[llvm] [cmake] Add possibility to use ChooseMSVCCRT.cmake when include LLVM library
[llvm-core.git] / include / llvm / Support / KnownBits.h
blob07fd94e29a1fb6f4670359621bbee9c3557ee6ee
1 //===- llvm/Support/KnownBits.h - Stores known zeros/ones -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a class for representing known zeros and ones used by
10 // computeKnownBits.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_SUPPORT_KNOWNBITS_H
15 #define LLVM_SUPPORT_KNOWNBITS_H
17 #include "llvm/ADT/APInt.h"
19 namespace llvm {
21 // Struct for tracking the known zeros and ones of a value.
22 struct KnownBits {
23 APInt Zero;
24 APInt One;
26 private:
27 // Internal constructor for creating a KnownBits from two APInts.
28 KnownBits(APInt Zero, APInt One)
29 : Zero(std::move(Zero)), One(std::move(One)) {}
31 public:
32 // Default construct Zero and One.
33 KnownBits() {}
35 /// Create a known bits object of BitWidth bits initialized to unknown.
36 KnownBits(unsigned BitWidth) : Zero(BitWidth, 0), One(BitWidth, 0) {}
38 /// Get the bit width of this value.
39 unsigned getBitWidth() const {
40 assert(Zero.getBitWidth() == One.getBitWidth() &&
41 "Zero and One should have the same width!");
42 return Zero.getBitWidth();
45 /// Returns true if there is conflicting information.
46 bool hasConflict() const { return Zero.intersects(One); }
48 /// Returns true if we know the value of all bits.
49 bool isConstant() const {
50 assert(!hasConflict() && "KnownBits conflict!");
51 return Zero.countPopulation() + One.countPopulation() == getBitWidth();
54 /// Returns the value when all bits have a known value. This just returns One
55 /// with a protective assertion.
56 const APInt &getConstant() const {
57 assert(isConstant() && "Can only get value when all bits are known");
58 return One;
61 /// Returns true if we don't know any bits.
62 bool isUnknown() const { return Zero.isNullValue() && One.isNullValue(); }
64 /// Resets the known state of all bits.
65 void resetAll() {
66 Zero.clearAllBits();
67 One.clearAllBits();
70 /// Returns true if value is all zero.
71 bool isZero() const {
72 assert(!hasConflict() && "KnownBits conflict!");
73 return Zero.isAllOnesValue();
76 /// Returns true if value is all one bits.
77 bool isAllOnes() const {
78 assert(!hasConflict() && "KnownBits conflict!");
79 return One.isAllOnesValue();
82 /// Make all bits known to be zero and discard any previous information.
83 void setAllZero() {
84 Zero.setAllBits();
85 One.clearAllBits();
88 /// Make all bits known to be one and discard any previous information.
89 void setAllOnes() {
90 Zero.clearAllBits();
91 One.setAllBits();
94 /// Returns true if this value is known to be negative.
95 bool isNegative() const { return One.isSignBitSet(); }
97 /// Returns true if this value is known to be non-negative.
98 bool isNonNegative() const { return Zero.isSignBitSet(); }
100 /// Make this value negative.
101 void makeNegative() {
102 One.setSignBit();
105 /// Make this value non-negative.
106 void makeNonNegative() {
107 Zero.setSignBit();
110 /// Truncate the underlying known Zero and One bits. This is equivalent
111 /// to truncating the value we're tracking.
112 KnownBits trunc(unsigned BitWidth) const {
113 return KnownBits(Zero.trunc(BitWidth), One.trunc(BitWidth));
116 /// Extends the underlying known Zero and One bits.
117 /// By setting ExtendedBitsAreKnownZero=true this will be equivalent to
118 /// zero extending the value we're tracking.
119 /// With ExtendedBitsAreKnownZero=false the extended bits are set to unknown.
120 KnownBits zext(unsigned BitWidth, bool ExtendedBitsAreKnownZero) const {
121 unsigned OldBitWidth = getBitWidth();
122 APInt NewZero = Zero.zext(BitWidth);
123 if (ExtendedBitsAreKnownZero)
124 NewZero.setBitsFrom(OldBitWidth);
125 return KnownBits(NewZero, One.zext(BitWidth));
128 /// Sign extends the underlying known Zero and One bits. This is equivalent
129 /// to sign extending the value we're tracking.
130 KnownBits sext(unsigned BitWidth) const {
131 return KnownBits(Zero.sext(BitWidth), One.sext(BitWidth));
134 /// Extends or truncates the underlying known Zero and One bits. When
135 /// extending the extended bits can either be set as known zero (if
136 /// ExtendedBitsAreKnownZero=true) or as unknown (if
137 /// ExtendedBitsAreKnownZero=false).
138 KnownBits zextOrTrunc(unsigned BitWidth,
139 bool ExtendedBitsAreKnownZero) const {
140 if (BitWidth > getBitWidth())
141 return zext(BitWidth, ExtendedBitsAreKnownZero);
142 return KnownBits(Zero.zextOrTrunc(BitWidth), One.zextOrTrunc(BitWidth));
145 /// Returns the minimum number of trailing zero bits.
146 unsigned countMinTrailingZeros() const {
147 return Zero.countTrailingOnes();
150 /// Returns the minimum number of trailing one bits.
151 unsigned countMinTrailingOnes() const {
152 return One.countTrailingOnes();
155 /// Returns the minimum number of leading zero bits.
156 unsigned countMinLeadingZeros() const {
157 return Zero.countLeadingOnes();
160 /// Returns the minimum number of leading one bits.
161 unsigned countMinLeadingOnes() const {
162 return One.countLeadingOnes();
165 /// Returns the number of times the sign bit is replicated into the other
166 /// bits.
167 unsigned countMinSignBits() const {
168 if (isNonNegative())
169 return countMinLeadingZeros();
170 if (isNegative())
171 return countMinLeadingOnes();
172 return 0;
175 /// Returns the maximum number of trailing zero bits possible.
176 unsigned countMaxTrailingZeros() const {
177 return One.countTrailingZeros();
180 /// Returns the maximum number of trailing one bits possible.
181 unsigned countMaxTrailingOnes() const {
182 return Zero.countTrailingZeros();
185 /// Returns the maximum number of leading zero bits possible.
186 unsigned countMaxLeadingZeros() const {
187 return One.countLeadingZeros();
190 /// Returns the maximum number of leading one bits possible.
191 unsigned countMaxLeadingOnes() const {
192 return Zero.countLeadingZeros();
195 /// Returns the number of bits known to be one.
196 unsigned countMinPopulation() const {
197 return One.countPopulation();
200 /// Returns the maximum number of bits that could be one.
201 unsigned countMaxPopulation() const {
202 return getBitWidth() - Zero.countPopulation();
205 /// Compute known bits resulting from adding LHS, RHS and a 1-bit Carry.
206 static KnownBits computeForAddCarry(
207 const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry);
209 /// Compute known bits resulting from adding LHS and RHS.
210 static KnownBits computeForAddSub(bool Add, bool NSW, const KnownBits &LHS,
211 KnownBits RHS);
214 } // end namespace llvm
216 #endif