[llvm] [cmake] Add possibility to use ChooseMSVCCRT.cmake when include LLVM library
[llvm-core.git] / include / llvm / CodeGen / ModuloSchedule.h
blob36cc843c8849eb137b7a85af2df6283effb3db24
1 //===- ModuloSchedule.h - Software pipeline schedule expansion ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Software pipelining (SWP) is an instruction scheduling technique for loops
10 // that overlaps loop iterations and exploits ILP via compiler transformations.
12 // There are multiple methods for analyzing a loop and creating a schedule.
13 // An example algorithm is Swing Modulo Scheduling (implemented by the
14 // MachinePipeliner). The details of how a schedule is arrived at are irrelevant
15 // for the task of actually rewriting a loop to adhere to the schedule, which
16 // is what this file does.
18 // A schedule is, for every instruction in a block, a Cycle and a Stage. Note
19 // that we only support single-block loops, so "block" and "loop" can be used
20 // interchangably.
22 // The Cycle of an instruction defines a partial order of the instructions in
23 // the remapped loop. Instructions within a cycle must not consume the output
24 // of any instruction in the same cycle. Cycle information is assumed to have
25 // been calculated such that the processor will execute instructions in
26 // lock-step (for example in a VLIW ISA).
28 // The Stage of an instruction defines the mapping between logical loop
29 // iterations and pipelined loop iterations. An example (unrolled) pipeline
30 // may look something like:
32 // I0[0] Execute instruction I0 of iteration 0
33 // I1[0], I0[1] Execute I0 of iteration 1 and I1 of iteration 1
34 // I1[1], I0[2]
35 // I1[2], I0[3]
37 // In the schedule for this unrolled sequence we would say that I0 was scheduled
38 // in stage 0 and I1 in stage 1:
40 // loop:
41 // [stage 0] x = I0
42 // [stage 1] I1 x (from stage 0)
44 // And to actually generate valid code we must insert a phi:
46 // loop:
47 // x' = phi(x)
48 // x = I0
49 // I1 x'
51 // This is a simple example; the rules for how to generate correct code given
52 // an arbitrary schedule containing loop-carried values are complex.
54 // Note that these examples only mention the steady-state kernel of the
55 // generated loop; prologs and epilogs must be generated also that prime and
56 // flush the pipeline. Doing so is nontrivial.
58 //===----------------------------------------------------------------------===//
60 #ifndef LLVM_LIB_CODEGEN_MODULOSCHEDULE_H
61 #define LLVM_LIB_CODEGEN_MODULOSCHEDULE_H
63 #include "llvm/CodeGen/MachineFunction.h"
64 #include "llvm/CodeGen/MachineLoopInfo.h"
65 #include "llvm/CodeGen/TargetInstrInfo.h"
66 #include "llvm/CodeGen/TargetSubtargetInfo.h"
67 #include <vector>
69 namespace llvm {
70 class MachineBasicBlock;
71 class MachineInstr;
72 class LiveIntervals;
74 /// Represents a schedule for a single-block loop. For every instruction we
75 /// maintain a Cycle and Stage.
76 class ModuloSchedule {
77 private:
78 /// The block containing the loop instructions.
79 MachineLoop *Loop;
81 /// The instructions to be generated, in total order. Cycle provides a partial
82 /// order; the total order within cycles has been decided by the schedule
83 /// producer.
84 std::vector<MachineInstr *> ScheduledInstrs;
86 /// The cycle for each instruction.
87 DenseMap<MachineInstr *, int> Cycle;
89 /// The stage for each instruction.
90 DenseMap<MachineInstr *, int> Stage;
92 /// The number of stages in this schedule (Max(Stage) + 1).
93 int NumStages;
95 public:
96 /// Create a new ModuloSchedule.
97 /// \arg ScheduledInstrs The new loop instructions, in total resequenced
98 /// order.
99 /// \arg Cycle Cycle index for all instructions in ScheduledInstrs. Cycle does
100 /// not need to start at zero. ScheduledInstrs must be partially ordered by
101 /// Cycle.
102 /// \arg Stage Stage index for all instructions in ScheduleInstrs.
103 ModuloSchedule(MachineFunction &MF, MachineLoop *Loop,
104 std::vector<MachineInstr *> ScheduledInstrs,
105 DenseMap<MachineInstr *, int> Cycle,
106 DenseMap<MachineInstr *, int> Stage)
107 : Loop(Loop), ScheduledInstrs(ScheduledInstrs), Cycle(std::move(Cycle)),
108 Stage(std::move(Stage)) {
109 NumStages = 0;
110 for (auto &KV : this->Stage)
111 NumStages = std::max(NumStages, KV.second);
112 ++NumStages;
115 /// Return the single-block loop being scheduled.
116 MachineLoop *getLoop() const { return Loop; }
118 /// Return the number of stages contained in this schedule, which is the
119 /// largest stage index + 1.
120 int getNumStages() const { return NumStages; }
122 /// Return the first cycle in the schedule, which is the cycle index of the
123 /// first instruction.
124 int getFirstCycle() { return Cycle[ScheduledInstrs.front()]; }
126 /// Return the final cycle in the schedule, which is the cycle index of the
127 /// last instruction.
128 int getFinalCycle() { return Cycle[ScheduledInstrs.back()]; }
130 /// Return the stage that MI is scheduled in, or -1.
131 int getStage(MachineInstr *MI) {
132 auto I = Stage.find(MI);
133 return I == Stage.end() ? -1 : I->second;
136 /// Return the cycle that MI is scheduled at, or -1.
137 int getCycle(MachineInstr *MI) {
138 auto I = Cycle.find(MI);
139 return I == Cycle.end() ? -1 : I->second;
142 /// Return the rescheduled instructions in order.
143 ArrayRef<MachineInstr *> getInstructions() { return ScheduledInstrs; }
145 void dump() {
146 print(dbgs());
148 void print(raw_ostream &OS);
151 /// The ModuloScheduleExpander takes a ModuloSchedule and expands it in-place,
152 /// rewriting the old loop and inserting prologs and epilogs as required.
153 class ModuloScheduleExpander {
154 public:
155 using InstrChangesTy = DenseMap<MachineInstr *, std::pair<unsigned, int64_t>>;
157 private:
158 using ValueMapTy = DenseMap<unsigned, unsigned>;
159 using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
160 using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
162 ModuloSchedule &Schedule;
163 MachineFunction &MF;
164 const TargetSubtargetInfo &ST;
165 MachineRegisterInfo &MRI;
166 const TargetInstrInfo *TII;
167 LiveIntervals &LIS;
169 MachineBasicBlock *BB;
170 MachineBasicBlock *Preheader;
171 MachineBasicBlock *NewKernel = nullptr;
172 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> LoopInfo;
174 /// Map for each register and the max difference between its uses and def.
175 /// The first element in the pair is the max difference in stages. The
176 /// second is true if the register defines a Phi value and loop value is
177 /// scheduled before the Phi.
178 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
180 /// Instructions to change when emitting the final schedule.
181 InstrChangesTy InstrChanges;
183 void generatePipelinedLoop();
184 void generateProlog(unsigned LastStage, MachineBasicBlock *KernelBB,
185 ValueMapTy *VRMap, MBBVectorTy &PrologBBs);
186 void generateEpilog(unsigned LastStage, MachineBasicBlock *KernelBB,
187 ValueMapTy *VRMap, MBBVectorTy &EpilogBBs,
188 MBBVectorTy &PrologBBs);
189 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
190 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
191 ValueMapTy *VRMap, InstrMapTy &InstrMap,
192 unsigned LastStageNum, unsigned CurStageNum,
193 bool IsLast);
194 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
195 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
196 ValueMapTy *VRMap, InstrMapTy &InstrMap,
197 unsigned LastStageNum, unsigned CurStageNum, bool IsLast);
198 void removeDeadInstructions(MachineBasicBlock *KernelBB,
199 MBBVectorTy &EpilogBBs);
200 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs);
201 void addBranches(MachineBasicBlock &PreheaderBB, MBBVectorTy &PrologBBs,
202 MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
203 ValueMapTy *VRMap);
204 bool computeDelta(MachineInstr &MI, unsigned &Delta);
205 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
206 unsigned Num);
207 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
208 unsigned InstStageNum);
209 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
210 unsigned InstStageNum);
211 void updateInstruction(MachineInstr *NewMI, bool LastDef,
212 unsigned CurStageNum, unsigned InstrStageNum,
213 ValueMapTy *VRMap);
214 MachineInstr *findDefInLoop(unsigned Reg);
215 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
216 unsigned LoopStage, ValueMapTy *VRMap,
217 MachineBasicBlock *BB);
218 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
219 ValueMapTy *VRMap, InstrMapTy &InstrMap);
220 void rewriteScheduledInstr(MachineBasicBlock *BB, InstrMapTy &InstrMap,
221 unsigned CurStageNum, unsigned PhiNum,
222 MachineInstr *Phi, unsigned OldReg,
223 unsigned NewReg, unsigned PrevReg = 0);
224 bool isLoopCarried(MachineInstr &Phi);
226 /// Return the max. number of stages/iterations that can occur between a
227 /// register definition and its uses.
228 unsigned getStagesForReg(int Reg, unsigned CurStage) {
229 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
230 if ((int)CurStage > Schedule.getNumStages() - 1 && Stages.first == 0 &&
231 Stages.second)
232 return 1;
233 return Stages.first;
236 /// The number of stages for a Phi is a little different than other
237 /// instructions. The minimum value computed in RegToStageDiff is 1
238 /// because we assume the Phi is needed for at least 1 iteration.
239 /// This is not the case if the loop value is scheduled prior to the
240 /// Phi in the same stage. This function returns the number of stages
241 /// or iterations needed between the Phi definition and any uses.
242 unsigned getStagesForPhi(int Reg) {
243 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
244 if (Stages.second)
245 return Stages.first;
246 return Stages.first - 1;
249 public:
250 /// Create a new ModuloScheduleExpander.
251 /// \arg InstrChanges Modifications to make to instructions with memory
252 /// operands.
253 /// FIXME: InstrChanges is opaque and is an implementation detail of an
254 /// optimization in MachinePipeliner that crosses abstraction boundaries.
255 ModuloScheduleExpander(MachineFunction &MF, ModuloSchedule &S,
256 LiveIntervals &LIS, InstrChangesTy InstrChanges)
257 : Schedule(S), MF(MF), ST(MF.getSubtarget()), MRI(MF.getRegInfo()),
258 TII(ST.getInstrInfo()), LIS(LIS),
259 InstrChanges(std::move(InstrChanges)) {}
261 /// Performs the actual expansion.
262 void expand();
263 /// Performs final cleanup after expansion.
264 void cleanup();
266 /// Returns the newly rewritten kernel block, or nullptr if this was
267 /// optimized away.
268 MachineBasicBlock *getRewrittenKernel() { return NewKernel; }
271 /// A reimplementation of ModuloScheduleExpander. It works by generating a
272 /// standalone kernel loop and peeling out the prologs and epilogs.
274 /// FIXME: This implementation cannot yet generate valid code. It can generate
275 /// a correct kernel but cannot peel out prologs and epilogs.
276 class PeelingModuloScheduleExpander {
277 ModuloSchedule &Schedule;
278 MachineFunction &MF;
279 const TargetSubtargetInfo &ST;
280 MachineRegisterInfo &MRI;
281 const TargetInstrInfo *TII;
282 LiveIntervals *LIS;
284 MachineBasicBlock *BB;
285 MachineBasicBlock *Preheader;
286 public:
287 PeelingModuloScheduleExpander(MachineFunction &MF, ModuloSchedule &S,
288 LiveIntervals *LIS)
289 : Schedule(S), MF(MF), ST(MF.getSubtarget()), MRI(MF.getRegInfo()),
290 TII(ST.getInstrInfo()), LIS(LIS) {}
292 /// Runs ModuloScheduleExpander and treats it as a golden input to validate
293 /// aspects of the code generated by PeelingModuloScheduleExpander.
294 void validateAgainstModuloScheduleExpander();
297 /// Expander that simply annotates each scheduled instruction with a post-instr
298 /// symbol that can be consumed by the ModuloScheduleTest pass.
300 /// The post-instr symbol is a way of annotating an instruction that can be
301 /// roundtripped in MIR. The syntax is:
302 /// MYINST %0, post-instr-symbol <mcsymbol Stage-1_Cycle-5>
303 class ModuloScheduleTestAnnotater {
304 MachineFunction &MF;
305 ModuloSchedule &S;
307 public:
308 ModuloScheduleTestAnnotater(MachineFunction &MF, ModuloSchedule &S)
309 : MF(MF), S(S) {}
311 /// Performs the annotation.
312 void annotate();
315 } // end namespace llvm
317 #endif // LLVM_LIB_CODEGEN_MODULOSCHEDULE_H