenchmark::Uops
:
277 writeUopsSnippetHtml(OS
, Point
.Key
.Instructions
, *InstrInfo_
);
280 llvm_unreachable("invalid mode");
282 OS
<< "</span> <span class=\"mono\">";
283 writeEscaped
<kEscapeHtml
>(OS
, Point
.Key
.Config
);
284 OS
<< "</span></li>";
287 for (const auto &Stats
: Cluster
.getRepresentative()) {
288 OS
<< "<td class=\"measurement\">";
289 writeMeasurementValue
<kEscapeHtml
>(OS
, Stats
.avg());
290 OS
<< "<br><span class=\"minmax\">[";
291 writeMeasurementValue
<kEscapeHtml
>(OS
, Stats
.min());
293 writeMeasurementValue
<kEscapeHtml
>(OS
, Stats
.max());
294 OS
<< "]</span></td>";
301 // Return the non-redundant list of WriteProcRes used by the given sched class.
302 // The scheduling model for LLVM is such that each instruction has a certain
303 // number of uops which consume resources which are described by WriteProcRes
304 // entries. Each entry describe how many cycles are spent on a specific ProcRes
306 // For example, an instruction might have 3 uOps, one dispatching on P0
307 // (ProcResIdx=1) and two on P06 (ProcResIdx = 7).
308 // Note that LLVM additionally denormalizes resource consumption to include
309 // usage of super resources by subresources. So in practice if there exists a
310 // P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by
311 // P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed
312 // by P06 are also consumed by P016. In the figure below, parenthesized cycles
313 // denote implied usage of superresources by subresources:
318 // =============================
320 // Eventually we end up with three entries for the WriteProcRes of the
322 // {ProcResIdx=1, Cycles=1} // P0
323 // {ProcResIdx=7, Cycles=3} // P06
324 // {ProcResIdx=10, Cycles=3} // P016
326 // Note that in this case, P016 does not contribute any cycles, so it would
327 // be removed by this function.
328 // FIXME: Move this to MCSubtargetInfo and use it in llvm-mca.
329 static llvm::SmallVector
<llvm::MCWriteProcResEntry
, 8>
330 getNonRedundantWriteProcRes(const llvm::MCSchedClassDesc
&SCDesc
,
331 const llvm::MCSubtargetInfo
&STI
) {
332 llvm::SmallVector
<llvm::MCWriteProcResEntry
, 8> Result
;
333 const auto &SM
= STI
.getSchedModel();
334 const unsigned NumProcRes
= SM
.getNumProcResourceKinds();
336 // This assumes that the ProcResDescs are sorted in topological order, which
337 // is guaranteed by the tablegen backend.
338 llvm::SmallVector
<float, 32> ProcResUnitUsage(NumProcRes
);
339 for (const auto *WPR
= STI
.getWriteProcResBegin(&SCDesc
),
340 *const WPREnd
= STI
.getWriteProcResEnd(&SCDesc
);
341 WPR
!= WPREnd
; ++WPR
) {
342 const llvm::MCProcResourceDesc
*const ProcResDesc
=
343 SM
.getProcResource(WPR
->ProcResourceIdx
);
344 if (ProcResDesc
->SubUnitsIdxBegin
== nullptr) {
345 // This is a ProcResUnit.
346 Result
.push_back({WPR
->ProcResourceIdx
, WPR
->Cycles
});
347 ProcResUnitUsage
[WPR
->ProcResourceIdx
] += WPR
->Cycles
;
349 // This is a ProcResGroup. First see if it contributes any cycles or if
350 // it has cycles just from subunits.
351 float RemainingCycles
= WPR
->Cycles
;
352 for (const auto *SubResIdx
= ProcResDesc
->SubUnitsIdxBegin
;
353 SubResIdx
!= ProcResDesc
->SubUnitsIdxBegin
+ ProcResDesc
->NumUnits
;
355 RemainingCycles
-= ProcResUnitUsage
[*SubResIdx
];
357 if (RemainingCycles
< 0.01f
) {
358 // The ProcResGroup contributes no cycles of its own.
361 // The ProcResGroup contributes `RemainingCycles` cycles of its own.
362 Result
.push_back({WPR
->ProcResourceIdx
,
363 static_cast<uint16_t>(std::round(RemainingCycles
))});
364 // Spread the remaining cycles over all subunits.
365 for (const auto *SubResIdx
= ProcResDesc
->SubUnitsIdxBegin
;
366 SubResIdx
!= ProcResDesc
->SubUnitsIdxBegin
+ ProcResDesc
->NumUnits
;
368 ProcResUnitUsage
[*SubResIdx
] += RemainingCycles
/ ProcResDesc
->NumUnits
;
375 Analysis::SchedClass::SchedClass(const llvm::MCSchedClassDesc
&SD
,
376 const llvm::MCSubtargetInfo
&STI
)
378 NonRedundantWriteProcRes(getNonRedundantWriteProcRes(SD
, STI
)),
379 IdealizedProcResPressure(computeIdealizedProcResPressure(
380 STI
.getSchedModel(), NonRedundantWriteProcRes
)) {}
382 void Analysis::SchedClassCluster::addPoint(
383 size_t PointId
, const InstructionBenchmarkClustering
&Clustering
) {
384 PointIds
.push_back(PointId
);
385 const auto &Point
= Clustering
.getPoints()[PointId
];
386 if (ClusterId
.isUndef()) {
387 ClusterId
= Clustering
.getClusterIdForPoint(PointId
);
388 Representative
.resize(Point
.Measurements
.size());
390 for (size_t I
= 0, E
= Point
.Measurements
.size(); I
< E
; ++I
) {
391 Representative
[I
].push(Point
.Measurements
[I
]);
393 assert(ClusterId
== Clustering
.getClusterIdForPoint(PointId
));
396 bool Analysis::SchedClassCluster::measurementsMatch(
397 const llvm::MCSubtargetInfo
&STI
, const SchedClass
&SC
,
398 const InstructionBenchmarkClustering
&Clustering
) const {
399 const size_t NumMeasurements
= Representative
.size();
400 std::vector
<BenchmarkMeasure
> ClusterCenterPoint(NumMeasurements
);
401 std::vector
<BenchmarkMeasure
> SchedClassPoint(NumMeasurements
);
403 assert(!Clustering
.getPoints().empty());
404 const InstructionBenchmark::ModeE Mode
= Clustering
.getPoints()[0].Mode
;
405 if (Mode
== InstructionBenchmark::Latency
) {
406 if (NumMeasurements
!= 1) {
408 << "invalid number of measurements in latency mode: expected 1, got "
409 << NumMeasurements
<< "\n";
413 SchedClassPoint
[0].Value
= 0.0;
414 for (unsigned I
= 0; I
< SC
.SCDesc
->NumWriteLatencyEntries
; ++I
) {
415 const llvm::MCWriteLatencyEntry
*const WLE
=
416 STI
.getWriteLatencyEntry(SC
.SCDesc
, I
);
417 SchedClassPoint
[0].Value
=
418 std::max
<double>(SchedClassPoint
[0].Value
, WLE
->Cycles
);
420 ClusterCenterPoint
[0].Value
= Representative
[0].avg();
421 } else if (Mode
== InstructionBenchmark::Uops
) {
422 for (int I
= 0, E
= Representative
.size(); I
< E
; ++I
) {
423 // Find the pressure on ProcResIdx `Key`.
424 uint16_t ProcResIdx
= 0;
425 if (!llvm::to_integer(Representative
[I
].key(), ProcResIdx
, 10)) {
426 llvm::errs() << "expected ProcResIdx key, got "
427 << Representative
[I
].key() << "\n";
430 const auto ProcResPressureIt
=
431 std::find_if(SC
.IdealizedProcResPressure
.begin(),
432 SC
.IdealizedProcResPressure
.end(),
433 [ProcResIdx
](const std::pair
<uint16_t, float> &WPR
) {
434 return WPR
.first
== ProcResIdx
;
436 SchedClassPoint
[I
].Value
=
437 ProcResPressureIt
== SC
.IdealizedProcResPressure
.end()
439 : ProcResPressureIt
->second
;
440 ClusterCenterPoint
[I
].Value
= Representative
[I
].avg();
443 llvm::errs() << "unimplemented measurement matching for mode " << Mode
447 return Clustering
.isNeighbour(ClusterCenterPoint
, SchedClassPoint
);
450 void Analysis::printSchedClassDescHtml(const SchedClass
&SC
,
451 llvm::raw_ostream
&OS
) const {
452 OS
<< "<table class=\"sched-class-desc\">";
453 OS
<< "<tr><th>Valid</th><th>Variant</th><th>uOps</th><th>Latency</"
454 "th><th>WriteProcRes</th><th title=\"This is the idealized unit "
455 "resource (port) pressure assuming ideal distribution\">Idealized "
456 "Resource Pressure</th></tr>";
457 if (SC
.SCDesc
->isValid()) {
458 const auto &SM
= SubtargetInfo_
->getSchedModel();
459 OS
<< "<tr><td>✔</td>";
460 OS
<< "<td>" << (SC
.SCDesc
->isVariant() ? "✔" : "✕")
462 OS
<< "<td>" << SC
.SCDesc
->NumMicroOps
<< "</td>";
465 for (int I
= 0, E
= SC
.SCDesc
->NumWriteLatencyEntries
; I
< E
; ++I
) {
466 const auto *const Entry
=
467 SubtargetInfo_
->getWriteLatencyEntry(SC
.SCDesc
, I
);
468 OS
<< "<li>" << Entry
->Cycles
;
469 if (SC
.SCDesc
->NumWriteLatencyEntries
> 1) {
470 // Dismabiguate if more than 1 latency.
471 OS
<< " (WriteResourceID " << Entry
->WriteResourceID
<< ")";
478 for (const auto &WPR
: SC
.NonRedundantWriteProcRes
) {
479 OS
<< "<li><span class=\"mono\">";
480 writeEscaped
<kEscapeHtml
>(OS
,
481 SM
.getProcResource(WPR
.ProcResourceIdx
)->Name
);
482 OS
<< "</span>: " << WPR
.Cycles
<< "</li>";
485 // Idealized port pressure.
487 for (const auto &Pressure
: SC
.IdealizedProcResPressure
) {
488 OS
<< "<li><span class=\"mono\">";
489 writeEscaped
<kEscapeHtml
>(OS
, SubtargetInfo_
->getSchedModel()
490 .getProcResource(Pressure
.first
)
493 writeMeasurementValue
<kEscapeHtml
>(OS
, Pressure
.second
);
499 OS
<< "<tr><td>✕</td><td></td><td></td></tr>";
504 static constexpr const char kHtmlHead
[] = R
"(
506 <title>llvm-exegesis Analysis Results</title>
509 font-family: sans-serif
511 span.sched-class-name {
513 font-family: monospace;
516 font-family: monospace;
519 font-family: monospace;
526 border-collapse: collapse;
528 table, table tr,td,th {
529 border: 1px solid #444;
534 list-style-type: none;
536 table.sched-class-clusters td {
540 padding-bottom: 10px;
542 table.sched-class-desc td {
549 font-family: monospace;
554 tr.good-cluster td.measurement {
557 tr.bad-cluster td.measurement {
560 tr.good-cluster td.measurement span.minmax {
563 tr.bad-cluster td.measurement span.minmax {
571 llvm::Error
Analysis::run
<Analysis::PrintSchedClassInconsistencies
>(
572 llvm::raw_ostream
&OS
) const {
573 const auto &FirstPoint
= Clustering_
.getPoints()[0];
575 OS
<< "<!DOCTYPE html><html>" << kHtmlHead
<< "<body>";
576 OS
<< "<h1><span class=\"mono\">llvm-exegesis</span> Analysis Results</h1>";
577 OS
<< "<h3>Triple: <span class=\"mono\">";
578 writeEscaped
<kEscapeHtml
>(OS
, FirstPoint
.LLVMTriple
);
579 OS
<< "</span></h3><h3>Cpu: <span class=\"mono\">";
580 writeEscaped
<kEscapeHtml
>(OS
, FirstPoint
.CpuName
);
581 OS
<< "</span></h3>";
583 for (const auto &SchedClassAndPoints
: makePointsPerSchedClass()) {
584 const auto SchedClassId
= SchedClassAndPoints
.first
;
585 const std::vector
<size_t> &SchedClassPoints
= SchedClassAndPoints
.second
;
586 const auto &SchedModel
= SubtargetInfo_
->getSchedModel();
587 const llvm::MCSchedClassDesc
*const SCDesc
=
588 SchedModel
.getSchedClassDesc(SchedClassId
);
591 const SchedClass
SC(*SCDesc
, *SubtargetInfo_
);
593 // Bucket sched class points into sched class clusters.
594 std::vector
<SchedClassCluster
> SchedClassClusters
;
595 for (const size_t PointId
: SchedClassPoints
) {
596 const auto &ClusterId
= Clustering_
.getClusterIdForPoint(PointId
);
597 if (!ClusterId
.isValid())
598 continue; // Ignore noise and errors. FIXME: take noise into account ?
599 auto SchedClassClusterIt
=
600 std::find_if(SchedClassClusters
.begin(), SchedClassClusters
.end(),
601 [ClusterId
](const SchedClassCluster
&C
) {
602 return C
.id() == ClusterId
;
604 if (SchedClassClusterIt
== SchedClassClusters
.end()) {
605 SchedClassClusters
.emplace_back();
606 SchedClassClusterIt
= std::prev(SchedClassClusters
.end());
608 SchedClassClusterIt
->addPoint(PointId
, Clustering_
);
611 // Print any scheduling class that has at least one cluster that does not
612 // match the checked-in data.
613 if (std::all_of(SchedClassClusters
.begin(), SchedClassClusters
.end(),
614 [this, &SC
](const SchedClassCluster
&C
) {
615 return C
.measurementsMatch(*SubtargetInfo_
, SC
,
618 continue; // Nothing weird.
620 OS
<< "<div class=\"inconsistency\"><p>Sched Class <span "
621 "class=\"sched-class-name\">";
622 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
623 writeEscaped
<kEscapeHtml
>(OS
, SCDesc
->Name
);
627 OS
<< "</span> contains instructions whose performance characteristics do"
628 " not match that of LLVM:</p>";
629 printSchedClassClustersHtml(SchedClassClusters
, SC
, OS
);
630 OS
<< "<p>llvm SchedModel data:</p>";
631 printSchedClassDescHtml(SC
, OS
);
635 OS
<< "</body></html>";
636 return llvm::Error::success();
639 // Distributes a pressure budget as evenly as possible on the provided subunits
640 // given the already existing port pressure distribution.
642 // The algorithm is as follows: while there is remaining pressure to
643 // distribute, find the subunits with minimal pressure, and distribute
644 // remaining pressure equally up to the pressure of the unit with
645 // second-to-minimal pressure.
646 // For example, let's assume we want to distribute 2*P1256
647 // (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is:
648 // DensePressure = P0 P1 P2 P3 P4 P5 P6 P7
649 // 0.1 0.3 0.2 0.0 0.0 0.5 0.5 0.5
650 // RemainingPressure = 2.0
651 // We sort the subunits by pressure:
652 // Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)]
653 // We'll first start by the subunits with minimal pressure, which are at
654 // the beginning of the sorted array. In this example there is one (P2).
655 // The subunit with second-to-minimal pressure is the next one in the
656 // array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles
658 // Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)]
659 // RemainingPressure = 1.9
660 // We repeat this process: distribute 0.2 pressure on each of the minimal
661 // P2 and P1, decrease budget by 2*0.2:
662 // Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)]
663 // RemainingPressure = 1.5
664 // There are no second-to-minimal subunits so we just share the remaining
665 // budget (1.5 cycles) equally:
666 // Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)]
667 // RemainingPressure = 0.0
668 // We stop as there is no remaining budget to distribute.
669 void distributePressure(float RemainingPressure
,
670 llvm::SmallVector
<uint16_t, 32> Subunits
,
671 llvm::SmallVector
<float, 32> &DensePressure
) {
672 // Find the number of subunits with minimal pressure (they are at the
674 llvm::sort(Subunits
.begin(), Subunits
.end(),
675 [&DensePressure
](const uint16_t A
, const uint16_t B
) {
676 return DensePressure
[A
] < DensePressure
[B
];
678 const auto getPressureForSubunit
= [&DensePressure
,
679 &Subunits
](size_t I
) -> float & {
680 return DensePressure
[Subunits
[I
]];
682 size_t NumMinimalSU
= 1;
683 while (NumMinimalSU
< Subunits
.size() &&
684 getPressureForSubunit(NumMinimalSU
) == getPressureForSubunit(0)) {
687 while (RemainingPressure
> 0.0f
) {
688 if (NumMinimalSU
== Subunits
.size()) {
689 // All units are minimal, just distribute evenly and be done.
690 for (size_t I
= 0; I
< NumMinimalSU
; ++I
) {
691 getPressureForSubunit(I
) += RemainingPressure
/ NumMinimalSU
;
695 // Distribute the remaining pressure equally.
696 const float MinimalPressure
= getPressureForSubunit(NumMinimalSU
- 1);
697 const float SecondToMinimalPressure
= getPressureForSubunit(NumMinimalSU
);
698 assert(MinimalPressure
< SecondToMinimalPressure
);
699 const float Increment
= SecondToMinimalPressure
- MinimalPressure
;
700 if (RemainingPressure
<= NumMinimalSU
* Increment
) {
701 // There is not enough remaining pressure.
702 for (size_t I
= 0; I
< NumMinimalSU
; ++I
) {
703 getPressureForSubunit(I
) += RemainingPressure
/ NumMinimalSU
;
707 // Bump all minimal pressure subunits to `SecondToMinimalPressure`.
708 for (size_t I
= 0; I
< NumMinimalSU
; ++I
) {
709 getPressureForSubunit(I
) = SecondToMinimalPressure
;
710 RemainingPressure
-= SecondToMinimalPressure
;
712 while (NumMinimalSU
< Subunits
.size() &&
713 getPressureForSubunit(NumMinimalSU
) == SecondToMinimalPressure
) {
719 std::vector
<std::pair
<uint16_t, float>> computeIdealizedProcResPressure(
720 const llvm::MCSchedModel
&SM
,
721 llvm::SmallVector
<llvm::MCWriteProcResEntry
, 8> WPRS
) {
722 // DensePressure[I] is the port pressure for Proc Resource I.
723 llvm::SmallVector
<float, 32> DensePressure(SM
.getNumProcResourceKinds());
724 llvm::sort(WPRS
.begin(), WPRS
.end(),
725 [](const llvm::MCWriteProcResEntry
&A
,
726 const llvm::MCWriteProcResEntry
&B
) {
727 return A
.ProcResourceIdx
< B
.ProcResourceIdx
;
729 for (const llvm::MCWriteProcResEntry
&WPR
: WPRS
) {
730 // Get units for the entry.
731 const llvm::MCProcResourceDesc
*const ProcResDesc
=
732 SM
.getProcResource(WPR
.ProcResourceIdx
);
733 if (ProcResDesc
->SubUnitsIdxBegin
== nullptr) {
734 // This is a ProcResUnit.
735 DensePressure
[WPR
.ProcResourceIdx
] += WPR
.Cycles
;
737 // This is a ProcResGroup.
738 llvm::SmallVector
<uint16_t, 32> Subunits(ProcResDesc
->SubUnitsIdxBegin
,
739 ProcResDesc
->SubUnitsIdxBegin
+
740 ProcResDesc
->NumUnits
);
741 distributePressure(WPR
.Cycles
, Subunits
, DensePressure
);
744 // Turn dense pressure into sparse pressure by removing zero entries.
745 std::vector
<std::pair
<uint16_t, float>> Pressure
;
746 for (unsigned I
= 0, E
= SM
.getNumProcResourceKinds(); I
< E
; ++I
) {
747 if (DensePressure
[I
] > 0.0f
)
748 Pressure
.emplace_back(I
, DensePressure
[I
]);
753 } // namespace exegesis