[llvm] [cmake] Add possibility to use ChooseMSVCCRT.cmake when include LLVM library
[llvm-core.git] / tools / llvm-elfabi / ELFObjHandler.cpp
blobb886a8dff2566562cf184e2faa9a70ca17d3156d
1 //===- ELFObjHandler.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===-----------------------------------------------------------------------===/
9 #include "ELFObjHandler.h"
10 #include "llvm/Object/Binary.h"
11 #include "llvm/Object/ELFObjectFile.h"
12 #include "llvm/Object/ELFTypes.h"
13 #include "llvm/Support/Errc.h"
14 #include "llvm/Support/Error.h"
15 #include "llvm/Support/MemoryBuffer.h"
16 #include "llvm/TextAPI/ELF/ELFStub.h"
18 using llvm::MemoryBufferRef;
19 using llvm::object::ELFObjectFile;
21 using namespace llvm;
22 using namespace llvm::object;
23 using namespace llvm::ELF;
25 namespace llvm {
26 namespace elfabi {
28 // Simple struct to hold relevant .dynamic entries.
29 struct DynamicEntries {
30 uint64_t StrTabAddr = 0;
31 uint64_t StrSize = 0;
32 Optional<uint64_t> SONameOffset;
33 std::vector<uint64_t> NeededLibNames;
34 // Symbol table:
35 uint64_t DynSymAddr = 0;
36 // Hash tables:
37 Optional<uint64_t> ElfHash;
38 Optional<uint64_t> GnuHash;
41 /// This function behaves similarly to StringRef::substr(), but attempts to
42 /// terminate the returned StringRef at the first null terminator. If no null
43 /// terminator is found, an error is returned.
44 ///
45 /// @param Str Source string to create a substring from.
46 /// @param Offset The start index of the desired substring.
47 static Expected<StringRef> terminatedSubstr(StringRef Str, size_t Offset) {
48 size_t StrEnd = Str.find('\0', Offset);
49 if (StrEnd == StringLiteral::npos) {
50 return createError(
51 "String overran bounds of string table (no null terminator)");
54 size_t StrLen = StrEnd - Offset;
55 return Str.substr(Offset, StrLen);
58 /// This function takes an error, and appends a string of text to the end of
59 /// that error. Since "appending" to an Error isn't supported behavior of an
60 /// Error, this function technically creates a new error with the combined
61 /// message and consumes the old error.
62 ///
63 /// @param Err Source error.
64 /// @param After Text to append at the end of Err's error message.
65 Error appendToError(Error Err, StringRef After) {
66 std::string Message;
67 raw_string_ostream Stream(Message);
68 Stream << Err;
69 Stream << " " << After;
70 consumeError(std::move(Err));
71 return createError(Stream.str().c_str());
74 /// This function populates a DynamicEntries struct using an ELFT::DynRange.
75 /// After populating the struct, the members are validated with
76 /// some basic sanity checks.
77 ///
78 /// @param Dyn Target DynamicEntries struct to populate.
79 /// @param DynTable Source dynamic table.
80 template <class ELFT>
81 static Error populateDynamic(DynamicEntries &Dyn,
82 typename ELFT::DynRange DynTable) {
83 if (DynTable.empty())
84 return createError("No .dynamic section found");
86 // Search .dynamic for relevant entries.
87 bool FoundDynStr = false;
88 bool FoundDynStrSz = false;
89 bool FoundDynSym = false;
90 for (auto &Entry : DynTable) {
91 switch (Entry.d_tag) {
92 case DT_SONAME:
93 Dyn.SONameOffset = Entry.d_un.d_val;
94 break;
95 case DT_STRTAB:
96 Dyn.StrTabAddr = Entry.d_un.d_ptr;
97 FoundDynStr = true;
98 break;
99 case DT_STRSZ:
100 Dyn.StrSize = Entry.d_un.d_val;
101 FoundDynStrSz = true;
102 break;
103 case DT_NEEDED:
104 Dyn.NeededLibNames.push_back(Entry.d_un.d_val);
105 break;
106 case DT_SYMTAB:
107 Dyn.DynSymAddr = Entry.d_un.d_ptr;
108 FoundDynSym = true;
109 break;
110 case DT_HASH:
111 Dyn.ElfHash = Entry.d_un.d_ptr;
112 break;
113 case DT_GNU_HASH:
114 Dyn.GnuHash = Entry.d_un.d_ptr;
118 if (!FoundDynStr) {
119 return createError(
120 "Couldn't locate dynamic string table (no DT_STRTAB entry)");
122 if (!FoundDynStrSz) {
123 return createError(
124 "Couldn't determine dynamic string table size (no DT_STRSZ entry)");
126 if (!FoundDynSym) {
127 return createError(
128 "Couldn't locate dynamic symbol table (no DT_SYMTAB entry)");
130 if (Dyn.SONameOffset.hasValue() && *Dyn.SONameOffset >= Dyn.StrSize) {
131 return createStringError(
132 object_error::parse_failed,
133 "DT_SONAME string offset (0x%016" PRIx64
134 ") outside of dynamic string table",
135 *Dyn.SONameOffset);
137 for (uint64_t Offset : Dyn.NeededLibNames) {
138 if (Offset >= Dyn.StrSize) {
139 return createStringError(
140 object_error::parse_failed,
141 "DT_NEEDED string offset (0x%016" PRIx64
142 ") outside of dynamic string table",
143 Offset);
147 return Error::success();
150 /// This function finds the number of dynamic symbols using a GNU hash table.
152 /// @param Table The GNU hash table for .dynsym.
153 template <class ELFT>
154 static uint64_t getDynSymtabSize(const typename ELFT::GnuHash &Table) {
155 using Elf_Word = typename ELFT::Word;
156 if (Table.nbuckets == 0)
157 return Table.symndx + 1;
158 uint64_t LastSymIdx = 0;
159 uint64_t BucketVal = 0;
160 // Find the index of the first symbol in the last chain.
161 for (Elf_Word Val : Table.buckets()) {
162 BucketVal = std::max(BucketVal, (uint64_t)Val);
164 LastSymIdx += BucketVal;
165 const Elf_Word *It =
166 reinterpret_cast<const Elf_Word *>(Table.values(BucketVal).end());
167 // Locate the end of the chain to find the last symbol index.
168 while ((*It & 1) == 0) {
169 LastSymIdx++;
170 It++;
172 return LastSymIdx + 1;
175 /// This function determines the number of dynamic symbols.
176 /// Without access to section headers, the number of symbols must be determined
177 /// by parsing dynamic hash tables.
179 /// @param Dyn Entries with the locations of hash tables.
180 /// @param ElfFile The ElfFile that the section contents reside in.
181 template <class ELFT>
182 static Expected<uint64_t> getNumSyms(DynamicEntries &Dyn,
183 const ELFFile<ELFT> &ElfFile) {
184 using Elf_Hash = typename ELFT::Hash;
185 using Elf_GnuHash = typename ELFT::GnuHash;
186 // Search GNU hash table to try to find the upper bound of dynsym.
187 if (Dyn.GnuHash.hasValue()) {
188 Expected<const uint8_t *> TablePtr = ElfFile.toMappedAddr(*Dyn.GnuHash);
189 if (!TablePtr)
190 return TablePtr.takeError();
191 const Elf_GnuHash *Table =
192 reinterpret_cast<const Elf_GnuHash *>(TablePtr.get());
193 return getDynSymtabSize<ELFT>(*Table);
195 // Search SYSV hash table to try to find the upper bound of dynsym.
196 if (Dyn.ElfHash.hasValue()) {
197 Expected<const uint8_t *> TablePtr = ElfFile.toMappedAddr(*Dyn.ElfHash);
198 if (!TablePtr)
199 return TablePtr.takeError();
200 const Elf_Hash *Table = reinterpret_cast<const Elf_Hash *>(TablePtr.get());
201 return Table->nchain;
203 return 0;
206 /// This function extracts symbol type from a symbol's st_info member and
207 /// maps it to an ELFSymbolType enum.
208 /// Currently, STT_NOTYPE, STT_OBJECT, STT_FUNC, and STT_TLS are supported.
209 /// Other symbol types are mapped to ELFSymbolType::Unknown.
211 /// @param Info Binary symbol st_info to extract symbol type from.
212 static ELFSymbolType convertInfoToType(uint8_t Info) {
213 Info = Info & 0xf;
214 switch (Info) {
215 case ELF::STT_NOTYPE:
216 return ELFSymbolType::NoType;
217 case ELF::STT_OBJECT:
218 return ELFSymbolType::Object;
219 case ELF::STT_FUNC:
220 return ELFSymbolType::Func;
221 case ELF::STT_TLS:
222 return ELFSymbolType::TLS;
223 default:
224 return ELFSymbolType::Unknown;
228 /// This function creates an ELFSymbol and populates all members using
229 /// information from a binary ELFT::Sym.
231 /// @param SymName The desired name of the ELFSymbol.
232 /// @param RawSym ELFT::Sym to extract symbol information from.
233 template <class ELFT>
234 static ELFSymbol createELFSym(StringRef SymName,
235 const typename ELFT::Sym &RawSym) {
236 ELFSymbol TargetSym(SymName);
237 uint8_t Binding = RawSym.getBinding();
238 if (Binding == STB_WEAK)
239 TargetSym.Weak = true;
240 else
241 TargetSym.Weak = false;
243 TargetSym.Undefined = RawSym.isUndefined();
244 TargetSym.Type = convertInfoToType(RawSym.st_info);
246 if (TargetSym.Type == ELFSymbolType::Func) {
247 TargetSym.Size = 0;
248 } else {
249 TargetSym.Size = RawSym.st_size;
251 return TargetSym;
254 /// This function populates an ELFStub with symbols using information read
255 /// from an ELF binary.
257 /// @param TargetStub ELFStub to add symbols to.
258 /// @param DynSym Range of dynamic symbols to add to TargetStub.
259 /// @param DynStr StringRef to the dynamic string table.
260 template <class ELFT>
261 static Error populateSymbols(ELFStub &TargetStub,
262 const typename ELFT::SymRange DynSym,
263 StringRef DynStr) {
264 // Skips the first symbol since it's the NULL symbol.
265 for (auto RawSym : DynSym.drop_front(1)) {
266 // If a symbol does not have global or weak binding, ignore it.
267 uint8_t Binding = RawSym.getBinding();
268 if (!(Binding == STB_GLOBAL || Binding == STB_WEAK))
269 continue;
270 // If a symbol doesn't have default or protected visibility, ignore it.
271 uint8_t Visibility = RawSym.getVisibility();
272 if (!(Visibility == STV_DEFAULT || Visibility == STV_PROTECTED))
273 continue;
274 // Create an ELFSymbol and populate it with information from the symbol
275 // table entry.
276 Expected<StringRef> SymName = terminatedSubstr(DynStr, RawSym.st_name);
277 if (!SymName)
278 return SymName.takeError();
279 ELFSymbol Sym = createELFSym<ELFT>(*SymName, RawSym);
280 TargetStub.Symbols.insert(std::move(Sym));
281 // TODO: Populate symbol warning.
283 return Error::success();
286 /// Returns a new ELFStub with all members populated from an ELFObjectFile.
287 /// @param ElfObj Source ELFObjectFile.
288 template <class ELFT>
289 static Expected<std::unique_ptr<ELFStub>>
290 buildStub(const ELFObjectFile<ELFT> &ElfObj) {
291 using Elf_Dyn_Range = typename ELFT::DynRange;
292 using Elf_Phdr_Range = typename ELFT::PhdrRange;
293 using Elf_Sym_Range = typename ELFT::SymRange;
294 using Elf_Sym = typename ELFT::Sym;
295 std::unique_ptr<ELFStub> DestStub = std::make_unique<ELFStub>();
296 const ELFFile<ELFT> *ElfFile = ElfObj.getELFFile();
297 // Fetch .dynamic table.
298 Expected<Elf_Dyn_Range> DynTable = ElfFile->dynamicEntries();
299 if (!DynTable) {
300 return DynTable.takeError();
303 // Fetch program headers.
304 Expected<Elf_Phdr_Range> PHdrs = ElfFile->program_headers();
305 if (!PHdrs) {
306 return PHdrs.takeError();
309 // Collect relevant .dynamic entries.
310 DynamicEntries DynEnt;
311 if (Error Err = populateDynamic<ELFT>(DynEnt, *DynTable))
312 return std::move(Err);
314 // Get pointer to in-memory location of .dynstr section.
315 Expected<const uint8_t *> DynStrPtr =
316 ElfFile->toMappedAddr(DynEnt.StrTabAddr);
317 if (!DynStrPtr)
318 return appendToError(DynStrPtr.takeError(),
319 "when locating .dynstr section contents");
321 StringRef DynStr(reinterpret_cast<const char *>(DynStrPtr.get()),
322 DynEnt.StrSize);
324 // Populate Arch from ELF header.
325 DestStub->Arch = ElfFile->getHeader()->e_machine;
327 // Populate SoName from .dynamic entries and dynamic string table.
328 if (DynEnt.SONameOffset.hasValue()) {
329 Expected<StringRef> NameOrErr =
330 terminatedSubstr(DynStr, *DynEnt.SONameOffset);
331 if (!NameOrErr) {
332 return appendToError(NameOrErr.takeError(), "when reading DT_SONAME");
334 DestStub->SoName = *NameOrErr;
337 // Populate NeededLibs from .dynamic entries and dynamic string table.
338 for (uint64_t NeededStrOffset : DynEnt.NeededLibNames) {
339 Expected<StringRef> LibNameOrErr =
340 terminatedSubstr(DynStr, NeededStrOffset);
341 if (!LibNameOrErr) {
342 return appendToError(LibNameOrErr.takeError(), "when reading DT_NEEDED");
344 DestStub->NeededLibs.push_back(*LibNameOrErr);
347 // Populate Symbols from .dynsym table and dynamic string table.
348 Expected<uint64_t> SymCount = getNumSyms(DynEnt, *ElfFile);
349 if (!SymCount)
350 return SymCount.takeError();
351 if (*SymCount > 0) {
352 // Get pointer to in-memory location of .dynsym section.
353 Expected<const uint8_t *> DynSymPtr =
354 ElfFile->toMappedAddr(DynEnt.DynSymAddr);
355 if (!DynSymPtr)
356 return appendToError(DynSymPtr.takeError(),
357 "when locating .dynsym section contents");
358 Elf_Sym_Range DynSyms =
359 ArrayRef<Elf_Sym>(reinterpret_cast<const Elf_Sym *>(*DynSymPtr),
360 *SymCount);
361 Error SymReadError = populateSymbols<ELFT>(*DestStub, DynSyms, DynStr);
362 if (SymReadError)
363 return appendToError(std::move(SymReadError),
364 "when reading dynamic symbols");
367 return std::move(DestStub);
370 Expected<std::unique_ptr<ELFStub>> readELFFile(MemoryBufferRef Buf) {
371 Expected<std::unique_ptr<Binary>> BinOrErr = createBinary(Buf);
372 if (!BinOrErr) {
373 return BinOrErr.takeError();
376 Binary *Bin = BinOrErr->get();
377 if (auto Obj = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
378 return buildStub(*Obj);
379 } else if (auto Obj = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
380 return buildStub(*Obj);
381 } else if (auto Obj = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
382 return buildStub(*Obj);
383 } else if (auto Obj = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
384 return buildStub(*Obj);
387 return createStringError(errc::not_supported, "Unsupported binary format");
390 } // end namespace elfabi
391 } // end namespace llvm