[llvm] [cmake] Add possibility to use ChooseMSVCCRT.cmake when include LLVM library
[llvm-core.git] / tools / llvm-exegesis / lib / X86 / Target.cpp
blobcebcb1c1aea411e737cb1179396bd68dbf52240f
1 //===-- Target.cpp ----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "../Target.h"
10 #include "../Latency.h"
11 #include "../SnippetGenerator.h"
12 #include "../Uops.h"
13 #include "MCTargetDesc/X86BaseInfo.h"
14 #include "MCTargetDesc/X86MCTargetDesc.h"
15 #include "X86.h"
16 #include "X86RegisterInfo.h"
17 #include "X86Subtarget.h"
18 #include "llvm/MC/MCInstBuilder.h"
20 namespace llvm {
21 namespace exegesis {
23 // Returns an error if we cannot handle the memory references in this
24 // instruction.
25 static Error isInvalidMemoryInstr(const Instruction &Instr) {
26 switch (Instr.Description->TSFlags & X86II::FormMask) {
27 default:
28 llvm_unreachable("Unknown FormMask value");
29 // These have no memory access.
30 case X86II::Pseudo:
31 case X86II::RawFrm:
32 case X86II::AddCCFrm:
33 case X86II::MRMDestReg:
34 case X86II::MRMSrcReg:
35 case X86II::MRMSrcReg4VOp3:
36 case X86II::MRMSrcRegOp4:
37 case X86II::MRMSrcRegCC:
38 case X86II::MRMXrCC:
39 case X86II::MRMXr:
40 case X86II::MRM0r:
41 case X86II::MRM1r:
42 case X86II::MRM2r:
43 case X86II::MRM3r:
44 case X86II::MRM4r:
45 case X86II::MRM5r:
46 case X86II::MRM6r:
47 case X86II::MRM7r:
48 case X86II::MRM_C0:
49 case X86II::MRM_C1:
50 case X86II::MRM_C2:
51 case X86II::MRM_C3:
52 case X86II::MRM_C4:
53 case X86II::MRM_C5:
54 case X86II::MRM_C6:
55 case X86II::MRM_C7:
56 case X86II::MRM_C8:
57 case X86II::MRM_C9:
58 case X86II::MRM_CA:
59 case X86II::MRM_CB:
60 case X86II::MRM_CC:
61 case X86II::MRM_CD:
62 case X86II::MRM_CE:
63 case X86II::MRM_CF:
64 case X86II::MRM_D0:
65 case X86II::MRM_D1:
66 case X86II::MRM_D2:
67 case X86II::MRM_D3:
68 case X86II::MRM_D4:
69 case X86II::MRM_D5:
70 case X86II::MRM_D6:
71 case X86II::MRM_D7:
72 case X86II::MRM_D8:
73 case X86II::MRM_D9:
74 case X86II::MRM_DA:
75 case X86II::MRM_DB:
76 case X86II::MRM_DC:
77 case X86II::MRM_DD:
78 case X86II::MRM_DE:
79 case X86II::MRM_DF:
80 case X86II::MRM_E0:
81 case X86II::MRM_E1:
82 case X86II::MRM_E2:
83 case X86II::MRM_E3:
84 case X86II::MRM_E4:
85 case X86II::MRM_E5:
86 case X86II::MRM_E6:
87 case X86II::MRM_E7:
88 case X86II::MRM_E8:
89 case X86II::MRM_E9:
90 case X86II::MRM_EA:
91 case X86II::MRM_EB:
92 case X86II::MRM_EC:
93 case X86II::MRM_ED:
94 case X86II::MRM_EE:
95 case X86II::MRM_EF:
96 case X86II::MRM_F0:
97 case X86II::MRM_F1:
98 case X86II::MRM_F2:
99 case X86II::MRM_F3:
100 case X86II::MRM_F4:
101 case X86II::MRM_F5:
102 case X86II::MRM_F6:
103 case X86II::MRM_F7:
104 case X86II::MRM_F8:
105 case X86II::MRM_F9:
106 case X86II::MRM_FA:
107 case X86II::MRM_FB:
108 case X86II::MRM_FC:
109 case X86II::MRM_FD:
110 case X86II::MRM_FE:
111 case X86II::MRM_FF:
112 case X86II::RawFrmImm8:
113 return Error::success();
114 case X86II::AddRegFrm:
115 return (Instr.Description->Opcode == X86::POP16r || Instr.Description->Opcode == X86::POP32r ||
116 Instr.Description->Opcode == X86::PUSH16r || Instr.Description->Opcode == X86::PUSH32r)
117 ? make_error<BenchmarkFailure>(
118 "unsupported opcode: unsupported memory access")
119 : Error::success();
120 // These access memory and are handled.
121 case X86II::MRMDestMem:
122 case X86II::MRMSrcMem:
123 case X86II::MRMSrcMem4VOp3:
124 case X86II::MRMSrcMemOp4:
125 case X86II::MRMSrcMemCC:
126 case X86II::MRMXmCC:
127 case X86II::MRMXm:
128 case X86II::MRM0m:
129 case X86II::MRM1m:
130 case X86II::MRM2m:
131 case X86II::MRM3m:
132 case X86II::MRM4m:
133 case X86II::MRM5m:
134 case X86II::MRM6m:
135 case X86II::MRM7m:
136 return Error::success();
137 // These access memory and are not handled yet.
138 case X86II::RawFrmImm16:
139 case X86II::RawFrmMemOffs:
140 case X86II::RawFrmSrc:
141 case X86II::RawFrmDst:
142 case X86II::RawFrmDstSrc:
143 return make_error<BenchmarkFailure>(
144 "unsupported opcode: non uniform memory access");
148 static llvm::Error IsInvalidOpcode(const Instruction &Instr) {
149 const auto OpcodeName = Instr.Name;
150 if ((Instr.Description->TSFlags & X86II::FormMask) == X86II::Pseudo)
151 return llvm::make_error<BenchmarkFailure>(
152 "unsupported opcode: pseudo instruction");
153 if (OpcodeName.startswith("POPF") || OpcodeName.startswith("PUSHF") ||
154 OpcodeName.startswith("ADJCALLSTACK"))
155 return llvm::make_error<BenchmarkFailure>(
156 "unsupported opcode: Push/Pop/AdjCallStack");
157 if (llvm::Error Error = isInvalidMemoryInstr(Instr))
158 return Error;
159 // We do not handle instructions with OPERAND_PCREL.
160 for (const Operand &Op : Instr.Operands)
161 if (Op.isExplicit() &&
162 Op.getExplicitOperandInfo().OperandType == llvm::MCOI::OPERAND_PCREL)
163 return llvm::make_error<BenchmarkFailure>(
164 "unsupported opcode: PC relative operand");
165 // We do not handle second-form X87 instructions. We only handle first-form
166 // ones (_Fp), see comment in X86InstrFPStack.td.
167 for (const Operand &Op : Instr.Operands)
168 if (Op.isReg() && Op.isExplicit() &&
169 Op.getExplicitOperandInfo().RegClass == llvm::X86::RSTRegClassID)
170 return llvm::make_error<BenchmarkFailure>(
171 "unsupported second-form X87 instruction");
172 return llvm::Error::success();
175 static unsigned getX86FPFlags(const Instruction &Instr) {
176 return Instr.Description->TSFlags & llvm::X86II::FPTypeMask;
179 namespace {
180 class X86LatencySnippetGenerator : public LatencySnippetGenerator {
181 public:
182 using LatencySnippetGenerator::LatencySnippetGenerator;
184 llvm::Expected<std::vector<CodeTemplate>>
185 generateCodeTemplates(const Instruction &Instr) const override;
187 } // namespace
189 llvm::Expected<std::vector<CodeTemplate>>
190 X86LatencySnippetGenerator::generateCodeTemplates(
191 const Instruction &Instr) const {
192 if (auto E = IsInvalidOpcode(Instr))
193 return std::move(E);
195 switch (getX86FPFlags(Instr)) {
196 case llvm::X86II::NotFP:
197 return LatencySnippetGenerator::generateCodeTemplates(Instr);
198 case llvm::X86II::ZeroArgFP:
199 case llvm::X86II::OneArgFP:
200 case llvm::X86II::SpecialFP:
201 case llvm::X86II::CompareFP:
202 case llvm::X86II::CondMovFP:
203 return llvm::make_error<BenchmarkFailure>("Unsupported x87 Instruction");
204 case llvm::X86II::OneArgFPRW:
205 case llvm::X86II::TwoArgFP:
206 // These are instructions like
207 // - `ST(0) = fsqrt(ST(0))` (OneArgFPRW)
208 // - `ST(0) = ST(0) + ST(i)` (TwoArgFP)
209 // They are intrinsically serial and do not modify the state of the stack.
210 return generateSelfAliasingCodeTemplates(Instr);
211 default:
212 llvm_unreachable("Unknown FP Type!");
216 namespace {
217 class X86UopsSnippetGenerator : public UopsSnippetGenerator {
218 public:
219 using UopsSnippetGenerator::UopsSnippetGenerator;
221 llvm::Expected<std::vector<CodeTemplate>>
222 generateCodeTemplates(const Instruction &Instr) const override;
224 } // namespace
226 llvm::Expected<std::vector<CodeTemplate>>
227 X86UopsSnippetGenerator::generateCodeTemplates(
228 const Instruction &Instr) const {
229 if (auto E = IsInvalidOpcode(Instr))
230 return std::move(E);
232 switch (getX86FPFlags(Instr)) {
233 case llvm::X86II::NotFP:
234 return UopsSnippetGenerator::generateCodeTemplates(Instr);
235 case llvm::X86II::ZeroArgFP:
236 case llvm::X86II::OneArgFP:
237 case llvm::X86II::SpecialFP:
238 return llvm::make_error<BenchmarkFailure>("Unsupported x87 Instruction");
239 case llvm::X86II::OneArgFPRW:
240 case llvm::X86II::TwoArgFP:
241 // These are instructions like
242 // - `ST(0) = fsqrt(ST(0))` (OneArgFPRW)
243 // - `ST(0) = ST(0) + ST(i)` (TwoArgFP)
244 // They are intrinsically serial and do not modify the state of the stack.
245 // We generate the same code for latency and uops.
246 return generateSelfAliasingCodeTemplates(Instr);
247 case llvm::X86II::CompareFP:
248 case llvm::X86II::CondMovFP:
249 // We can compute uops for any FP instruction that does not grow or shrink
250 // the stack (either do not touch the stack or push as much as they pop).
251 return generateUnconstrainedCodeTemplates(
252 Instr, "instruction does not grow/shrink the FP stack");
253 default:
254 llvm_unreachable("Unknown FP Type!");
258 static unsigned getLoadImmediateOpcode(unsigned RegBitWidth) {
259 switch (RegBitWidth) {
260 case 8:
261 return llvm::X86::MOV8ri;
262 case 16:
263 return llvm::X86::MOV16ri;
264 case 32:
265 return llvm::X86::MOV32ri;
266 case 64:
267 return llvm::X86::MOV64ri;
269 llvm_unreachable("Invalid Value Width");
272 // Generates instruction to load an immediate value into a register.
273 static llvm::MCInst loadImmediate(unsigned Reg, unsigned RegBitWidth,
274 const llvm::APInt &Value) {
275 if (Value.getBitWidth() > RegBitWidth)
276 llvm_unreachable("Value must fit in the Register");
277 return llvm::MCInstBuilder(getLoadImmediateOpcode(RegBitWidth))
278 .addReg(Reg)
279 .addImm(Value.getZExtValue());
282 // Allocates scratch memory on the stack.
283 static llvm::MCInst allocateStackSpace(unsigned Bytes) {
284 return llvm::MCInstBuilder(llvm::X86::SUB64ri8)
285 .addReg(llvm::X86::RSP)
286 .addReg(llvm::X86::RSP)
287 .addImm(Bytes);
290 // Fills scratch memory at offset `OffsetBytes` with value `Imm`.
291 static llvm::MCInst fillStackSpace(unsigned MovOpcode, unsigned OffsetBytes,
292 uint64_t Imm) {
293 return llvm::MCInstBuilder(MovOpcode)
294 // Address = ESP
295 .addReg(llvm::X86::RSP) // BaseReg
296 .addImm(1) // ScaleAmt
297 .addReg(0) // IndexReg
298 .addImm(OffsetBytes) // Disp
299 .addReg(0) // Segment
300 // Immediate.
301 .addImm(Imm);
304 // Loads scratch memory into register `Reg` using opcode `RMOpcode`.
305 static llvm::MCInst loadToReg(unsigned Reg, unsigned RMOpcode) {
306 return llvm::MCInstBuilder(RMOpcode)
307 .addReg(Reg)
308 // Address = ESP
309 .addReg(llvm::X86::RSP) // BaseReg
310 .addImm(1) // ScaleAmt
311 .addReg(0) // IndexReg
312 .addImm(0) // Disp
313 .addReg(0); // Segment
316 // Releases scratch memory.
317 static llvm::MCInst releaseStackSpace(unsigned Bytes) {
318 return llvm::MCInstBuilder(llvm::X86::ADD64ri8)
319 .addReg(llvm::X86::RSP)
320 .addReg(llvm::X86::RSP)
321 .addImm(Bytes);
324 // Reserves some space on the stack, fills it with the content of the provided
325 // constant and provide methods to load the stack value into a register.
326 namespace {
327 struct ConstantInliner {
328 explicit ConstantInliner(const llvm::APInt &Constant) : Constant_(Constant) {}
330 std::vector<llvm::MCInst> loadAndFinalize(unsigned Reg, unsigned RegBitWidth,
331 unsigned Opcode);
333 std::vector<llvm::MCInst> loadX87STAndFinalize(unsigned Reg);
335 std::vector<llvm::MCInst> loadX87FPAndFinalize(unsigned Reg);
337 std::vector<llvm::MCInst> popFlagAndFinalize();
339 private:
340 ConstantInliner &add(const llvm::MCInst &Inst) {
341 Instructions.push_back(Inst);
342 return *this;
345 void initStack(unsigned Bytes);
347 static constexpr const unsigned kF80Bytes = 10; // 80 bits.
349 llvm::APInt Constant_;
350 std::vector<llvm::MCInst> Instructions;
352 } // namespace
354 std::vector<llvm::MCInst> ConstantInliner::loadAndFinalize(unsigned Reg,
355 unsigned RegBitWidth,
356 unsigned Opcode) {
357 assert((RegBitWidth & 7) == 0 && "RegBitWidth must be a multiple of 8 bits");
358 initStack(RegBitWidth / 8);
359 add(loadToReg(Reg, Opcode));
360 add(releaseStackSpace(RegBitWidth / 8));
361 return std::move(Instructions);
364 std::vector<llvm::MCInst> ConstantInliner::loadX87STAndFinalize(unsigned Reg) {
365 initStack(kF80Bytes);
366 add(llvm::MCInstBuilder(llvm::X86::LD_F80m)
367 // Address = ESP
368 .addReg(llvm::X86::RSP) // BaseReg
369 .addImm(1) // ScaleAmt
370 .addReg(0) // IndexReg
371 .addImm(0) // Disp
372 .addReg(0)); // Segment
373 if (Reg != llvm::X86::ST0)
374 add(llvm::MCInstBuilder(llvm::X86::ST_Frr).addReg(Reg));
375 add(releaseStackSpace(kF80Bytes));
376 return std::move(Instructions);
379 std::vector<llvm::MCInst> ConstantInliner::loadX87FPAndFinalize(unsigned Reg) {
380 initStack(kF80Bytes);
381 add(llvm::MCInstBuilder(llvm::X86::LD_Fp80m)
382 .addReg(Reg)
383 // Address = ESP
384 .addReg(llvm::X86::RSP) // BaseReg
385 .addImm(1) // ScaleAmt
386 .addReg(0) // IndexReg
387 .addImm(0) // Disp
388 .addReg(0)); // Segment
389 add(releaseStackSpace(kF80Bytes));
390 return std::move(Instructions);
393 std::vector<llvm::MCInst> ConstantInliner::popFlagAndFinalize() {
394 initStack(8);
395 add(llvm::MCInstBuilder(llvm::X86::POPF64));
396 return std::move(Instructions);
399 void ConstantInliner::initStack(unsigned Bytes) {
400 assert(Constant_.getBitWidth() <= Bytes * 8 &&
401 "Value does not have the correct size");
402 const llvm::APInt WideConstant = Constant_.getBitWidth() < Bytes * 8
403 ? Constant_.sext(Bytes * 8)
404 : Constant_;
405 add(allocateStackSpace(Bytes));
406 size_t ByteOffset = 0;
407 for (; Bytes - ByteOffset >= 4; ByteOffset += 4)
408 add(fillStackSpace(
409 llvm::X86::MOV32mi, ByteOffset,
410 WideConstant.extractBits(32, ByteOffset * 8).getZExtValue()));
411 if (Bytes - ByteOffset >= 2) {
412 add(fillStackSpace(
413 llvm::X86::MOV16mi, ByteOffset,
414 WideConstant.extractBits(16, ByteOffset * 8).getZExtValue()));
415 ByteOffset += 2;
417 if (Bytes - ByteOffset >= 1)
418 add(fillStackSpace(
419 llvm::X86::MOV8mi, ByteOffset,
420 WideConstant.extractBits(8, ByteOffset * 8).getZExtValue()));
423 #include "X86GenExegesis.inc"
425 namespace {
426 class ExegesisX86Target : public ExegesisTarget {
427 public:
428 ExegesisX86Target() : ExegesisTarget(X86CpuPfmCounters) {}
430 private:
431 void addTargetSpecificPasses(llvm::PassManagerBase &PM) const override;
433 unsigned getScratchMemoryRegister(const llvm::Triple &TT) const override;
435 unsigned getMaxMemoryAccessSize() const override { return 64; }
437 void randomizeMCOperand(const Instruction &Instr, const Variable &Var,
438 llvm::MCOperand &AssignedValue,
439 const llvm::BitVector &ForbiddenRegs) const override;
441 void fillMemoryOperands(InstructionTemplate &IT, unsigned Reg,
442 unsigned Offset) const override;
444 std::vector<llvm::MCInst> setRegTo(const llvm::MCSubtargetInfo &STI,
445 unsigned Reg,
446 const llvm::APInt &Value) const override;
448 ArrayRef<unsigned> getUnavailableRegisters() const override {
449 return makeArrayRef(kUnavailableRegisters,
450 sizeof(kUnavailableRegisters) /
451 sizeof(kUnavailableRegisters[0]));
454 std::unique_ptr<SnippetGenerator>
455 createLatencySnippetGenerator(const LLVMState &State) const override {
456 return std::make_unique<X86LatencySnippetGenerator>(State);
459 std::unique_ptr<SnippetGenerator>
460 createUopsSnippetGenerator(const LLVMState &State) const override {
461 return std::make_unique<X86UopsSnippetGenerator>(State);
464 bool matchesArch(llvm::Triple::ArchType Arch) const override {
465 return Arch == llvm::Triple::x86_64 || Arch == llvm::Triple::x86;
468 static const unsigned kUnavailableRegisters[4];
471 // We disable a few registers that cannot be encoded on instructions with a REX
472 // prefix.
473 const unsigned ExegesisX86Target::kUnavailableRegisters[4] = {X86::AH, X86::BH,
474 X86::CH, X86::DH};
475 } // namespace
477 void ExegesisX86Target::addTargetSpecificPasses(
478 llvm::PassManagerBase &PM) const {
479 // Lowers FP pseudo-instructions, e.g. ABS_Fp32 -> ABS_F.
480 PM.add(llvm::createX86FloatingPointStackifierPass());
483 unsigned
484 ExegesisX86Target::getScratchMemoryRegister(const llvm::Triple &TT) const {
485 if (!TT.isArch64Bit()) {
486 // FIXME: This would require popping from the stack, so we would have to
487 // add some additional setup code.
488 return 0;
490 return TT.isOSWindows() ? llvm::X86::RCX : llvm::X86::RDI;
493 void ExegesisX86Target::randomizeMCOperand(
494 const Instruction &Instr, const Variable &Var,
495 llvm::MCOperand &AssignedValue,
496 const llvm::BitVector &ForbiddenRegs) const {
497 ExegesisTarget::randomizeMCOperand(Instr, Var, AssignedValue, ForbiddenRegs);
499 const Operand &Op = Instr.getPrimaryOperand(Var);
500 switch (Op.getExplicitOperandInfo().OperandType) {
501 case llvm::X86::OperandType::OPERAND_COND_CODE:
502 AssignedValue = llvm::MCOperand::createImm(
503 randomIndex(llvm::X86::CondCode::LAST_VALID_COND));
504 break;
505 default:
506 break;
510 void ExegesisX86Target::fillMemoryOperands(InstructionTemplate &IT,
511 unsigned Reg,
512 unsigned Offset) const {
513 assert(!isInvalidMemoryInstr(IT.Instr) &&
514 "fillMemoryOperands requires a valid memory instruction");
515 int MemOpIdx = X86II::getMemoryOperandNo(IT.Instr.Description->TSFlags);
516 assert(MemOpIdx >= 0 && "invalid memory operand index");
517 // getMemoryOperandNo() ignores tied operands, so we have to add them back.
518 for (unsigned I = 0; I <= static_cast<unsigned>(MemOpIdx); ++I) {
519 const auto &Op = IT.Instr.Operands[I];
520 if (Op.isTied() && Op.getTiedToIndex() < I) {
521 ++MemOpIdx;
524 // Now fill in the memory operands.
525 const auto SetOp = [&IT](int OpIdx, const MCOperand &OpVal) {
526 const auto Op = IT.Instr.Operands[OpIdx];
527 assert(Op.isMemory() && Op.isExplicit() && "invalid memory pattern");
528 IT.getValueFor(Op) = OpVal;
530 SetOp(MemOpIdx + 0, MCOperand::createReg(Reg)); // BaseReg
531 SetOp(MemOpIdx + 1, MCOperand::createImm(1)); // ScaleAmt
532 SetOp(MemOpIdx + 2, MCOperand::createReg(0)); // IndexReg
533 SetOp(MemOpIdx + 3, MCOperand::createImm(Offset)); // Disp
534 SetOp(MemOpIdx + 4, MCOperand::createReg(0)); // Segment
537 std::vector<llvm::MCInst>
538 ExegesisX86Target::setRegTo(const llvm::MCSubtargetInfo &STI, unsigned Reg,
539 const llvm::APInt &Value) const {
540 if (llvm::X86::GR8RegClass.contains(Reg))
541 return {loadImmediate(Reg, 8, Value)};
542 if (llvm::X86::GR16RegClass.contains(Reg))
543 return {loadImmediate(Reg, 16, Value)};
544 if (llvm::X86::GR32RegClass.contains(Reg))
545 return {loadImmediate(Reg, 32, Value)};
546 if (llvm::X86::GR64RegClass.contains(Reg))
547 return {loadImmediate(Reg, 64, Value)};
548 ConstantInliner CI(Value);
549 if (llvm::X86::VR64RegClass.contains(Reg))
550 return CI.loadAndFinalize(Reg, 64, llvm::X86::MMX_MOVQ64rm);
551 if (llvm::X86::VR128XRegClass.contains(Reg)) {
552 if (STI.getFeatureBits()[llvm::X86::FeatureAVX512])
553 return CI.loadAndFinalize(Reg, 128, llvm::X86::VMOVDQU32Z128rm);
554 if (STI.getFeatureBits()[llvm::X86::FeatureAVX])
555 return CI.loadAndFinalize(Reg, 128, llvm::X86::VMOVDQUrm);
556 return CI.loadAndFinalize(Reg, 128, llvm::X86::MOVDQUrm);
558 if (llvm::X86::VR256XRegClass.contains(Reg)) {
559 if (STI.getFeatureBits()[llvm::X86::FeatureAVX512])
560 return CI.loadAndFinalize(Reg, 256, llvm::X86::VMOVDQU32Z256rm);
561 if (STI.getFeatureBits()[llvm::X86::FeatureAVX])
562 return CI.loadAndFinalize(Reg, 256, llvm::X86::VMOVDQUYrm);
564 if (llvm::X86::VR512RegClass.contains(Reg))
565 if (STI.getFeatureBits()[llvm::X86::FeatureAVX512])
566 return CI.loadAndFinalize(Reg, 512, llvm::X86::VMOVDQU32Zrm);
567 if (llvm::X86::RSTRegClass.contains(Reg)) {
568 return CI.loadX87STAndFinalize(Reg);
570 if (llvm::X86::RFP32RegClass.contains(Reg) ||
571 llvm::X86::RFP64RegClass.contains(Reg) ||
572 llvm::X86::RFP80RegClass.contains(Reg)) {
573 return CI.loadX87FPAndFinalize(Reg);
575 if (Reg == llvm::X86::EFLAGS)
576 return CI.popFlagAndFinalize();
577 return {}; // Not yet implemented.
580 static ExegesisTarget *getTheExegesisX86Target() {
581 static ExegesisX86Target Target;
582 return &Target;
585 void InitializeX86ExegesisTarget() {
586 ExegesisTarget::registerTarget(getTheExegesisX86Target());
589 } // namespace exegesis
590 } // namespace llvm