Recommit r310809 with a fix for the spill problem
[llvm-core.git] / lib / Target / PowerPC / PPCISelDAGToDAG.cpp
blobf794312e39be4e6f09370a8ebd87441cb0339e31
1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pattern matching instruction selector for PowerPC,
11 // converting from a legalized dag to a PPC dag.
13 //===----------------------------------------------------------------------===//
15 #include "MCTargetDesc/PPCMCTargetDesc.h"
16 #include "MCTargetDesc/PPCPredicates.h"
17 #include "PPC.h"
18 #include "PPCISelLowering.h"
19 #include "PPCMachineFunctionInfo.h"
20 #include "PPCSubtarget.h"
21 #include "PPCTargetMachine.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/ISDOpcodes.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/MachineValueType.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/CodeGen/SelectionDAGISel.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/ValueTypes.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/InlineAsm.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CodeGen.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/KnownBits.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Target/TargetInstrInfo.h"
57 #include "llvm/Target/TargetRegisterInfo.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstdint>
61 #include <iterator>
62 #include <limits>
63 #include <memory>
64 #include <new>
65 #include <tuple>
66 #include <utility>
68 using namespace llvm;
70 #define DEBUG_TYPE "ppc-codegen"
72 STATISTIC(NumSextSetcc,
73 "Number of (sext(setcc)) nodes expanded into GPR sequence.");
74 STATISTIC(NumZextSetcc,
75 "Number of (zext(setcc)) nodes expanded into GPR sequence.");
76 STATISTIC(SignExtensionsAdded,
77 "Number of sign extensions for compare inputs added.");
78 STATISTIC(NumLogicOpsOnComparison,
79 "Number of logical ops on i1 values calculated in GPR.");
80 STATISTIC(OmittedForNonExtendUses,
81 "Number of compares not eliminated as they have non-extending uses.");
83 // FIXME: Remove this once the bug has been fixed!
84 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
85 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
87 static cl::opt<bool>
88 UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
89 cl::desc("use aggressive ppc isel for bit permutations"),
90 cl::Hidden);
91 static cl::opt<bool> BPermRewriterNoMasking(
92 "ppc-bit-perm-rewriter-stress-rotates",
93 cl::desc("stress rotate selection in aggressive ppc isel for "
94 "bit permutations"),
95 cl::Hidden);
97 static cl::opt<bool> EnableBranchHint(
98 "ppc-use-branch-hint", cl::init(true),
99 cl::desc("Enable static hinting of branches on ppc"),
100 cl::Hidden);
102 namespace {
104 //===--------------------------------------------------------------------===//
105 /// PPCDAGToDAGISel - PPC specific code to select PPC machine
106 /// instructions for SelectionDAG operations.
108 class PPCDAGToDAGISel : public SelectionDAGISel {
109 const PPCTargetMachine &TM;
110 const PPCSubtarget *PPCSubTarget;
111 const PPCTargetLowering *PPCLowering;
112 unsigned GlobalBaseReg;
114 public:
115 explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel)
116 : SelectionDAGISel(tm, OptLevel), TM(tm) {}
118 bool runOnMachineFunction(MachineFunction &MF) override {
119 // Make sure we re-emit a set of the global base reg if necessary
120 GlobalBaseReg = 0;
121 PPCSubTarget = &MF.getSubtarget<PPCSubtarget>();
122 PPCLowering = PPCSubTarget->getTargetLowering();
123 SelectionDAGISel::runOnMachineFunction(MF);
125 if (!PPCSubTarget->isSVR4ABI())
126 InsertVRSaveCode(MF);
128 return true;
131 void PreprocessISelDAG() override;
132 void PostprocessISelDAG() override;
134 /// getI16Imm - Return a target constant with the specified value, of type
135 /// i16.
136 inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) {
137 return CurDAG->getTargetConstant(Imm, dl, MVT::i16);
140 /// getI32Imm - Return a target constant with the specified value, of type
141 /// i32.
142 inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
143 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
146 /// getI64Imm - Return a target constant with the specified value, of type
147 /// i64.
148 inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) {
149 return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
152 /// getSmallIPtrImm - Return a target constant of pointer type.
153 inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) {
154 return CurDAG->getTargetConstant(
155 Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
158 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
159 /// rotate and mask opcode and mask operation.
160 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
161 unsigned &SH, unsigned &MB, unsigned &ME);
163 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
164 /// base register. Return the virtual register that holds this value.
165 SDNode *getGlobalBaseReg();
167 void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
169 // Select - Convert the specified operand from a target-independent to a
170 // target-specific node if it hasn't already been changed.
171 void Select(SDNode *N) override;
173 bool tryBitfieldInsert(SDNode *N);
174 bool tryBitPermutation(SDNode *N);
176 /// SelectCC - Select a comparison of the specified values with the
177 /// specified condition code, returning the CR# of the expression.
178 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
179 const SDLoc &dl);
181 /// SelectAddrImm - Returns true if the address N can be represented by
182 /// a base register plus a signed 16-bit displacement [r+imm].
183 bool SelectAddrImm(SDValue N, SDValue &Disp,
184 SDValue &Base) {
185 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 0);
188 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
189 /// immediate field. Note that the operand at this point is already the
190 /// result of a prior SelectAddressRegImm call.
191 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
192 if (N.getOpcode() == ISD::TargetConstant ||
193 N.getOpcode() == ISD::TargetGlobalAddress) {
194 Out = N;
195 return true;
198 return false;
201 /// SelectAddrIdx - Given the specified addressed, check to see if it can be
202 /// represented as an indexed [r+r] operation. Returns false if it can
203 /// be represented by [r+imm], which are preferred.
204 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
205 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG);
208 /// SelectAddrIdxOnly - Given the specified addressed, force it to be
209 /// represented as an indexed [r+r] operation.
210 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
211 return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
214 /// SelectAddrImmX4 - Returns true if the address N can be represented by
215 /// a base register plus a signed 16-bit displacement that is a multiple of 4.
216 /// Suitable for use by STD and friends.
217 bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
218 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 4);
221 bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) {
222 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 16);
225 // Select an address into a single register.
226 bool SelectAddr(SDValue N, SDValue &Base) {
227 Base = N;
228 return true;
231 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
232 /// inline asm expressions. It is always correct to compute the value into
233 /// a register. The case of adding a (possibly relocatable) constant to a
234 /// register can be improved, but it is wrong to substitute Reg+Reg for
235 /// Reg in an asm, because the load or store opcode would have to change.
236 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
237 unsigned ConstraintID,
238 std::vector<SDValue> &OutOps) override {
239 switch(ConstraintID) {
240 default:
241 errs() << "ConstraintID: " << ConstraintID << "\n";
242 llvm_unreachable("Unexpected asm memory constraint");
243 case InlineAsm::Constraint_es:
244 case InlineAsm::Constraint_i:
245 case InlineAsm::Constraint_m:
246 case InlineAsm::Constraint_o:
247 case InlineAsm::Constraint_Q:
248 case InlineAsm::Constraint_Z:
249 case InlineAsm::Constraint_Zy:
250 // We need to make sure that this one operand does not end up in r0
251 // (because we might end up lowering this as 0(%op)).
252 const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo();
253 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
254 SDLoc dl(Op);
255 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
256 SDValue NewOp =
257 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
258 dl, Op.getValueType(),
259 Op, RC), 0);
261 OutOps.push_back(NewOp);
262 return false;
264 return true;
267 void InsertVRSaveCode(MachineFunction &MF);
269 StringRef getPassName() const override {
270 return "PowerPC DAG->DAG Pattern Instruction Selection";
273 // Include the pieces autogenerated from the target description.
274 #include "PPCGenDAGISel.inc"
276 private:
277 // Conversion type for interpreting results of a 32-bit instruction as
278 // a 64-bit value or vice versa.
279 enum ExtOrTruncConversion { Ext, Trunc };
281 // Modifiers to guide how an ISD::SETCC node's result is to be computed
282 // in a GPR.
283 // ZExtOrig - use the original condition code, zero-extend value
284 // ZExtInvert - invert the condition code, zero-extend value
285 // SExtOrig - use the original condition code, sign-extend value
286 // SExtInvert - invert the condition code, sign-extend value
287 enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert };
289 // Comparisons against zero to emit GPR code sequences for. Each of these
290 // sequences may need to be emitted for two or more equivalent patterns.
291 // For example (a >= 0) == (a > -1). The direction of the comparison (</>)
292 // matters as well as the extension type: sext (-1/0), zext (1/0).
293 // GEZExt - (zext (LHS >= 0))
294 // GESExt - (sext (LHS >= 0))
295 // LEZExt - (zext (LHS <= 0))
296 // LESExt - (sext (LHS <= 0))
297 enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt };
299 bool trySETCC(SDNode *N);
300 bool tryEXTEND(SDNode *N);
301 bool tryLogicOpOfCompares(SDNode *N);
302 SDValue computeLogicOpInGPR(SDValue LogicOp);
303 SDValue signExtendInputIfNeeded(SDValue Input);
304 SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv);
305 SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
306 ZeroCompare CmpTy);
307 SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
308 int64_t RHSValue, SDLoc dl);
309 SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
310 int64_t RHSValue, SDLoc dl);
311 SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
312 int64_t RHSValue, SDLoc dl);
313 SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
314 int64_t RHSValue, SDLoc dl);
315 SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts);
317 void PeepholePPC64();
318 void PeepholePPC64ZExt();
319 void PeepholeCROps();
321 SDValue combineToCMPB(SDNode *N);
322 void foldBoolExts(SDValue &Res, SDNode *&N);
324 bool AllUsersSelectZero(SDNode *N);
325 void SwapAllSelectUsers(SDNode *N);
327 bool isOffsetMultipleOf(SDNode *N, unsigned Val) const;
328 void transferMemOperands(SDNode *N, SDNode *Result);
331 } // end anonymous namespace
333 /// InsertVRSaveCode - Once the entire function has been instruction selected,
334 /// all virtual registers are created and all machine instructions are built,
335 /// check to see if we need to save/restore VRSAVE. If so, do it.
336 void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
337 // Check to see if this function uses vector registers, which means we have to
338 // save and restore the VRSAVE register and update it with the regs we use.
340 // In this case, there will be virtual registers of vector type created
341 // by the scheduler. Detect them now.
342 bool HasVectorVReg = false;
343 for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
344 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
345 if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
346 HasVectorVReg = true;
347 break;
350 if (!HasVectorVReg) return; // nothing to do.
352 // If we have a vector register, we want to emit code into the entry and exit
353 // blocks to save and restore the VRSAVE register. We do this here (instead
354 // of marking all vector instructions as clobbering VRSAVE) for two reasons:
356 // 1. This (trivially) reduces the load on the register allocator, by not
357 // having to represent the live range of the VRSAVE register.
358 // 2. This (more significantly) allows us to create a temporary virtual
359 // register to hold the saved VRSAVE value, allowing this temporary to be
360 // register allocated, instead of forcing it to be spilled to the stack.
362 // Create two vregs - one to hold the VRSAVE register that is live-in to the
363 // function and one for the value after having bits or'd into it.
364 unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
365 unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
367 const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
368 MachineBasicBlock &EntryBB = *Fn.begin();
369 DebugLoc dl;
370 // Emit the following code into the entry block:
371 // InVRSAVE = MFVRSAVE
372 // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
373 // MTVRSAVE UpdatedVRSAVE
374 MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point
375 BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
376 BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
377 UpdatedVRSAVE).addReg(InVRSAVE);
378 BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
380 // Find all return blocks, outputting a restore in each epilog.
381 for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
382 if (BB->isReturnBlock()) {
383 IP = BB->end(); --IP;
385 // Skip over all terminator instructions, which are part of the return
386 // sequence.
387 MachineBasicBlock::iterator I2 = IP;
388 while (I2 != BB->begin() && (--I2)->isTerminator())
389 IP = I2;
391 // Emit: MTVRSAVE InVRSave
392 BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
397 /// getGlobalBaseReg - Output the instructions required to put the
398 /// base address to use for accessing globals into a register.
400 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
401 if (!GlobalBaseReg) {
402 const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
403 // Insert the set of GlobalBaseReg into the first MBB of the function
404 MachineBasicBlock &FirstMBB = MF->front();
405 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
406 const Module *M = MF->getFunction()->getParent();
407 DebugLoc dl;
409 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
410 if (PPCSubTarget->isTargetELF()) {
411 GlobalBaseReg = PPC::R30;
412 if (M->getPICLevel() == PICLevel::SmallPIC) {
413 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
414 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
415 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
416 } else {
417 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
418 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
419 unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
420 BuildMI(FirstMBB, MBBI, dl,
421 TII.get(PPC::UpdateGBR), GlobalBaseReg)
422 .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
423 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
425 } else {
426 GlobalBaseReg =
427 RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass);
428 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
429 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
431 } else {
432 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
433 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
434 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
437 return CurDAG->getRegister(GlobalBaseReg,
438 PPCLowering->getPointerTy(CurDAG->getDataLayout()))
439 .getNode();
442 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
443 /// operand. If so Imm will receive the 32-bit value.
444 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
445 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
446 Imm = cast<ConstantSDNode>(N)->getZExtValue();
447 return true;
449 return false;
452 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
453 /// operand. If so Imm will receive the 64-bit value.
454 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
455 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
456 Imm = cast<ConstantSDNode>(N)->getZExtValue();
457 return true;
459 return false;
462 // isInt32Immediate - This method tests to see if a constant operand.
463 // If so Imm will receive the 32 bit value.
464 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
465 return isInt32Immediate(N.getNode(), Imm);
468 /// isInt64Immediate - This method tests to see if the value is a 64-bit
469 /// constant operand. If so Imm will receive the 64-bit value.
470 static bool isInt64Immediate(SDValue N, uint64_t &Imm) {
471 return isInt64Immediate(N.getNode(), Imm);
474 static unsigned getBranchHint(unsigned PCC, FunctionLoweringInfo *FuncInfo,
475 const SDValue &DestMBB) {
476 assert(isa<BasicBlockSDNode>(DestMBB));
478 if (!FuncInfo->BPI) return PPC::BR_NO_HINT;
480 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
481 const TerminatorInst *BBTerm = BB->getTerminator();
483 if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
485 const BasicBlock *TBB = BBTerm->getSuccessor(0);
486 const BasicBlock *FBB = BBTerm->getSuccessor(1);
488 auto TProb = FuncInfo->BPI->getEdgeProbability(BB, TBB);
489 auto FProb = FuncInfo->BPI->getEdgeProbability(BB, FBB);
491 // We only want to handle cases which are easy to predict at static time, e.g.
492 // C++ throw statement, that is very likely not taken, or calling never
493 // returned function, e.g. stdlib exit(). So we set Threshold to filter
494 // unwanted cases.
496 // Below is LLVM branch weight table, we only want to handle case 1, 2
498 // Case Taken:Nontaken Example
499 // 1. Unreachable 1048575:1 C++ throw, stdlib exit(),
500 // 2. Invoke-terminating 1:1048575
501 // 3. Coldblock 4:64 __builtin_expect
502 // 4. Loop Branch 124:4 For loop
503 // 5. PH/ZH/FPH 20:12
504 const uint32_t Threshold = 10000;
506 if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb))
507 return PPC::BR_NO_HINT;
509 DEBUG(dbgs() << "Use branch hint for '" << FuncInfo->Fn->getName() << "::"
510 << BB->getName() << "'\n"
511 << " -> " << TBB->getName() << ": " << TProb << "\n"
512 << " -> " << FBB->getName() << ": " << FProb << "\n");
514 const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
516 // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities,
517 // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock
518 if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
519 std::swap(TProb, FProb);
521 return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
524 // isOpcWithIntImmediate - This method tests to see if the node is a specific
525 // opcode and that it has a immediate integer right operand.
526 // If so Imm will receive the 32 bit value.
527 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
528 return N->getOpcode() == Opc
529 && isInt32Immediate(N->getOperand(1).getNode(), Imm);
532 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
533 SDLoc dl(SN);
534 int FI = cast<FrameIndexSDNode>(N)->getIndex();
535 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
536 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
537 if (SN->hasOneUse())
538 CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
539 getSmallIPtrImm(Offset, dl));
540 else
541 ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
542 getSmallIPtrImm(Offset, dl)));
545 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
546 bool isShiftMask, unsigned &SH,
547 unsigned &MB, unsigned &ME) {
548 // Don't even go down this path for i64, since different logic will be
549 // necessary for rldicl/rldicr/rldimi.
550 if (N->getValueType(0) != MVT::i32)
551 return false;
553 unsigned Shift = 32;
554 unsigned Indeterminant = ~0; // bit mask marking indeterminant results
555 unsigned Opcode = N->getOpcode();
556 if (N->getNumOperands() != 2 ||
557 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
558 return false;
560 if (Opcode == ISD::SHL) {
561 // apply shift left to mask if it comes first
562 if (isShiftMask) Mask = Mask << Shift;
563 // determine which bits are made indeterminant by shift
564 Indeterminant = ~(0xFFFFFFFFu << Shift);
565 } else if (Opcode == ISD::SRL) {
566 // apply shift right to mask if it comes first
567 if (isShiftMask) Mask = Mask >> Shift;
568 // determine which bits are made indeterminant by shift
569 Indeterminant = ~(0xFFFFFFFFu >> Shift);
570 // adjust for the left rotate
571 Shift = 32 - Shift;
572 } else if (Opcode == ISD::ROTL) {
573 Indeterminant = 0;
574 } else {
575 return false;
578 // if the mask doesn't intersect any Indeterminant bits
579 if (Mask && !(Mask & Indeterminant)) {
580 SH = Shift & 31;
581 // make sure the mask is still a mask (wrap arounds may not be)
582 return isRunOfOnes(Mask, MB, ME);
584 return false;
587 /// Turn an or of two masked values into the rotate left word immediate then
588 /// mask insert (rlwimi) instruction.
589 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
590 SDValue Op0 = N->getOperand(0);
591 SDValue Op1 = N->getOperand(1);
592 SDLoc dl(N);
594 KnownBits LKnown, RKnown;
595 CurDAG->computeKnownBits(Op0, LKnown);
596 CurDAG->computeKnownBits(Op1, RKnown);
598 unsigned TargetMask = LKnown.Zero.getZExtValue();
599 unsigned InsertMask = RKnown.Zero.getZExtValue();
601 if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
602 unsigned Op0Opc = Op0.getOpcode();
603 unsigned Op1Opc = Op1.getOpcode();
604 unsigned Value, SH = 0;
605 TargetMask = ~TargetMask;
606 InsertMask = ~InsertMask;
608 // If the LHS has a foldable shift and the RHS does not, then swap it to the
609 // RHS so that we can fold the shift into the insert.
610 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
611 if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
612 Op0.getOperand(0).getOpcode() == ISD::SRL) {
613 if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
614 Op1.getOperand(0).getOpcode() != ISD::SRL) {
615 std::swap(Op0, Op1);
616 std::swap(Op0Opc, Op1Opc);
617 std::swap(TargetMask, InsertMask);
620 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
621 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
622 Op1.getOperand(0).getOpcode() != ISD::SRL) {
623 std::swap(Op0, Op1);
624 std::swap(Op0Opc, Op1Opc);
625 std::swap(TargetMask, InsertMask);
629 unsigned MB, ME;
630 if (isRunOfOnes(InsertMask, MB, ME)) {
631 SDValue Tmp1, Tmp2;
633 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
634 isInt32Immediate(Op1.getOperand(1), Value)) {
635 Op1 = Op1.getOperand(0);
636 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
638 if (Op1Opc == ISD::AND) {
639 // The AND mask might not be a constant, and we need to make sure that
640 // if we're going to fold the masking with the insert, all bits not
641 // know to be zero in the mask are known to be one.
642 KnownBits MKnown;
643 CurDAG->computeKnownBits(Op1.getOperand(1), MKnown);
644 bool CanFoldMask = InsertMask == MKnown.One.getZExtValue();
646 unsigned SHOpc = Op1.getOperand(0).getOpcode();
647 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
648 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
649 // Note that Value must be in range here (less than 32) because
650 // otherwise there would not be any bits set in InsertMask.
651 Op1 = Op1.getOperand(0).getOperand(0);
652 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value;
656 SH &= 31;
657 SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
658 getI32Imm(ME, dl) };
659 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
660 return true;
663 return false;
666 // Predict the number of instructions that would be generated by calling
667 // selectI64Imm(N).
668 static unsigned selectI64ImmInstrCountDirect(int64_t Imm) {
669 // Assume no remaining bits.
670 unsigned Remainder = 0;
671 // Assume no shift required.
672 unsigned Shift = 0;
674 // If it can't be represented as a 32 bit value.
675 if (!isInt<32>(Imm)) {
676 Shift = countTrailingZeros<uint64_t>(Imm);
677 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
679 // If the shifted value fits 32 bits.
680 if (isInt<32>(ImmSh)) {
681 // Go with the shifted value.
682 Imm = ImmSh;
683 } else {
684 // Still stuck with a 64 bit value.
685 Remainder = Imm;
686 Shift = 32;
687 Imm >>= 32;
691 // Intermediate operand.
692 unsigned Result = 0;
694 // Handle first 32 bits.
695 unsigned Lo = Imm & 0xFFFF;
697 // Simple value.
698 if (isInt<16>(Imm)) {
699 // Just the Lo bits.
700 ++Result;
701 } else if (Lo) {
702 // Handle the Hi bits and Lo bits.
703 Result += 2;
704 } else {
705 // Just the Hi bits.
706 ++Result;
709 // If no shift, we're done.
710 if (!Shift) return Result;
712 // If Hi word == Lo word,
713 // we can use rldimi to insert the Lo word into Hi word.
714 if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) {
715 ++Result;
716 return Result;
719 // Shift for next step if the upper 32-bits were not zero.
720 if (Imm)
721 ++Result;
723 // Add in the last bits as required.
724 if ((Remainder >> 16) & 0xFFFF)
725 ++Result;
726 if (Remainder & 0xFFFF)
727 ++Result;
729 return Result;
732 static uint64_t Rot64(uint64_t Imm, unsigned R) {
733 return (Imm << R) | (Imm >> (64 - R));
736 static unsigned selectI64ImmInstrCount(int64_t Imm) {
737 unsigned Count = selectI64ImmInstrCountDirect(Imm);
739 // If the instruction count is 1 or 2, we do not need further analysis
740 // since rotate + load constant requires at least 2 instructions.
741 if (Count <= 2)
742 return Count;
744 for (unsigned r = 1; r < 63; ++r) {
745 uint64_t RImm = Rot64(Imm, r);
746 unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1;
747 Count = std::min(Count, RCount);
749 // See comments in selectI64Imm for an explanation of the logic below.
750 unsigned LS = findLastSet(RImm);
751 if (LS != r-1)
752 continue;
754 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
755 uint64_t RImmWithOnes = RImm | OnesMask;
757 RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1;
758 Count = std::min(Count, RCount);
761 return Count;
764 // Select a 64-bit constant. For cost-modeling purposes, selectI64ImmInstrCount
765 // (above) needs to be kept in sync with this function.
766 static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl,
767 int64_t Imm) {
768 // Assume no remaining bits.
769 unsigned Remainder = 0;
770 // Assume no shift required.
771 unsigned Shift = 0;
773 // If it can't be represented as a 32 bit value.
774 if (!isInt<32>(Imm)) {
775 Shift = countTrailingZeros<uint64_t>(Imm);
776 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
778 // If the shifted value fits 32 bits.
779 if (isInt<32>(ImmSh)) {
780 // Go with the shifted value.
781 Imm = ImmSh;
782 } else {
783 // Still stuck with a 64 bit value.
784 Remainder = Imm;
785 Shift = 32;
786 Imm >>= 32;
790 // Intermediate operand.
791 SDNode *Result;
793 // Handle first 32 bits.
794 unsigned Lo = Imm & 0xFFFF;
795 unsigned Hi = (Imm >> 16) & 0xFFFF;
797 auto getI32Imm = [CurDAG, dl](unsigned Imm) {
798 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
801 // Simple value.
802 if (isInt<16>(Imm)) {
803 // Just the Lo bits.
804 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
805 } else if (Lo) {
806 // Handle the Hi bits.
807 unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
808 Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
809 // And Lo bits.
810 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
811 SDValue(Result, 0), getI32Imm(Lo));
812 } else {
813 // Just the Hi bits.
814 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
817 // If no shift, we're done.
818 if (!Shift) return Result;
820 // If Hi word == Lo word,
821 // we can use rldimi to insert the Lo word into Hi word.
822 if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) {
823 SDValue Ops[] =
824 { SDValue(Result, 0), SDValue(Result, 0), getI32Imm(Shift), getI32Imm(0)};
825 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
828 // Shift for next step if the upper 32-bits were not zero.
829 if (Imm) {
830 Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
831 SDValue(Result, 0),
832 getI32Imm(Shift),
833 getI32Imm(63 - Shift));
836 // Add in the last bits as required.
837 if ((Hi = (Remainder >> 16) & 0xFFFF)) {
838 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
839 SDValue(Result, 0), getI32Imm(Hi));
841 if ((Lo = Remainder & 0xFFFF)) {
842 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
843 SDValue(Result, 0), getI32Imm(Lo));
846 return Result;
849 static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl,
850 int64_t Imm) {
851 unsigned Count = selectI64ImmInstrCountDirect(Imm);
853 // If the instruction count is 1 or 2, we do not need further analysis
854 // since rotate + load constant requires at least 2 instructions.
855 if (Count <= 2)
856 return selectI64ImmDirect(CurDAG, dl, Imm);
858 unsigned RMin = 0;
860 int64_t MatImm;
861 unsigned MaskEnd;
863 for (unsigned r = 1; r < 63; ++r) {
864 uint64_t RImm = Rot64(Imm, r);
865 unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1;
866 if (RCount < Count) {
867 Count = RCount;
868 RMin = r;
869 MatImm = RImm;
870 MaskEnd = 63;
873 // If the immediate to generate has many trailing zeros, it might be
874 // worthwhile to generate a rotated value with too many leading ones
875 // (because that's free with li/lis's sign-extension semantics), and then
876 // mask them off after rotation.
878 unsigned LS = findLastSet(RImm);
879 // We're adding (63-LS) higher-order ones, and we expect to mask them off
880 // after performing the inverse rotation by (64-r). So we need that:
881 // 63-LS == 64-r => LS == r-1
882 if (LS != r-1)
883 continue;
885 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
886 uint64_t RImmWithOnes = RImm | OnesMask;
888 RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1;
889 if (RCount < Count) {
890 Count = RCount;
891 RMin = r;
892 MatImm = RImmWithOnes;
893 MaskEnd = LS;
897 if (!RMin)
898 return selectI64ImmDirect(CurDAG, dl, Imm);
900 auto getI32Imm = [CurDAG, dl](unsigned Imm) {
901 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
904 SDValue Val = SDValue(selectI64ImmDirect(CurDAG, dl, MatImm), 0);
905 return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val,
906 getI32Imm(64 - RMin), getI32Imm(MaskEnd));
909 // Select a 64-bit constant.
910 static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) {
911 SDLoc dl(N);
913 // Get 64 bit value.
914 int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
915 return selectI64Imm(CurDAG, dl, Imm);
918 namespace {
920 class BitPermutationSelector {
921 struct ValueBit {
922 SDValue V;
924 // The bit number in the value, using a convention where bit 0 is the
925 // lowest-order bit.
926 unsigned Idx;
928 enum Kind {
929 ConstZero,
930 Variable
931 } K;
933 ValueBit(SDValue V, unsigned I, Kind K = Variable)
934 : V(V), Idx(I), K(K) {}
935 ValueBit(Kind K = Variable)
936 : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {}
938 bool isZero() const {
939 return K == ConstZero;
942 bool hasValue() const {
943 return K == Variable;
946 SDValue getValue() const {
947 assert(hasValue() && "Cannot get the value of a constant bit");
948 return V;
951 unsigned getValueBitIndex() const {
952 assert(hasValue() && "Cannot get the value bit index of a constant bit");
953 return Idx;
957 // A bit group has the same underlying value and the same rotate factor.
958 struct BitGroup {
959 SDValue V;
960 unsigned RLAmt;
961 unsigned StartIdx, EndIdx;
963 // This rotation amount assumes that the lower 32 bits of the quantity are
964 // replicated in the high 32 bits by the rotation operator (which is done
965 // by rlwinm and friends in 64-bit mode).
966 bool Repl32;
967 // Did converting to Repl32 == true change the rotation factor? If it did,
968 // it decreased it by 32.
969 bool Repl32CR;
970 // Was this group coalesced after setting Repl32 to true?
971 bool Repl32Coalesced;
973 BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
974 : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
975 Repl32Coalesced(false) {
976 DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R <<
977 " [" << S << ", " << E << "]\n");
981 // Information on each (Value, RLAmt) pair (like the number of groups
982 // associated with each) used to choose the lowering method.
983 struct ValueRotInfo {
984 SDValue V;
985 unsigned RLAmt = std::numeric_limits<unsigned>::max();
986 unsigned NumGroups = 0;
987 unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max();
988 bool Repl32 = false;
990 ValueRotInfo() = default;
992 // For sorting (in reverse order) by NumGroups, and then by
993 // FirstGroupStartIdx.
994 bool operator < (const ValueRotInfo &Other) const {
995 // We need to sort so that the non-Repl32 come first because, when we're
996 // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
997 // masking operation.
998 if (Repl32 < Other.Repl32)
999 return true;
1000 else if (Repl32 > Other.Repl32)
1001 return false;
1002 else if (NumGroups > Other.NumGroups)
1003 return true;
1004 else if (NumGroups < Other.NumGroups)
1005 return false;
1006 else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
1007 return true;
1008 return false;
1012 using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>;
1013 using ValueBitsMemoizer =
1014 DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>;
1015 ValueBitsMemoizer Memoizer;
1017 // Return a pair of bool and a SmallVector pointer to a memoization entry.
1018 // The bool is true if something interesting was deduced, otherwise if we're
1019 // providing only a generic representation of V (or something else likewise
1020 // uninteresting for instruction selection) through the SmallVector.
1021 std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V,
1022 unsigned NumBits) {
1023 auto &ValueEntry = Memoizer[V];
1024 if (ValueEntry)
1025 return std::make_pair(ValueEntry->first, &ValueEntry->second);
1026 ValueEntry.reset(new ValueBitsMemoizedValue());
1027 bool &Interesting = ValueEntry->first;
1028 SmallVector<ValueBit, 64> &Bits = ValueEntry->second;
1029 Bits.resize(NumBits);
1031 switch (V.getOpcode()) {
1032 default: break;
1033 case ISD::ROTL:
1034 if (isa<ConstantSDNode>(V.getOperand(1))) {
1035 unsigned RotAmt = V.getConstantOperandVal(1);
1037 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1039 for (unsigned i = 0; i < NumBits; ++i)
1040 Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt];
1042 return std::make_pair(Interesting = true, &Bits);
1044 break;
1045 case ISD::SHL:
1046 if (isa<ConstantSDNode>(V.getOperand(1))) {
1047 unsigned ShiftAmt = V.getConstantOperandVal(1);
1049 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1051 for (unsigned i = ShiftAmt; i < NumBits; ++i)
1052 Bits[i] = LHSBits[i - ShiftAmt];
1054 for (unsigned i = 0; i < ShiftAmt; ++i)
1055 Bits[i] = ValueBit(ValueBit::ConstZero);
1057 return std::make_pair(Interesting = true, &Bits);
1059 break;
1060 case ISD::SRL:
1061 if (isa<ConstantSDNode>(V.getOperand(1))) {
1062 unsigned ShiftAmt = V.getConstantOperandVal(1);
1064 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1066 for (unsigned i = 0; i < NumBits - ShiftAmt; ++i)
1067 Bits[i] = LHSBits[i + ShiftAmt];
1069 for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i)
1070 Bits[i] = ValueBit(ValueBit::ConstZero);
1072 return std::make_pair(Interesting = true, &Bits);
1074 break;
1075 case ISD::AND:
1076 if (isa<ConstantSDNode>(V.getOperand(1))) {
1077 uint64_t Mask = V.getConstantOperandVal(1);
1079 const SmallVector<ValueBit, 64> *LHSBits;
1080 // Mark this as interesting, only if the LHS was also interesting. This
1081 // prevents the overall procedure from matching a single immediate 'and'
1082 // (which is non-optimal because such an and might be folded with other
1083 // things if we don't select it here).
1084 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits);
1086 for (unsigned i = 0; i < NumBits; ++i)
1087 if (((Mask >> i) & 1) == 1)
1088 Bits[i] = (*LHSBits)[i];
1089 else
1090 Bits[i] = ValueBit(ValueBit::ConstZero);
1092 return std::make_pair(Interesting, &Bits);
1094 break;
1095 case ISD::OR: {
1096 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1097 const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second;
1099 bool AllDisjoint = true;
1100 for (unsigned i = 0; i < NumBits; ++i)
1101 if (LHSBits[i].isZero())
1102 Bits[i] = RHSBits[i];
1103 else if (RHSBits[i].isZero())
1104 Bits[i] = LHSBits[i];
1105 else {
1106 AllDisjoint = false;
1107 break;
1110 if (!AllDisjoint)
1111 break;
1113 return std::make_pair(Interesting = true, &Bits);
1117 for (unsigned i = 0; i < NumBits; ++i)
1118 Bits[i] = ValueBit(V, i);
1120 return std::make_pair(Interesting = false, &Bits);
1123 // For each value (except the constant ones), compute the left-rotate amount
1124 // to get it from its original to final position.
1125 void computeRotationAmounts() {
1126 HasZeros = false;
1127 RLAmt.resize(Bits.size());
1128 for (unsigned i = 0; i < Bits.size(); ++i)
1129 if (Bits[i].hasValue()) {
1130 unsigned VBI = Bits[i].getValueBitIndex();
1131 if (i >= VBI)
1132 RLAmt[i] = i - VBI;
1133 else
1134 RLAmt[i] = Bits.size() - (VBI - i);
1135 } else if (Bits[i].isZero()) {
1136 HasZeros = true;
1137 RLAmt[i] = UINT32_MAX;
1138 } else {
1139 llvm_unreachable("Unknown value bit type");
1143 // Collect groups of consecutive bits with the same underlying value and
1144 // rotation factor. If we're doing late masking, we ignore zeros, otherwise
1145 // they break up groups.
1146 void collectBitGroups(bool LateMask) {
1147 BitGroups.clear();
1149 unsigned LastRLAmt = RLAmt[0];
1150 SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
1151 unsigned LastGroupStartIdx = 0;
1152 for (unsigned i = 1; i < Bits.size(); ++i) {
1153 unsigned ThisRLAmt = RLAmt[i];
1154 SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
1155 if (LateMask && !ThisValue) {
1156 ThisValue = LastValue;
1157 ThisRLAmt = LastRLAmt;
1158 // If we're doing late masking, then the first bit group always starts
1159 // at zero (even if the first bits were zero).
1160 if (BitGroups.empty())
1161 LastGroupStartIdx = 0;
1164 // If this bit has the same underlying value and the same rotate factor as
1165 // the last one, then they're part of the same group.
1166 if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1167 continue;
1169 if (LastValue.getNode())
1170 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1171 i-1));
1172 LastRLAmt = ThisRLAmt;
1173 LastValue = ThisValue;
1174 LastGroupStartIdx = i;
1176 if (LastValue.getNode())
1177 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1178 Bits.size()-1));
1180 if (BitGroups.empty())
1181 return;
1183 // We might be able to combine the first and last groups.
1184 if (BitGroups.size() > 1) {
1185 // If the first and last groups are the same, then remove the first group
1186 // in favor of the last group, making the ending index of the last group
1187 // equal to the ending index of the to-be-removed first group.
1188 if (BitGroups[0].StartIdx == 0 &&
1189 BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1190 BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1191 BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
1192 DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
1193 BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1194 BitGroups.erase(BitGroups.begin());
1199 // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1200 // associated with each. If there is a degeneracy, pick the one that occurs
1201 // first (in the final value).
1202 void collectValueRotInfo() {
1203 ValueRots.clear();
1205 for (auto &BG : BitGroups) {
1206 unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1207 ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
1208 VRI.V = BG.V;
1209 VRI.RLAmt = BG.RLAmt;
1210 VRI.Repl32 = BG.Repl32;
1211 VRI.NumGroups += 1;
1212 VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1215 // Now that we've collected the various ValueRotInfo instances, we need to
1216 // sort them.
1217 ValueRotsVec.clear();
1218 for (auto &I : ValueRots) {
1219 ValueRotsVec.push_back(I.second);
1221 std::sort(ValueRotsVec.begin(), ValueRotsVec.end());
1224 // In 64-bit mode, rlwinm and friends have a rotation operator that
1225 // replicates the low-order 32 bits into the high-order 32-bits. The mask
1226 // indices of these instructions can only be in the lower 32 bits, so they
1227 // can only represent some 64-bit bit groups. However, when they can be used,
1228 // the 32-bit replication can be used to represent, as a single bit group,
1229 // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1230 // groups when possible. Returns true if any of the bit groups were
1231 // converted.
1232 void assignRepl32BitGroups() {
1233 // If we have bits like this:
1235 // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1236 // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24
1237 // Groups: | RLAmt = 8 | RLAmt = 40 |
1239 // But, making use of a 32-bit operation that replicates the low-order 32
1240 // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1241 // of 8.
1243 auto IsAllLow32 = [this](BitGroup & BG) {
1244 if (BG.StartIdx <= BG.EndIdx) {
1245 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1246 if (!Bits[i].hasValue())
1247 continue;
1248 if (Bits[i].getValueBitIndex() >= 32)
1249 return false;
1251 } else {
1252 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
1253 if (!Bits[i].hasValue())
1254 continue;
1255 if (Bits[i].getValueBitIndex() >= 32)
1256 return false;
1258 for (unsigned i = 0; i <= BG.EndIdx; ++i) {
1259 if (!Bits[i].hasValue())
1260 continue;
1261 if (Bits[i].getValueBitIndex() >= 32)
1262 return false;
1266 return true;
1269 for (auto &BG : BitGroups) {
1270 if (BG.StartIdx < 32 && BG.EndIdx < 32) {
1271 if (IsAllLow32(BG)) {
1272 if (BG.RLAmt >= 32) {
1273 BG.RLAmt -= 32;
1274 BG.Repl32CR = true;
1277 BG.Repl32 = true;
1279 DEBUG(dbgs() << "\t32-bit replicated bit group for " <<
1280 BG.V.getNode() << " RLAmt = " << BG.RLAmt <<
1281 " [" << BG.StartIdx << ", " << BG.EndIdx << "]\n");
1286 // Now walk through the bit groups, consolidating where possible.
1287 for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1288 // We might want to remove this bit group by merging it with the previous
1289 // group (which might be the ending group).
1290 auto IP = (I == BitGroups.begin()) ?
1291 std::prev(BitGroups.end()) : std::prev(I);
1292 if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
1293 I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
1295 DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " <<
1296 I->V.getNode() << " RLAmt = " << I->RLAmt <<
1297 " [" << I->StartIdx << ", " << I->EndIdx <<
1298 "] with group with range [" <<
1299 IP->StartIdx << ", " << IP->EndIdx << "]\n");
1301 IP->EndIdx = I->EndIdx;
1302 IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
1303 IP->Repl32Coalesced = true;
1304 I = BitGroups.erase(I);
1305 continue;
1306 } else {
1307 // There is a special case worth handling: If there is a single group
1308 // covering the entire upper 32 bits, and it can be merged with both
1309 // the next and previous groups (which might be the same group), then
1310 // do so. If it is the same group (so there will be only one group in
1311 // total), then we need to reverse the order of the range so that it
1312 // covers the entire 64 bits.
1313 if (I->StartIdx == 32 && I->EndIdx == 63) {
1314 assert(std::next(I) == BitGroups.end() &&
1315 "bit group ends at index 63 but there is another?");
1316 auto IN = BitGroups.begin();
1318 if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
1319 (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
1320 IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
1321 IsAllLow32(*I)) {
1323 DEBUG(dbgs() << "\tcombining bit group for " <<
1324 I->V.getNode() << " RLAmt = " << I->RLAmt <<
1325 " [" << I->StartIdx << ", " << I->EndIdx <<
1326 "] with 32-bit replicated groups with ranges [" <<
1327 IP->StartIdx << ", " << IP->EndIdx << "] and [" <<
1328 IN->StartIdx << ", " << IN->EndIdx << "]\n");
1330 if (IP == IN) {
1331 // There is only one other group; change it to cover the whole
1332 // range (backward, so that it can still be Repl32 but cover the
1333 // whole 64-bit range).
1334 IP->StartIdx = 31;
1335 IP->EndIdx = 30;
1336 IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
1337 IP->Repl32Coalesced = true;
1338 I = BitGroups.erase(I);
1339 } else {
1340 // There are two separate groups, one before this group and one
1341 // after us (at the beginning). We're going to remove this group,
1342 // but also the group at the very beginning.
1343 IP->EndIdx = IN->EndIdx;
1344 IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
1345 IP->Repl32Coalesced = true;
1346 I = BitGroups.erase(I);
1347 BitGroups.erase(BitGroups.begin());
1350 // This must be the last group in the vector (and we might have
1351 // just invalidated the iterator above), so break here.
1352 break;
1357 ++I;
1361 SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
1362 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1365 uint64_t getZerosMask() {
1366 uint64_t Mask = 0;
1367 for (unsigned i = 0; i < Bits.size(); ++i) {
1368 if (Bits[i].hasValue())
1369 continue;
1370 Mask |= (UINT64_C(1) << i);
1373 return ~Mask;
1376 // Depending on the number of groups for a particular value, it might be
1377 // better to rotate, mask explicitly (using andi/andis), and then or the
1378 // result. Select this part of the result first.
1379 void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
1380 if (BPermRewriterNoMasking)
1381 return;
1383 for (ValueRotInfo &VRI : ValueRotsVec) {
1384 unsigned Mask = 0;
1385 for (unsigned i = 0; i < Bits.size(); ++i) {
1386 if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
1387 continue;
1388 if (RLAmt[i] != VRI.RLAmt)
1389 continue;
1390 Mask |= (1u << i);
1393 // Compute the masks for andi/andis that would be necessary.
1394 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1395 assert((ANDIMask != 0 || ANDISMask != 0) &&
1396 "No set bits in mask for value bit groups");
1397 bool NeedsRotate = VRI.RLAmt != 0;
1399 // We're trying to minimize the number of instructions. If we have one
1400 // group, using one of andi/andis can break even. If we have three
1401 // groups, we can use both andi and andis and break even (to use both
1402 // andi and andis we also need to or the results together). We need four
1403 // groups if we also need to rotate. To use andi/andis we need to do more
1404 // than break even because rotate-and-mask instructions tend to be easier
1405 // to schedule.
1407 // FIXME: We've biased here against using andi/andis, which is right for
1408 // POWER cores, but not optimal everywhere. For example, on the A2,
1409 // andi/andis have single-cycle latency whereas the rotate-and-mask
1410 // instructions take two cycles, and it would be better to bias toward
1411 // andi/andis in break-even cases.
1413 unsigned NumAndInsts = (unsigned) NeedsRotate +
1414 (unsigned) (ANDIMask != 0) +
1415 (unsigned) (ANDISMask != 0) +
1416 (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
1417 (unsigned) (bool) Res;
1419 DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
1420 " RL: " << VRI.RLAmt << ":" <<
1421 "\n\t\t\tisel using masking: " << NumAndInsts <<
1422 " using rotates: " << VRI.NumGroups << "\n");
1424 if (NumAndInsts >= VRI.NumGroups)
1425 continue;
1427 DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1429 if (InstCnt) *InstCnt += NumAndInsts;
1431 SDValue VRot;
1432 if (VRI.RLAmt) {
1433 SDValue Ops[] =
1434 { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
1435 getI32Imm(31, dl) };
1436 VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
1437 Ops), 0);
1438 } else {
1439 VRot = VRI.V;
1442 SDValue ANDIVal, ANDISVal;
1443 if (ANDIMask != 0)
1444 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1445 VRot, getI32Imm(ANDIMask, dl)), 0);
1446 if (ANDISMask != 0)
1447 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1448 VRot, getI32Imm(ANDISMask, dl)), 0);
1450 SDValue TotalVal;
1451 if (!ANDIVal)
1452 TotalVal = ANDISVal;
1453 else if (!ANDISVal)
1454 TotalVal = ANDIVal;
1455 else
1456 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1457 ANDIVal, ANDISVal), 0);
1459 if (!Res)
1460 Res = TotalVal;
1461 else
1462 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1463 Res, TotalVal), 0);
1465 // Now, remove all groups with this underlying value and rotation
1466 // factor.
1467 eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1468 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
1473 // Instruction selection for the 32-bit case.
1474 SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
1475 SDLoc dl(N);
1476 SDValue Res;
1478 if (InstCnt) *InstCnt = 0;
1480 // Take care of cases that should use andi/andis first.
1481 SelectAndParts32(dl, Res, InstCnt);
1483 // If we've not yet selected a 'starting' instruction, and we have no zeros
1484 // to fill in, select the (Value, RLAmt) with the highest priority (largest
1485 // number of groups), and start with this rotated value.
1486 if ((!HasZeros || LateMask) && !Res) {
1487 ValueRotInfo &VRI = ValueRotsVec[0];
1488 if (VRI.RLAmt) {
1489 if (InstCnt) *InstCnt += 1;
1490 SDValue Ops[] =
1491 { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
1492 getI32Imm(31, dl) };
1493 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
1495 } else {
1496 Res = VRI.V;
1499 // Now, remove all groups with this underlying value and rotation factor.
1500 eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1501 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
1505 if (InstCnt) *InstCnt += BitGroups.size();
1507 // Insert the other groups (one at a time).
1508 for (auto &BG : BitGroups) {
1509 if (!Res) {
1510 SDValue Ops[] =
1511 { BG.V, getI32Imm(BG.RLAmt, dl),
1512 getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
1513 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
1514 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
1515 } else {
1516 SDValue Ops[] =
1517 { Res, BG.V, getI32Imm(BG.RLAmt, dl),
1518 getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
1519 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
1520 Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
1524 if (LateMask) {
1525 unsigned Mask = (unsigned) getZerosMask();
1527 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1528 assert((ANDIMask != 0 || ANDISMask != 0) &&
1529 "No set bits in zeros mask?");
1531 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
1532 (unsigned) (ANDISMask != 0) +
1533 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1535 SDValue ANDIVal, ANDISVal;
1536 if (ANDIMask != 0)
1537 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1538 Res, getI32Imm(ANDIMask, dl)), 0);
1539 if (ANDISMask != 0)
1540 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1541 Res, getI32Imm(ANDISMask, dl)), 0);
1543 if (!ANDIVal)
1544 Res = ANDISVal;
1545 else if (!ANDISVal)
1546 Res = ANDIVal;
1547 else
1548 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1549 ANDIVal, ANDISVal), 0);
1552 return Res.getNode();
1555 unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
1556 unsigned MaskStart, unsigned MaskEnd,
1557 bool IsIns) {
1558 // In the notation used by the instructions, 'start' and 'end' are reversed
1559 // because bits are counted from high to low order.
1560 unsigned InstMaskStart = 64 - MaskEnd - 1,
1561 InstMaskEnd = 64 - MaskStart - 1;
1563 if (Repl32)
1564 return 1;
1566 if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
1567 InstMaskEnd == 63 - RLAmt)
1568 return 1;
1570 return 2;
1573 // For 64-bit values, not all combinations of rotates and masks are
1574 // available. Produce one if it is available.
1575 SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt,
1576 bool Repl32, unsigned MaskStart, unsigned MaskEnd,
1577 unsigned *InstCnt = nullptr) {
1578 // In the notation used by the instructions, 'start' and 'end' are reversed
1579 // because bits are counted from high to low order.
1580 unsigned InstMaskStart = 64 - MaskEnd - 1,
1581 InstMaskEnd = 64 - MaskStart - 1;
1583 if (InstCnt) *InstCnt += 1;
1585 if (Repl32) {
1586 // This rotation amount assumes that the lower 32 bits of the quantity
1587 // are replicated in the high 32 bits by the rotation operator (which is
1588 // done by rlwinm and friends).
1589 assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1590 assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
1591 SDValue Ops[] =
1592 { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl),
1593 getI32Imm(InstMaskEnd - 32, dl) };
1594 return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
1595 Ops), 0);
1598 if (InstMaskEnd == 63) {
1599 SDValue Ops[] =
1600 { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
1601 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
1604 if (InstMaskStart == 0) {
1605 SDValue Ops[] =
1606 { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskEnd, dl) };
1607 return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
1610 if (InstMaskEnd == 63 - RLAmt) {
1611 SDValue Ops[] =
1612 { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
1613 return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
1616 // We cannot do this with a single instruction, so we'll use two. The
1617 // problem is that we're not free to choose both a rotation amount and mask
1618 // start and end independently. We can choose an arbitrary mask start and
1619 // end, but then the rotation amount is fixed. Rotation, however, can be
1620 // inverted, and so by applying an "inverse" rotation first, we can get the
1621 // desired result.
1622 if (InstCnt) *InstCnt += 1;
1624 // The rotation mask for the second instruction must be MaskStart.
1625 unsigned RLAmt2 = MaskStart;
1626 // The first instruction must rotate V so that the overall rotation amount
1627 // is RLAmt.
1628 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
1629 if (RLAmt1)
1630 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
1631 return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
1634 // For 64-bit values, not all combinations of rotates and masks are
1635 // available. Produce a rotate-mask-and-insert if one is available.
1636 SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl,
1637 unsigned RLAmt, bool Repl32, unsigned MaskStart,
1638 unsigned MaskEnd, unsigned *InstCnt = nullptr) {
1639 // In the notation used by the instructions, 'start' and 'end' are reversed
1640 // because bits are counted from high to low order.
1641 unsigned InstMaskStart = 64 - MaskEnd - 1,
1642 InstMaskEnd = 64 - MaskStart - 1;
1644 if (InstCnt) *InstCnt += 1;
1646 if (Repl32) {
1647 // This rotation amount assumes that the lower 32 bits of the quantity
1648 // are replicated in the high 32 bits by the rotation operator (which is
1649 // done by rlwinm and friends).
1650 assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1651 assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
1652 SDValue Ops[] =
1653 { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl),
1654 getI32Imm(InstMaskEnd - 32, dl) };
1655 return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
1656 Ops), 0);
1659 if (InstMaskEnd == 63 - RLAmt) {
1660 SDValue Ops[] =
1661 { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
1662 return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
1665 // We cannot do this with a single instruction, so we'll use two. The
1666 // problem is that we're not free to choose both a rotation amount and mask
1667 // start and end independently. We can choose an arbitrary mask start and
1668 // end, but then the rotation amount is fixed. Rotation, however, can be
1669 // inverted, and so by applying an "inverse" rotation first, we can get the
1670 // desired result.
1671 if (InstCnt) *InstCnt += 1;
1673 // The rotation mask for the second instruction must be MaskStart.
1674 unsigned RLAmt2 = MaskStart;
1675 // The first instruction must rotate V so that the overall rotation amount
1676 // is RLAmt.
1677 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
1678 if (RLAmt1)
1679 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
1680 return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
1683 void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
1684 if (BPermRewriterNoMasking)
1685 return;
1687 // The idea here is the same as in the 32-bit version, but with additional
1688 // complications from the fact that Repl32 might be true. Because we
1689 // aggressively convert bit groups to Repl32 form (which, for small
1690 // rotation factors, involves no other change), and then coalesce, it might
1691 // be the case that a single 64-bit masking operation could handle both
1692 // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
1693 // form allowed coalescing, then we must use a 32-bit rotaton in order to
1694 // completely capture the new combined bit group.
1696 for (ValueRotInfo &VRI : ValueRotsVec) {
1697 uint64_t Mask = 0;
1699 // We need to add to the mask all bits from the associated bit groups.
1700 // If Repl32 is false, we need to add bits from bit groups that have
1701 // Repl32 true, but are trivially convertable to Repl32 false. Such a
1702 // group is trivially convertable if it overlaps only with the lower 32
1703 // bits, and the group has not been coalesced.
1704 auto MatchingBG = [VRI](const BitGroup &BG) {
1705 if (VRI.V != BG.V)
1706 return false;
1708 unsigned EffRLAmt = BG.RLAmt;
1709 if (!VRI.Repl32 && BG.Repl32) {
1710 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
1711 !BG.Repl32Coalesced) {
1712 if (BG.Repl32CR)
1713 EffRLAmt += 32;
1714 } else {
1715 return false;
1717 } else if (VRI.Repl32 != BG.Repl32) {
1718 return false;
1721 return VRI.RLAmt == EffRLAmt;
1724 for (auto &BG : BitGroups) {
1725 if (!MatchingBG(BG))
1726 continue;
1728 if (BG.StartIdx <= BG.EndIdx) {
1729 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
1730 Mask |= (UINT64_C(1) << i);
1731 } else {
1732 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
1733 Mask |= (UINT64_C(1) << i);
1734 for (unsigned i = 0; i <= BG.EndIdx; ++i)
1735 Mask |= (UINT64_C(1) << i);
1739 // We can use the 32-bit andi/andis technique if the mask does not
1740 // require any higher-order bits. This can save an instruction compared
1741 // to always using the general 64-bit technique.
1742 bool Use32BitInsts = isUInt<32>(Mask);
1743 // Compute the masks for andi/andis that would be necessary.
1744 unsigned ANDIMask = (Mask & UINT16_MAX),
1745 ANDISMask = (Mask >> 16) & UINT16_MAX;
1747 bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
1749 unsigned NumAndInsts = (unsigned) NeedsRotate +
1750 (unsigned) (bool) Res;
1751 if (Use32BitInsts)
1752 NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
1753 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1754 else
1755 NumAndInsts += selectI64ImmInstrCount(Mask) + /* and */ 1;
1757 unsigned NumRLInsts = 0;
1758 bool FirstBG = true;
1759 bool MoreBG = false;
1760 for (auto &BG : BitGroups) {
1761 if (!MatchingBG(BG)) {
1762 MoreBG = true;
1763 continue;
1765 NumRLInsts +=
1766 SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
1767 !FirstBG);
1768 FirstBG = false;
1771 DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
1772 " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") <<
1773 "\n\t\t\tisel using masking: " << NumAndInsts <<
1774 " using rotates: " << NumRLInsts << "\n");
1776 // When we'd use andi/andis, we bias toward using the rotates (andi only
1777 // has a record form, and is cracked on POWER cores). However, when using
1778 // general 64-bit constant formation, bias toward the constant form,
1779 // because that exposes more opportunities for CSE.
1780 if (NumAndInsts > NumRLInsts)
1781 continue;
1782 // When merging multiple bit groups, instruction or is used.
1783 // But when rotate is used, rldimi can inert the rotated value into any
1784 // register, so instruction or can be avoided.
1785 if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts)
1786 continue;
1788 DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1790 if (InstCnt) *InstCnt += NumAndInsts;
1792 SDValue VRot;
1793 // We actually need to generate a rotation if we have a non-zero rotation
1794 // factor or, in the Repl32 case, if we care about any of the
1795 // higher-order replicated bits. In the latter case, we generate a mask
1796 // backward so that it actually includes the entire 64 bits.
1797 if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
1798 VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
1799 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
1800 else
1801 VRot = VRI.V;
1803 SDValue TotalVal;
1804 if (Use32BitInsts) {
1805 assert((ANDIMask != 0 || ANDISMask != 0) &&
1806 "No set bits in mask when using 32-bit ands for 64-bit value");
1808 SDValue ANDIVal, ANDISVal;
1809 if (ANDIMask != 0)
1810 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
1811 VRot, getI32Imm(ANDIMask, dl)), 0);
1812 if (ANDISMask != 0)
1813 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
1814 VRot, getI32Imm(ANDISMask, dl)), 0);
1816 if (!ANDIVal)
1817 TotalVal = ANDISVal;
1818 else if (!ANDISVal)
1819 TotalVal = ANDIVal;
1820 else
1821 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1822 ANDIVal, ANDISVal), 0);
1823 } else {
1824 TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
1825 TotalVal =
1826 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
1827 VRot, TotalVal), 0);
1830 if (!Res)
1831 Res = TotalVal;
1832 else
1833 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1834 Res, TotalVal), 0);
1836 // Now, remove all groups with this underlying value and rotation
1837 // factor.
1838 eraseMatchingBitGroups(MatchingBG);
1842 // Instruction selection for the 64-bit case.
1843 SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
1844 SDLoc dl(N);
1845 SDValue Res;
1847 if (InstCnt) *InstCnt = 0;
1849 // Take care of cases that should use andi/andis first.
1850 SelectAndParts64(dl, Res, InstCnt);
1852 // If we've not yet selected a 'starting' instruction, and we have no zeros
1853 // to fill in, select the (Value, RLAmt) with the highest priority (largest
1854 // number of groups), and start with this rotated value.
1855 if ((!HasZeros || LateMask) && !Res) {
1856 // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
1857 // groups will come first, and so the VRI representing the largest number
1858 // of groups might not be first (it might be the first Repl32 groups).
1859 unsigned MaxGroupsIdx = 0;
1860 if (!ValueRotsVec[0].Repl32) {
1861 for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
1862 if (ValueRotsVec[i].Repl32) {
1863 if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
1864 MaxGroupsIdx = i;
1865 break;
1869 ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
1870 bool NeedsRotate = false;
1871 if (VRI.RLAmt) {
1872 NeedsRotate = true;
1873 } else if (VRI.Repl32) {
1874 for (auto &BG : BitGroups) {
1875 if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
1876 BG.Repl32 != VRI.Repl32)
1877 continue;
1879 // We don't need a rotate if the bit group is confined to the lower
1880 // 32 bits.
1881 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
1882 continue;
1884 NeedsRotate = true;
1885 break;
1889 if (NeedsRotate)
1890 Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
1891 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
1892 InstCnt);
1893 else
1894 Res = VRI.V;
1896 // Now, remove all groups with this underlying value and rotation factor.
1897 if (Res)
1898 eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1899 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
1900 BG.Repl32 == VRI.Repl32;
1904 // Because 64-bit rotates are more flexible than inserts, we might have a
1905 // preference regarding which one we do first (to save one instruction).
1906 if (!Res)
1907 for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
1908 if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
1909 false) <
1910 SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
1911 true)) {
1912 if (I != BitGroups.begin()) {
1913 BitGroup BG = *I;
1914 BitGroups.erase(I);
1915 BitGroups.insert(BitGroups.begin(), BG);
1918 break;
1922 // Insert the other groups (one at a time).
1923 for (auto &BG : BitGroups) {
1924 if (!Res)
1925 Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
1926 BG.EndIdx, InstCnt);
1927 else
1928 Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
1929 BG.StartIdx, BG.EndIdx, InstCnt);
1932 if (LateMask) {
1933 uint64_t Mask = getZerosMask();
1935 // We can use the 32-bit andi/andis technique if the mask does not
1936 // require any higher-order bits. This can save an instruction compared
1937 // to always using the general 64-bit technique.
1938 bool Use32BitInsts = isUInt<32>(Mask);
1939 // Compute the masks for andi/andis that would be necessary.
1940 unsigned ANDIMask = (Mask & UINT16_MAX),
1941 ANDISMask = (Mask >> 16) & UINT16_MAX;
1943 if (Use32BitInsts) {
1944 assert((ANDIMask != 0 || ANDISMask != 0) &&
1945 "No set bits in mask when using 32-bit ands for 64-bit value");
1947 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
1948 (unsigned) (ANDISMask != 0) +
1949 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1951 SDValue ANDIVal, ANDISVal;
1952 if (ANDIMask != 0)
1953 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
1954 Res, getI32Imm(ANDIMask, dl)), 0);
1955 if (ANDISMask != 0)
1956 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
1957 Res, getI32Imm(ANDISMask, dl)), 0);
1959 if (!ANDIVal)
1960 Res = ANDISVal;
1961 else if (!ANDISVal)
1962 Res = ANDIVal;
1963 else
1964 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1965 ANDIVal, ANDISVal), 0);
1966 } else {
1967 if (InstCnt) *InstCnt += selectI64ImmInstrCount(Mask) + /* and */ 1;
1969 SDValue MaskVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
1970 Res =
1971 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
1972 Res, MaskVal), 0);
1976 return Res.getNode();
1979 SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
1980 // Fill in BitGroups.
1981 collectBitGroups(LateMask);
1982 if (BitGroups.empty())
1983 return nullptr;
1985 // For 64-bit values, figure out when we can use 32-bit instructions.
1986 if (Bits.size() == 64)
1987 assignRepl32BitGroups();
1989 // Fill in ValueRotsVec.
1990 collectValueRotInfo();
1992 if (Bits.size() == 32) {
1993 return Select32(N, LateMask, InstCnt);
1994 } else {
1995 assert(Bits.size() == 64 && "Not 64 bits here?");
1996 return Select64(N, LateMask, InstCnt);
1999 return nullptr;
2002 void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
2003 BitGroups.erase(remove_if(BitGroups, F), BitGroups.end());
2006 SmallVector<ValueBit, 64> Bits;
2008 bool HasZeros;
2009 SmallVector<unsigned, 64> RLAmt;
2011 SmallVector<BitGroup, 16> BitGroups;
2013 DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
2014 SmallVector<ValueRotInfo, 16> ValueRotsVec;
2016 SelectionDAG *CurDAG;
2018 public:
2019 BitPermutationSelector(SelectionDAG *DAG)
2020 : CurDAG(DAG) {}
2022 // Here we try to match complex bit permutations into a set of
2023 // rotate-and-shift/shift/and/or instructions, using a set of heuristics
2024 // known to produce optimial code for common cases (like i32 byte swapping).
2025 SDNode *Select(SDNode *N) {
2026 Memoizer.clear();
2027 auto Result =
2028 getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits());
2029 if (!Result.first)
2030 return nullptr;
2031 Bits = std::move(*Result.second);
2033 DEBUG(dbgs() << "Considering bit-permutation-based instruction"
2034 " selection for: ");
2035 DEBUG(N->dump(CurDAG));
2037 // Fill it RLAmt and set HasZeros.
2038 computeRotationAmounts();
2040 if (!HasZeros)
2041 return Select(N, false);
2043 // We currently have two techniques for handling results with zeros: early
2044 // masking (the default) and late masking. Late masking is sometimes more
2045 // efficient, but because the structure of the bit groups is different, it
2046 // is hard to tell without generating both and comparing the results. With
2047 // late masking, we ignore zeros in the resulting value when inserting each
2048 // set of bit groups, and then mask in the zeros at the end. With early
2049 // masking, we only insert the non-zero parts of the result at every step.
2051 unsigned InstCnt, InstCntLateMask;
2052 DEBUG(dbgs() << "\tEarly masking:\n");
2053 SDNode *RN = Select(N, false, &InstCnt);
2054 DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
2056 DEBUG(dbgs() << "\tLate masking:\n");
2057 SDNode *RNLM = Select(N, true, &InstCntLateMask);
2058 DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask <<
2059 " instructions\n");
2061 if (InstCnt <= InstCntLateMask) {
2062 DEBUG(dbgs() << "\tUsing early-masking for isel\n");
2063 return RN;
2066 DEBUG(dbgs() << "\tUsing late-masking for isel\n");
2067 return RNLM;
2071 } // end anonymous namespace
2073 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
2074 if (N->getValueType(0) != MVT::i32 &&
2075 N->getValueType(0) != MVT::i64)
2076 return false;
2078 if (!UseBitPermRewriter)
2079 return false;
2081 switch (N->getOpcode()) {
2082 default: break;
2083 case ISD::ROTL:
2084 case ISD::SHL:
2085 case ISD::SRL:
2086 case ISD::AND:
2087 case ISD::OR: {
2088 BitPermutationSelector BPS(CurDAG);
2089 if (SDNode *New = BPS.Select(N)) {
2090 ReplaceNode(N, New);
2091 return true;
2093 return false;
2097 return false;
2100 /// SelectCC - Select a comparison of the specified values with the specified
2101 /// condition code, returning the CR# of the expression.
2102 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2103 const SDLoc &dl) {
2104 // Always select the LHS.
2105 unsigned Opc;
2107 if (LHS.getValueType() == MVT::i32) {
2108 unsigned Imm;
2109 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2110 if (isInt32Immediate(RHS, Imm)) {
2111 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
2112 if (isUInt<16>(Imm))
2113 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
2114 getI32Imm(Imm & 0xFFFF, dl)),
2116 // If this is a 16-bit signed immediate, fold it.
2117 if (isInt<16>((int)Imm))
2118 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
2119 getI32Imm(Imm & 0xFFFF, dl)),
2122 // For non-equality comparisons, the default code would materialize the
2123 // constant, then compare against it, like this:
2124 // lis r2, 4660
2125 // ori r2, r2, 22136
2126 // cmpw cr0, r3, r2
2127 // Since we are just comparing for equality, we can emit this instead:
2128 // xoris r0,r3,0x1234
2129 // cmplwi cr0,r0,0x5678
2130 // beq cr0,L6
2131 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
2132 getI32Imm(Imm >> 16, dl)), 0);
2133 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
2134 getI32Imm(Imm & 0xFFFF, dl)), 0);
2136 Opc = PPC::CMPLW;
2137 } else if (ISD::isUnsignedIntSetCC(CC)) {
2138 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
2139 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
2140 getI32Imm(Imm & 0xFFFF, dl)), 0);
2141 Opc = PPC::CMPLW;
2142 } else {
2143 int16_t SImm;
2144 if (isIntS16Immediate(RHS, SImm))
2145 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
2146 getI32Imm((int)SImm & 0xFFFF,
2147 dl)),
2149 Opc = PPC::CMPW;
2151 } else if (LHS.getValueType() == MVT::i64) {
2152 uint64_t Imm;
2153 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2154 if (isInt64Immediate(RHS.getNode(), Imm)) {
2155 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
2156 if (isUInt<16>(Imm))
2157 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
2158 getI32Imm(Imm & 0xFFFF, dl)),
2160 // If this is a 16-bit signed immediate, fold it.
2161 if (isInt<16>(Imm))
2162 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
2163 getI32Imm(Imm & 0xFFFF, dl)),
2166 // For non-equality comparisons, the default code would materialize the
2167 // constant, then compare against it, like this:
2168 // lis r2, 4660
2169 // ori r2, r2, 22136
2170 // cmpd cr0, r3, r2
2171 // Since we are just comparing for equality, we can emit this instead:
2172 // xoris r0,r3,0x1234
2173 // cmpldi cr0,r0,0x5678
2174 // beq cr0,L6
2175 if (isUInt<32>(Imm)) {
2176 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
2177 getI64Imm(Imm >> 16, dl)), 0);
2178 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
2179 getI64Imm(Imm & 0xFFFF, dl)),
2183 Opc = PPC::CMPLD;
2184 } else if (ISD::isUnsignedIntSetCC(CC)) {
2185 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
2186 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
2187 getI64Imm(Imm & 0xFFFF, dl)), 0);
2188 Opc = PPC::CMPLD;
2189 } else {
2190 int16_t SImm;
2191 if (isIntS16Immediate(RHS, SImm))
2192 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
2193 getI64Imm(SImm & 0xFFFF, dl)),
2195 Opc = PPC::CMPD;
2197 } else if (LHS.getValueType() == MVT::f32) {
2198 Opc = PPC::FCMPUS;
2199 } else {
2200 assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
2201 Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
2203 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
2206 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
2207 switch (CC) {
2208 case ISD::SETUEQ:
2209 case ISD::SETONE:
2210 case ISD::SETOLE:
2211 case ISD::SETOGE:
2212 llvm_unreachable("Should be lowered by legalize!");
2213 default: llvm_unreachable("Unknown condition!");
2214 case ISD::SETOEQ:
2215 case ISD::SETEQ: return PPC::PRED_EQ;
2216 case ISD::SETUNE:
2217 case ISD::SETNE: return PPC::PRED_NE;
2218 case ISD::SETOLT:
2219 case ISD::SETLT: return PPC::PRED_LT;
2220 case ISD::SETULE:
2221 case ISD::SETLE: return PPC::PRED_LE;
2222 case ISD::SETOGT:
2223 case ISD::SETGT: return PPC::PRED_GT;
2224 case ISD::SETUGE:
2225 case ISD::SETGE: return PPC::PRED_GE;
2226 case ISD::SETO: return PPC::PRED_NU;
2227 case ISD::SETUO: return PPC::PRED_UN;
2228 // These two are invalid for floating point. Assume we have int.
2229 case ISD::SETULT: return PPC::PRED_LT;
2230 case ISD::SETUGT: return PPC::PRED_GT;
2234 /// getCRIdxForSetCC - Return the index of the condition register field
2235 /// associated with the SetCC condition, and whether or not the field is
2236 /// treated as inverted. That is, lt = 0; ge = 0 inverted.
2237 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
2238 Invert = false;
2239 switch (CC) {
2240 default: llvm_unreachable("Unknown condition!");
2241 case ISD::SETOLT:
2242 case ISD::SETLT: return 0; // Bit #0 = SETOLT
2243 case ISD::SETOGT:
2244 case ISD::SETGT: return 1; // Bit #1 = SETOGT
2245 case ISD::SETOEQ:
2246 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ
2247 case ISD::SETUO: return 3; // Bit #3 = SETUO
2248 case ISD::SETUGE:
2249 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE
2250 case ISD::SETULE:
2251 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE
2252 case ISD::SETUNE:
2253 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE
2254 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO
2255 case ISD::SETUEQ:
2256 case ISD::SETOGE:
2257 case ISD::SETOLE:
2258 case ISD::SETONE:
2259 llvm_unreachable("Invalid branch code: should be expanded by legalize");
2260 // These are invalid for floating point. Assume integer.
2261 case ISD::SETULT: return 0;
2262 case ISD::SETUGT: return 1;
2266 // getVCmpInst: return the vector compare instruction for the specified
2267 // vector type and condition code. Since this is for altivec specific code,
2268 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32).
2269 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
2270 bool HasVSX, bool &Swap, bool &Negate) {
2271 Swap = false;
2272 Negate = false;
2274 if (VecVT.isFloatingPoint()) {
2275 /* Handle some cases by swapping input operands. */
2276 switch (CC) {
2277 case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
2278 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
2279 case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
2280 case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
2281 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
2282 case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
2283 default: break;
2285 /* Handle some cases by negating the result. */
2286 switch (CC) {
2287 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
2288 case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
2289 case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
2290 case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
2291 default: break;
2293 /* We have instructions implementing the remaining cases. */
2294 switch (CC) {
2295 case ISD::SETEQ:
2296 case ISD::SETOEQ:
2297 if (VecVT == MVT::v4f32)
2298 return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
2299 else if (VecVT == MVT::v2f64)
2300 return PPC::XVCMPEQDP;
2301 break;
2302 case ISD::SETGT:
2303 case ISD::SETOGT:
2304 if (VecVT == MVT::v4f32)
2305 return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
2306 else if (VecVT == MVT::v2f64)
2307 return PPC::XVCMPGTDP;
2308 break;
2309 case ISD::SETGE:
2310 case ISD::SETOGE:
2311 if (VecVT == MVT::v4f32)
2312 return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
2313 else if (VecVT == MVT::v2f64)
2314 return PPC::XVCMPGEDP;
2315 break;
2316 default:
2317 break;
2319 llvm_unreachable("Invalid floating-point vector compare condition");
2320 } else {
2321 /* Handle some cases by swapping input operands. */
2322 switch (CC) {
2323 case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
2324 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
2325 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
2326 case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
2327 default: break;
2329 /* Handle some cases by negating the result. */
2330 switch (CC) {
2331 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
2332 case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
2333 case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
2334 case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
2335 default: break;
2337 /* We have instructions implementing the remaining cases. */
2338 switch (CC) {
2339 case ISD::SETEQ:
2340 case ISD::SETUEQ:
2341 if (VecVT == MVT::v16i8)
2342 return PPC::VCMPEQUB;
2343 else if (VecVT == MVT::v8i16)
2344 return PPC::VCMPEQUH;
2345 else if (VecVT == MVT::v4i32)
2346 return PPC::VCMPEQUW;
2347 else if (VecVT == MVT::v2i64)
2348 return PPC::VCMPEQUD;
2349 break;
2350 case ISD::SETGT:
2351 if (VecVT == MVT::v16i8)
2352 return PPC::VCMPGTSB;
2353 else if (VecVT == MVT::v8i16)
2354 return PPC::VCMPGTSH;
2355 else if (VecVT == MVT::v4i32)
2356 return PPC::VCMPGTSW;
2357 else if (VecVT == MVT::v2i64)
2358 return PPC::VCMPGTSD;
2359 break;
2360 case ISD::SETUGT:
2361 if (VecVT == MVT::v16i8)
2362 return PPC::VCMPGTUB;
2363 else if (VecVT == MVT::v8i16)
2364 return PPC::VCMPGTUH;
2365 else if (VecVT == MVT::v4i32)
2366 return PPC::VCMPGTUW;
2367 else if (VecVT == MVT::v2i64)
2368 return PPC::VCMPGTUD;
2369 break;
2370 default:
2371 break;
2373 llvm_unreachable("Invalid integer vector compare condition");
2377 bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
2378 SDLoc dl(N);
2379 unsigned Imm;
2380 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
2381 EVT PtrVT =
2382 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
2383 bool isPPC64 = (PtrVT == MVT::i64);
2385 if (!PPCSubTarget->useCRBits() &&
2386 isInt32Immediate(N->getOperand(1), Imm)) {
2387 // We can codegen setcc op, imm very efficiently compared to a brcond.
2388 // Check for those cases here.
2389 // setcc op, 0
2390 if (Imm == 0) {
2391 SDValue Op = N->getOperand(0);
2392 switch (CC) {
2393 default: break;
2394 case ISD::SETEQ: {
2395 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
2396 SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
2397 getI32Imm(31, dl) };
2398 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2399 return true;
2401 case ISD::SETNE: {
2402 if (isPPC64) break;
2403 SDValue AD =
2404 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2405 Op, getI32Imm(~0U, dl)), 0);
2406 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
2407 return true;
2409 case ISD::SETLT: {
2410 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
2411 getI32Imm(31, dl) };
2412 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2413 return true;
2415 case ISD::SETGT: {
2416 SDValue T =
2417 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
2418 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
2419 SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
2420 getI32Imm(31, dl) };
2421 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2422 return true;
2425 } else if (Imm == ~0U) { // setcc op, -1
2426 SDValue Op = N->getOperand(0);
2427 switch (CC) {
2428 default: break;
2429 case ISD::SETEQ:
2430 if (isPPC64) break;
2431 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2432 Op, getI32Imm(1, dl)), 0);
2433 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
2434 SDValue(CurDAG->getMachineNode(PPC::LI, dl,
2435 MVT::i32,
2436 getI32Imm(0, dl)),
2437 0), Op.getValue(1));
2438 return true;
2439 case ISD::SETNE: {
2440 if (isPPC64) break;
2441 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
2442 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2443 Op, getI32Imm(~0U, dl));
2444 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op,
2445 SDValue(AD, 1));
2446 return true;
2448 case ISD::SETLT: {
2449 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
2450 getI32Imm(1, dl)), 0);
2451 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
2452 Op), 0);
2453 SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
2454 getI32Imm(31, dl) };
2455 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2456 return true;
2458 case ISD::SETGT: {
2459 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
2460 getI32Imm(31, dl) };
2461 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
2462 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl));
2463 return true;
2469 SDValue LHS = N->getOperand(0);
2470 SDValue RHS = N->getOperand(1);
2472 // Altivec Vector compare instructions do not set any CR register by default and
2473 // vector compare operations return the same type as the operands.
2474 if (LHS.getValueType().isVector()) {
2475 if (PPCSubTarget->hasQPX())
2476 return false;
2478 EVT VecVT = LHS.getValueType();
2479 bool Swap, Negate;
2480 unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC,
2481 PPCSubTarget->hasVSX(), Swap, Negate);
2482 if (Swap)
2483 std::swap(LHS, RHS);
2485 EVT ResVT = VecVT.changeVectorElementTypeToInteger();
2486 if (Negate) {
2487 SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
2488 CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
2489 ResVT, VCmp, VCmp);
2490 return true;
2493 CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
2494 return true;
2497 if (PPCSubTarget->useCRBits())
2498 return false;
2500 bool Inv;
2501 unsigned Idx = getCRIdxForSetCC(CC, Inv);
2502 SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
2503 SDValue IntCR;
2505 // Force the ccreg into CR7.
2506 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
2508 SDValue InFlag(nullptr, 0); // Null incoming flag value.
2509 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
2510 InFlag).getValue(1);
2512 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
2513 CCReg), 0);
2515 SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
2516 getI32Imm(31, dl), getI32Imm(31, dl) };
2517 if (!Inv) {
2518 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2519 return true;
2522 // Get the specified bit.
2523 SDValue Tmp =
2524 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
2525 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
2526 return true;
2529 // Is this opcode a bitwise logical operation?
2530 static bool isLogicOp(unsigned Opc) {
2531 return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR;
2534 /// If this node is a sign/zero extension of an integer comparison,
2535 /// it can usually be computed in GPR's rather than using comparison
2536 /// instructions and ISEL. We only do this on 64-bit targets for now
2537 /// as the code is specialized for 64-bit (it uses 64-bit instructions
2538 /// and assumes 64-bit registers).
2539 bool PPCDAGToDAGISel::tryEXTEND(SDNode *N) {
2540 if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64())
2541 return false;
2542 assert((N->getOpcode() == ISD::ZERO_EXTEND ||
2543 N->getOpcode() == ISD::SIGN_EXTEND) &&
2544 "Expecting a zero/sign extend node!");
2546 SDValue WideRes;
2547 // If we are zero-extending the result of a logical operation on i1
2548 // values, we can keep the values in GPRs.
2549 if (isLogicOp(N->getOperand(0).getOpcode()) &&
2550 N->getOperand(0).getValueType() == MVT::i1 &&
2551 N->getOpcode() == ISD::ZERO_EXTEND)
2552 WideRes = computeLogicOpInGPR(N->getOperand(0));
2553 else if (N->getOperand(0).getOpcode() != ISD::SETCC)
2554 return false;
2555 else
2556 WideRes =
2557 getSETCCInGPR(N->getOperand(0),
2558 N->getOpcode() == ISD::SIGN_EXTEND ?
2559 SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig);
2561 if (!WideRes)
2562 return false;
2564 SDLoc dl(N);
2565 bool Input32Bit = WideRes.getValueType() == MVT::i32;
2566 bool Output32Bit = N->getValueType(0) == MVT::i32;
2568 NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0;
2569 NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1;
2571 SDValue ConvOp = WideRes;
2572 if (Input32Bit != Output32Bit)
2573 ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext :
2574 ExtOrTruncConversion::Trunc);
2575 ReplaceNode(N, ConvOp.getNode());
2577 return true;
2580 // Lower a logical operation on i1 values into a GPR sequence if possible.
2581 // The result can be kept in a GPR if requested.
2582 // Three types of inputs can be handled:
2583 // - SETCC
2584 // - TRUNCATE
2585 // - Logical operation (AND/OR/XOR)
2586 // There is also a special case that is handled (namely a complement operation
2587 // achieved with xor %a, -1).
2588 SDValue PPCDAGToDAGISel::computeLogicOpInGPR(SDValue LogicOp) {
2589 assert(isLogicOp(LogicOp.getOpcode()) &&
2590 "Can only handle logic operations here.");
2591 assert(LogicOp.getValueType() == MVT::i1 &&
2592 "Can only handle logic operations on i1 values here.");
2593 SDLoc dl(LogicOp);
2594 SDValue LHS, RHS;
2596 // Special case: xor %a, -1
2597 bool IsBitwiseNegation = isBitwiseNot(LogicOp);
2599 // Produces a GPR sequence for each operand of the binary logic operation.
2600 // For SETCC, it produces the respective comparison, for TRUNCATE it truncates
2601 // the value in a GPR and for logic operations, it will recursively produce
2602 // a GPR sequence for the operation.
2603 auto getLogicOperand = [&] (SDValue Operand) -> SDValue {
2604 unsigned OperandOpcode = Operand.getOpcode();
2605 if (OperandOpcode == ISD::SETCC)
2606 return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig);
2607 else if (OperandOpcode == ISD::TRUNCATE) {
2608 SDValue InputOp = Operand.getOperand(0);
2609 EVT InVT = InputOp.getValueType();
2610 return
2611 SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 :
2612 PPC::RLDICL, dl, InVT, InputOp,
2613 getI64Imm(0, dl), getI64Imm(63, dl)), 0);
2614 } else if (isLogicOp(OperandOpcode))
2615 return computeLogicOpInGPR(Operand);
2616 return SDValue();
2618 LHS = getLogicOperand(LogicOp.getOperand(0));
2619 RHS = getLogicOperand(LogicOp.getOperand(1));
2621 // If a GPR sequence can't be produced for the LHS we can't proceed.
2622 // Not producing a GPR sequence for the RHS is only a problem if this isn't
2623 // a bitwise negation operation.
2624 if (!LHS || (!RHS && !IsBitwiseNegation))
2625 return SDValue();
2627 NumLogicOpsOnComparison++;
2629 // We will use the inputs as 64-bit values.
2630 if (LHS.getValueType() == MVT::i32)
2631 LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext);
2632 if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32)
2633 RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext);
2635 unsigned NewOpc;
2636 switch (LogicOp.getOpcode()) {
2637 default: llvm_unreachable("Unknown logic operation.");
2638 case ISD::AND: NewOpc = PPC::AND8; break;
2639 case ISD::OR: NewOpc = PPC::OR8; break;
2640 case ISD::XOR: NewOpc = PPC::XOR8; break;
2643 if (IsBitwiseNegation) {
2644 RHS = getI64Imm(1, dl);
2645 NewOpc = PPC::XORI8;
2648 return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0);
2652 /// Try performing logical operations on results of comparisons in GPRs.
2653 /// It is typically preferred from a performance perspective over performing
2654 /// the operations on individual bits in the CR. We only do this on 64-bit
2655 /// targets for now as the code is specialized for 64-bit (it uses 64-bit
2656 /// instructions and assumes 64-bit registers).
2657 bool PPCDAGToDAGISel::tryLogicOpOfCompares(SDNode *N) {
2658 if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64())
2659 return false;
2660 if (N->getValueType(0) != MVT::i1)
2661 return false;
2662 assert(isLogicOp(N->getOpcode()) &&
2663 "Expected a logic operation on setcc results.");
2664 SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0));
2665 if (!LoweredLogical)
2666 return false;
2668 SDLoc dl(N);
2669 bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8;
2670 unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt;
2671 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
2672 SDValue LHS = LoweredLogical.getOperand(0);
2673 SDValue RHS = LoweredLogical.getOperand(1);
2674 SDValue WideOp;
2675 SDValue OpToConvToRecForm;
2677 // Look through any 32-bit to 64-bit implicit extend nodes to find the opcode
2678 // that is input to the XORI.
2679 if (IsBitwiseNegate &&
2680 LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG)
2681 OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1);
2682 else if (IsBitwiseNegate)
2683 // If the input to the XORI isn't an extension, that's what we're after.
2684 OpToConvToRecForm = LoweredLogical.getOperand(0);
2685 else
2686 // If this is not an XORI, it is a reg-reg logical op and we can convert it
2687 // to record-form.
2688 OpToConvToRecForm = LoweredLogical;
2690 // Get the record-form version of the node we're looking to use to get the
2691 // CR result from.
2692 uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode();
2693 int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc);
2695 // Convert the right node to record-form. This is either the logical we're
2696 // looking at or it is the input node to the negation (if we're looking at
2697 // a bitwise negation).
2698 if (NewOpc != -1 && IsBitwiseNegate) {
2699 // The input to the XORI has a record-form. Use it.
2700 assert(LoweredLogical.getConstantOperandVal(1) == 1 &&
2701 "Expected a PPC::XORI8 only for bitwise negation.");
2702 // Emit the record-form instruction.
2703 std::vector<SDValue> Ops;
2704 for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++)
2705 Ops.push_back(OpToConvToRecForm.getOperand(i));
2707 WideOp =
2708 SDValue(CurDAG->getMachineNode(NewOpc, dl,
2709 OpToConvToRecForm.getValueType(),
2710 MVT::Glue, Ops), 0);
2711 } else {
2712 assert((NewOpc != -1 || !IsBitwiseNegate) &&
2713 "No record form available for AND8/OR8/XOR8?");
2714 WideOp =
2715 SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDIo8 : NewOpc, dl,
2716 MVT::i64, MVT::Glue, LHS, RHS), 0);
2719 // Select this node to a single bit from CR0 set by the record-form node
2720 // just created. For bitwise negation, use the EQ bit which is the equivalent
2721 // of negating the result (i.e. it is a bit set when the result of the
2722 // operation is zero).
2723 SDValue SRIdxVal =
2724 CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32);
2725 SDValue CRBit =
2726 SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
2727 MVT::i1, CR0Reg, SRIdxVal,
2728 WideOp.getValue(1)), 0);
2729 ReplaceNode(N, CRBit.getNode());
2730 return true;
2733 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it.
2734 /// Otherwise just reinterpret it as a 64-bit value.
2735 /// Useful when emitting comparison code for 32-bit values without using
2736 /// the compare instruction (which only considers the lower 32-bits).
2737 SDValue PPCDAGToDAGISel::signExtendInputIfNeeded(SDValue Input) {
2738 assert(Input.getValueType() == MVT::i32 &&
2739 "Can only sign-extend 32-bit values here.");
2740 unsigned Opc = Input.getOpcode();
2742 // The value was sign extended and then truncated to 32-bits. No need to
2743 // sign extend it again.
2744 if (Opc == ISD::TRUNCATE &&
2745 (Input.getOperand(0).getOpcode() == ISD::AssertSext ||
2746 Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND))
2747 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2749 LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
2750 // The input is a sign-extending load. No reason to sign-extend.
2751 if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD)
2752 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2754 ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
2755 // We don't sign-extend constants and already sign-extended values.
2756 if (InputConst || Opc == ISD::AssertSext || Opc == ISD::SIGN_EXTEND_INREG ||
2757 Opc == ISD::SIGN_EXTEND)
2758 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2760 SDLoc dl(Input);
2761 SignExtensionsAdded++;
2762 return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl,
2763 MVT::i64, Input), 0);
2766 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of
2767 // course not actual zero/sign extensions that will generate machine code,
2768 // they're just a way to reinterpret a 32 bit value in a register as a
2769 // 64 bit value and vice-versa.
2770 SDValue PPCDAGToDAGISel::addExtOrTrunc(SDValue NatWidthRes,
2771 ExtOrTruncConversion Conv) {
2772 SDLoc dl(NatWidthRes);
2774 // For reinterpreting 32-bit values as 64 bit values, we generate
2775 // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1>
2776 if (Conv == ExtOrTruncConversion::Ext) {
2777 SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0);
2778 SDValue SubRegIdx =
2779 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
2780 return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64,
2781 ImDef, NatWidthRes, SubRegIdx), 0);
2784 assert(Conv == ExtOrTruncConversion::Trunc &&
2785 "Unknown convertion between 32 and 64 bit values.");
2786 // For reinterpreting 64-bit values as 32-bit values, we just need to
2787 // EXTRACT_SUBREG (i.e. extract the low word).
2788 SDValue SubRegIdx =
2789 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
2790 return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32,
2791 NatWidthRes, SubRegIdx), 0);
2794 // Produce a GPR sequence for compound comparisons (<=, >=) against zero.
2795 // Handle both zero-extensions and sign-extensions.
2796 SDValue PPCDAGToDAGISel::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
2797 ZeroCompare CmpTy) {
2798 EVT InVT = LHS.getValueType();
2799 bool Is32Bit = InVT == MVT::i32;
2800 SDValue ToExtend;
2802 // Produce the value that needs to be either zero or sign extended.
2803 switch (CmpTy) {
2804 default: llvm_unreachable("Unknown Zero-comparison type.");
2805 case ZeroCompare::GEZExt:
2806 case ZeroCompare::GESExt:
2807 ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8,
2808 dl, InVT, LHS, LHS), 0);
2809 case ZeroCompare::LEZExt:
2810 case ZeroCompare::LESExt: {
2811 if (Is32Bit) {
2812 // Upper 32 bits cannot be undefined for this sequence.
2813 LHS = signExtendInputIfNeeded(LHS);
2814 SDValue Neg =
2815 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
2816 ToExtend =
2817 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2818 Neg, getI64Imm(1, dl),
2819 getI64Imm(63, dl)), 0);
2820 } else {
2821 SDValue Addi =
2822 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
2823 getI64Imm(~0ULL, dl)), 0);
2824 ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2825 Addi, LHS), 0);
2830 // For 64-bit sequences, the extensions are the same for the GE/LE cases.
2831 if (!Is32Bit && (CmpTy == ZeroCompare::GEZExt || ZeroCompare::LEZExt))
2832 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2833 ToExtend, getI64Imm(1, dl),
2834 getI64Imm(63, dl)), 0);
2835 if (!Is32Bit && (CmpTy == ZeroCompare::GESExt || ZeroCompare::LESExt))
2836 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend,
2837 getI64Imm(63, dl)), 0);
2839 assert(Is32Bit && "Should have handled the 32-bit sequences above.");
2840 // For 32-bit sequences, the extensions differ between GE/LE cases.
2841 switch (CmpTy) {
2842 default: llvm_unreachable("Unknown Zero-comparison type.");
2843 case ZeroCompare::GEZExt: {
2844 SDValue ShiftOps[] =
2845 { ToExtend, getI32Imm(1, dl), getI32Imm(31, dl), getI32Imm(31, dl) };
2846 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2847 ShiftOps), 0);
2849 case ZeroCompare::GESExt:
2850 return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend,
2851 getI32Imm(31, dl)), 0);
2852 case ZeroCompare::LEZExt:
2853 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend,
2854 getI32Imm(1, dl)), 0);
2855 case ZeroCompare::LESExt:
2856 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend,
2857 getI32Imm(-1, dl)), 0);
2861 /// Produces a zero-extended result of comparing two 32-bit values according to
2862 /// the passed condition code.
2863 SDValue PPCDAGToDAGISel::get32BitZExtCompare(SDValue LHS, SDValue RHS,
2864 ISD::CondCode CC,
2865 int64_t RHSValue, SDLoc dl) {
2866 bool IsRHSZero = RHSValue == 0;
2867 switch (CC) {
2868 default: return SDValue();
2869 case ISD::SETEQ: {
2870 // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5)
2871 // (zext (setcc %a, 0, seteq)) -> (lshr (cntlzw %a), 5)
2872 SDValue Xor = IsRHSZero ? LHS :
2873 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
2874 SDValue Clz =
2875 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
2876 SDValue ShiftOps[] = { Clz, getI32Imm(27, dl), getI32Imm(5, dl),
2877 getI32Imm(31, dl) };
2878 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2879 ShiftOps), 0);
2881 case ISD::SETNE: {
2882 // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1)
2883 // (zext (setcc %a, 0, setne)) -> (xor (lshr (cntlzw %a), 5), 1)
2884 SDValue Xor = IsRHSZero ? LHS :
2885 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
2886 SDValue Clz =
2887 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
2888 SDValue ShiftOps[] = { Clz, getI32Imm(27, dl), getI32Imm(5, dl),
2889 getI32Imm(31, dl) };
2890 SDValue Shift =
2891 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
2892 return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
2893 getI32Imm(1, dl)), 0);
2895 case ISD::SETGE: {
2896 // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1)
2897 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 31)
2898 if(IsRHSZero)
2899 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
2900 std::swap(LHS, RHS);
2901 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
2902 IsRHSZero = RHSConst && RHSConst->isNullValue();
2903 LLVM_FALLTHROUGH;
2905 case ISD::SETLE: {
2906 // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1)
2907 // (zext (setcc %a, 0, setle)) -> (xor (lshr (- %a), 63), 1)
2908 if(IsRHSZero)
2909 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
2911 // The upper 32-bits of the register can't be undefined for this sequence.
2912 LHS = signExtendInputIfNeeded(LHS);
2913 RHS = signExtendInputIfNeeded(RHS);
2914 SDValue Sub =
2915 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
2916 SDValue Shift =
2917 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub,
2918 getI64Imm(1, dl), getI64Imm(63, dl)), 0);
2919 return
2920 SDValue(CurDAG->getMachineNode(PPC::XORI8, dl,
2921 MVT::i64, Shift, getI32Imm(1, dl)), 0);
2926 /// Produces a sign-extended result of comparing two 32-bit values according to
2927 /// the passed condition code.
2928 SDValue PPCDAGToDAGISel::get32BitSExtCompare(SDValue LHS, SDValue RHS,
2929 ISD::CondCode CC,
2930 int64_t RHSValue, SDLoc dl) {
2931 bool IsRHSZero = RHSValue == 0;
2932 switch (CC) {
2933 default: return SDValue();
2934 case ISD::SETEQ: {
2935 // (sext (setcc %a, %b, seteq)) ->
2936 // (ashr (shl (ctlz (xor %a, %b)), 58), 63)
2937 // (sext (setcc %a, 0, seteq)) ->
2938 // (ashr (shl (ctlz %a), 58), 63)
2939 SDValue CountInput = IsRHSZero ? LHS :
2940 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
2941 SDValue Cntlzw =
2942 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0);
2943 SDValue SHLOps[] = { Cntlzw, getI32Imm(27, dl),
2944 getI32Imm(5, dl), getI32Imm(31, dl) };
2945 SDValue Slwi =
2946 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0);
2947 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0);
2949 case ISD::SETNE: {
2950 // Bitwise xor the operands, count leading zeros, shift right by 5 bits and
2951 // flip the bit, finally take 2's complement.
2952 // (sext (setcc %a, %b, setne)) ->
2953 // (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1))
2954 // Same as above, but the first xor is not needed.
2955 // (sext (setcc %a, 0, setne)) ->
2956 // (neg (xor (lshr (ctlz %a), 5), 1))
2957 SDValue Xor = IsRHSZero ? LHS :
2958 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
2959 SDValue Clz =
2960 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
2961 SDValue ShiftOps[] =
2962 { Clz, getI32Imm(27, dl), getI32Imm(5, dl), getI32Imm(31, dl) };
2963 SDValue Shift =
2964 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
2965 SDValue Xori =
2966 SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
2967 getI32Imm(1, dl)), 0);
2968 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0);
2970 case ISD::SETGE: {
2971 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1)
2972 // (sext (setcc %a, 0, setge)) -> (ashr (~ %a), 31)
2973 if (IsRHSZero)
2974 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
2975 std::swap(LHS, RHS);
2976 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
2977 IsRHSZero = RHSConst && RHSConst->isNullValue();
2978 LLVM_FALLTHROUGH;
2980 case ISD::SETLE: {
2981 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1)
2982 // (sext (setcc %a, 0, setle)) -> (add (lshr (- %a), 63), -1)
2983 if (IsRHSZero)
2984 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
2986 // The upper 32-bits of the register can't be undefined for this sequence.
2987 LHS = signExtendInputIfNeeded(LHS);
2988 RHS = signExtendInputIfNeeded(RHS);
2989 SDValue SUBFNode =
2990 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue,
2991 LHS, RHS), 0);
2992 SDValue Srdi =
2993 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2994 SUBFNode, getI64Imm(1, dl),
2995 getI64Imm(63, dl)), 0);
2996 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi,
2997 getI32Imm(-1, dl)), 0);
3002 /// Produces a zero-extended result of comparing two 64-bit values according to
3003 /// the passed condition code.
3004 SDValue PPCDAGToDAGISel::get64BitZExtCompare(SDValue LHS, SDValue RHS,
3005 ISD::CondCode CC,
3006 int64_t RHSValue, SDLoc dl) {
3007 bool IsRHSZero = RHSValue == 0;
3008 switch (CC) {
3009 default: return SDValue();
3010 case ISD::SETEQ: {
3011 // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6)
3012 // (zext (setcc %a, 0, seteq)) -> (lshr (ctlz %a), 6)
3013 SDValue Xor = IsRHSZero ? LHS :
3014 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3015 SDValue Clz =
3016 SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0);
3017 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz,
3018 getI64Imm(58, dl), getI64Imm(63, dl)),
3021 case ISD::SETNE: {
3022 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3023 // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA)
3024 // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3025 // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3026 SDValue Xor = IsRHSZero ? LHS :
3027 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3028 SDValue AC =
3029 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3030 Xor, getI32Imm(~0U, dl)), 0);
3031 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC,
3032 Xor, AC.getValue(1)), 0);
3037 /// Produces a sign-extended result of comparing two 64-bit values according to
3038 /// the passed condition code.
3039 SDValue PPCDAGToDAGISel::get64BitSExtCompare(SDValue LHS, SDValue RHS,
3040 ISD::CondCode CC,
3041 int64_t RHSValue, SDLoc dl) {
3042 bool IsRHSZero = RHSValue == 0;
3043 switch (CC) {
3044 default: return SDValue();
3045 case ISD::SETEQ: {
3046 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3047 // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA)
3048 // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3049 // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3050 SDValue AddInput = IsRHSZero ? LHS :
3051 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3052 SDValue Addic =
3053 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3054 AddInput, getI32Imm(~0U, dl)), 0);
3055 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic,
3056 Addic, Addic.getValue(1)), 0);
3058 case ISD::SETNE: {
3059 // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b))
3060 // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA)
3061 // {subfcz.reg, subfcz.CA} = (subcarry 0, %a)
3062 // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA)
3063 SDValue Xor = IsRHSZero ? LHS :
3064 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3065 SDValue SC =
3066 SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue,
3067 Xor, getI32Imm(0, dl)), 0);
3068 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC,
3069 SC, SC.getValue(1)), 0);
3074 /// Does this SDValue have any uses for which keeping the value in a GPR is
3075 /// appropriate. This is meant to be used on values that have type i1 since
3076 /// it is somewhat meaningless to ask if values of other types can be kept in
3077 /// GPR's.
3078 static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) {
3079 assert(Compare.getOpcode() == ISD::SETCC &&
3080 "An ISD::SETCC node required here.");
3082 // For values that have a single use, the caller should obviously already have
3083 // checked if that use is an extending use. We check the other uses here.
3084 if (Compare.hasOneUse())
3085 return true;
3086 // We want the value in a GPR if it is being extended, used for a select, or
3087 // used in logical operations.
3088 for (auto CompareUse : Compare.getNode()->uses())
3089 if (CompareUse->getOpcode() != ISD::SIGN_EXTEND &&
3090 CompareUse->getOpcode() != ISD::ZERO_EXTEND &&
3091 CompareUse->getOpcode() != ISD::SELECT &&
3092 !isLogicOp(CompareUse->getOpcode())) {
3093 OmittedForNonExtendUses++;
3094 return false;
3096 return true;
3099 /// Returns an equivalent of a SETCC node but with the result the same width as
3100 /// the inputs. This can nalso be used for SELECT_CC if either the true or false
3101 /// values is a power of two while the other is zero.
3102 SDValue PPCDAGToDAGISel::getSETCCInGPR(SDValue Compare,
3103 SetccInGPROpts ConvOpts) {
3104 assert((Compare.getOpcode() == ISD::SETCC ||
3105 Compare.getOpcode() == ISD::SELECT_CC) &&
3106 "An ISD::SETCC node required here.");
3108 // Don't convert this comparison to a GPR sequence because there are uses
3109 // of the i1 result (i.e. uses that require the result in the CR).
3110 if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG))
3111 return SDValue();
3113 SDValue LHS = Compare.getOperand(0);
3114 SDValue RHS = Compare.getOperand(1);
3116 // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC.
3117 int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2;
3118 ISD::CondCode CC =
3119 cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get();
3120 EVT InputVT = LHS.getValueType();
3121 if (InputVT != MVT::i32 && InputVT != MVT::i64)
3122 return SDValue();
3124 if (ConvOpts == SetccInGPROpts::ZExtInvert ||
3125 ConvOpts == SetccInGPROpts::SExtInvert)
3126 CC = ISD::getSetCCInverse(CC, true);
3128 bool Inputs32Bit = InputVT == MVT::i32;
3130 SDLoc dl(Compare);
3131 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3132 int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX;
3133 bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig ||
3134 ConvOpts == SetccInGPROpts::SExtInvert;
3136 if (IsSext && Inputs32Bit)
3137 return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3138 else if (Inputs32Bit)
3139 return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3140 else if (IsSext)
3141 return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3142 return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3145 /// Does this node represent a load/store node whose address can be represented
3146 /// with a register plus an immediate that's a multiple of \p Val:
3147 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const {
3148 LoadSDNode *LDN = dyn_cast<LoadSDNode>(N);
3149 StoreSDNode *STN = dyn_cast<StoreSDNode>(N);
3150 SDValue AddrOp;
3151 if (LDN)
3152 AddrOp = LDN->getOperand(1);
3153 else if (STN)
3154 AddrOp = STN->getOperand(2);
3156 short Imm = 0;
3157 if (AddrOp.getOpcode() == ISD::ADD) {
3158 // If op0 is a frame index that is under aligned, we can't do it either,
3159 // because it is translated to r31 or r1 + slot + offset. We won't know the
3160 // slot number until the stack frame is finalized.
3161 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddrOp.getOperand(0))) {
3162 const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo();
3163 unsigned SlotAlign = MFI.getObjectAlignment(FI->getIndex());
3164 if ((SlotAlign % Val) != 0)
3165 return false;
3167 return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val);
3170 // If the address comes from the outside, the offset will be zero.
3171 return AddrOp.getOpcode() == ISD::CopyFromReg;
3174 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
3175 // Transfer memoperands.
3176 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
3177 MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
3178 cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
3181 // Select - Convert the specified operand from a target-independent to a
3182 // target-specific node if it hasn't already been changed.
3183 void PPCDAGToDAGISel::Select(SDNode *N) {
3184 SDLoc dl(N);
3185 if (N->isMachineOpcode()) {
3186 N->setNodeId(-1);
3187 return; // Already selected.
3190 // In case any misguided DAG-level optimizations form an ADD with a
3191 // TargetConstant operand, crash here instead of miscompiling (by selecting
3192 // an r+r add instead of some kind of r+i add).
3193 if (N->getOpcode() == ISD::ADD &&
3194 N->getOperand(1).getOpcode() == ISD::TargetConstant)
3195 llvm_unreachable("Invalid ADD with TargetConstant operand");
3197 // Try matching complex bit permutations before doing anything else.
3198 if (tryBitPermutation(N))
3199 return;
3201 switch (N->getOpcode()) {
3202 default: break;
3204 case ISD::Constant:
3205 if (N->getValueType(0) == MVT::i64) {
3206 ReplaceNode(N, selectI64Imm(CurDAG, N));
3207 return;
3209 break;
3211 case ISD::ZERO_EXTEND:
3212 case ISD::SIGN_EXTEND:
3213 if (tryEXTEND(N))
3214 return;
3215 break;
3217 case ISD::SETCC:
3218 if (trySETCC(N))
3219 return;
3220 break;
3222 case PPCISD::GlobalBaseReg:
3223 ReplaceNode(N, getGlobalBaseReg());
3224 return;
3226 case ISD::FrameIndex:
3227 selectFrameIndex(N, N);
3228 return;
3230 case PPCISD::MFOCRF: {
3231 SDValue InFlag = N->getOperand(1);
3232 ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
3233 N->getOperand(0), InFlag));
3234 return;
3237 case PPCISD::READ_TIME_BASE:
3238 ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
3239 MVT::Other, N->getOperand(0)));
3240 return;
3242 case PPCISD::SRA_ADDZE: {
3243 SDValue N0 = N->getOperand(0);
3244 SDValue ShiftAmt =
3245 CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
3246 getConstantIntValue(), dl,
3247 N->getValueType(0));
3248 if (N->getValueType(0) == MVT::i64) {
3249 SDNode *Op =
3250 CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
3251 N0, ShiftAmt);
3252 CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0),
3253 SDValue(Op, 1));
3254 return;
3255 } else {
3256 assert(N->getValueType(0) == MVT::i32 &&
3257 "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
3258 SDNode *Op =
3259 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
3260 N0, ShiftAmt);
3261 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0),
3262 SDValue(Op, 1));
3263 return;
3267 case ISD::LOAD: {
3268 // Handle preincrement loads.
3269 LoadSDNode *LD = cast<LoadSDNode>(N);
3270 EVT LoadedVT = LD->getMemoryVT();
3272 // Normal loads are handled by code generated from the .td file.
3273 if (LD->getAddressingMode() != ISD::PRE_INC)
3274 break;
3276 SDValue Offset = LD->getOffset();
3277 if (Offset.getOpcode() == ISD::TargetConstant ||
3278 Offset.getOpcode() == ISD::TargetGlobalAddress) {
3280 unsigned Opcode;
3281 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
3282 if (LD->getValueType(0) != MVT::i64) {
3283 // Handle PPC32 integer and normal FP loads.
3284 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
3285 switch (LoadedVT.getSimpleVT().SimpleTy) {
3286 default: llvm_unreachable("Invalid PPC load type!");
3287 case MVT::f64: Opcode = PPC::LFDU; break;
3288 case MVT::f32: Opcode = PPC::LFSU; break;
3289 case MVT::i32: Opcode = PPC::LWZU; break;
3290 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
3291 case MVT::i1:
3292 case MVT::i8: Opcode = PPC::LBZU; break;
3294 } else {
3295 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
3296 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
3297 switch (LoadedVT.getSimpleVT().SimpleTy) {
3298 default: llvm_unreachable("Invalid PPC load type!");
3299 case MVT::i64: Opcode = PPC::LDU; break;
3300 case MVT::i32: Opcode = PPC::LWZU8; break;
3301 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
3302 case MVT::i1:
3303 case MVT::i8: Opcode = PPC::LBZU8; break;
3307 SDValue Chain = LD->getChain();
3308 SDValue Base = LD->getBasePtr();
3309 SDValue Ops[] = { Offset, Base, Chain };
3310 SDNode *MN = CurDAG->getMachineNode(
3311 Opcode, dl, LD->getValueType(0),
3312 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
3313 transferMemOperands(N, MN);
3314 ReplaceNode(N, MN);
3315 return;
3316 } else {
3317 unsigned Opcode;
3318 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
3319 if (LD->getValueType(0) != MVT::i64) {
3320 // Handle PPC32 integer and normal FP loads.
3321 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
3322 switch (LoadedVT.getSimpleVT().SimpleTy) {
3323 default: llvm_unreachable("Invalid PPC load type!");
3324 case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX
3325 case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX
3326 case MVT::f64: Opcode = PPC::LFDUX; break;
3327 case MVT::f32: Opcode = PPC::LFSUX; break;
3328 case MVT::i32: Opcode = PPC::LWZUX; break;
3329 case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
3330 case MVT::i1:
3331 case MVT::i8: Opcode = PPC::LBZUX; break;
3333 } else {
3334 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
3335 assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
3336 "Invalid sext update load");
3337 switch (LoadedVT.getSimpleVT().SimpleTy) {
3338 default: llvm_unreachable("Invalid PPC load type!");
3339 case MVT::i64: Opcode = PPC::LDUX; break;
3340 case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break;
3341 case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
3342 case MVT::i1:
3343 case MVT::i8: Opcode = PPC::LBZUX8; break;
3347 SDValue Chain = LD->getChain();
3348 SDValue Base = LD->getBasePtr();
3349 SDValue Ops[] = { Base, Offset, Chain };
3350 SDNode *MN = CurDAG->getMachineNode(
3351 Opcode, dl, LD->getValueType(0),
3352 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
3353 transferMemOperands(N, MN);
3354 ReplaceNode(N, MN);
3355 return;
3359 case ISD::AND: {
3360 if (tryLogicOpOfCompares(N))
3361 return;
3363 unsigned Imm, Imm2, SH, MB, ME;
3364 uint64_t Imm64;
3366 // If this is an and of a value rotated between 0 and 31 bits and then and'd
3367 // with a mask, emit rlwinm
3368 if (isInt32Immediate(N->getOperand(1), Imm) &&
3369 isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
3370 SDValue Val = N->getOperand(0).getOperand(0);
3371 SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
3372 getI32Imm(ME, dl) };
3373 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
3374 return;
3376 // If this is just a masked value where the input is not handled above, and
3377 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
3378 if (isInt32Immediate(N->getOperand(1), Imm) &&
3379 isRunOfOnes(Imm, MB, ME) &&
3380 N->getOperand(0).getOpcode() != ISD::ROTL) {
3381 SDValue Val = N->getOperand(0);
3382 SDValue Ops[] = { Val, getI32Imm(0, dl), getI32Imm(MB, dl),
3383 getI32Imm(ME, dl) };
3384 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
3385 return;
3387 // If this is a 64-bit zero-extension mask, emit rldicl.
3388 if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
3389 isMask_64(Imm64)) {
3390 SDValue Val = N->getOperand(0);
3391 MB = 64 - countTrailingOnes(Imm64);
3392 SH = 0;
3394 if (Val.getOpcode() == ISD::ANY_EXTEND) {
3395 auto Op0 = Val.getOperand(0);
3396 if ( Op0.getOpcode() == ISD::SRL &&
3397 isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) {
3399 auto ResultType = Val.getNode()->getValueType(0);
3400 auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
3401 ResultType);
3402 SDValue IDVal (ImDef, 0);
3404 Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
3405 ResultType, IDVal, Op0.getOperand(0),
3406 getI32Imm(1, dl)), 0);
3407 SH = 64 - Imm;
3411 // If the operand is a logical right shift, we can fold it into this
3412 // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
3413 // for n <= mb. The right shift is really a left rotate followed by a
3414 // mask, and this mask is a more-restrictive sub-mask of the mask implied
3415 // by the shift.
3416 if (Val.getOpcode() == ISD::SRL &&
3417 isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
3418 assert(Imm < 64 && "Illegal shift amount");
3419 Val = Val.getOperand(0);
3420 SH = 64 - Imm;
3423 SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) };
3424 CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
3425 return;
3427 // If this is a negated 64-bit zero-extension mask,
3428 // i.e. the immediate is a sequence of ones from most significant side
3429 // and all zero for reminder, we should use rldicr.
3430 if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
3431 isMask_64(~Imm64)) {
3432 SDValue Val = N->getOperand(0);
3433 MB = 63 - countTrailingOnes(~Imm64);
3434 SH = 0;
3435 SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) };
3436 CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
3437 return;
3440 // AND X, 0 -> 0, not "rlwinm 32".
3441 if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
3442 ReplaceUses(SDValue(N, 0), N->getOperand(1));
3443 return;
3445 // ISD::OR doesn't get all the bitfield insertion fun.
3446 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
3447 // bitfield insert.
3448 if (isInt32Immediate(N->getOperand(1), Imm) &&
3449 N->getOperand(0).getOpcode() == ISD::OR &&
3450 isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
3451 // The idea here is to check whether this is equivalent to:
3452 // (c1 & m) | (x & ~m)
3453 // where m is a run-of-ones mask. The logic here is that, for each bit in
3454 // c1 and c2:
3455 // - if both are 1, then the output will be 1.
3456 // - if both are 0, then the output will be 0.
3457 // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
3458 // come from x.
3459 // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
3460 // be 0.
3461 // If that last condition is never the case, then we can form m from the
3462 // bits that are the same between c1 and c2.
3463 unsigned MB, ME;
3464 if (isRunOfOnes(~(Imm^Imm2), MB, ME) && !(~Imm & Imm2)) {
3465 SDValue Ops[] = { N->getOperand(0).getOperand(0),
3466 N->getOperand(0).getOperand(1),
3467 getI32Imm(0, dl), getI32Imm(MB, dl),
3468 getI32Imm(ME, dl) };
3469 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
3470 return;
3474 // Other cases are autogenerated.
3475 break;
3477 case ISD::OR: {
3478 if (N->getValueType(0) == MVT::i32)
3479 if (tryBitfieldInsert(N))
3480 return;
3482 if (tryLogicOpOfCompares(N))
3483 return;
3485 int16_t Imm;
3486 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
3487 isIntS16Immediate(N->getOperand(1), Imm)) {
3488 KnownBits LHSKnown;
3489 CurDAG->computeKnownBits(N->getOperand(0), LHSKnown);
3491 // If this is equivalent to an add, then we can fold it with the
3492 // FrameIndex calculation.
3493 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) {
3494 selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
3495 return;
3499 // OR with a 32-bit immediate can be handled by ori + oris
3500 // without creating an immediate in a GPR.
3501 uint64_t Imm64 = 0;
3502 bool IsPPC64 = PPCSubTarget->isPPC64();
3503 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
3504 (Imm64 & ~0xFFFFFFFFuLL) == 0) {
3505 // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later.
3506 uint64_t ImmHi = Imm64 >> 16;
3507 uint64_t ImmLo = Imm64 & 0xFFFF;
3508 if (ImmHi != 0 && ImmLo != 0) {
3509 SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
3510 N->getOperand(0),
3511 getI16Imm(ImmLo, dl));
3512 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
3513 CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1);
3514 return;
3518 // Other cases are autogenerated.
3519 break;
3521 case ISD::XOR: {
3522 if (tryLogicOpOfCompares(N))
3523 return;
3525 // XOR with a 32-bit immediate can be handled by xori + xoris
3526 // without creating an immediate in a GPR.
3527 uint64_t Imm64 = 0;
3528 bool IsPPC64 = PPCSubTarget->isPPC64();
3529 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
3530 (Imm64 & ~0xFFFFFFFFuLL) == 0) {
3531 // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later.
3532 uint64_t ImmHi = Imm64 >> 16;
3533 uint64_t ImmLo = Imm64 & 0xFFFF;
3534 if (ImmHi != 0 && ImmLo != 0) {
3535 SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3536 N->getOperand(0),
3537 getI16Imm(ImmLo, dl));
3538 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
3539 CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1);
3540 return;
3544 break;
3546 case ISD::ADD: {
3547 int16_t Imm;
3548 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
3549 isIntS16Immediate(N->getOperand(1), Imm)) {
3550 selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
3551 return;
3554 break;
3556 case ISD::SHL: {
3557 unsigned Imm, SH, MB, ME;
3558 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
3559 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
3560 SDValue Ops[] = { N->getOperand(0).getOperand(0),
3561 getI32Imm(SH, dl), getI32Imm(MB, dl),
3562 getI32Imm(ME, dl) };
3563 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
3564 return;
3567 // Other cases are autogenerated.
3568 break;
3570 case ISD::SRL: {
3571 unsigned Imm, SH, MB, ME;
3572 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
3573 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
3574 SDValue Ops[] = { N->getOperand(0).getOperand(0),
3575 getI32Imm(SH, dl), getI32Imm(MB, dl),
3576 getI32Imm(ME, dl) };
3577 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
3578 return;
3581 // Other cases are autogenerated.
3582 break;
3584 // FIXME: Remove this once the ANDI glue bug is fixed:
3585 case PPCISD::ANDIo_1_EQ_BIT:
3586 case PPCISD::ANDIo_1_GT_BIT: {
3587 if (!ANDIGlueBug)
3588 break;
3590 EVT InVT = N->getOperand(0).getValueType();
3591 assert((InVT == MVT::i64 || InVT == MVT::i32) &&
3592 "Invalid input type for ANDIo_1_EQ_BIT");
3594 unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo;
3595 SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
3596 N->getOperand(0),
3597 CurDAG->getTargetConstant(1, dl, InVT)),
3599 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
3600 SDValue SRIdxVal =
3601 CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ?
3602 PPC::sub_eq : PPC::sub_gt, dl, MVT::i32);
3604 CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg,
3605 SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */);
3606 return;
3608 case ISD::SELECT_CC: {
3609 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
3610 EVT PtrVT =
3611 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
3612 bool isPPC64 = (PtrVT == MVT::i64);
3614 // If this is a select of i1 operands, we'll pattern match it.
3615 if (PPCSubTarget->useCRBits() &&
3616 N->getOperand(0).getValueType() == MVT::i1)
3617 break;
3619 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
3620 if (!isPPC64)
3621 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
3622 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
3623 if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
3624 if (N1C->isNullValue() && N3C->isNullValue() &&
3625 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
3626 // FIXME: Implement this optzn for PPC64.
3627 N->getValueType(0) == MVT::i32) {
3628 SDNode *Tmp =
3629 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
3630 N->getOperand(0), getI32Imm(~0U, dl));
3631 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0),
3632 N->getOperand(0), SDValue(Tmp, 1));
3633 return;
3636 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
3638 if (N->getValueType(0) == MVT::i1) {
3639 // An i1 select is: (c & t) | (!c & f).
3640 bool Inv;
3641 unsigned Idx = getCRIdxForSetCC(CC, Inv);
3643 unsigned SRI;
3644 switch (Idx) {
3645 default: llvm_unreachable("Invalid CC index");
3646 case 0: SRI = PPC::sub_lt; break;
3647 case 1: SRI = PPC::sub_gt; break;
3648 case 2: SRI = PPC::sub_eq; break;
3649 case 3: SRI = PPC::sub_un; break;
3652 SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
3654 SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
3655 CCBit, CCBit), 0);
3656 SDValue C = Inv ? NotCCBit : CCBit,
3657 NotC = Inv ? CCBit : NotCCBit;
3659 SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
3660 C, N->getOperand(2)), 0);
3661 SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
3662 NotC, N->getOperand(3)), 0);
3664 CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
3665 return;
3668 unsigned BROpc = getPredicateForSetCC(CC);
3670 unsigned SelectCCOp;
3671 if (N->getValueType(0) == MVT::i32)
3672 SelectCCOp = PPC::SELECT_CC_I4;
3673 else if (N->getValueType(0) == MVT::i64)
3674 SelectCCOp = PPC::SELECT_CC_I8;
3675 else if (N->getValueType(0) == MVT::f32)
3676 if (PPCSubTarget->hasP8Vector())
3677 SelectCCOp = PPC::SELECT_CC_VSSRC;
3678 else
3679 SelectCCOp = PPC::SELECT_CC_F4;
3680 else if (N->getValueType(0) == MVT::f64)
3681 if (PPCSubTarget->hasVSX())
3682 SelectCCOp = PPC::SELECT_CC_VSFRC;
3683 else
3684 SelectCCOp = PPC::SELECT_CC_F8;
3685 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64)
3686 SelectCCOp = PPC::SELECT_CC_QFRC;
3687 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32)
3688 SelectCCOp = PPC::SELECT_CC_QSRC;
3689 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1)
3690 SelectCCOp = PPC::SELECT_CC_QBRC;
3691 else if (N->getValueType(0) == MVT::v2f64 ||
3692 N->getValueType(0) == MVT::v2i64)
3693 SelectCCOp = PPC::SELECT_CC_VSRC;
3694 else
3695 SelectCCOp = PPC::SELECT_CC_VRRC;
3697 SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
3698 getI32Imm(BROpc, dl) };
3699 CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
3700 return;
3702 case ISD::VSELECT:
3703 if (PPCSubTarget->hasVSX()) {
3704 SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) };
3705 CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops);
3706 return;
3708 break;
3710 case ISD::VECTOR_SHUFFLE:
3711 if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
3712 N->getValueType(0) == MVT::v2i64)) {
3713 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
3715 SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
3716 Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
3717 unsigned DM[2];
3719 for (int i = 0; i < 2; ++i)
3720 if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
3721 DM[i] = 0;
3722 else
3723 DM[i] = 1;
3725 if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
3726 Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3727 isa<LoadSDNode>(Op1.getOperand(0))) {
3728 LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
3729 SDValue Base, Offset;
3731 if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() &&
3732 (LD->getMemoryVT() == MVT::f64 ||
3733 LD->getMemoryVT() == MVT::i64) &&
3734 SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
3735 SDValue Chain = LD->getChain();
3736 SDValue Ops[] = { Base, Offset, Chain };
3737 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
3738 MemOp[0] = LD->getMemOperand();
3739 SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX,
3740 N->getValueType(0), Ops);
3741 cast<MachineSDNode>(NewN)->setMemRefs(MemOp, MemOp + 1);
3742 return;
3746 // For little endian, we must swap the input operands and adjust
3747 // the mask elements (reverse and invert them).
3748 if (PPCSubTarget->isLittleEndian()) {
3749 std::swap(Op1, Op2);
3750 unsigned tmp = DM[0];
3751 DM[0] = 1 - DM[1];
3752 DM[1] = 1 - tmp;
3755 SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
3756 MVT::i32);
3757 SDValue Ops[] = { Op1, Op2, DMV };
3758 CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
3759 return;
3762 break;
3763 case PPCISD::BDNZ:
3764 case PPCISD::BDZ: {
3765 bool IsPPC64 = PPCSubTarget->isPPC64();
3766 SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
3767 CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ
3768 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
3769 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
3770 MVT::Other, Ops);
3771 return;
3773 case PPCISD::COND_BRANCH: {
3774 // Op #0 is the Chain.
3775 // Op #1 is the PPC::PRED_* number.
3776 // Op #2 is the CR#
3777 // Op #3 is the Dest MBB
3778 // Op #4 is the Flag.
3779 // Prevent PPC::PRED_* from being selected into LI.
3780 unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
3781 if (EnableBranchHint)
3782 PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(3));
3784 SDValue Pred = getI32Imm(PCC, dl);
3785 SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
3786 N->getOperand(0), N->getOperand(4) };
3787 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
3788 return;
3790 case ISD::BR_CC: {
3791 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3792 unsigned PCC = getPredicateForSetCC(CC);
3794 if (N->getOperand(2).getValueType() == MVT::i1) {
3795 unsigned Opc;
3796 bool Swap;
3797 switch (PCC) {
3798 default: llvm_unreachable("Unexpected Boolean-operand predicate");
3799 case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break;
3800 case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break;
3801 case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break;
3802 case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break;
3803 case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
3804 case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break;
3807 SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
3808 N->getOperand(Swap ? 3 : 2),
3809 N->getOperand(Swap ? 2 : 3)), 0);
3810 CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4),
3811 N->getOperand(0));
3812 return;
3815 if (EnableBranchHint)
3816 PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(4));
3818 SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
3819 SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
3820 N->getOperand(4), N->getOperand(0) };
3821 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
3822 return;
3824 case ISD::BRIND: {
3825 // FIXME: Should custom lower this.
3826 SDValue Chain = N->getOperand(0);
3827 SDValue Target = N->getOperand(1);
3828 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
3829 unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
3830 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
3831 Chain), 0);
3832 CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
3833 return;
3835 case PPCISD::TOC_ENTRY: {
3836 assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) &&
3837 "Only supported for 64-bit ABI and 32-bit SVR4");
3838 if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) {
3839 SDValue GA = N->getOperand(0);
3840 SDNode *MN = CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA,
3841 N->getOperand(1));
3842 transferMemOperands(N, MN);
3843 ReplaceNode(N, MN);
3844 return;
3847 // For medium and large code model, we generate two instructions as
3848 // described below. Otherwise we allow SelectCodeCommon to handle this,
3849 // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA.
3850 CodeModel::Model CModel = TM.getCodeModel();
3851 if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
3852 break;
3854 // The first source operand is a TargetGlobalAddress or a TargetJumpTable.
3855 // If it must be toc-referenced according to PPCSubTarget, we generate:
3856 // LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
3857 // Otherwise we generate:
3858 // ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
3859 SDValue GA = N->getOperand(0);
3860 SDValue TOCbase = N->getOperand(1);
3861 SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
3862 TOCbase, GA);
3864 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA) ||
3865 CModel == CodeModel::Large) {
3866 SDNode *MN = CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
3867 SDValue(Tmp, 0));
3868 transferMemOperands(N, MN);
3869 ReplaceNode(N, MN);
3870 return;
3873 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
3874 const GlobalValue *GV = G->getGlobal();
3875 unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV);
3876 if (GVFlags & PPCII::MO_NLP_FLAG) {
3877 SDNode *MN = CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
3878 SDValue(Tmp, 0));
3879 transferMemOperands(N, MN);
3880 ReplaceNode(N, MN);
3881 return;
3885 ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
3886 SDValue(Tmp, 0), GA));
3887 return;
3889 case PPCISD::PPC32_PICGOT:
3890 // Generate a PIC-safe GOT reference.
3891 assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() &&
3892 "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
3893 CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT,
3894 PPCLowering->getPointerTy(CurDAG->getDataLayout()),
3895 MVT::i32);
3896 return;
3898 case PPCISD::VADD_SPLAT: {
3899 // This expands into one of three sequences, depending on whether
3900 // the first operand is odd or even, positive or negative.
3901 assert(isa<ConstantSDNode>(N->getOperand(0)) &&
3902 isa<ConstantSDNode>(N->getOperand(1)) &&
3903 "Invalid operand on VADD_SPLAT!");
3905 int Elt = N->getConstantOperandVal(0);
3906 int EltSize = N->getConstantOperandVal(1);
3907 unsigned Opc1, Opc2, Opc3;
3908 EVT VT;
3910 if (EltSize == 1) {
3911 Opc1 = PPC::VSPLTISB;
3912 Opc2 = PPC::VADDUBM;
3913 Opc3 = PPC::VSUBUBM;
3914 VT = MVT::v16i8;
3915 } else if (EltSize == 2) {
3916 Opc1 = PPC::VSPLTISH;
3917 Opc2 = PPC::VADDUHM;
3918 Opc3 = PPC::VSUBUHM;
3919 VT = MVT::v8i16;
3920 } else {
3921 assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
3922 Opc1 = PPC::VSPLTISW;
3923 Opc2 = PPC::VADDUWM;
3924 Opc3 = PPC::VSUBUWM;
3925 VT = MVT::v4i32;
3928 if ((Elt & 1) == 0) {
3929 // Elt is even, in the range [-32,-18] + [16,30].
3931 // Convert: VADD_SPLAT elt, size
3932 // Into: tmp = VSPLTIS[BHW] elt
3933 // VADDU[BHW]M tmp, tmp
3934 // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4
3935 SDValue EltVal = getI32Imm(Elt >> 1, dl);
3936 SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3937 SDValue TmpVal = SDValue(Tmp, 0);
3938 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal));
3939 return;
3940 } else if (Elt > 0) {
3941 // Elt is odd and positive, in the range [17,31].
3943 // Convert: VADD_SPLAT elt, size
3944 // Into: tmp1 = VSPLTIS[BHW] elt-16
3945 // tmp2 = VSPLTIS[BHW] -16
3946 // VSUBU[BHW]M tmp1, tmp2
3947 SDValue EltVal = getI32Imm(Elt - 16, dl);
3948 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3949 EltVal = getI32Imm(-16, dl);
3950 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3951 ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
3952 SDValue(Tmp2, 0)));
3953 return;
3954 } else {
3955 // Elt is odd and negative, in the range [-31,-17].
3957 // Convert: VADD_SPLAT elt, size
3958 // Into: tmp1 = VSPLTIS[BHW] elt+16
3959 // tmp2 = VSPLTIS[BHW] -16
3960 // VADDU[BHW]M tmp1, tmp2
3961 SDValue EltVal = getI32Imm(Elt + 16, dl);
3962 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3963 EltVal = getI32Imm(-16, dl);
3964 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3965 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
3966 SDValue(Tmp2, 0)));
3967 return;
3972 SelectCode(N);
3975 // If the target supports the cmpb instruction, do the idiom recognition here.
3976 // We don't do this as a DAG combine because we don't want to do it as nodes
3977 // are being combined (because we might miss part of the eventual idiom). We
3978 // don't want to do it during instruction selection because we want to reuse
3979 // the logic for lowering the masking operations already part of the
3980 // instruction selector.
3981 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
3982 SDLoc dl(N);
3984 assert(N->getOpcode() == ISD::OR &&
3985 "Only OR nodes are supported for CMPB");
3987 SDValue Res;
3988 if (!PPCSubTarget->hasCMPB())
3989 return Res;
3991 if (N->getValueType(0) != MVT::i32 &&
3992 N->getValueType(0) != MVT::i64)
3993 return Res;
3995 EVT VT = N->getValueType(0);
3997 SDValue RHS, LHS;
3998 bool BytesFound[8] = {false, false, false, false, false, false, false, false};
3999 uint64_t Mask = 0, Alt = 0;
4001 auto IsByteSelectCC = [this](SDValue O, unsigned &b,
4002 uint64_t &Mask, uint64_t &Alt,
4003 SDValue &LHS, SDValue &RHS) {
4004 if (O.getOpcode() != ISD::SELECT_CC)
4005 return false;
4006 ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
4008 if (!isa<ConstantSDNode>(O.getOperand(2)) ||
4009 !isa<ConstantSDNode>(O.getOperand(3)))
4010 return false;
4012 uint64_t PM = O.getConstantOperandVal(2);
4013 uint64_t PAlt = O.getConstantOperandVal(3);
4014 for (b = 0; b < 8; ++b) {
4015 uint64_t Mask = UINT64_C(0xFF) << (8*b);
4016 if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
4017 break;
4020 if (b == 8)
4021 return false;
4022 Mask |= PM;
4023 Alt |= PAlt;
4025 if (!isa<ConstantSDNode>(O.getOperand(1)) ||
4026 O.getConstantOperandVal(1) != 0) {
4027 SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
4028 if (Op0.getOpcode() == ISD::TRUNCATE)
4029 Op0 = Op0.getOperand(0);
4030 if (Op1.getOpcode() == ISD::TRUNCATE)
4031 Op1 = Op1.getOperand(0);
4033 if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
4034 Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
4035 isa<ConstantSDNode>(Op0.getOperand(1))) {
4037 unsigned Bits = Op0.getValueSizeInBits();
4038 if (b != Bits/8-1)
4039 return false;
4040 if (Op0.getConstantOperandVal(1) != Bits-8)
4041 return false;
4043 LHS = Op0.getOperand(0);
4044 RHS = Op1.getOperand(0);
4045 return true;
4048 // When we have small integers (i16 to be specific), the form present
4049 // post-legalization uses SETULT in the SELECT_CC for the
4050 // higher-order byte, depending on the fact that the
4051 // even-higher-order bytes are known to all be zero, for example:
4052 // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
4053 // (so when the second byte is the same, because all higher-order
4054 // bits from bytes 3 and 4 are known to be zero, the result of the
4055 // xor can be at most 255)
4056 if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
4057 isa<ConstantSDNode>(O.getOperand(1))) {
4059 uint64_t ULim = O.getConstantOperandVal(1);
4060 if (ULim != (UINT64_C(1) << b*8))
4061 return false;
4063 // Now we need to make sure that the upper bytes are known to be
4064 // zero.
4065 unsigned Bits = Op0.getValueSizeInBits();
4066 if (!CurDAG->MaskedValueIsZero(
4067 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8)))
4068 return false;
4070 LHS = Op0.getOperand(0);
4071 RHS = Op0.getOperand(1);
4072 return true;
4075 return false;
4078 if (CC != ISD::SETEQ)
4079 return false;
4081 SDValue Op = O.getOperand(0);
4082 if (Op.getOpcode() == ISD::AND) {
4083 if (!isa<ConstantSDNode>(Op.getOperand(1)))
4084 return false;
4085 if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
4086 return false;
4088 SDValue XOR = Op.getOperand(0);
4089 if (XOR.getOpcode() == ISD::TRUNCATE)
4090 XOR = XOR.getOperand(0);
4091 if (XOR.getOpcode() != ISD::XOR)
4092 return false;
4094 LHS = XOR.getOperand(0);
4095 RHS = XOR.getOperand(1);
4096 return true;
4097 } else if (Op.getOpcode() == ISD::SRL) {
4098 if (!isa<ConstantSDNode>(Op.getOperand(1)))
4099 return false;
4100 unsigned Bits = Op.getValueSizeInBits();
4101 if (b != Bits/8-1)
4102 return false;
4103 if (Op.getConstantOperandVal(1) != Bits-8)
4104 return false;
4106 SDValue XOR = Op.getOperand(0);
4107 if (XOR.getOpcode() == ISD::TRUNCATE)
4108 XOR = XOR.getOperand(0);
4109 if (XOR.getOpcode() != ISD::XOR)
4110 return false;
4112 LHS = XOR.getOperand(0);
4113 RHS = XOR.getOperand(1);
4114 return true;
4117 return false;
4120 SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
4121 while (!Queue.empty()) {
4122 SDValue V = Queue.pop_back_val();
4124 for (const SDValue &O : V.getNode()->ops()) {
4125 unsigned b;
4126 uint64_t M = 0, A = 0;
4127 SDValue OLHS, ORHS;
4128 if (O.getOpcode() == ISD::OR) {
4129 Queue.push_back(O);
4130 } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
4131 if (!LHS) {
4132 LHS = OLHS;
4133 RHS = ORHS;
4134 BytesFound[b] = true;
4135 Mask |= M;
4136 Alt |= A;
4137 } else if ((LHS == ORHS && RHS == OLHS) ||
4138 (RHS == ORHS && LHS == OLHS)) {
4139 BytesFound[b] = true;
4140 Mask |= M;
4141 Alt |= A;
4142 } else {
4143 return Res;
4145 } else {
4146 return Res;
4151 unsigned LastB = 0, BCnt = 0;
4152 for (unsigned i = 0; i < 8; ++i)
4153 if (BytesFound[LastB]) {
4154 ++BCnt;
4155 LastB = i;
4158 if (!LastB || BCnt < 2)
4159 return Res;
4161 // Because we'll be zero-extending the output anyway if don't have a specific
4162 // value for each input byte (via the Mask), we can 'anyext' the inputs.
4163 if (LHS.getValueType() != VT) {
4164 LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
4165 RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
4168 Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
4170 bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
4171 if (NonTrivialMask && !Alt) {
4172 // Res = Mask & CMPB
4173 Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
4174 CurDAG->getConstant(Mask, dl, VT));
4175 } else if (Alt) {
4176 // Res = (CMPB & Mask) | (~CMPB & Alt)
4177 // Which, as suggested here:
4178 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
4179 // can be written as:
4180 // Res = Alt ^ ((Alt ^ Mask) & CMPB)
4181 // useful because the (Alt ^ Mask) can be pre-computed.
4182 Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
4183 CurDAG->getConstant(Mask ^ Alt, dl, VT));
4184 Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
4185 CurDAG->getConstant(Alt, dl, VT));
4188 return Res;
4191 // When CR bit registers are enabled, an extension of an i1 variable to a i32
4192 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
4193 // involves constant materialization of a 0 or a 1 or both. If the result of
4194 // the extension is then operated upon by some operator that can be constant
4195 // folded with a constant 0 or 1, and that constant can be materialized using
4196 // only one instruction (like a zero or one), then we should fold in those
4197 // operations with the select.
4198 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
4199 if (!PPCSubTarget->useCRBits())
4200 return;
4202 if (N->getOpcode() != ISD::ZERO_EXTEND &&
4203 N->getOpcode() != ISD::SIGN_EXTEND &&
4204 N->getOpcode() != ISD::ANY_EXTEND)
4205 return;
4207 if (N->getOperand(0).getValueType() != MVT::i1)
4208 return;
4210 if (!N->hasOneUse())
4211 return;
4213 SDLoc dl(N);
4214 EVT VT = N->getValueType(0);
4215 SDValue Cond = N->getOperand(0);
4216 SDValue ConstTrue =
4217 CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
4218 SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
4220 do {
4221 SDNode *User = *N->use_begin();
4222 if (User->getNumOperands() != 2)
4223 break;
4225 auto TryFold = [this, N, User, dl](SDValue Val) {
4226 SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
4227 SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
4228 SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
4230 return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
4231 User->getValueType(0),
4232 O0.getNode(), O1.getNode());
4235 // FIXME: When the semantics of the interaction between select and undef
4236 // are clearly defined, it may turn out to be unnecessary to break here.
4237 SDValue TrueRes = TryFold(ConstTrue);
4238 if (!TrueRes || TrueRes.isUndef())
4239 break;
4240 SDValue FalseRes = TryFold(ConstFalse);
4241 if (!FalseRes || FalseRes.isUndef())
4242 break;
4244 // For us to materialize these using one instruction, we must be able to
4245 // represent them as signed 16-bit integers.
4246 uint64_t True = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
4247 False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
4248 if (!isInt<16>(True) || !isInt<16>(False))
4249 break;
4251 // We can replace User with a new SELECT node, and try again to see if we
4252 // can fold the select with its user.
4253 Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
4254 N = User;
4255 ConstTrue = TrueRes;
4256 ConstFalse = FalseRes;
4257 } while (N->hasOneUse());
4260 void PPCDAGToDAGISel::PreprocessISelDAG() {
4261 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
4262 ++Position;
4264 bool MadeChange = false;
4265 while (Position != CurDAG->allnodes_begin()) {
4266 SDNode *N = &*--Position;
4267 if (N->use_empty())
4268 continue;
4270 SDValue Res;
4271 switch (N->getOpcode()) {
4272 default: break;
4273 case ISD::OR:
4274 Res = combineToCMPB(N);
4275 break;
4278 if (!Res)
4279 foldBoolExts(Res, N);
4281 if (Res) {
4282 DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: ");
4283 DEBUG(N->dump(CurDAG));
4284 DEBUG(dbgs() << "\nNew: ");
4285 DEBUG(Res.getNode()->dump(CurDAG));
4286 DEBUG(dbgs() << "\n");
4288 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
4289 MadeChange = true;
4293 if (MadeChange)
4294 CurDAG->RemoveDeadNodes();
4297 /// PostprocessISelDAG - Perform some late peephole optimizations
4298 /// on the DAG representation.
4299 void PPCDAGToDAGISel::PostprocessISelDAG() {
4300 // Skip peepholes at -O0.
4301 if (TM.getOptLevel() == CodeGenOpt::None)
4302 return;
4304 PeepholePPC64();
4305 PeepholeCROps();
4306 PeepholePPC64ZExt();
4309 // Check if all users of this node will become isel where the second operand
4310 // is the constant zero. If this is so, and if we can negate the condition,
4311 // then we can flip the true and false operands. This will allow the zero to
4312 // be folded with the isel so that we don't need to materialize a register
4313 // containing zero.
4314 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
4315 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4316 UI != UE; ++UI) {
4317 SDNode *User = *UI;
4318 if (!User->isMachineOpcode())
4319 return false;
4320 if (User->getMachineOpcode() != PPC::SELECT_I4 &&
4321 User->getMachineOpcode() != PPC::SELECT_I8)
4322 return false;
4324 SDNode *Op2 = User->getOperand(2).getNode();
4325 if (!Op2->isMachineOpcode())
4326 return false;
4328 if (Op2->getMachineOpcode() != PPC::LI &&
4329 Op2->getMachineOpcode() != PPC::LI8)
4330 return false;
4332 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
4333 if (!C)
4334 return false;
4336 if (!C->isNullValue())
4337 return false;
4340 return true;
4343 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
4344 SmallVector<SDNode *, 4> ToReplace;
4345 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4346 UI != UE; ++UI) {
4347 SDNode *User = *UI;
4348 assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
4349 User->getMachineOpcode() == PPC::SELECT_I8) &&
4350 "Must have all select users");
4351 ToReplace.push_back(User);
4354 for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(),
4355 UE = ToReplace.end(); UI != UE; ++UI) {
4356 SDNode *User = *UI;
4357 SDNode *ResNode =
4358 CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
4359 User->getValueType(0), User->getOperand(0),
4360 User->getOperand(2),
4361 User->getOperand(1));
4363 DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
4364 DEBUG(User->dump(CurDAG));
4365 DEBUG(dbgs() << "\nNew: ");
4366 DEBUG(ResNode->dump(CurDAG));
4367 DEBUG(dbgs() << "\n");
4369 ReplaceUses(User, ResNode);
4373 void PPCDAGToDAGISel::PeepholeCROps() {
4374 bool IsModified;
4375 do {
4376 IsModified = false;
4377 for (SDNode &Node : CurDAG->allnodes()) {
4378 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node);
4379 if (!MachineNode || MachineNode->use_empty())
4380 continue;
4381 SDNode *ResNode = MachineNode;
4383 bool Op1Set = false, Op1Unset = false,
4384 Op1Not = false,
4385 Op2Set = false, Op2Unset = false,
4386 Op2Not = false;
4388 unsigned Opcode = MachineNode->getMachineOpcode();
4389 switch (Opcode) {
4390 default: break;
4391 case PPC::CRAND:
4392 case PPC::CRNAND:
4393 case PPC::CROR:
4394 case PPC::CRXOR:
4395 case PPC::CRNOR:
4396 case PPC::CREQV:
4397 case PPC::CRANDC:
4398 case PPC::CRORC: {
4399 SDValue Op = MachineNode->getOperand(1);
4400 if (Op.isMachineOpcode()) {
4401 if (Op.getMachineOpcode() == PPC::CRSET)
4402 Op2Set = true;
4403 else if (Op.getMachineOpcode() == PPC::CRUNSET)
4404 Op2Unset = true;
4405 else if (Op.getMachineOpcode() == PPC::CRNOR &&
4406 Op.getOperand(0) == Op.getOperand(1))
4407 Op2Not = true;
4409 LLVM_FALLTHROUGH;
4411 case PPC::BC:
4412 case PPC::BCn:
4413 case PPC::SELECT_I4:
4414 case PPC::SELECT_I8:
4415 case PPC::SELECT_F4:
4416 case PPC::SELECT_F8:
4417 case PPC::SELECT_QFRC:
4418 case PPC::SELECT_QSRC:
4419 case PPC::SELECT_QBRC:
4420 case PPC::SELECT_VRRC:
4421 case PPC::SELECT_VSFRC:
4422 case PPC::SELECT_VSSRC:
4423 case PPC::SELECT_VSRC: {
4424 SDValue Op = MachineNode->getOperand(0);
4425 if (Op.isMachineOpcode()) {
4426 if (Op.getMachineOpcode() == PPC::CRSET)
4427 Op1Set = true;
4428 else if (Op.getMachineOpcode() == PPC::CRUNSET)
4429 Op1Unset = true;
4430 else if (Op.getMachineOpcode() == PPC::CRNOR &&
4431 Op.getOperand(0) == Op.getOperand(1))
4432 Op1Not = true;
4435 break;
4438 bool SelectSwap = false;
4439 switch (Opcode) {
4440 default: break;
4441 case PPC::CRAND:
4442 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
4443 // x & x = x
4444 ResNode = MachineNode->getOperand(0).getNode();
4445 else if (Op1Set)
4446 // 1 & y = y
4447 ResNode = MachineNode->getOperand(1).getNode();
4448 else if (Op2Set)
4449 // x & 1 = x
4450 ResNode = MachineNode->getOperand(0).getNode();
4451 else if (Op1Unset || Op2Unset)
4452 // x & 0 = 0 & y = 0
4453 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
4454 MVT::i1);
4455 else if (Op1Not)
4456 // ~x & y = andc(y, x)
4457 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
4458 MVT::i1, MachineNode->getOperand(1),
4459 MachineNode->getOperand(0).
4460 getOperand(0));
4461 else if (Op2Not)
4462 // x & ~y = andc(x, y)
4463 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
4464 MVT::i1, MachineNode->getOperand(0),
4465 MachineNode->getOperand(1).
4466 getOperand(0));
4467 else if (AllUsersSelectZero(MachineNode)) {
4468 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
4469 MVT::i1, MachineNode->getOperand(0),
4470 MachineNode->getOperand(1));
4471 SelectSwap = true;
4473 break;
4474 case PPC::CRNAND:
4475 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
4476 // nand(x, x) -> nor(x, x)
4477 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
4478 MVT::i1, MachineNode->getOperand(0),
4479 MachineNode->getOperand(0));
4480 else if (Op1Set)
4481 // nand(1, y) -> nor(y, y)
4482 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
4483 MVT::i1, MachineNode->getOperand(1),
4484 MachineNode->getOperand(1));
4485 else if (Op2Set)
4486 // nand(x, 1) -> nor(x, x)
4487 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
4488 MVT::i1, MachineNode->getOperand(0),
4489 MachineNode->getOperand(0));
4490 else if (Op1Unset || Op2Unset)
4491 // nand(x, 0) = nand(0, y) = 1
4492 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
4493 MVT::i1);
4494 else if (Op1Not)
4495 // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
4496 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
4497 MVT::i1, MachineNode->getOperand(0).
4498 getOperand(0),
4499 MachineNode->getOperand(1));
4500 else if (Op2Not)
4501 // nand(x, ~y) = ~x | y = orc(y, x)
4502 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
4503 MVT::i1, MachineNode->getOperand(1).
4504 getOperand(0),
4505 MachineNode->getOperand(0));
4506 else if (AllUsersSelectZero(MachineNode)) {
4507 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
4508 MVT::i1, MachineNode->getOperand(0),
4509 MachineNode->getOperand(1));
4510 SelectSwap = true;
4512 break;
4513 case PPC::CROR:
4514 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
4515 // x | x = x
4516 ResNode = MachineNode->getOperand(0).getNode();
4517 else if (Op1Set || Op2Set)
4518 // x | 1 = 1 | y = 1
4519 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
4520 MVT::i1);
4521 else if (Op1Unset)
4522 // 0 | y = y
4523 ResNode = MachineNode->getOperand(1).getNode();
4524 else if (Op2Unset)
4525 // x | 0 = x
4526 ResNode = MachineNode->getOperand(0).getNode();
4527 else if (Op1Not)
4528 // ~x | y = orc(y, x)
4529 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
4530 MVT::i1, MachineNode->getOperand(1),
4531 MachineNode->getOperand(0).
4532 getOperand(0));
4533 else if (Op2Not)
4534 // x | ~y = orc(x, y)
4535 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
4536 MVT::i1, MachineNode->getOperand(0),
4537 MachineNode->getOperand(1).
4538 getOperand(0));
4539 else if (AllUsersSelectZero(MachineNode)) {
4540 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
4541 MVT::i1, MachineNode->getOperand(0),
4542 MachineNode->getOperand(1));
4543 SelectSwap = true;
4545 break;
4546 case PPC::CRXOR:
4547 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
4548 // xor(x, x) = 0
4549 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
4550 MVT::i1);
4551 else if (Op1Set)
4552 // xor(1, y) -> nor(y, y)
4553 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
4554 MVT::i1, MachineNode->getOperand(1),
4555 MachineNode->getOperand(1));
4556 else if (Op2Set)
4557 // xor(x, 1) -> nor(x, x)
4558 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
4559 MVT::i1, MachineNode->getOperand(0),
4560 MachineNode->getOperand(0));
4561 else if (Op1Unset)
4562 // xor(0, y) = y
4563 ResNode = MachineNode->getOperand(1).getNode();
4564 else if (Op2Unset)
4565 // xor(x, 0) = x
4566 ResNode = MachineNode->getOperand(0).getNode();
4567 else if (Op1Not)
4568 // xor(~x, y) = eqv(x, y)
4569 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
4570 MVT::i1, MachineNode->getOperand(0).
4571 getOperand(0),
4572 MachineNode->getOperand(1));
4573 else if (Op2Not)
4574 // xor(x, ~y) = eqv(x, y)
4575 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
4576 MVT::i1, MachineNode->getOperand(0),
4577 MachineNode->getOperand(1).
4578 getOperand(0));
4579 else if (AllUsersSelectZero(MachineNode)) {
4580 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
4581 MVT::i1, MachineNode->getOperand(0),
4582 MachineNode->getOperand(1));
4583 SelectSwap = true;
4585 break;
4586 case PPC::CRNOR:
4587 if (Op1Set || Op2Set)
4588 // nor(1, y) -> 0
4589 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
4590 MVT::i1);
4591 else if (Op1Unset)
4592 // nor(0, y) = ~y -> nor(y, y)
4593 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
4594 MVT::i1, MachineNode->getOperand(1),
4595 MachineNode->getOperand(1));
4596 else if (Op2Unset)
4597 // nor(x, 0) = ~x
4598 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
4599 MVT::i1, MachineNode->getOperand(0),
4600 MachineNode->getOperand(0));
4601 else if (Op1Not)
4602 // nor(~x, y) = andc(x, y)
4603 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
4604 MVT::i1, MachineNode->getOperand(0).
4605 getOperand(0),
4606 MachineNode->getOperand(1));
4607 else if (Op2Not)
4608 // nor(x, ~y) = andc(y, x)
4609 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
4610 MVT::i1, MachineNode->getOperand(1).
4611 getOperand(0),
4612 MachineNode->getOperand(0));
4613 else if (AllUsersSelectZero(MachineNode)) {
4614 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
4615 MVT::i1, MachineNode->getOperand(0),
4616 MachineNode->getOperand(1));
4617 SelectSwap = true;
4619 break;
4620 case PPC::CREQV:
4621 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
4622 // eqv(x, x) = 1
4623 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
4624 MVT::i1);
4625 else if (Op1Set)
4626 // eqv(1, y) = y
4627 ResNode = MachineNode->getOperand(1).getNode();
4628 else if (Op2Set)
4629 // eqv(x, 1) = x
4630 ResNode = MachineNode->getOperand(0).getNode();
4631 else if (Op1Unset)
4632 // eqv(0, y) = ~y -> nor(y, y)
4633 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
4634 MVT::i1, MachineNode->getOperand(1),
4635 MachineNode->getOperand(1));
4636 else if (Op2Unset)
4637 // eqv(x, 0) = ~x
4638 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
4639 MVT::i1, MachineNode->getOperand(0),
4640 MachineNode->getOperand(0));
4641 else if (Op1Not)
4642 // eqv(~x, y) = xor(x, y)
4643 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
4644 MVT::i1, MachineNode->getOperand(0).
4645 getOperand(0),
4646 MachineNode->getOperand(1));
4647 else if (Op2Not)
4648 // eqv(x, ~y) = xor(x, y)
4649 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
4650 MVT::i1, MachineNode->getOperand(0),
4651 MachineNode->getOperand(1).
4652 getOperand(0));
4653 else if (AllUsersSelectZero(MachineNode)) {
4654 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
4655 MVT::i1, MachineNode->getOperand(0),
4656 MachineNode->getOperand(1));
4657 SelectSwap = true;
4659 break;
4660 case PPC::CRANDC:
4661 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
4662 // andc(x, x) = 0
4663 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
4664 MVT::i1);
4665 else if (Op1Set)
4666 // andc(1, y) = ~y
4667 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
4668 MVT::i1, MachineNode->getOperand(1),
4669 MachineNode->getOperand(1));
4670 else if (Op1Unset || Op2Set)
4671 // andc(0, y) = andc(x, 1) = 0
4672 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
4673 MVT::i1);
4674 else if (Op2Unset)
4675 // andc(x, 0) = x
4676 ResNode = MachineNode->getOperand(0).getNode();
4677 else if (Op1Not)
4678 // andc(~x, y) = ~(x | y) = nor(x, y)
4679 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
4680 MVT::i1, MachineNode->getOperand(0).
4681 getOperand(0),
4682 MachineNode->getOperand(1));
4683 else if (Op2Not)
4684 // andc(x, ~y) = x & y
4685 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
4686 MVT::i1, MachineNode->getOperand(0),
4687 MachineNode->getOperand(1).
4688 getOperand(0));
4689 else if (AllUsersSelectZero(MachineNode)) {
4690 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
4691 MVT::i1, MachineNode->getOperand(1),
4692 MachineNode->getOperand(0));
4693 SelectSwap = true;
4695 break;
4696 case PPC::CRORC:
4697 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
4698 // orc(x, x) = 1
4699 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
4700 MVT::i1);
4701 else if (Op1Set || Op2Unset)
4702 // orc(1, y) = orc(x, 0) = 1
4703 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
4704 MVT::i1);
4705 else if (Op2Set)
4706 // orc(x, 1) = x
4707 ResNode = MachineNode->getOperand(0).getNode();
4708 else if (Op1Unset)
4709 // orc(0, y) = ~y
4710 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
4711 MVT::i1, MachineNode->getOperand(1),
4712 MachineNode->getOperand(1));
4713 else if (Op1Not)
4714 // orc(~x, y) = ~(x & y) = nand(x, y)
4715 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
4716 MVT::i1, MachineNode->getOperand(0).
4717 getOperand(0),
4718 MachineNode->getOperand(1));
4719 else if (Op2Not)
4720 // orc(x, ~y) = x | y
4721 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
4722 MVT::i1, MachineNode->getOperand(0),
4723 MachineNode->getOperand(1).
4724 getOperand(0));
4725 else if (AllUsersSelectZero(MachineNode)) {
4726 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
4727 MVT::i1, MachineNode->getOperand(1),
4728 MachineNode->getOperand(0));
4729 SelectSwap = true;
4731 break;
4732 case PPC::SELECT_I4:
4733 case PPC::SELECT_I8:
4734 case PPC::SELECT_F4:
4735 case PPC::SELECT_F8:
4736 case PPC::SELECT_QFRC:
4737 case PPC::SELECT_QSRC:
4738 case PPC::SELECT_QBRC:
4739 case PPC::SELECT_VRRC:
4740 case PPC::SELECT_VSFRC:
4741 case PPC::SELECT_VSSRC:
4742 case PPC::SELECT_VSRC:
4743 if (Op1Set)
4744 ResNode = MachineNode->getOperand(1).getNode();
4745 else if (Op1Unset)
4746 ResNode = MachineNode->getOperand(2).getNode();
4747 else if (Op1Not)
4748 ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
4749 SDLoc(MachineNode),
4750 MachineNode->getValueType(0),
4751 MachineNode->getOperand(0).
4752 getOperand(0),
4753 MachineNode->getOperand(2),
4754 MachineNode->getOperand(1));
4755 break;
4756 case PPC::BC:
4757 case PPC::BCn:
4758 if (Op1Not)
4759 ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
4760 PPC::BC,
4761 SDLoc(MachineNode),
4762 MVT::Other,
4763 MachineNode->getOperand(0).
4764 getOperand(0),
4765 MachineNode->getOperand(1),
4766 MachineNode->getOperand(2));
4767 // FIXME: Handle Op1Set, Op1Unset here too.
4768 break;
4771 // If we're inverting this node because it is used only by selects that
4772 // we'd like to swap, then swap the selects before the node replacement.
4773 if (SelectSwap)
4774 SwapAllSelectUsers(MachineNode);
4776 if (ResNode != MachineNode) {
4777 DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
4778 DEBUG(MachineNode->dump(CurDAG));
4779 DEBUG(dbgs() << "\nNew: ");
4780 DEBUG(ResNode->dump(CurDAG));
4781 DEBUG(dbgs() << "\n");
4783 ReplaceUses(MachineNode, ResNode);
4784 IsModified = true;
4787 if (IsModified)
4788 CurDAG->RemoveDeadNodes();
4789 } while (IsModified);
4792 // Gather the set of 32-bit operations that are known to have their
4793 // higher-order 32 bits zero, where ToPromote contains all such operations.
4794 static bool PeepholePPC64ZExtGather(SDValue Op32,
4795 SmallPtrSetImpl<SDNode *> &ToPromote) {
4796 if (!Op32.isMachineOpcode())
4797 return false;
4799 // First, check for the "frontier" instructions (those that will clear the
4800 // higher-order 32 bits.
4802 // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
4803 // around. If it does not, then these instructions will clear the
4804 // higher-order bits.
4805 if ((Op32.getMachineOpcode() == PPC::RLWINM ||
4806 Op32.getMachineOpcode() == PPC::RLWNM) &&
4807 Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
4808 ToPromote.insert(Op32.getNode());
4809 return true;
4812 // SLW and SRW always clear the higher-order bits.
4813 if (Op32.getMachineOpcode() == PPC::SLW ||
4814 Op32.getMachineOpcode() == PPC::SRW) {
4815 ToPromote.insert(Op32.getNode());
4816 return true;
4819 // For LI and LIS, we need the immediate to be positive (so that it is not
4820 // sign extended).
4821 if (Op32.getMachineOpcode() == PPC::LI ||
4822 Op32.getMachineOpcode() == PPC::LIS) {
4823 if (!isUInt<15>(Op32.getConstantOperandVal(0)))
4824 return false;
4826 ToPromote.insert(Op32.getNode());
4827 return true;
4830 // LHBRX and LWBRX always clear the higher-order bits.
4831 if (Op32.getMachineOpcode() == PPC::LHBRX ||
4832 Op32.getMachineOpcode() == PPC::LWBRX) {
4833 ToPromote.insert(Op32.getNode());
4834 return true;
4837 // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended.
4838 if (Op32.getMachineOpcode() == PPC::CNTLZW ||
4839 Op32.getMachineOpcode() == PPC::CNTTZW) {
4840 ToPromote.insert(Op32.getNode());
4841 return true;
4844 // Next, check for those instructions we can look through.
4846 // Assuming the mask does not wrap around, then the higher-order bits are
4847 // taken directly from the first operand.
4848 if (Op32.getMachineOpcode() == PPC::RLWIMI &&
4849 Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
4850 SmallPtrSet<SDNode *, 16> ToPromote1;
4851 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
4852 return false;
4854 ToPromote.insert(Op32.getNode());
4855 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
4856 return true;
4859 // For OR, the higher-order bits are zero if that is true for both operands.
4860 // For SELECT_I4, the same is true (but the relevant operand numbers are
4861 // shifted by 1).
4862 if (Op32.getMachineOpcode() == PPC::OR ||
4863 Op32.getMachineOpcode() == PPC::SELECT_I4) {
4864 unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
4865 SmallPtrSet<SDNode *, 16> ToPromote1;
4866 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
4867 return false;
4868 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
4869 return false;
4871 ToPromote.insert(Op32.getNode());
4872 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
4873 return true;
4876 // For ORI and ORIS, we need the higher-order bits of the first operand to be
4877 // zero, and also for the constant to be positive (so that it is not sign
4878 // extended).
4879 if (Op32.getMachineOpcode() == PPC::ORI ||
4880 Op32.getMachineOpcode() == PPC::ORIS) {
4881 SmallPtrSet<SDNode *, 16> ToPromote1;
4882 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
4883 return false;
4884 if (!isUInt<15>(Op32.getConstantOperandVal(1)))
4885 return false;
4887 ToPromote.insert(Op32.getNode());
4888 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
4889 return true;
4892 // The higher-order bits of AND are zero if that is true for at least one of
4893 // the operands.
4894 if (Op32.getMachineOpcode() == PPC::AND) {
4895 SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
4896 bool Op0OK =
4897 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
4898 bool Op1OK =
4899 PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
4900 if (!Op0OK && !Op1OK)
4901 return false;
4903 ToPromote.insert(Op32.getNode());
4905 if (Op0OK)
4906 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
4908 if (Op1OK)
4909 ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
4911 return true;
4914 // For ANDI and ANDIS, the higher-order bits are zero if either that is true
4915 // of the first operand, or if the second operand is positive (so that it is
4916 // not sign extended).
4917 if (Op32.getMachineOpcode() == PPC::ANDIo ||
4918 Op32.getMachineOpcode() == PPC::ANDISo) {
4919 SmallPtrSet<SDNode *, 16> ToPromote1;
4920 bool Op0OK =
4921 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
4922 bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
4923 if (!Op0OK && !Op1OK)
4924 return false;
4926 ToPromote.insert(Op32.getNode());
4928 if (Op0OK)
4929 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
4931 return true;
4934 return false;
4937 void PPCDAGToDAGISel::PeepholePPC64ZExt() {
4938 if (!PPCSubTarget->isPPC64())
4939 return;
4941 // When we zero-extend from i32 to i64, we use a pattern like this:
4942 // def : Pat<(i64 (zext i32:$in)),
4943 // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
4944 // 0, 32)>;
4945 // There are several 32-bit shift/rotate instructions, however, that will
4946 // clear the higher-order bits of their output, rendering the RLDICL
4947 // unnecessary. When that happens, we remove it here, and redefine the
4948 // relevant 32-bit operation to be a 64-bit operation.
4950 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
4951 ++Position;
4953 bool MadeChange = false;
4954 while (Position != CurDAG->allnodes_begin()) {
4955 SDNode *N = &*--Position;
4956 // Skip dead nodes and any non-machine opcodes.
4957 if (N->use_empty() || !N->isMachineOpcode())
4958 continue;
4960 if (N->getMachineOpcode() != PPC::RLDICL)
4961 continue;
4963 if (N->getConstantOperandVal(1) != 0 ||
4964 N->getConstantOperandVal(2) != 32)
4965 continue;
4967 SDValue ISR = N->getOperand(0);
4968 if (!ISR.isMachineOpcode() ||
4969 ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
4970 continue;
4972 if (!ISR.hasOneUse())
4973 continue;
4975 if (ISR.getConstantOperandVal(2) != PPC::sub_32)
4976 continue;
4978 SDValue IDef = ISR.getOperand(0);
4979 if (!IDef.isMachineOpcode() ||
4980 IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
4981 continue;
4983 // We now know that we're looking at a canonical i32 -> i64 zext. See if we
4984 // can get rid of it.
4986 SDValue Op32 = ISR->getOperand(1);
4987 if (!Op32.isMachineOpcode())
4988 continue;
4990 // There are some 32-bit instructions that always clear the high-order 32
4991 // bits, there are also some instructions (like AND) that we can look
4992 // through.
4993 SmallPtrSet<SDNode *, 16> ToPromote;
4994 if (!PeepholePPC64ZExtGather(Op32, ToPromote))
4995 continue;
4997 // If the ToPromote set contains nodes that have uses outside of the set
4998 // (except for the original INSERT_SUBREG), then abort the transformation.
4999 bool OutsideUse = false;
5000 for (SDNode *PN : ToPromote) {
5001 for (SDNode *UN : PN->uses()) {
5002 if (!ToPromote.count(UN) && UN != ISR.getNode()) {
5003 OutsideUse = true;
5004 break;
5008 if (OutsideUse)
5009 break;
5011 if (OutsideUse)
5012 continue;
5014 MadeChange = true;
5016 // We now know that this zero extension can be removed by promoting to
5017 // nodes in ToPromote to 64-bit operations, where for operations in the
5018 // frontier of the set, we need to insert INSERT_SUBREGs for their
5019 // operands.
5020 for (SDNode *PN : ToPromote) {
5021 unsigned NewOpcode;
5022 switch (PN->getMachineOpcode()) {
5023 default:
5024 llvm_unreachable("Don't know the 64-bit variant of this instruction");
5025 case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break;
5026 case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break;
5027 case PPC::SLW: NewOpcode = PPC::SLW8; break;
5028 case PPC::SRW: NewOpcode = PPC::SRW8; break;
5029 case PPC::LI: NewOpcode = PPC::LI8; break;
5030 case PPC::LIS: NewOpcode = PPC::LIS8; break;
5031 case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break;
5032 case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break;
5033 case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break;
5034 case PPC::CNTTZW: NewOpcode = PPC::CNTTZW8; break;
5035 case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break;
5036 case PPC::OR: NewOpcode = PPC::OR8; break;
5037 case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
5038 case PPC::ORI: NewOpcode = PPC::ORI8; break;
5039 case PPC::ORIS: NewOpcode = PPC::ORIS8; break;
5040 case PPC::AND: NewOpcode = PPC::AND8; break;
5041 case PPC::ANDIo: NewOpcode = PPC::ANDIo8; break;
5042 case PPC::ANDISo: NewOpcode = PPC::ANDISo8; break;
5045 // Note: During the replacement process, the nodes will be in an
5046 // inconsistent state (some instructions will have operands with values
5047 // of the wrong type). Once done, however, everything should be right
5048 // again.
5050 SmallVector<SDValue, 4> Ops;
5051 for (const SDValue &V : PN->ops()) {
5052 if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
5053 !isa<ConstantSDNode>(V)) {
5054 SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
5055 SDNode *ReplOp =
5056 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
5057 ISR.getNode()->getVTList(), ReplOpOps);
5058 Ops.push_back(SDValue(ReplOp, 0));
5059 } else {
5060 Ops.push_back(V);
5064 // Because all to-be-promoted nodes only have users that are other
5065 // promoted nodes (or the original INSERT_SUBREG), we can safely replace
5066 // the i32 result value type with i64.
5068 SmallVector<EVT, 2> NewVTs;
5069 SDVTList VTs = PN->getVTList();
5070 for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
5071 if (VTs.VTs[i] == MVT::i32)
5072 NewVTs.push_back(MVT::i64);
5073 else
5074 NewVTs.push_back(VTs.VTs[i]);
5076 DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: ");
5077 DEBUG(PN->dump(CurDAG));
5079 CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
5081 DEBUG(dbgs() << "\nNew: ");
5082 DEBUG(PN->dump(CurDAG));
5083 DEBUG(dbgs() << "\n");
5086 // Now we replace the original zero extend and its associated INSERT_SUBREG
5087 // with the value feeding the INSERT_SUBREG (which has now been promoted to
5088 // return an i64).
5090 DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: ");
5091 DEBUG(N->dump(CurDAG));
5092 DEBUG(dbgs() << "\nNew: ");
5093 DEBUG(Op32.getNode()->dump(CurDAG));
5094 DEBUG(dbgs() << "\n");
5096 ReplaceUses(N, Op32.getNode());
5099 if (MadeChange)
5100 CurDAG->RemoveDeadNodes();
5103 void PPCDAGToDAGISel::PeepholePPC64() {
5104 // These optimizations are currently supported only for 64-bit SVR4.
5105 if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64())
5106 return;
5108 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
5109 ++Position;
5111 while (Position != CurDAG->allnodes_begin()) {
5112 SDNode *N = &*--Position;
5113 // Skip dead nodes and any non-machine opcodes.
5114 if (N->use_empty() || !N->isMachineOpcode())
5115 continue;
5117 unsigned FirstOp;
5118 unsigned StorageOpcode = N->getMachineOpcode();
5120 switch (StorageOpcode) {
5121 default: continue;
5123 case PPC::LBZ:
5124 case PPC::LBZ8:
5125 case PPC::LD:
5126 case PPC::LFD:
5127 case PPC::LFS:
5128 case PPC::LHA:
5129 case PPC::LHA8:
5130 case PPC::LHZ:
5131 case PPC::LHZ8:
5132 case PPC::LWA:
5133 case PPC::LWZ:
5134 case PPC::LWZ8:
5135 FirstOp = 0;
5136 break;
5138 case PPC::STB:
5139 case PPC::STB8:
5140 case PPC::STD:
5141 case PPC::STFD:
5142 case PPC::STFS:
5143 case PPC::STH:
5144 case PPC::STH8:
5145 case PPC::STW:
5146 case PPC::STW8:
5147 FirstOp = 1;
5148 break;
5151 // If this is a load or store with a zero offset, or within the alignment,
5152 // we may be able to fold an add-immediate into the memory operation.
5153 // The check against alignment is below, as it can't occur until we check
5154 // the arguments to N
5155 if (!isa<ConstantSDNode>(N->getOperand(FirstOp)))
5156 continue;
5158 SDValue Base = N->getOperand(FirstOp + 1);
5159 if (!Base.isMachineOpcode())
5160 continue;
5162 unsigned Flags = 0;
5163 bool ReplaceFlags = true;
5165 // When the feeding operation is an add-immediate of some sort,
5166 // determine whether we need to add relocation information to the
5167 // target flags on the immediate operand when we fold it into the
5168 // load instruction.
5170 // For something like ADDItocL, the relocation information is
5171 // inferred from the opcode; when we process it in the AsmPrinter,
5172 // we add the necessary relocation there. A load, though, can receive
5173 // relocation from various flavors of ADDIxxx, so we need to carry
5174 // the relocation information in the target flags.
5175 switch (Base.getMachineOpcode()) {
5176 default: continue;
5178 case PPC::ADDI8:
5179 case PPC::ADDI:
5180 // In some cases (such as TLS) the relocation information
5181 // is already in place on the operand, so copying the operand
5182 // is sufficient.
5183 ReplaceFlags = false;
5184 // For these cases, the immediate may not be divisible by 4, in
5185 // which case the fold is illegal for DS-form instructions. (The
5186 // other cases provide aligned addresses and are always safe.)
5187 if ((StorageOpcode == PPC::LWA ||
5188 StorageOpcode == PPC::LD ||
5189 StorageOpcode == PPC::STD) &&
5190 (!isa<ConstantSDNode>(Base.getOperand(1)) ||
5191 Base.getConstantOperandVal(1) % 4 != 0))
5192 continue;
5193 break;
5194 case PPC::ADDIdtprelL:
5195 Flags = PPCII::MO_DTPREL_LO;
5196 break;
5197 case PPC::ADDItlsldL:
5198 Flags = PPCII::MO_TLSLD_LO;
5199 break;
5200 case PPC::ADDItocL:
5201 Flags = PPCII::MO_TOC_LO;
5202 break;
5205 SDValue ImmOpnd = Base.getOperand(1);
5207 // On PPC64, the TOC base pointer is guaranteed by the ABI only to have
5208 // 8-byte alignment, and so we can only use offsets less than 8 (otherwise,
5209 // we might have needed different @ha relocation values for the offset
5210 // pointers).
5211 int MaxDisplacement = 7;
5212 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
5213 const GlobalValue *GV = GA->getGlobal();
5214 MaxDisplacement = std::min((int) GV->getAlignment() - 1, MaxDisplacement);
5217 bool UpdateHBase = false;
5218 SDValue HBase = Base.getOperand(0);
5220 int Offset = N->getConstantOperandVal(FirstOp);
5221 if (ReplaceFlags) {
5222 if (Offset < 0 || Offset > MaxDisplacement) {
5223 // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only
5224 // one use, then we can do this for any offset, we just need to also
5225 // update the offset (i.e. the symbol addend) on the addis also.
5226 if (Base.getMachineOpcode() != PPC::ADDItocL)
5227 continue;
5229 if (!HBase.isMachineOpcode() ||
5230 HBase.getMachineOpcode() != PPC::ADDIStocHA)
5231 continue;
5233 if (!Base.hasOneUse() || !HBase.hasOneUse())
5234 continue;
5236 SDValue HImmOpnd = HBase.getOperand(1);
5237 if (HImmOpnd != ImmOpnd)
5238 continue;
5240 UpdateHBase = true;
5242 } else {
5243 // If we're directly folding the addend from an addi instruction, then:
5244 // 1. In general, the offset on the memory access must be zero.
5245 // 2. If the addend is a constant, then it can be combined with a
5246 // non-zero offset, but only if the result meets the encoding
5247 // requirements.
5248 if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) {
5249 Offset += C->getSExtValue();
5251 if ((StorageOpcode == PPC::LWA || StorageOpcode == PPC::LD ||
5252 StorageOpcode == PPC::STD) && (Offset % 4) != 0)
5253 continue;
5255 if (!isInt<16>(Offset))
5256 continue;
5258 ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd),
5259 ImmOpnd.getValueType());
5260 } else if (Offset != 0) {
5261 continue;
5265 // We found an opportunity. Reverse the operands from the add
5266 // immediate and substitute them into the load or store. If
5267 // needed, update the target flags for the immediate operand to
5268 // reflect the necessary relocation information.
5269 DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: ");
5270 DEBUG(Base->dump(CurDAG));
5271 DEBUG(dbgs() << "\nN: ");
5272 DEBUG(N->dump(CurDAG));
5273 DEBUG(dbgs() << "\n");
5275 // If the relocation information isn't already present on the
5276 // immediate operand, add it now.
5277 if (ReplaceFlags) {
5278 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
5279 SDLoc dl(GA);
5280 const GlobalValue *GV = GA->getGlobal();
5281 // We can't perform this optimization for data whose alignment
5282 // is insufficient for the instruction encoding.
5283 if (GV->getAlignment() < 4 &&
5284 (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD ||
5285 StorageOpcode == PPC::LWA || (Offset % 4) != 0)) {
5286 DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
5287 continue;
5289 ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
5290 } else if (ConstantPoolSDNode *CP =
5291 dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
5292 const Constant *C = CP->getConstVal();
5293 ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
5294 CP->getAlignment(),
5295 Offset, Flags);
5299 if (FirstOp == 1) // Store
5300 (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
5301 Base.getOperand(0), N->getOperand(3));
5302 else // Load
5303 (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
5304 N->getOperand(2));
5306 if (UpdateHBase)
5307 (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0),
5308 ImmOpnd);
5310 // The add-immediate may now be dead, in which case remove it.
5311 if (Base.getNode()->use_empty())
5312 CurDAG->RemoveDeadNode(Base.getNode());
5316 /// createPPCISelDag - This pass converts a legalized DAG into a
5317 /// PowerPC-specific DAG, ready for instruction scheduling.
5319 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM,
5320 CodeGenOpt::Level OptLevel) {
5321 return new PPCDAGToDAGISel(TM, OptLevel);