[PowerPC] Cust lower fpext v2f32 to v2f64 from extract_subvector v4f32
[llvm-core.git] / lib / Target / PowerPC / PPCISelLowering.h
blobf143d52870b7d9260504bb231ad95a4abb5569f8
1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that PPC uses to lower LLVM code into a
10 // selection DAG.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
15 #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
17 #include "PPCInstrInfo.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineMemOperand.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/SelectionDAGNodes.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/ValueTypes.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/CallingConv.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/MachineValueType.h"
32 #include <utility>
34 namespace llvm {
36 namespace PPCISD {
38 // When adding a NEW PPCISD node please add it to the correct position in
39 // the enum. The order of elements in this enum matters!
40 // Values that are added after this entry:
41 // STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE
42 // are considered memory opcodes and are treated differently than entries
43 // that come before it. For example, ADD or MUL should be placed before
44 // the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come
45 // after it.
46 enum NodeType : unsigned {
47 // Start the numbering where the builtin ops and target ops leave off.
48 FIRST_NUMBER = ISD::BUILTIN_OP_END,
50 /// FSEL - Traditional three-operand fsel node.
51 ///
52 FSEL,
54 /// FCFID - The FCFID instruction, taking an f64 operand and producing
55 /// and f64 value containing the FP representation of the integer that
56 /// was temporarily in the f64 operand.
57 FCFID,
59 /// Newer FCFID[US] integer-to-floating-point conversion instructions for
60 /// unsigned integers and single-precision outputs.
61 FCFIDU, FCFIDS, FCFIDUS,
63 /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
64 /// operand, producing an f64 value containing the integer representation
65 /// of that FP value.
66 FCTIDZ, FCTIWZ,
68 /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
69 /// unsigned integers with round toward zero.
70 FCTIDUZ, FCTIWUZ,
72 /// Floating-point-to-interger conversion instructions
73 FP_TO_UINT_IN_VSR, FP_TO_SINT_IN_VSR,
75 /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
76 /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
77 VEXTS,
79 /// SExtVElems, takes an input vector of a smaller type and sign
80 /// extends to an output vector of a larger type.
81 SExtVElems,
83 /// Reciprocal estimate instructions (unary FP ops).
84 FRE, FRSQRTE,
86 // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
87 // three v4f32 operands and producing a v4f32 result.
88 VMADDFP, VNMSUBFP,
90 /// VPERM - The PPC VPERM Instruction.
91 ///
92 VPERM,
94 /// XXSPLT - The PPC VSX splat instructions
95 ///
96 XXSPLT,
98 /// VECINSERT - The PPC vector insert instruction
99 ///
100 VECINSERT,
102 /// XXREVERSE - The PPC VSX reverse instruction
104 XXREVERSE,
106 /// VECSHL - The PPC vector shift left instruction
108 VECSHL,
110 /// XXPERMDI - The PPC XXPERMDI instruction
112 XXPERMDI,
114 /// The CMPB instruction (takes two operands of i32 or i64).
115 CMPB,
117 /// Hi/Lo - These represent the high and low 16-bit parts of a global
118 /// address respectively. These nodes have two operands, the first of
119 /// which must be a TargetGlobalAddress, and the second of which must be a
120 /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
121 /// though these are usually folded into other nodes.
122 Hi, Lo,
124 /// The following two target-specific nodes are used for calls through
125 /// function pointers in the 64-bit SVR4 ABI.
127 /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
128 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
129 /// compute an allocation on the stack.
130 DYNALLOC,
132 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
133 /// compute an offset from native SP to the address of the most recent
134 /// dynamic alloca.
135 DYNAREAOFFSET,
137 /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
138 /// at function entry, used for PIC code.
139 GlobalBaseReg,
141 /// These nodes represent PPC shifts.
143 /// For scalar types, only the last `n + 1` bits of the shift amounts
144 /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
145 /// for exact behaviors.
147 /// For vector types, only the last n bits are used. See vsld.
148 SRL, SRA, SHL,
150 /// EXTSWSLI = The PPC extswsli instruction, which does an extend-sign
151 /// word and shift left immediate.
152 EXTSWSLI,
154 /// The combination of sra[wd]i and addze used to implemented signed
155 /// integer division by a power of 2. The first operand is the dividend,
156 /// and the second is the constant shift amount (representing the
157 /// divisor).
158 SRA_ADDZE,
160 /// CALL - A direct function call.
161 /// CALL_NOP is a call with the special NOP which follows 64-bit
162 /// SVR4 calls and 32-bit/64-bit AIX calls.
163 CALL, CALL_NOP,
165 /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
166 /// MTCTR instruction.
167 MTCTR,
169 /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
170 /// BCTRL instruction.
171 BCTRL,
173 /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
174 /// instruction and the TOC reload required on SVR4 PPC64.
175 BCTRL_LOAD_TOC,
177 /// Return with a flag operand, matched by 'blr'
178 RET_FLAG,
180 /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
181 /// This copies the bits corresponding to the specified CRREG into the
182 /// resultant GPR. Bits corresponding to other CR regs are undefined.
183 MFOCRF,
185 /// Direct move from a VSX register to a GPR
186 MFVSR,
188 /// Direct move from a GPR to a VSX register (algebraic)
189 MTVSRA,
191 /// Direct move from a GPR to a VSX register (zero)
192 MTVSRZ,
194 /// Direct move of 2 consecutive GPR to a VSX register.
195 BUILD_FP128,
197 /// BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and
198 /// EXTRACT_ELEMENT but take f64 arguments instead of i64, as i64 is
199 /// unsupported for this target.
200 /// Merge 2 GPRs to a single SPE register.
201 BUILD_SPE64,
203 /// Extract SPE register component, second argument is high or low.
204 EXTRACT_SPE,
206 /// Extract a subvector from signed integer vector and convert to FP.
207 /// It is primarily used to convert a (widened) illegal integer vector
208 /// type to a legal floating point vector type.
209 /// For example v2i32 -> widened to v4i32 -> v2f64
210 SINT_VEC_TO_FP,
212 /// Extract a subvector from unsigned integer vector and convert to FP.
213 /// As with SINT_VEC_TO_FP, used for converting illegal types.
214 UINT_VEC_TO_FP,
216 // FIXME: Remove these once the ANDI glue bug is fixed:
217 /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
218 /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
219 /// implement truncation of i32 or i64 to i1.
220 ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT,
222 // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
223 // target (returns (Lo, Hi)). It takes a chain operand.
224 READ_TIME_BASE,
226 // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
227 EH_SJLJ_SETJMP,
229 // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
230 EH_SJLJ_LONGJMP,
232 /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
233 /// instructions. For lack of better number, we use the opcode number
234 /// encoding for the OPC field to identify the compare. For example, 838
235 /// is VCMPGTSH.
236 VCMP,
238 /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
239 /// altivec VCMP*o instructions. For lack of better number, we use the
240 /// opcode number encoding for the OPC field to identify the compare. For
241 /// example, 838 is VCMPGTSH.
242 VCMPo,
244 /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
245 /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
246 /// condition register to branch on, OPC is the branch opcode to use (e.g.
247 /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
248 /// an optional input flag argument.
249 COND_BRANCH,
251 /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
252 /// loops.
253 BDNZ, BDZ,
255 /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
256 /// towards zero. Used only as part of the long double-to-int
257 /// conversion sequence.
258 FADDRTZ,
260 /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
261 MFFS,
263 /// TC_RETURN - A tail call return.
264 /// operand #0 chain
265 /// operand #1 callee (register or absolute)
266 /// operand #2 stack adjustment
267 /// operand #3 optional in flag
268 TC_RETURN,
270 /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
271 CR6SET,
272 CR6UNSET,
274 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
275 /// for non-position independent code on PPC32.
276 PPC32_GOT,
278 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
279 /// local dynamic TLS and position indendepent code on PPC32.
280 PPC32_PICGOT,
282 /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
283 /// TLS model, produces an ADDIS8 instruction that adds the GOT
284 /// base to sym\@got\@tprel\@ha.
285 ADDIS_GOT_TPREL_HA,
287 /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
288 /// TLS model, produces a LD instruction with base register G8RReg
289 /// and offset sym\@got\@tprel\@l. This completes the addition that
290 /// finds the offset of "sym" relative to the thread pointer.
291 LD_GOT_TPREL_L,
293 /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
294 /// model, produces an ADD instruction that adds the contents of
295 /// G8RReg to the thread pointer. Symbol contains a relocation
296 /// sym\@tls which is to be replaced by the thread pointer and
297 /// identifies to the linker that the instruction is part of a
298 /// TLS sequence.
299 ADD_TLS,
301 /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
302 /// model, produces an ADDIS8 instruction that adds the GOT base
303 /// register to sym\@got\@tlsgd\@ha.
304 ADDIS_TLSGD_HA,
306 /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
307 /// model, produces an ADDI8 instruction that adds G8RReg to
308 /// sym\@got\@tlsgd\@l and stores the result in X3. Hidden by
309 /// ADDIS_TLSGD_L_ADDR until after register assignment.
310 ADDI_TLSGD_L,
312 /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
313 /// model, produces a call to __tls_get_addr(sym\@tlsgd). Hidden by
314 /// ADDIS_TLSGD_L_ADDR until after register assignment.
315 GET_TLS_ADDR,
317 /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
318 /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
319 /// register assignment.
320 ADDI_TLSGD_L_ADDR,
322 /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
323 /// model, produces an ADDIS8 instruction that adds the GOT base
324 /// register to sym\@got\@tlsld\@ha.
325 ADDIS_TLSLD_HA,
327 /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
328 /// model, produces an ADDI8 instruction that adds G8RReg to
329 /// sym\@got\@tlsld\@l and stores the result in X3. Hidden by
330 /// ADDIS_TLSLD_L_ADDR until after register assignment.
331 ADDI_TLSLD_L,
333 /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
334 /// model, produces a call to __tls_get_addr(sym\@tlsld). Hidden by
335 /// ADDIS_TLSLD_L_ADDR until after register assignment.
336 GET_TLSLD_ADDR,
338 /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
339 /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
340 /// following register assignment.
341 ADDI_TLSLD_L_ADDR,
343 /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
344 /// model, produces an ADDIS8 instruction that adds X3 to
345 /// sym\@dtprel\@ha.
346 ADDIS_DTPREL_HA,
348 /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
349 /// model, produces an ADDI8 instruction that adds G8RReg to
350 /// sym\@got\@dtprel\@l.
351 ADDI_DTPREL_L,
353 /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
354 /// during instruction selection to optimize a BUILD_VECTOR into
355 /// operations on splats. This is necessary to avoid losing these
356 /// optimizations due to constant folding.
357 VADD_SPLAT,
359 /// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned
360 /// operand identifies the operating system entry point.
363 /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
364 CLRBHRB,
366 /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
367 /// history rolling buffer entry.
368 MFBHRBE,
370 /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
371 RFEBB,
373 /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
374 /// endian. Maps to an xxswapd instruction that corrects an lxvd2x
375 /// or stxvd2x instruction. The chain is necessary because the
376 /// sequence replaces a load and needs to provide the same number
377 /// of outputs.
378 XXSWAPD,
380 /// An SDNode for swaps that are not associated with any loads/stores
381 /// and thereby have no chain.
382 SWAP_NO_CHAIN,
384 /// An SDNode for Power9 vector absolute value difference.
385 /// operand #0 vector
386 /// operand #1 vector
387 /// operand #2 constant i32 0 or 1, to indicate whether needs to patch
388 /// the most significant bit for signed i32
390 /// Power9 VABSD* instructions are designed to support unsigned integer
391 /// vectors (byte/halfword/word), if we want to make use of them for signed
392 /// integer vectors, we have to flip their sign bits first. To flip sign bit
393 /// for byte/halfword integer vector would become inefficient, but for word
394 /// integer vector, we can leverage XVNEGSP to make it efficiently. eg:
395 /// abs(sub(a,b)) => VABSDUW(a+0x80000000, b+0x80000000)
396 /// => VABSDUW((XVNEGSP a), (XVNEGSP b))
397 VABSD,
399 /// QVFPERM = This corresponds to the QPX qvfperm instruction.
400 QVFPERM,
402 /// QVGPCI = This corresponds to the QPX qvgpci instruction.
403 QVGPCI,
405 /// QVALIGNI = This corresponds to the QPX qvaligni instruction.
406 QVALIGNI,
408 /// QVESPLATI = This corresponds to the QPX qvesplati instruction.
409 QVESPLATI,
411 /// QBFLT = Access the underlying QPX floating-point boolean
412 /// representation.
413 QBFLT,
415 /// FP_EXTEND_HALF(VECTOR, IDX) - Custom extend upper (IDX=0) half or
416 /// lower (IDX=1) half of v4f32 to v2f64.
417 FP_EXTEND_HALF,
419 /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
420 /// byte-swapping store instruction. It byte-swaps the low "Type" bits of
421 /// the GPRC input, then stores it through Ptr. Type can be either i16 or
422 /// i32.
423 STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
425 /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
426 /// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
427 /// then puts it in the bottom bits of the GPRC. TYPE can be either i16
428 /// or i32.
429 LBRX,
431 /// STFIWX - The STFIWX instruction. The first operand is an input token
432 /// chain, then an f64 value to store, then an address to store it to.
433 STFIWX,
435 /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
436 /// load which sign-extends from a 32-bit integer value into the
437 /// destination 64-bit register.
438 LFIWAX,
440 /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
441 /// load which zero-extends from a 32-bit integer value into the
442 /// destination 64-bit register.
443 LFIWZX,
445 /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
446 /// integer smaller than 64 bits into a VSR. The integer is zero-extended.
447 /// This can be used for converting loaded integers to floating point.
448 LXSIZX,
450 /// STXSIX - The STXSI[bh]X instruction. The first operand is an input
451 /// chain, then an f64 value to store, then an address to store it to,
452 /// followed by a byte-width for the store.
453 STXSIX,
455 /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
456 /// Maps directly to an lxvd2x instruction that will be followed by
457 /// an xxswapd.
458 LXVD2X,
460 /// VSRC, CHAIN = LOAD_VEC_BE CHAIN, Ptr - Occurs only for little endian.
461 /// Maps directly to one of lxvd2x/lxvw4x/lxvh8x/lxvb16x depending on
462 /// the vector type to load vector in big-endian element order.
463 LOAD_VEC_BE,
465 /// VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a
466 /// v2f32 value into the lower half of a VSR register.
467 LD_VSX_LH,
469 /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
470 /// Maps directly to an stxvd2x instruction that will be preceded by
471 /// an xxswapd.
472 STXVD2X,
474 /// CHAIN = STORE_VEC_BE CHAIN, VSRC, Ptr - Occurs only for little endian.
475 /// Maps directly to one of stxvd2x/stxvw4x/stxvh8x/stxvb16x depending on
476 /// the vector type to store vector in big-endian element order.
477 STORE_VEC_BE,
479 /// Store scalar integers from VSR.
480 ST_VSR_SCAL_INT,
482 /// QBRC, CHAIN = QVLFSb CHAIN, Ptr
483 /// The 4xf32 load used for v4i1 constants.
484 QVLFSb,
486 /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes
487 /// except they ensure that the compare input is zero-extended for
488 /// sub-word versions because the atomic loads zero-extend.
489 ATOMIC_CMP_SWAP_8, ATOMIC_CMP_SWAP_16,
491 /// GPRC = TOC_ENTRY GA, TOC
492 /// Loads the entry for GA from the TOC, where the TOC base is given by
493 /// the last operand.
494 TOC_ENTRY
497 } // end namespace PPCISD
499 /// Define some predicates that are used for node matching.
500 namespace PPC {
502 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
503 /// VPKUHUM instruction.
504 bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
505 SelectionDAG &DAG);
507 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
508 /// VPKUWUM instruction.
509 bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
510 SelectionDAG &DAG);
512 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
513 /// VPKUDUM instruction.
514 bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
515 SelectionDAG &DAG);
517 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
518 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
519 bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
520 unsigned ShuffleKind, SelectionDAG &DAG);
522 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
523 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
524 bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
525 unsigned ShuffleKind, SelectionDAG &DAG);
527 /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
528 /// a VMRGEW or VMRGOW instruction
529 bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
530 unsigned ShuffleKind, SelectionDAG &DAG);
531 /// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable
532 /// for a XXSLDWI instruction.
533 bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
534 bool &Swap, bool IsLE);
536 /// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable
537 /// for a XXBRH instruction.
538 bool isXXBRHShuffleMask(ShuffleVectorSDNode *N);
540 /// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable
541 /// for a XXBRW instruction.
542 bool isXXBRWShuffleMask(ShuffleVectorSDNode *N);
544 /// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable
545 /// for a XXBRD instruction.
546 bool isXXBRDShuffleMask(ShuffleVectorSDNode *N);
548 /// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable
549 /// for a XXBRQ instruction.
550 bool isXXBRQShuffleMask(ShuffleVectorSDNode *N);
552 /// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable
553 /// for a XXPERMDI instruction.
554 bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
555 bool &Swap, bool IsLE);
557 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
558 /// shift amount, otherwise return -1.
559 int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
560 SelectionDAG &DAG);
562 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
563 /// specifies a splat of a single element that is suitable for input to
564 /// VSPLTB/VSPLTH/VSPLTW.
565 bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
567 /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
568 /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
569 /// shuffle of v4f32/v4i32 vectors that just inserts one element from one
570 /// vector into the other. This function will also set a couple of
571 /// output parameters for how much the source vector needs to be shifted and
572 /// what byte number needs to be specified for the instruction to put the
573 /// element in the desired location of the target vector.
574 bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
575 unsigned &InsertAtByte, bool &Swap, bool IsLE);
577 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
578 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
579 unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize, SelectionDAG &DAG);
581 /// get_VSPLTI_elt - If this is a build_vector of constants which can be
582 /// formed by using a vspltis[bhw] instruction of the specified element
583 /// size, return the constant being splatted. The ByteSize field indicates
584 /// the number of bytes of each element [124] -> [bhw].
585 SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
587 /// If this is a qvaligni shuffle mask, return the shift
588 /// amount, otherwise return -1.
589 int isQVALIGNIShuffleMask(SDNode *N);
591 } // end namespace PPC
593 class PPCTargetLowering : public TargetLowering {
594 const PPCSubtarget &Subtarget;
596 public:
597 explicit PPCTargetLowering(const PPCTargetMachine &TM,
598 const PPCSubtarget &STI);
600 /// getTargetNodeName() - This method returns the name of a target specific
601 /// DAG node.
602 const char *getTargetNodeName(unsigned Opcode) const override;
604 bool isSelectSupported(SelectSupportKind Kind) const override {
605 // PowerPC does not support scalar condition selects on vectors.
606 return (Kind != SelectSupportKind::ScalarCondVectorVal);
609 /// getPreferredVectorAction - The code we generate when vector types are
610 /// legalized by promoting the integer element type is often much worse
611 /// than code we generate if we widen the type for applicable vector types.
612 /// The issue with promoting is that the vector is scalaraized, individual
613 /// elements promoted and then the vector is rebuilt. So say we load a pair
614 /// of v4i8's and shuffle them. This will turn into a mess of 8 extending
615 /// loads, moves back into VSR's (or memory ops if we don't have moves) and
616 /// then the VPERM for the shuffle. All in all a very slow sequence.
617 TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT)
618 const override {
619 if (VT.getScalarSizeInBits() % 8 == 0)
620 return TypeWidenVector;
621 return TargetLoweringBase::getPreferredVectorAction(VT);
624 bool useSoftFloat() const override;
626 bool hasSPE() const;
628 MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
629 return MVT::i32;
632 bool isCheapToSpeculateCttz() const override {
633 return true;
636 bool isCheapToSpeculateCtlz() const override {
637 return true;
640 bool isCtlzFast() const override {
641 return true;
644 bool hasAndNotCompare(SDValue) const override {
645 return true;
648 bool preferIncOfAddToSubOfNot(EVT VT) const override;
650 bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
651 return VT.isScalarInteger();
654 bool supportSplitCSR(MachineFunction *MF) const override {
655 return
656 MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
657 MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
660 void initializeSplitCSR(MachineBasicBlock *Entry) const override;
662 void insertCopiesSplitCSR(
663 MachineBasicBlock *Entry,
664 const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;
666 /// getSetCCResultType - Return the ISD::SETCC ValueType
667 EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
668 EVT VT) const override;
670 /// Return true if target always beneficiates from combining into FMA for a
671 /// given value type. This must typically return false on targets where FMA
672 /// takes more cycles to execute than FADD.
673 bool enableAggressiveFMAFusion(EVT VT) const override;
675 /// getPreIndexedAddressParts - returns true by value, base pointer and
676 /// offset pointer and addressing mode by reference if the node's address
677 /// can be legally represented as pre-indexed load / store address.
678 bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
679 SDValue &Offset,
680 ISD::MemIndexedMode &AM,
681 SelectionDAG &DAG) const override;
683 /// SelectAddressEVXRegReg - Given the specified addressed, check to see if
684 /// it can be more efficiently represented as [r+imm].
685 bool SelectAddressEVXRegReg(SDValue N, SDValue &Base, SDValue &Index,
686 SelectionDAG &DAG) const;
688 /// SelectAddressRegReg - Given the specified addressed, check to see if it
689 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment
690 /// is non-zero, only accept displacement which is not suitable for [r+imm].
691 /// Returns false if it can be represented by [r+imm], which are preferred.
692 bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
693 SelectionDAG &DAG,
694 unsigned EncodingAlignment = 0) const;
696 /// SelectAddressRegImm - Returns true if the address N can be represented
697 /// by a base register plus a signed 16-bit displacement [r+imm], and if it
698 /// is not better represented as reg+reg. If \p EncodingAlignment is
699 /// non-zero, only accept displacements suitable for instruction encoding
700 /// requirement, i.e. multiples of 4 for DS form.
701 bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
702 SelectionDAG &DAG,
703 unsigned EncodingAlignment) const;
705 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
706 /// represented as an indexed [r+r] operation.
707 bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
708 SelectionDAG &DAG) const;
710 Sched::Preference getSchedulingPreference(SDNode *N) const override;
712 /// LowerOperation - Provide custom lowering hooks for some operations.
714 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
716 /// ReplaceNodeResults - Replace the results of node with an illegal result
717 /// type with new values built out of custom code.
719 void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
720 SelectionDAG &DAG) const override;
722 SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
723 SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
725 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
727 SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
728 SmallVectorImpl<SDNode *> &Created) const override;
730 unsigned getRegisterByName(const char* RegName, EVT VT,
731 SelectionDAG &DAG) const override;
733 void computeKnownBitsForTargetNode(const SDValue Op,
734 KnownBits &Known,
735 const APInt &DemandedElts,
736 const SelectionDAG &DAG,
737 unsigned Depth = 0) const override;
739 llvm::Align getPrefLoopAlignment(MachineLoop *ML) const override;
741 bool shouldInsertFencesForAtomic(const Instruction *I) const override {
742 return true;
745 Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst,
746 AtomicOrdering Ord) const override;
747 Instruction *emitTrailingFence(IRBuilder<> &Builder, Instruction *Inst,
748 AtomicOrdering Ord) const override;
750 MachineBasicBlock *
751 EmitInstrWithCustomInserter(MachineInstr &MI,
752 MachineBasicBlock *MBB) const override;
753 MachineBasicBlock *EmitAtomicBinary(MachineInstr &MI,
754 MachineBasicBlock *MBB,
755 unsigned AtomicSize,
756 unsigned BinOpcode,
757 unsigned CmpOpcode = 0,
758 unsigned CmpPred = 0) const;
759 MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr &MI,
760 MachineBasicBlock *MBB,
761 bool is8bit,
762 unsigned Opcode,
763 unsigned CmpOpcode = 0,
764 unsigned CmpPred = 0) const;
766 MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
767 MachineBasicBlock *MBB) const;
769 MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
770 MachineBasicBlock *MBB) const;
772 ConstraintType getConstraintType(StringRef Constraint) const override;
774 /// Examine constraint string and operand type and determine a weight value.
775 /// The operand object must already have been set up with the operand type.
776 ConstraintWeight getSingleConstraintMatchWeight(
777 AsmOperandInfo &info, const char *constraint) const override;
779 std::pair<unsigned, const TargetRegisterClass *>
780 getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
781 StringRef Constraint, MVT VT) const override;
783 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
784 /// function arguments in the caller parameter area. This is the actual
785 /// alignment, not its logarithm.
786 unsigned getByValTypeAlignment(Type *Ty,
787 const DataLayout &DL) const override;
789 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
790 /// vector. If it is invalid, don't add anything to Ops.
791 void LowerAsmOperandForConstraint(SDValue Op,
792 std::string &Constraint,
793 std::vector<SDValue> &Ops,
794 SelectionDAG &DAG) const override;
796 unsigned
797 getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
798 if (ConstraintCode == "es")
799 return InlineAsm::Constraint_es;
800 else if (ConstraintCode == "o")
801 return InlineAsm::Constraint_o;
802 else if (ConstraintCode == "Q")
803 return InlineAsm::Constraint_Q;
804 else if (ConstraintCode == "Z")
805 return InlineAsm::Constraint_Z;
806 else if (ConstraintCode == "Zy")
807 return InlineAsm::Constraint_Zy;
808 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
811 /// isLegalAddressingMode - Return true if the addressing mode represented
812 /// by AM is legal for this target, for a load/store of the specified type.
813 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
814 Type *Ty, unsigned AS,
815 Instruction *I = nullptr) const override;
817 /// isLegalICmpImmediate - Return true if the specified immediate is legal
818 /// icmp immediate, that is the target has icmp instructions which can
819 /// compare a register against the immediate without having to materialize
820 /// the immediate into a register.
821 bool isLegalICmpImmediate(int64_t Imm) const override;
823 /// isLegalAddImmediate - Return true if the specified immediate is legal
824 /// add immediate, that is the target has add instructions which can
825 /// add a register and the immediate without having to materialize
826 /// the immediate into a register.
827 bool isLegalAddImmediate(int64_t Imm) const override;
829 /// isTruncateFree - Return true if it's free to truncate a value of
830 /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
831 /// register X1 to i32 by referencing its sub-register R1.
832 bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
833 bool isTruncateFree(EVT VT1, EVT VT2) const override;
835 bool isZExtFree(SDValue Val, EVT VT2) const override;
837 bool isFPExtFree(EVT DestVT, EVT SrcVT) const override;
839 /// Returns true if it is beneficial to convert a load of a constant
840 /// to just the constant itself.
841 bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
842 Type *Ty) const override;
844 bool convertSelectOfConstantsToMath(EVT VT) const override {
845 return true;
848 bool isDesirableToTransformToIntegerOp(unsigned Opc,
849 EVT VT) const override {
850 // Only handle float load/store pair because float(fpr) load/store
851 // instruction has more cycles than integer(gpr) load/store in PPC.
852 if (Opc != ISD::LOAD && Opc != ISD::STORE)
853 return false;
854 if (VT != MVT::f32 && VT != MVT::f64)
855 return false;
857 return true;
860 // Returns true if the address of the global is stored in TOC entry.
861 bool isAccessedAsGotIndirect(SDValue N) const;
863 bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
865 bool getTgtMemIntrinsic(IntrinsicInfo &Info,
866 const CallInst &I,
867 MachineFunction &MF,
868 unsigned Intrinsic) const override;
870 /// getOptimalMemOpType - Returns the target specific optimal type for load
871 /// and store operations as a result of memset, memcpy, and memmove
872 /// lowering. If DstAlign is zero that means it's safe to destination
873 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
874 /// means there isn't a need to check it against alignment requirement,
875 /// probably because the source does not need to be loaded. If 'IsMemset' is
876 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
877 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
878 /// source is constant so it does not need to be loaded.
879 /// It returns EVT::Other if the type should be determined using generic
880 /// target-independent logic.
882 getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
883 bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
884 const AttributeList &FuncAttributes) const override;
886 /// Is unaligned memory access allowed for the given type, and is it fast
887 /// relative to software emulation.
888 bool allowsMisalignedMemoryAccesses(
889 EVT VT, unsigned AddrSpace, unsigned Align = 1,
890 MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
891 bool *Fast = nullptr) const override;
893 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
894 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
895 /// expanded to FMAs when this method returns true, otherwise fmuladd is
896 /// expanded to fmul + fadd.
897 bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
899 const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
901 // Should we expand the build vector with shuffles?
902 bool
903 shouldExpandBuildVectorWithShuffles(EVT VT,
904 unsigned DefinedValues) const override;
906 /// createFastISel - This method returns a target-specific FastISel object,
907 /// or null if the target does not support "fast" instruction selection.
908 FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
909 const TargetLibraryInfo *LibInfo) const override;
911 /// Returns true if an argument of type Ty needs to be passed in a
912 /// contiguous block of registers in calling convention CallConv.
913 bool functionArgumentNeedsConsecutiveRegisters(
914 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override {
915 // We support any array type as "consecutive" block in the parameter
916 // save area. The element type defines the alignment requirement and
917 // whether the argument should go in GPRs, FPRs, or VRs if available.
919 // Note that clang uses this capability both to implement the ELFv2
920 // homogeneous float/vector aggregate ABI, and to avoid having to use
921 // "byval" when passing aggregates that might fully fit in registers.
922 return Ty->isArrayTy();
925 /// If a physical register, this returns the register that receives the
926 /// exception address on entry to an EH pad.
927 unsigned
928 getExceptionPointerRegister(const Constant *PersonalityFn) const override;
930 /// If a physical register, this returns the register that receives the
931 /// exception typeid on entry to a landing pad.
932 unsigned
933 getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
935 /// Override to support customized stack guard loading.
936 bool useLoadStackGuardNode() const override;
937 void insertSSPDeclarations(Module &M) const override;
939 bool isFPImmLegal(const APFloat &Imm, EVT VT,
940 bool ForCodeSize) const override;
942 unsigned getJumpTableEncoding() const override;
943 bool isJumpTableRelative() const override;
944 SDValue getPICJumpTableRelocBase(SDValue Table,
945 SelectionDAG &DAG) const override;
946 const MCExpr *getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
947 unsigned JTI,
948 MCContext &Ctx) const override;
950 private:
951 struct ReuseLoadInfo {
952 SDValue Ptr;
953 SDValue Chain;
954 SDValue ResChain;
955 MachinePointerInfo MPI;
956 bool IsDereferenceable = false;
957 bool IsInvariant = false;
958 unsigned Alignment = 0;
959 AAMDNodes AAInfo;
960 const MDNode *Ranges = nullptr;
962 ReuseLoadInfo() = default;
964 MachineMemOperand::Flags MMOFlags() const {
965 MachineMemOperand::Flags F = MachineMemOperand::MONone;
966 if (IsDereferenceable)
967 F |= MachineMemOperand::MODereferenceable;
968 if (IsInvariant)
969 F |= MachineMemOperand::MOInvariant;
970 return F;
974 bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override {
975 // Addrspacecasts are always noops.
976 return true;
979 bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
980 SelectionDAG &DAG,
981 ISD::LoadExtType ET = ISD::NON_EXTLOAD) const;
982 void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
983 SelectionDAG &DAG) const;
985 void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
986 SelectionDAG &DAG, const SDLoc &dl) const;
987 SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
988 const SDLoc &dl) const;
990 bool directMoveIsProfitable(const SDValue &Op) const;
991 SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
992 const SDLoc &dl) const;
994 SDValue LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
995 const SDLoc &dl) const;
997 SDValue LowerTRUNCATEVector(SDValue Op, SelectionDAG &DAG) const;
999 SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
1000 SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
1002 bool
1003 IsEligibleForTailCallOptimization(SDValue Callee,
1004 CallingConv::ID CalleeCC,
1005 bool isVarArg,
1006 const SmallVectorImpl<ISD::InputArg> &Ins,
1007 SelectionDAG& DAG) const;
1009 bool
1010 IsEligibleForTailCallOptimization_64SVR4(
1011 SDValue Callee,
1012 CallingConv::ID CalleeCC,
1013 ImmutableCallSite CS,
1014 bool isVarArg,
1015 const SmallVectorImpl<ISD::OutputArg> &Outs,
1016 const SmallVectorImpl<ISD::InputArg> &Ins,
1017 SelectionDAG& DAG) const;
1019 SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff,
1020 SDValue Chain, SDValue &LROpOut,
1021 SDValue &FPOpOut,
1022 const SDLoc &dl) const;
1024 SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, SDValue GA) const;
1026 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
1027 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
1028 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
1029 SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
1030 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
1031 SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
1032 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
1033 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
1034 SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1035 SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1036 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
1037 SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
1038 SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
1039 SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
1040 SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
1041 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
1042 SDValue LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const;
1043 SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
1044 SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
1045 SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
1046 SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
1047 SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
1048 const SDLoc &dl) const;
1049 SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
1050 SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
1051 SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
1052 SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
1053 SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
1054 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1055 SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
1056 SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1057 SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1058 SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
1059 SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
1060 SDValue LowerREM(SDValue Op, SelectionDAG &DAG) const;
1061 SDValue LowerBSWAP(SDValue Op, SelectionDAG &DAG) const;
1062 SDValue LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
1063 SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1064 SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
1065 SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
1066 SDValue LowerABS(SDValue Op, SelectionDAG &DAG) const;
1067 SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
1069 SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
1070 SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;
1072 SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
1073 CallingConv::ID CallConv, bool isVarArg,
1074 const SmallVectorImpl<ISD::InputArg> &Ins,
1075 const SDLoc &dl, SelectionDAG &DAG,
1076 SmallVectorImpl<SDValue> &InVals) const;
1077 SDValue FinishCall(CallingConv::ID CallConv, const SDLoc &dl,
1078 bool isTailCall, bool isVarArg, bool isPatchPoint,
1079 bool hasNest, SelectionDAG &DAG,
1080 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
1081 SDValue InFlag, SDValue Chain, SDValue CallSeqStart,
1082 SDValue &Callee, int SPDiff, unsigned NumBytes,
1083 const SmallVectorImpl<ISD::InputArg> &Ins,
1084 SmallVectorImpl<SDValue> &InVals,
1085 ImmutableCallSite CS) const;
1087 SDValue
1088 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1089 const SmallVectorImpl<ISD::InputArg> &Ins,
1090 const SDLoc &dl, SelectionDAG &DAG,
1091 SmallVectorImpl<SDValue> &InVals) const override;
1093 SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
1094 SmallVectorImpl<SDValue> &InVals) const override;
1096 bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1097 bool isVarArg,
1098 const SmallVectorImpl<ISD::OutputArg> &Outs,
1099 LLVMContext &Context) const override;
1101 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1102 const SmallVectorImpl<ISD::OutputArg> &Outs,
1103 const SmallVectorImpl<SDValue> &OutVals,
1104 const SDLoc &dl, SelectionDAG &DAG) const override;
1106 SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
1107 SelectionDAG &DAG, SDValue ArgVal,
1108 const SDLoc &dl) const;
1110 SDValue LowerFormalArguments_Darwin(
1111 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1112 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1113 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1114 SDValue LowerFormalArguments_64SVR4(
1115 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1116 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1117 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1118 SDValue LowerFormalArguments_32SVR4(
1119 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1120 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1121 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1123 SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
1124 SDValue CallSeqStart,
1125 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1126 const SDLoc &dl) const;
1128 SDValue LowerCall_Darwin(SDValue Chain, SDValue Callee,
1129 CallingConv::ID CallConv, bool isVarArg,
1130 bool isTailCall, bool isPatchPoint,
1131 const SmallVectorImpl<ISD::OutputArg> &Outs,
1132 const SmallVectorImpl<SDValue> &OutVals,
1133 const SmallVectorImpl<ISD::InputArg> &Ins,
1134 const SDLoc &dl, SelectionDAG &DAG,
1135 SmallVectorImpl<SDValue> &InVals,
1136 ImmutableCallSite CS) const;
1137 SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee,
1138 CallingConv::ID CallConv, bool isVarArg,
1139 bool isTailCall, bool isPatchPoint,
1140 const SmallVectorImpl<ISD::OutputArg> &Outs,
1141 const SmallVectorImpl<SDValue> &OutVals,
1142 const SmallVectorImpl<ISD::InputArg> &Ins,
1143 const SDLoc &dl, SelectionDAG &DAG,
1144 SmallVectorImpl<SDValue> &InVals,
1145 ImmutableCallSite CS) const;
1146 SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee,
1147 CallingConv::ID CallConv, bool isVarArg,
1148 bool isTailCall, bool isPatchPoint,
1149 const SmallVectorImpl<ISD::OutputArg> &Outs,
1150 const SmallVectorImpl<SDValue> &OutVals,
1151 const SmallVectorImpl<ISD::InputArg> &Ins,
1152 const SDLoc &dl, SelectionDAG &DAG,
1153 SmallVectorImpl<SDValue> &InVals,
1154 ImmutableCallSite CS) const;
1155 SDValue LowerCall_AIX(SDValue Chain, SDValue Callee,
1156 CallingConv::ID CallConv, bool isVarArg,
1157 bool isTailCall, bool isPatchPoint,
1158 const SmallVectorImpl<ISD::OutputArg> &Outs,
1159 const SmallVectorImpl<SDValue> &OutVals,
1160 const SmallVectorImpl<ISD::InputArg> &Ins,
1161 const SDLoc &dl, SelectionDAG &DAG,
1162 SmallVectorImpl<SDValue> &InVals,
1163 ImmutableCallSite CS) const;
1165 SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
1166 SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
1167 SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
1169 SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
1170 SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const;
1171 SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
1172 SDValue combineStoreFPToInt(SDNode *N, DAGCombinerInfo &DCI) const;
1173 SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
1174 SDValue combineSHL(SDNode *N, DAGCombinerInfo &DCI) const;
1175 SDValue combineSRA(SDNode *N, DAGCombinerInfo &DCI) const;
1176 SDValue combineSRL(SDNode *N, DAGCombinerInfo &DCI) const;
1177 SDValue combineMUL(SDNode *N, DAGCombinerInfo &DCI) const;
1178 SDValue combineADD(SDNode *N, DAGCombinerInfo &DCI) const;
1179 SDValue combineTRUNCATE(SDNode *N, DAGCombinerInfo &DCI) const;
1180 SDValue combineSetCC(SDNode *N, DAGCombinerInfo &DCI) const;
1181 SDValue combineABS(SDNode *N, DAGCombinerInfo &DCI) const;
1182 SDValue combineVSelect(SDNode *N, DAGCombinerInfo &DCI) const;
1183 SDValue combineVReverseMemOP(ShuffleVectorSDNode *SVN, LSBaseSDNode *LSBase,
1184 DAGCombinerInfo &DCI) const;
1186 /// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces
1187 /// SETCC with integer subtraction when (1) there is a legal way of doing it
1188 /// (2) keeping the result of comparison in GPR has performance benefit.
1189 SDValue ConvertSETCCToSubtract(SDNode *N, DAGCombinerInfo &DCI) const;
1191 SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1192 int &RefinementSteps, bool &UseOneConstNR,
1193 bool Reciprocal) const override;
1194 SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1195 int &RefinementSteps) const override;
1196 unsigned combineRepeatedFPDivisors() const override;
1198 SDValue
1199 combineElementTruncationToVectorTruncation(SDNode *N,
1200 DAGCombinerInfo &DCI) const;
1202 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be
1203 /// handled by the VINSERTH instruction introduced in ISA 3.0. This is
1204 /// essentially any shuffle of v8i16 vectors that just inserts one element
1205 /// from one vector into the other.
1206 SDValue lowerToVINSERTH(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1208 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be
1209 /// handled by the VINSERTB instruction introduced in ISA 3.0. This is
1210 /// essentially v16i8 vector version of VINSERTH.
1211 SDValue lowerToVINSERTB(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1213 // Return whether the call instruction can potentially be optimized to a
1214 // tail call. This will cause the optimizers to attempt to move, or
1215 // duplicate return instructions to help enable tail call optimizations.
1216 bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
1217 bool hasBitPreservingFPLogic(EVT VT) const override;
1218 bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
1219 }; // end class PPCTargetLowering
1221 namespace PPC {
1223 FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
1224 const TargetLibraryInfo *LibInfo);
1226 } // end namespace PPC
1228 bool isIntS16Immediate(SDNode *N, int16_t &Imm);
1229 bool isIntS16Immediate(SDValue Op, int16_t &Imm);
1231 } // end namespace llvm
1233 #endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H