[llvm] [cmake] Add possibility to use ChooseMSVCCRT.cmake when include LLVM library
[llvm-core.git] / utils / TableGen / CodeGenDAGPatterns.cpp
blob46f986ca0176b792adf8871774e4a883a800608f
1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
12 //===----------------------------------------------------------------------===//
14 #include "CodeGenDAGPatterns.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/TableGen/Error.h"
27 #include "llvm/TableGen/Record.h"
28 #include <algorithm>
29 #include <cstdio>
30 #include <iterator>
31 #include <set>
32 using namespace llvm;
34 #define DEBUG_TYPE "dag-patterns"
36 static inline bool isIntegerOrPtr(MVT VT) {
37 return VT.isInteger() || VT == MVT::iPTR;
39 static inline bool isFloatingPoint(MVT VT) {
40 return VT.isFloatingPoint();
42 static inline bool isVector(MVT VT) {
43 return VT.isVector();
45 static inline bool isScalar(MVT VT) {
46 return !VT.isVector();
49 template <typename Predicate>
50 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
51 bool Erased = false;
52 // It is ok to iterate over MachineValueTypeSet and remove elements from it
53 // at the same time.
54 for (MVT T : S) {
55 if (!P(T))
56 continue;
57 Erased = true;
58 S.erase(T);
60 return Erased;
63 // --- TypeSetByHwMode
65 // This is a parameterized type-set class. For each mode there is a list
66 // of types that are currently possible for a given tree node. Type
67 // inference will apply to each mode separately.
69 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
70 for (const ValueTypeByHwMode &VVT : VTList) {
71 insert(VVT);
72 AddrSpaces.push_back(VVT.PtrAddrSpace);
76 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
77 for (const auto &I : *this) {
78 if (I.second.size() > 1)
79 return false;
80 if (!AllowEmpty && I.second.empty())
81 return false;
83 return true;
86 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
87 assert(isValueTypeByHwMode(true) &&
88 "The type set has multiple types for at least one HW mode");
89 ValueTypeByHwMode VVT;
90 auto ASI = AddrSpaces.begin();
92 for (const auto &I : *this) {
93 MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
94 VVT.getOrCreateTypeForMode(I.first, T);
95 if (ASI != AddrSpaces.end())
96 VVT.PtrAddrSpace = *ASI++;
98 return VVT;
101 bool TypeSetByHwMode::isPossible() const {
102 for (const auto &I : *this)
103 if (!I.second.empty())
104 return true;
105 return false;
108 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
109 bool Changed = false;
110 bool ContainsDefault = false;
111 MVT DT = MVT::Other;
113 SmallDenseSet<unsigned, 4> Modes;
114 for (const auto &P : VVT) {
115 unsigned M = P.first;
116 Modes.insert(M);
117 // Make sure there exists a set for each specific mode from VVT.
118 Changed |= getOrCreate(M).insert(P.second).second;
119 // Cache VVT's default mode.
120 if (DefaultMode == M) {
121 ContainsDefault = true;
122 DT = P.second;
126 // If VVT has a default mode, add the corresponding type to all
127 // modes in "this" that do not exist in VVT.
128 if (ContainsDefault)
129 for (auto &I : *this)
130 if (!Modes.count(I.first))
131 Changed |= I.second.insert(DT).second;
133 return Changed;
136 // Constrain the type set to be the intersection with VTS.
137 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
138 bool Changed = false;
139 if (hasDefault()) {
140 for (const auto &I : VTS) {
141 unsigned M = I.first;
142 if (M == DefaultMode || hasMode(M))
143 continue;
144 Map.insert({M, Map.at(DefaultMode)});
145 Changed = true;
149 for (auto &I : *this) {
150 unsigned M = I.first;
151 SetType &S = I.second;
152 if (VTS.hasMode(M) || VTS.hasDefault()) {
153 Changed |= intersect(I.second, VTS.get(M));
154 } else if (!S.empty()) {
155 S.clear();
156 Changed = true;
159 return Changed;
162 template <typename Predicate>
163 bool TypeSetByHwMode::constrain(Predicate P) {
164 bool Changed = false;
165 for (auto &I : *this)
166 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
167 return Changed;
170 template <typename Predicate>
171 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
172 assert(empty());
173 for (const auto &I : VTS) {
174 SetType &S = getOrCreate(I.first);
175 for (auto J : I.second)
176 if (P(J))
177 S.insert(J);
179 return !empty();
182 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
183 SmallVector<unsigned, 4> Modes;
184 Modes.reserve(Map.size());
186 for (const auto &I : *this)
187 Modes.push_back(I.first);
188 if (Modes.empty()) {
189 OS << "{}";
190 return;
192 array_pod_sort(Modes.begin(), Modes.end());
194 OS << '{';
195 for (unsigned M : Modes) {
196 OS << ' ' << getModeName(M) << ':';
197 writeToStream(get(M), OS);
199 OS << " }";
202 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
203 SmallVector<MVT, 4> Types(S.begin(), S.end());
204 array_pod_sort(Types.begin(), Types.end());
206 OS << '[';
207 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
208 OS << ValueTypeByHwMode::getMVTName(Types[i]);
209 if (i != e-1)
210 OS << ' ';
212 OS << ']';
215 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
216 // The isSimple call is much quicker than hasDefault - check this first.
217 bool IsSimple = isSimple();
218 bool VTSIsSimple = VTS.isSimple();
219 if (IsSimple && VTSIsSimple)
220 return *begin() == *VTS.begin();
222 // Speedup: We have a default if the set is simple.
223 bool HaveDefault = IsSimple || hasDefault();
224 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
225 if (HaveDefault != VTSHaveDefault)
226 return false;
228 SmallDenseSet<unsigned, 4> Modes;
229 for (auto &I : *this)
230 Modes.insert(I.first);
231 for (const auto &I : VTS)
232 Modes.insert(I.first);
234 if (HaveDefault) {
235 // Both sets have default mode.
236 for (unsigned M : Modes) {
237 if (get(M) != VTS.get(M))
238 return false;
240 } else {
241 // Neither set has default mode.
242 for (unsigned M : Modes) {
243 // If there is no default mode, an empty set is equivalent to not having
244 // the corresponding mode.
245 bool NoModeThis = !hasMode(M) || get(M).empty();
246 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
247 if (NoModeThis != NoModeVTS)
248 return false;
249 if (!NoModeThis)
250 if (get(M) != VTS.get(M))
251 return false;
255 return true;
258 namespace llvm {
259 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
260 T.writeToStream(OS);
261 return OS;
265 LLVM_DUMP_METHOD
266 void TypeSetByHwMode::dump() const {
267 dbgs() << *this << '\n';
270 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
271 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
272 auto Int = [&In](MVT T) -> bool { return !In.count(T); };
274 if (OutP == InP)
275 return berase_if(Out, Int);
277 // Compute the intersection of scalars separately to account for only
278 // one set containing iPTR.
279 // The itersection of iPTR with a set of integer scalar types that does not
280 // include iPTR will result in the most specific scalar type:
281 // - iPTR is more specific than any set with two elements or more
282 // - iPTR is less specific than any single integer scalar type.
283 // For example
284 // { iPTR } * { i32 } -> { i32 }
285 // { iPTR } * { i32 i64 } -> { iPTR }
286 // and
287 // { iPTR i32 } * { i32 } -> { i32 }
288 // { iPTR i32 } * { i32 i64 } -> { i32 i64 }
289 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
291 // Compute the difference between the two sets in such a way that the
292 // iPTR is in the set that is being subtracted. This is to see if there
293 // are any extra scalars in the set without iPTR that are not in the
294 // set containing iPTR. Then the iPTR could be considered a "wildcard"
295 // matching these scalars. If there is only one such scalar, it would
296 // replace the iPTR, if there are more, the iPTR would be retained.
297 SetType Diff;
298 if (InP) {
299 Diff = Out;
300 berase_if(Diff, [&In](MVT T) { return In.count(T); });
301 // Pre-remove these elements and rely only on InP/OutP to determine
302 // whether a change has been made.
303 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
304 } else {
305 Diff = In;
306 berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
307 Out.erase(MVT::iPTR);
310 // The actual intersection.
311 bool Changed = berase_if(Out, Int);
312 unsigned NumD = Diff.size();
313 if (NumD == 0)
314 return Changed;
316 if (NumD == 1) {
317 Out.insert(*Diff.begin());
318 // This is a change only if Out was the one with iPTR (which is now
319 // being replaced).
320 Changed |= OutP;
321 } else {
322 // Multiple elements from Out are now replaced with iPTR.
323 Out.insert(MVT::iPTR);
324 Changed |= !OutP;
326 return Changed;
329 bool TypeSetByHwMode::validate() const {
330 #ifndef NDEBUG
331 if (empty())
332 return true;
333 bool AllEmpty = true;
334 for (const auto &I : *this)
335 AllEmpty &= I.second.empty();
336 return !AllEmpty;
337 #endif
338 return true;
341 // --- TypeInfer
343 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
344 const TypeSetByHwMode &In) {
345 ValidateOnExit _1(Out, *this);
346 In.validate();
347 if (In.empty() || Out == In || TP.hasError())
348 return false;
349 if (Out.empty()) {
350 Out = In;
351 return true;
354 bool Changed = Out.constrain(In);
355 if (Changed && Out.empty())
356 TP.error("Type contradiction");
358 return Changed;
361 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
362 ValidateOnExit _1(Out, *this);
363 if (TP.hasError())
364 return false;
365 assert(!Out.empty() && "cannot pick from an empty set");
367 bool Changed = false;
368 for (auto &I : Out) {
369 TypeSetByHwMode::SetType &S = I.second;
370 if (S.size() <= 1)
371 continue;
372 MVT T = *S.begin(); // Pick the first element.
373 S.clear();
374 S.insert(T);
375 Changed = true;
377 return Changed;
380 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
381 ValidateOnExit _1(Out, *this);
382 if (TP.hasError())
383 return false;
384 if (!Out.empty())
385 return Out.constrain(isIntegerOrPtr);
387 return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
390 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
391 ValidateOnExit _1(Out, *this);
392 if (TP.hasError())
393 return false;
394 if (!Out.empty())
395 return Out.constrain(isFloatingPoint);
397 return Out.assign_if(getLegalTypes(), isFloatingPoint);
400 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
401 ValidateOnExit _1(Out, *this);
402 if (TP.hasError())
403 return false;
404 if (!Out.empty())
405 return Out.constrain(isScalar);
407 return Out.assign_if(getLegalTypes(), isScalar);
410 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
411 ValidateOnExit _1(Out, *this);
412 if (TP.hasError())
413 return false;
414 if (!Out.empty())
415 return Out.constrain(isVector);
417 return Out.assign_if(getLegalTypes(), isVector);
420 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
421 ValidateOnExit _1(Out, *this);
422 if (TP.hasError() || !Out.empty())
423 return false;
425 Out = getLegalTypes();
426 return true;
429 template <typename Iter, typename Pred, typename Less>
430 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
431 if (B == E)
432 return E;
433 Iter Min = E;
434 for (Iter I = B; I != E; ++I) {
435 if (!P(*I))
436 continue;
437 if (Min == E || L(*I, *Min))
438 Min = I;
440 return Min;
443 template <typename Iter, typename Pred, typename Less>
444 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
445 if (B == E)
446 return E;
447 Iter Max = E;
448 for (Iter I = B; I != E; ++I) {
449 if (!P(*I))
450 continue;
451 if (Max == E || L(*Max, *I))
452 Max = I;
454 return Max;
457 /// Make sure that for each type in Small, there exists a larger type in Big.
458 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
459 TypeSetByHwMode &Big) {
460 ValidateOnExit _1(Small, *this), _2(Big, *this);
461 if (TP.hasError())
462 return false;
463 bool Changed = false;
465 if (Small.empty())
466 Changed |= EnforceAny(Small);
467 if (Big.empty())
468 Changed |= EnforceAny(Big);
470 assert(Small.hasDefault() && Big.hasDefault());
472 std::vector<unsigned> Modes = union_modes(Small, Big);
474 // 1. Only allow integer or floating point types and make sure that
475 // both sides are both integer or both floating point.
476 // 2. Make sure that either both sides have vector types, or neither
477 // of them does.
478 for (unsigned M : Modes) {
479 TypeSetByHwMode::SetType &S = Small.get(M);
480 TypeSetByHwMode::SetType &B = Big.get(M);
482 if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
483 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
484 Changed |= berase_if(S, NotInt) |
485 berase_if(B, NotInt);
486 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
487 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
488 Changed |= berase_if(S, NotFP) |
489 berase_if(B, NotFP);
490 } else if (S.empty() || B.empty()) {
491 Changed = !S.empty() || !B.empty();
492 S.clear();
493 B.clear();
494 } else {
495 TP.error("Incompatible types");
496 return Changed;
499 if (none_of(S, isVector) || none_of(B, isVector)) {
500 Changed |= berase_if(S, isVector) |
501 berase_if(B, isVector);
505 auto LT = [](MVT A, MVT B) -> bool {
506 return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
507 (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
508 A.getSizeInBits() < B.getSizeInBits());
510 auto LE = [&LT](MVT A, MVT B) -> bool {
511 // This function is used when removing elements: when a vector is compared
512 // to a non-vector, it should return false (to avoid removal).
513 if (A.isVector() != B.isVector())
514 return false;
516 return LT(A, B) || (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
517 A.getSizeInBits() == B.getSizeInBits());
520 for (unsigned M : Modes) {
521 TypeSetByHwMode::SetType &S = Small.get(M);
522 TypeSetByHwMode::SetType &B = Big.get(M);
523 // MinS = min scalar in Small, remove all scalars from Big that are
524 // smaller-or-equal than MinS.
525 auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
526 if (MinS != S.end())
527 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
529 // MaxS = max scalar in Big, remove all scalars from Small that are
530 // larger than MaxS.
531 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
532 if (MaxS != B.end())
533 Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
535 // MinV = min vector in Small, remove all vectors from Big that are
536 // smaller-or-equal than MinV.
537 auto MinV = min_if(S.begin(), S.end(), isVector, LT);
538 if (MinV != S.end())
539 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
541 // MaxV = max vector in Big, remove all vectors from Small that are
542 // larger than MaxV.
543 auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
544 if (MaxV != B.end())
545 Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
548 return Changed;
551 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
552 /// for each type U in Elem, U is a scalar type.
553 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
554 /// type T in Vec, such that U is the element type of T.
555 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
556 TypeSetByHwMode &Elem) {
557 ValidateOnExit _1(Vec, *this), _2(Elem, *this);
558 if (TP.hasError())
559 return false;
560 bool Changed = false;
562 if (Vec.empty())
563 Changed |= EnforceVector(Vec);
564 if (Elem.empty())
565 Changed |= EnforceScalar(Elem);
567 for (unsigned M : union_modes(Vec, Elem)) {
568 TypeSetByHwMode::SetType &V = Vec.get(M);
569 TypeSetByHwMode::SetType &E = Elem.get(M);
571 Changed |= berase_if(V, isScalar); // Scalar = !vector
572 Changed |= berase_if(E, isVector); // Vector = !scalar
573 assert(!V.empty() && !E.empty());
575 SmallSet<MVT,4> VT, ST;
576 // Collect element types from the "vector" set.
577 for (MVT T : V)
578 VT.insert(T.getVectorElementType());
579 // Collect scalar types from the "element" set.
580 for (MVT T : E)
581 ST.insert(T);
583 // Remove from V all (vector) types whose element type is not in S.
584 Changed |= berase_if(V, [&ST](MVT T) -> bool {
585 return !ST.count(T.getVectorElementType());
587 // Remove from E all (scalar) types, for which there is no corresponding
588 // type in V.
589 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
592 return Changed;
595 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
596 const ValueTypeByHwMode &VVT) {
597 TypeSetByHwMode Tmp(VVT);
598 ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
599 return EnforceVectorEltTypeIs(Vec, Tmp);
602 /// Ensure that for each type T in Sub, T is a vector type, and there
603 /// exists a type U in Vec such that U is a vector type with the same
604 /// element type as T and at least as many elements as T.
605 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
606 TypeSetByHwMode &Sub) {
607 ValidateOnExit _1(Vec, *this), _2(Sub, *this);
608 if (TP.hasError())
609 return false;
611 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
612 auto IsSubVec = [](MVT B, MVT P) -> bool {
613 if (!B.isVector() || !P.isVector())
614 return false;
615 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
616 // but until there are obvious use-cases for this, keep the
617 // types separate.
618 if (B.isScalableVector() != P.isScalableVector())
619 return false;
620 if (B.getVectorElementType() != P.getVectorElementType())
621 return false;
622 return B.getVectorNumElements() < P.getVectorNumElements();
625 /// Return true if S has no element (vector type) that T is a sub-vector of,
626 /// i.e. has the same element type as T and more elements.
627 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
628 for (const auto &I : S)
629 if (IsSubVec(T, I))
630 return false;
631 return true;
634 /// Return true if S has no element (vector type) that T is a super-vector
635 /// of, i.e. has the same element type as T and fewer elements.
636 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
637 for (const auto &I : S)
638 if (IsSubVec(I, T))
639 return false;
640 return true;
643 bool Changed = false;
645 if (Vec.empty())
646 Changed |= EnforceVector(Vec);
647 if (Sub.empty())
648 Changed |= EnforceVector(Sub);
650 for (unsigned M : union_modes(Vec, Sub)) {
651 TypeSetByHwMode::SetType &S = Sub.get(M);
652 TypeSetByHwMode::SetType &V = Vec.get(M);
654 Changed |= berase_if(S, isScalar);
656 // Erase all types from S that are not sub-vectors of a type in V.
657 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
659 // Erase all types from V that are not super-vectors of a type in S.
660 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
663 return Changed;
666 /// 1. Ensure that V has a scalar type iff W has a scalar type.
667 /// 2. Ensure that for each vector type T in V, there exists a vector
668 /// type U in W, such that T and U have the same number of elements.
669 /// 3. Ensure that for each vector type U in W, there exists a vector
670 /// type T in V, such that T and U have the same number of elements
671 /// (reverse of 2).
672 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
673 ValidateOnExit _1(V, *this), _2(W, *this);
674 if (TP.hasError())
675 return false;
677 bool Changed = false;
678 if (V.empty())
679 Changed |= EnforceAny(V);
680 if (W.empty())
681 Changed |= EnforceAny(W);
683 // An actual vector type cannot have 0 elements, so we can treat scalars
684 // as zero-length vectors. This way both vectors and scalars can be
685 // processed identically.
686 auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
687 return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
690 for (unsigned M : union_modes(V, W)) {
691 TypeSetByHwMode::SetType &VS = V.get(M);
692 TypeSetByHwMode::SetType &WS = W.get(M);
694 SmallSet<unsigned,2> VN, WN;
695 for (MVT T : VS)
696 VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
697 for (MVT T : WS)
698 WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
700 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
701 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
703 return Changed;
706 /// 1. Ensure that for each type T in A, there exists a type U in B,
707 /// such that T and U have equal size in bits.
708 /// 2. Ensure that for each type U in B, there exists a type T in A
709 /// such that T and U have equal size in bits (reverse of 1).
710 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
711 ValidateOnExit _1(A, *this), _2(B, *this);
712 if (TP.hasError())
713 return false;
714 bool Changed = false;
715 if (A.empty())
716 Changed |= EnforceAny(A);
717 if (B.empty())
718 Changed |= EnforceAny(B);
720 auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
721 return !Sizes.count(T.getSizeInBits());
724 for (unsigned M : union_modes(A, B)) {
725 TypeSetByHwMode::SetType &AS = A.get(M);
726 TypeSetByHwMode::SetType &BS = B.get(M);
727 SmallSet<unsigned,2> AN, BN;
729 for (MVT T : AS)
730 AN.insert(T.getSizeInBits());
731 for (MVT T : BS)
732 BN.insert(T.getSizeInBits());
734 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
735 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
738 return Changed;
741 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
742 ValidateOnExit _1(VTS, *this);
743 const TypeSetByHwMode &Legal = getLegalTypes();
744 assert(Legal.isDefaultOnly() && "Default-mode only expected");
745 const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
747 for (auto &I : VTS)
748 expandOverloads(I.second, LegalTypes);
751 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
752 const TypeSetByHwMode::SetType &Legal) {
753 std::set<MVT> Ovs;
754 for (MVT T : Out) {
755 if (!T.isOverloaded())
756 continue;
758 Ovs.insert(T);
759 // MachineValueTypeSet allows iteration and erasing.
760 Out.erase(T);
763 for (MVT Ov : Ovs) {
764 switch (Ov.SimpleTy) {
765 case MVT::iPTRAny:
766 Out.insert(MVT::iPTR);
767 return;
768 case MVT::iAny:
769 for (MVT T : MVT::integer_valuetypes())
770 if (Legal.count(T))
771 Out.insert(T);
772 for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
773 if (Legal.count(T))
774 Out.insert(T);
775 for (MVT T : MVT::integer_scalable_vector_valuetypes())
776 if (Legal.count(T))
777 Out.insert(T);
778 return;
779 case MVT::fAny:
780 for (MVT T : MVT::fp_valuetypes())
781 if (Legal.count(T))
782 Out.insert(T);
783 for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
784 if (Legal.count(T))
785 Out.insert(T);
786 for (MVT T : MVT::fp_scalable_vector_valuetypes())
787 if (Legal.count(T))
788 Out.insert(T);
789 return;
790 case MVT::vAny:
791 for (MVT T : MVT::vector_valuetypes())
792 if (Legal.count(T))
793 Out.insert(T);
794 return;
795 case MVT::Any:
796 for (MVT T : MVT::all_valuetypes())
797 if (Legal.count(T))
798 Out.insert(T);
799 return;
800 default:
801 break;
806 const TypeSetByHwMode &TypeInfer::getLegalTypes() {
807 if (!LegalTypesCached) {
808 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
809 // Stuff all types from all modes into the default mode.
810 const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
811 for (const auto &I : LTS)
812 LegalTypes.insert(I.second);
813 LegalTypesCached = true;
815 assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
816 return LegalCache;
819 #ifndef NDEBUG
820 TypeInfer::ValidateOnExit::~ValidateOnExit() {
821 if (Infer.Validate && !VTS.validate()) {
822 dbgs() << "Type set is empty for each HW mode:\n"
823 "possible type contradiction in the pattern below "
824 "(use -print-records with llvm-tblgen to see all "
825 "expanded records).\n";
826 Infer.TP.dump();
827 llvm_unreachable(nullptr);
830 #endif
833 //===----------------------------------------------------------------------===//
834 // ScopedName Implementation
835 //===----------------------------------------------------------------------===//
837 bool ScopedName::operator==(const ScopedName &o) const {
838 return Scope == o.Scope && Identifier == o.Identifier;
841 bool ScopedName::operator!=(const ScopedName &o) const {
842 return !(*this == o);
846 //===----------------------------------------------------------------------===//
847 // TreePredicateFn Implementation
848 //===----------------------------------------------------------------------===//
850 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
851 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
852 assert(
853 (!hasPredCode() || !hasImmCode()) &&
854 ".td file corrupt: can't have a node predicate *and* an imm predicate");
857 bool TreePredicateFn::hasPredCode() const {
858 return isLoad() || isStore() || isAtomic() ||
859 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
862 std::string TreePredicateFn::getPredCode() const {
863 std::string Code = "";
865 if (!isLoad() && !isStore() && !isAtomic()) {
866 Record *MemoryVT = getMemoryVT();
868 if (MemoryVT)
869 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
870 "MemoryVT requires IsLoad or IsStore");
873 if (!isLoad() && !isStore()) {
874 if (isUnindexed())
875 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
876 "IsUnindexed requires IsLoad or IsStore");
878 Record *ScalarMemoryVT = getScalarMemoryVT();
880 if (ScalarMemoryVT)
881 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
882 "ScalarMemoryVT requires IsLoad or IsStore");
885 if (isLoad() + isStore() + isAtomic() > 1)
886 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
887 "IsLoad, IsStore, and IsAtomic are mutually exclusive");
889 if (isLoad()) {
890 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
891 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
892 getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
893 getMinAlignment() < 1)
894 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
895 "IsLoad cannot be used by itself");
896 } else {
897 if (isNonExtLoad())
898 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
899 "IsNonExtLoad requires IsLoad");
900 if (isAnyExtLoad())
901 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
902 "IsAnyExtLoad requires IsLoad");
903 if (isSignExtLoad())
904 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
905 "IsSignExtLoad requires IsLoad");
906 if (isZeroExtLoad())
907 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
908 "IsZeroExtLoad requires IsLoad");
911 if (isStore()) {
912 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
913 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
914 getAddressSpaces() == nullptr && getMinAlignment() < 1)
915 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
916 "IsStore cannot be used by itself");
917 } else {
918 if (isNonTruncStore())
919 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
920 "IsNonTruncStore requires IsStore");
921 if (isTruncStore())
922 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
923 "IsTruncStore requires IsStore");
926 if (isAtomic()) {
927 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
928 getAddressSpaces() == nullptr &&
929 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
930 !isAtomicOrderingAcquireRelease() &&
931 !isAtomicOrderingSequentiallyConsistent() &&
932 !isAtomicOrderingAcquireOrStronger() &&
933 !isAtomicOrderingReleaseOrStronger() &&
934 !isAtomicOrderingWeakerThanAcquire() &&
935 !isAtomicOrderingWeakerThanRelease())
936 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
937 "IsAtomic cannot be used by itself");
938 } else {
939 if (isAtomicOrderingMonotonic())
940 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
941 "IsAtomicOrderingMonotonic requires IsAtomic");
942 if (isAtomicOrderingAcquire())
943 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
944 "IsAtomicOrderingAcquire requires IsAtomic");
945 if (isAtomicOrderingRelease())
946 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
947 "IsAtomicOrderingRelease requires IsAtomic");
948 if (isAtomicOrderingAcquireRelease())
949 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
950 "IsAtomicOrderingAcquireRelease requires IsAtomic");
951 if (isAtomicOrderingSequentiallyConsistent())
952 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
953 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
954 if (isAtomicOrderingAcquireOrStronger())
955 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
956 "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
957 if (isAtomicOrderingReleaseOrStronger())
958 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
959 "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
960 if (isAtomicOrderingWeakerThanAcquire())
961 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
962 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
965 if (isLoad() || isStore() || isAtomic()) {
966 if (ListInit *AddressSpaces = getAddressSpaces()) {
967 Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
968 " if (";
970 bool First = true;
971 for (Init *Val : AddressSpaces->getValues()) {
972 if (First)
973 First = false;
974 else
975 Code += " && ";
977 IntInit *IntVal = dyn_cast<IntInit>(Val);
978 if (!IntVal) {
979 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
980 "AddressSpaces element must be integer");
983 Code += "AddrSpace != " + utostr(IntVal->getValue());
986 Code += ")\nreturn false;\n";
989 int64_t MinAlign = getMinAlignment();
990 if (MinAlign > 0) {
991 Code += "if (cast<MemSDNode>(N)->getAlignment() < ";
992 Code += utostr(MinAlign);
993 Code += ")\nreturn false;\n";
996 Record *MemoryVT = getMemoryVT();
998 if (MemoryVT)
999 Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1000 MemoryVT->getName() + ") return false;\n")
1001 .str();
1004 if (isAtomic() && isAtomicOrderingMonotonic())
1005 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1006 "AtomicOrdering::Monotonic) return false;\n";
1007 if (isAtomic() && isAtomicOrderingAcquire())
1008 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1009 "AtomicOrdering::Acquire) return false;\n";
1010 if (isAtomic() && isAtomicOrderingRelease())
1011 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1012 "AtomicOrdering::Release) return false;\n";
1013 if (isAtomic() && isAtomicOrderingAcquireRelease())
1014 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1015 "AtomicOrdering::AcquireRelease) return false;\n";
1016 if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1017 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1018 "AtomicOrdering::SequentiallyConsistent) return false;\n";
1020 if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1021 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1022 "return false;\n";
1023 if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1024 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1025 "return false;\n";
1027 if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1028 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1029 "return false;\n";
1030 if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1031 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1032 "return false;\n";
1034 if (isLoad() || isStore()) {
1035 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1037 if (isUnindexed())
1038 Code += ("if (cast<" + SDNodeName +
1039 ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1040 "return false;\n")
1041 .str();
1043 if (isLoad()) {
1044 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1045 isZeroExtLoad()) > 1)
1046 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1047 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1048 "IsZeroExtLoad are mutually exclusive");
1049 if (isNonExtLoad())
1050 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1051 "ISD::NON_EXTLOAD) return false;\n";
1052 if (isAnyExtLoad())
1053 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1054 "return false;\n";
1055 if (isSignExtLoad())
1056 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1057 "return false;\n";
1058 if (isZeroExtLoad())
1059 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1060 "return false;\n";
1061 } else {
1062 if ((isNonTruncStore() + isTruncStore()) > 1)
1063 PrintFatalError(
1064 getOrigPatFragRecord()->getRecord()->getLoc(),
1065 "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1066 if (isNonTruncStore())
1067 Code +=
1068 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1069 if (isTruncStore())
1070 Code +=
1071 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1074 Record *ScalarMemoryVT = getScalarMemoryVT();
1076 if (ScalarMemoryVT)
1077 Code += ("if (cast<" + SDNodeName +
1078 ">(N)->getMemoryVT().getScalarType() != MVT::" +
1079 ScalarMemoryVT->getName() + ") return false;\n")
1080 .str();
1083 std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
1085 Code += PredicateCode;
1087 if (PredicateCode.empty() && !Code.empty())
1088 Code += "return true;\n";
1090 return Code;
1093 bool TreePredicateFn::hasImmCode() const {
1094 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1097 std::string TreePredicateFn::getImmCode() const {
1098 return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
1101 bool TreePredicateFn::immCodeUsesAPInt() const {
1102 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1105 bool TreePredicateFn::immCodeUsesAPFloat() const {
1106 bool Unset;
1107 // The return value will be false when IsAPFloat is unset.
1108 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1109 Unset);
1112 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1113 bool Value) const {
1114 bool Unset;
1115 bool Result =
1116 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1117 if (Unset)
1118 return false;
1119 return Result == Value;
1121 bool TreePredicateFn::usesOperands() const {
1122 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1124 bool TreePredicateFn::isLoad() const {
1125 return isPredefinedPredicateEqualTo("IsLoad", true);
1127 bool TreePredicateFn::isStore() const {
1128 return isPredefinedPredicateEqualTo("IsStore", true);
1130 bool TreePredicateFn::isAtomic() const {
1131 return isPredefinedPredicateEqualTo("IsAtomic", true);
1133 bool TreePredicateFn::isUnindexed() const {
1134 return isPredefinedPredicateEqualTo("IsUnindexed", true);
1136 bool TreePredicateFn::isNonExtLoad() const {
1137 return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1139 bool TreePredicateFn::isAnyExtLoad() const {
1140 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1142 bool TreePredicateFn::isSignExtLoad() const {
1143 return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1145 bool TreePredicateFn::isZeroExtLoad() const {
1146 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1148 bool TreePredicateFn::isNonTruncStore() const {
1149 return isPredefinedPredicateEqualTo("IsTruncStore", false);
1151 bool TreePredicateFn::isTruncStore() const {
1152 return isPredefinedPredicateEqualTo("IsTruncStore", true);
1154 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1155 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1157 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1158 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1160 bool TreePredicateFn::isAtomicOrderingRelease() const {
1161 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1163 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1164 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1166 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1167 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1168 true);
1170 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1171 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1173 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1174 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1176 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1177 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1179 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1180 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1182 Record *TreePredicateFn::getMemoryVT() const {
1183 Record *R = getOrigPatFragRecord()->getRecord();
1184 if (R->isValueUnset("MemoryVT"))
1185 return nullptr;
1186 return R->getValueAsDef("MemoryVT");
1189 ListInit *TreePredicateFn::getAddressSpaces() const {
1190 Record *R = getOrigPatFragRecord()->getRecord();
1191 if (R->isValueUnset("AddressSpaces"))
1192 return nullptr;
1193 return R->getValueAsListInit("AddressSpaces");
1196 int64_t TreePredicateFn::getMinAlignment() const {
1197 Record *R = getOrigPatFragRecord()->getRecord();
1198 if (R->isValueUnset("MinAlignment"))
1199 return 0;
1200 return R->getValueAsInt("MinAlignment");
1203 Record *TreePredicateFn::getScalarMemoryVT() const {
1204 Record *R = getOrigPatFragRecord()->getRecord();
1205 if (R->isValueUnset("ScalarMemoryVT"))
1206 return nullptr;
1207 return R->getValueAsDef("ScalarMemoryVT");
1209 bool TreePredicateFn::hasGISelPredicateCode() const {
1210 return !PatFragRec->getRecord()
1211 ->getValueAsString("GISelPredicateCode")
1212 .empty();
1214 std::string TreePredicateFn::getGISelPredicateCode() const {
1215 return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode");
1218 StringRef TreePredicateFn::getImmType() const {
1219 if (immCodeUsesAPInt())
1220 return "const APInt &";
1221 if (immCodeUsesAPFloat())
1222 return "const APFloat &";
1223 return "int64_t";
1226 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1227 if (immCodeUsesAPInt())
1228 return "APInt";
1229 else if (immCodeUsesAPFloat())
1230 return "APFloat";
1231 return "I64";
1234 /// isAlwaysTrue - Return true if this is a noop predicate.
1235 bool TreePredicateFn::isAlwaysTrue() const {
1236 return !hasPredCode() && !hasImmCode();
1239 /// Return the name to use in the generated code to reference this, this is
1240 /// "Predicate_foo" if from a pattern fragment "foo".
1241 std::string TreePredicateFn::getFnName() const {
1242 return "Predicate_" + PatFragRec->getRecord()->getName().str();
1245 /// getCodeToRunOnSDNode - Return the code for the function body that
1246 /// evaluates this predicate. The argument is expected to be in "Node",
1247 /// not N. This handles casting and conversion to a concrete node type as
1248 /// appropriate.
1249 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1250 // Handle immediate predicates first.
1251 std::string ImmCode = getImmCode();
1252 if (!ImmCode.empty()) {
1253 if (isLoad())
1254 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1255 "IsLoad cannot be used with ImmLeaf or its subclasses");
1256 if (isStore())
1257 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1258 "IsStore cannot be used with ImmLeaf or its subclasses");
1259 if (isUnindexed())
1260 PrintFatalError(
1261 getOrigPatFragRecord()->getRecord()->getLoc(),
1262 "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1263 if (isNonExtLoad())
1264 PrintFatalError(
1265 getOrigPatFragRecord()->getRecord()->getLoc(),
1266 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1267 if (isAnyExtLoad())
1268 PrintFatalError(
1269 getOrigPatFragRecord()->getRecord()->getLoc(),
1270 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1271 if (isSignExtLoad())
1272 PrintFatalError(
1273 getOrigPatFragRecord()->getRecord()->getLoc(),
1274 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1275 if (isZeroExtLoad())
1276 PrintFatalError(
1277 getOrigPatFragRecord()->getRecord()->getLoc(),
1278 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1279 if (isNonTruncStore())
1280 PrintFatalError(
1281 getOrigPatFragRecord()->getRecord()->getLoc(),
1282 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1283 if (isTruncStore())
1284 PrintFatalError(
1285 getOrigPatFragRecord()->getRecord()->getLoc(),
1286 "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1287 if (getMemoryVT())
1288 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1289 "MemoryVT cannot be used with ImmLeaf or its subclasses");
1290 if (getScalarMemoryVT())
1291 PrintFatalError(
1292 getOrigPatFragRecord()->getRecord()->getLoc(),
1293 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1295 std::string Result = (" " + getImmType() + " Imm = ").str();
1296 if (immCodeUsesAPFloat())
1297 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1298 else if (immCodeUsesAPInt())
1299 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1300 else
1301 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1302 return Result + ImmCode;
1305 // Handle arbitrary node predicates.
1306 assert(hasPredCode() && "Don't have any predicate code!");
1307 StringRef ClassName;
1308 if (PatFragRec->getOnlyTree()->isLeaf())
1309 ClassName = "SDNode";
1310 else {
1311 Record *Op = PatFragRec->getOnlyTree()->getOperator();
1312 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
1314 std::string Result;
1315 if (ClassName == "SDNode")
1316 Result = " SDNode *N = Node;\n";
1317 else
1318 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n";
1320 return (Twine(Result) + " (void)N;\n" + getPredCode()).str();
1323 //===----------------------------------------------------------------------===//
1324 // PatternToMatch implementation
1327 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
1328 if (!P->isLeaf())
1329 return false;
1330 DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
1331 if (!DI)
1332 return false;
1334 Record *R = DI->getDef();
1335 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1338 /// getPatternSize - Return the 'size' of this pattern. We want to match large
1339 /// patterns before small ones. This is used to determine the size of a
1340 /// pattern.
1341 static unsigned getPatternSize(const TreePatternNode *P,
1342 const CodeGenDAGPatterns &CGP) {
1343 unsigned Size = 3; // The node itself.
1344 // If the root node is a ConstantSDNode, increases its size.
1345 // e.g. (set R32:$dst, 0).
1346 if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1347 Size += 2;
1349 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1350 Size += AM->getComplexity();
1351 // We don't want to count any children twice, so return early.
1352 return Size;
1355 // If this node has some predicate function that must match, it adds to the
1356 // complexity of this node.
1357 if (!P->getPredicateCalls().empty())
1358 ++Size;
1360 // Count children in the count if they are also nodes.
1361 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1362 const TreePatternNode *Child = P->getChild(i);
1363 if (!Child->isLeaf() && Child->getNumTypes()) {
1364 const TypeSetByHwMode &T0 = Child->getExtType(0);
1365 // At this point, all variable type sets should be simple, i.e. only
1366 // have a default mode.
1367 if (T0.getMachineValueType() != MVT::Other) {
1368 Size += getPatternSize(Child, CGP);
1369 continue;
1372 if (Child->isLeaf()) {
1373 if (isa<IntInit>(Child->getLeafValue()))
1374 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
1375 else if (Child->getComplexPatternInfo(CGP))
1376 Size += getPatternSize(Child, CGP);
1377 else if (isImmAllOnesAllZerosMatch(Child))
1378 Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1379 else if (!Child->getPredicateCalls().empty())
1380 ++Size;
1384 return Size;
1387 /// Compute the complexity metric for the input pattern. This roughly
1388 /// corresponds to the number of nodes that are covered.
1389 int PatternToMatch::
1390 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1391 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1394 /// getPredicateCheck - Return a single string containing all of this
1395 /// pattern's predicates concatenated with "&&" operators.
1397 std::string PatternToMatch::getPredicateCheck() const {
1398 SmallVector<const Predicate*,4> PredList;
1399 for (const Predicate &P : Predicates) {
1400 if (!P.getCondString().empty())
1401 PredList.push_back(&P);
1403 llvm::sort(PredList, deref<std::less<>>());
1405 std::string Check;
1406 for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1407 if (i != 0)
1408 Check += " && ";
1409 Check += '(' + PredList[i]->getCondString() + ')';
1411 return Check;
1414 //===----------------------------------------------------------------------===//
1415 // SDTypeConstraint implementation
1418 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1419 OperandNo = R->getValueAsInt("OperandNum");
1421 if (R->isSubClassOf("SDTCisVT")) {
1422 ConstraintType = SDTCisVT;
1423 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1424 for (const auto &P : VVT)
1425 if (P.second == MVT::isVoid)
1426 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1427 } else if (R->isSubClassOf("SDTCisPtrTy")) {
1428 ConstraintType = SDTCisPtrTy;
1429 } else if (R->isSubClassOf("SDTCisInt")) {
1430 ConstraintType = SDTCisInt;
1431 } else if (R->isSubClassOf("SDTCisFP")) {
1432 ConstraintType = SDTCisFP;
1433 } else if (R->isSubClassOf("SDTCisVec")) {
1434 ConstraintType = SDTCisVec;
1435 } else if (R->isSubClassOf("SDTCisSameAs")) {
1436 ConstraintType = SDTCisSameAs;
1437 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1438 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1439 ConstraintType = SDTCisVTSmallerThanOp;
1440 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1441 R->getValueAsInt("OtherOperandNum");
1442 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1443 ConstraintType = SDTCisOpSmallerThanOp;
1444 x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1445 R->getValueAsInt("BigOperandNum");
1446 } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1447 ConstraintType = SDTCisEltOfVec;
1448 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1449 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1450 ConstraintType = SDTCisSubVecOfVec;
1451 x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1452 R->getValueAsInt("OtherOpNum");
1453 } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1454 ConstraintType = SDTCVecEltisVT;
1455 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1456 for (const auto &P : VVT) {
1457 MVT T = P.second;
1458 if (T.isVector())
1459 PrintFatalError(R->getLoc(),
1460 "Cannot use vector type as SDTCVecEltisVT");
1461 if (!T.isInteger() && !T.isFloatingPoint())
1462 PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1463 "as SDTCVecEltisVT");
1465 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1466 ConstraintType = SDTCisSameNumEltsAs;
1467 x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1468 R->getValueAsInt("OtherOperandNum");
1469 } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1470 ConstraintType = SDTCisSameSizeAs;
1471 x.SDTCisSameSizeAs_Info.OtherOperandNum =
1472 R->getValueAsInt("OtherOperandNum");
1473 } else {
1474 PrintFatalError(R->getLoc(),
1475 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1479 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1480 /// N, and the result number in ResNo.
1481 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1482 const SDNodeInfo &NodeInfo,
1483 unsigned &ResNo) {
1484 unsigned NumResults = NodeInfo.getNumResults();
1485 if (OpNo < NumResults) {
1486 ResNo = OpNo;
1487 return N;
1490 OpNo -= NumResults;
1492 if (OpNo >= N->getNumChildren()) {
1493 std::string S;
1494 raw_string_ostream OS(S);
1495 OS << "Invalid operand number in type constraint "
1496 << (OpNo+NumResults) << " ";
1497 N->print(OS);
1498 PrintFatalError(OS.str());
1501 return N->getChild(OpNo);
1504 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1505 /// constraint to the nodes operands. This returns true if it makes a
1506 /// change, false otherwise. If a type contradiction is found, flag an error.
1507 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1508 const SDNodeInfo &NodeInfo,
1509 TreePattern &TP) const {
1510 if (TP.hasError())
1511 return false;
1513 unsigned ResNo = 0; // The result number being referenced.
1514 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1515 TypeInfer &TI = TP.getInfer();
1517 switch (ConstraintType) {
1518 case SDTCisVT:
1519 // Operand must be a particular type.
1520 return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1521 case SDTCisPtrTy:
1522 // Operand must be same as target pointer type.
1523 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1524 case SDTCisInt:
1525 // Require it to be one of the legal integer VTs.
1526 return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1527 case SDTCisFP:
1528 // Require it to be one of the legal fp VTs.
1529 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1530 case SDTCisVec:
1531 // Require it to be one of the legal vector VTs.
1532 return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1533 case SDTCisSameAs: {
1534 unsigned OResNo = 0;
1535 TreePatternNode *OtherNode =
1536 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1537 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1538 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1540 case SDTCisVTSmallerThanOp: {
1541 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
1542 // have an integer type that is smaller than the VT.
1543 if (!NodeToApply->isLeaf() ||
1544 !isa<DefInit>(NodeToApply->getLeafValue()) ||
1545 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1546 ->isSubClassOf("ValueType")) {
1547 TP.error(N->getOperator()->getName() + " expects a VT operand!");
1548 return false;
1550 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1551 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1552 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1553 TypeSetByHwMode TypeListTmp(VVT);
1555 unsigned OResNo = 0;
1556 TreePatternNode *OtherNode =
1557 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1558 OResNo);
1560 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1562 case SDTCisOpSmallerThanOp: {
1563 unsigned BResNo = 0;
1564 TreePatternNode *BigOperand =
1565 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1566 BResNo);
1567 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1568 BigOperand->getExtType(BResNo));
1570 case SDTCisEltOfVec: {
1571 unsigned VResNo = 0;
1572 TreePatternNode *VecOperand =
1573 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1574 VResNo);
1575 // Filter vector types out of VecOperand that don't have the right element
1576 // type.
1577 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1578 NodeToApply->getExtType(ResNo));
1580 case SDTCisSubVecOfVec: {
1581 unsigned VResNo = 0;
1582 TreePatternNode *BigVecOperand =
1583 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1584 VResNo);
1586 // Filter vector types out of BigVecOperand that don't have the
1587 // right subvector type.
1588 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1589 NodeToApply->getExtType(ResNo));
1591 case SDTCVecEltisVT: {
1592 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1594 case SDTCisSameNumEltsAs: {
1595 unsigned OResNo = 0;
1596 TreePatternNode *OtherNode =
1597 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1598 N, NodeInfo, OResNo);
1599 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1600 NodeToApply->getExtType(ResNo));
1602 case SDTCisSameSizeAs: {
1603 unsigned OResNo = 0;
1604 TreePatternNode *OtherNode =
1605 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1606 N, NodeInfo, OResNo);
1607 return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1608 NodeToApply->getExtType(ResNo));
1611 llvm_unreachable("Invalid ConstraintType!");
1614 // Update the node type to match an instruction operand or result as specified
1615 // in the ins or outs lists on the instruction definition. Return true if the
1616 // type was actually changed.
1617 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1618 Record *Operand,
1619 TreePattern &TP) {
1620 // The 'unknown' operand indicates that types should be inferred from the
1621 // context.
1622 if (Operand->isSubClassOf("unknown_class"))
1623 return false;
1625 // The Operand class specifies a type directly.
1626 if (Operand->isSubClassOf("Operand")) {
1627 Record *R = Operand->getValueAsDef("Type");
1628 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1629 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1632 // PointerLikeRegClass has a type that is determined at runtime.
1633 if (Operand->isSubClassOf("PointerLikeRegClass"))
1634 return UpdateNodeType(ResNo, MVT::iPTR, TP);
1636 // Both RegisterClass and RegisterOperand operands derive their types from a
1637 // register class def.
1638 Record *RC = nullptr;
1639 if (Operand->isSubClassOf("RegisterClass"))
1640 RC = Operand;
1641 else if (Operand->isSubClassOf("RegisterOperand"))
1642 RC = Operand->getValueAsDef("RegClass");
1644 assert(RC && "Unknown operand type");
1645 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1646 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1649 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1650 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1651 if (!TP.getInfer().isConcrete(Types[i], true))
1652 return true;
1653 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1654 if (getChild(i)->ContainsUnresolvedType(TP))
1655 return true;
1656 return false;
1659 bool TreePatternNode::hasProperTypeByHwMode() const {
1660 for (const TypeSetByHwMode &S : Types)
1661 if (!S.isDefaultOnly())
1662 return true;
1663 for (const TreePatternNodePtr &C : Children)
1664 if (C->hasProperTypeByHwMode())
1665 return true;
1666 return false;
1669 bool TreePatternNode::hasPossibleType() const {
1670 for (const TypeSetByHwMode &S : Types)
1671 if (!S.isPossible())
1672 return false;
1673 for (const TreePatternNodePtr &C : Children)
1674 if (!C->hasPossibleType())
1675 return false;
1676 return true;
1679 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1680 for (TypeSetByHwMode &S : Types) {
1681 S.makeSimple(Mode);
1682 // Check if the selected mode had a type conflict.
1683 if (S.get(DefaultMode).empty())
1684 return false;
1686 for (const TreePatternNodePtr &C : Children)
1687 if (!C->setDefaultMode(Mode))
1688 return false;
1689 return true;
1692 //===----------------------------------------------------------------------===//
1693 // SDNodeInfo implementation
1695 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1696 EnumName = R->getValueAsString("Opcode");
1697 SDClassName = R->getValueAsString("SDClass");
1698 Record *TypeProfile = R->getValueAsDef("TypeProfile");
1699 NumResults = TypeProfile->getValueAsInt("NumResults");
1700 NumOperands = TypeProfile->getValueAsInt("NumOperands");
1702 // Parse the properties.
1703 Properties = parseSDPatternOperatorProperties(R);
1705 // Parse the type constraints.
1706 std::vector<Record*> ConstraintList =
1707 TypeProfile->getValueAsListOfDefs("Constraints");
1708 for (Record *R : ConstraintList)
1709 TypeConstraints.emplace_back(R, CGH);
1712 /// getKnownType - If the type constraints on this node imply a fixed type
1713 /// (e.g. all stores return void, etc), then return it as an
1714 /// MVT::SimpleValueType. Otherwise, return EEVT::Other.
1715 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1716 unsigned NumResults = getNumResults();
1717 assert(NumResults <= 1 &&
1718 "We only work with nodes with zero or one result so far!");
1719 assert(ResNo == 0 && "Only handles single result nodes so far");
1721 for (const SDTypeConstraint &Constraint : TypeConstraints) {
1722 // Make sure that this applies to the correct node result.
1723 if (Constraint.OperandNo >= NumResults) // FIXME: need value #
1724 continue;
1726 switch (Constraint.ConstraintType) {
1727 default: break;
1728 case SDTypeConstraint::SDTCisVT:
1729 if (Constraint.VVT.isSimple())
1730 return Constraint.VVT.getSimple().SimpleTy;
1731 break;
1732 case SDTypeConstraint::SDTCisPtrTy:
1733 return MVT::iPTR;
1736 return MVT::Other;
1739 //===----------------------------------------------------------------------===//
1740 // TreePatternNode implementation
1743 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1744 if (Operator->getName() == "set" ||
1745 Operator->getName() == "implicit")
1746 return 0; // All return nothing.
1748 if (Operator->isSubClassOf("Intrinsic"))
1749 return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1751 if (Operator->isSubClassOf("SDNode"))
1752 return CDP.getSDNodeInfo(Operator).getNumResults();
1754 if (Operator->isSubClassOf("PatFrags")) {
1755 // If we've already parsed this pattern fragment, get it. Otherwise, handle
1756 // the forward reference case where one pattern fragment references another
1757 // before it is processed.
1758 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1759 // The number of results of a fragment with alternative records is the
1760 // maximum number of results across all alternatives.
1761 unsigned NumResults = 0;
1762 for (auto T : PFRec->getTrees())
1763 NumResults = std::max(NumResults, T->getNumTypes());
1764 return NumResults;
1767 ListInit *LI = Operator->getValueAsListInit("Fragments");
1768 assert(LI && "Invalid Fragment");
1769 unsigned NumResults = 0;
1770 for (Init *I : LI->getValues()) {
1771 Record *Op = nullptr;
1772 if (DagInit *Dag = dyn_cast<DagInit>(I))
1773 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1774 Op = DI->getDef();
1775 assert(Op && "Invalid Fragment");
1776 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1778 return NumResults;
1781 if (Operator->isSubClassOf("Instruction")) {
1782 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1784 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1786 // Subtract any defaulted outputs.
1787 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1788 Record *OperandNode = InstInfo.Operands[i].Rec;
1790 if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1791 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1792 --NumDefsToAdd;
1795 // Add on one implicit def if it has a resolvable type.
1796 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1797 ++NumDefsToAdd;
1798 return NumDefsToAdd;
1801 if (Operator->isSubClassOf("SDNodeXForm"))
1802 return 1; // FIXME: Generalize SDNodeXForm
1804 if (Operator->isSubClassOf("ValueType"))
1805 return 1; // A type-cast of one result.
1807 if (Operator->isSubClassOf("ComplexPattern"))
1808 return 1;
1810 errs() << *Operator;
1811 PrintFatalError("Unhandled node in GetNumNodeResults");
1814 void TreePatternNode::print(raw_ostream &OS) const {
1815 if (isLeaf())
1816 OS << *getLeafValue();
1817 else
1818 OS << '(' << getOperator()->getName();
1820 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1821 OS << ':';
1822 getExtType(i).writeToStream(OS);
1825 if (!isLeaf()) {
1826 if (getNumChildren() != 0) {
1827 OS << " ";
1828 getChild(0)->print(OS);
1829 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1830 OS << ", ";
1831 getChild(i)->print(OS);
1834 OS << ")";
1837 for (const TreePredicateCall &Pred : PredicateCalls) {
1838 OS << "<<P:";
1839 if (Pred.Scope)
1840 OS << Pred.Scope << ":";
1841 OS << Pred.Fn.getFnName() << ">>";
1843 if (TransformFn)
1844 OS << "<<X:" << TransformFn->getName() << ">>";
1845 if (!getName().empty())
1846 OS << ":$" << getName();
1848 for (const ScopedName &Name : NamesAsPredicateArg)
1849 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1851 void TreePatternNode::dump() const {
1852 print(errs());
1855 /// isIsomorphicTo - Return true if this node is recursively
1856 /// isomorphic to the specified node. For this comparison, the node's
1857 /// entire state is considered. The assigned name is ignored, since
1858 /// nodes with differing names are considered isomorphic. However, if
1859 /// the assigned name is present in the dependent variable set, then
1860 /// the assigned name is considered significant and the node is
1861 /// isomorphic if the names match.
1862 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1863 const MultipleUseVarSet &DepVars) const {
1864 if (N == this) return true;
1865 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1866 getPredicateCalls() != N->getPredicateCalls() ||
1867 getTransformFn() != N->getTransformFn())
1868 return false;
1870 if (isLeaf()) {
1871 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1872 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1873 return ((DI->getDef() == NDI->getDef())
1874 && (DepVars.find(getName()) == DepVars.end()
1875 || getName() == N->getName()));
1878 return getLeafValue() == N->getLeafValue();
1881 if (N->getOperator() != getOperator() ||
1882 N->getNumChildren() != getNumChildren()) return false;
1883 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1884 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1885 return false;
1886 return true;
1889 /// clone - Make a copy of this tree and all of its children.
1891 TreePatternNodePtr TreePatternNode::clone() const {
1892 TreePatternNodePtr New;
1893 if (isLeaf()) {
1894 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1895 } else {
1896 std::vector<TreePatternNodePtr> CChildren;
1897 CChildren.reserve(Children.size());
1898 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1899 CChildren.push_back(getChild(i)->clone());
1900 New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1901 getNumTypes());
1903 New->setName(getName());
1904 New->setNamesAsPredicateArg(getNamesAsPredicateArg());
1905 New->Types = Types;
1906 New->setPredicateCalls(getPredicateCalls());
1907 New->setTransformFn(getTransformFn());
1908 return New;
1911 /// RemoveAllTypes - Recursively strip all the types of this tree.
1912 void TreePatternNode::RemoveAllTypes() {
1913 // Reset to unknown type.
1914 std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1915 if (isLeaf()) return;
1916 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1917 getChild(i)->RemoveAllTypes();
1921 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1922 /// with actual values specified by ArgMap.
1923 void TreePatternNode::SubstituteFormalArguments(
1924 std::map<std::string, TreePatternNodePtr> &ArgMap) {
1925 if (isLeaf()) return;
1927 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1928 TreePatternNode *Child = getChild(i);
1929 if (Child->isLeaf()) {
1930 Init *Val = Child->getLeafValue();
1931 // Note that, when substituting into an output pattern, Val might be an
1932 // UnsetInit.
1933 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1934 cast<DefInit>(Val)->getDef()->getName() == "node")) {
1935 // We found a use of a formal argument, replace it with its value.
1936 TreePatternNodePtr NewChild = ArgMap[Child->getName()];
1937 assert(NewChild && "Couldn't find formal argument!");
1938 assert((Child->getPredicateCalls().empty() ||
1939 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1940 "Non-empty child predicate clobbered!");
1941 setChild(i, std::move(NewChild));
1943 } else {
1944 getChild(i)->SubstituteFormalArguments(ArgMap);
1950 /// InlinePatternFragments - If this pattern refers to any pattern
1951 /// fragments, return the set of inlined versions (this can be more than
1952 /// one if a PatFrags record has multiple alternatives).
1953 void TreePatternNode::InlinePatternFragments(
1954 TreePatternNodePtr T, TreePattern &TP,
1955 std::vector<TreePatternNodePtr> &OutAlternatives) {
1957 if (TP.hasError())
1958 return;
1960 if (isLeaf()) {
1961 OutAlternatives.push_back(T); // nothing to do.
1962 return;
1965 Record *Op = getOperator();
1967 if (!Op->isSubClassOf("PatFrags")) {
1968 if (getNumChildren() == 0) {
1969 OutAlternatives.push_back(T);
1970 return;
1973 // Recursively inline children nodes.
1974 std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
1975 ChildAlternatives.resize(getNumChildren());
1976 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1977 TreePatternNodePtr Child = getChildShared(i);
1978 Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
1979 // If there are no alternatives for any child, there are no
1980 // alternatives for this expression as whole.
1981 if (ChildAlternatives[i].empty())
1982 return;
1984 for (auto NewChild : ChildAlternatives[i])
1985 assert((Child->getPredicateCalls().empty() ||
1986 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1987 "Non-empty child predicate clobbered!");
1990 // The end result is an all-pairs construction of the resultant pattern.
1991 std::vector<unsigned> Idxs;
1992 Idxs.resize(ChildAlternatives.size());
1993 bool NotDone;
1994 do {
1995 // Create the variant and add it to the output list.
1996 std::vector<TreePatternNodePtr> NewChildren;
1997 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
1998 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
1999 TreePatternNodePtr R = std::make_shared<TreePatternNode>(
2000 getOperator(), std::move(NewChildren), getNumTypes());
2002 // Copy over properties.
2003 R->setName(getName());
2004 R->setNamesAsPredicateArg(getNamesAsPredicateArg());
2005 R->setPredicateCalls(getPredicateCalls());
2006 R->setTransformFn(getTransformFn());
2007 for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2008 R->setType(i, getExtType(i));
2009 for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2010 R->setResultIndex(i, getResultIndex(i));
2012 // Register alternative.
2013 OutAlternatives.push_back(R);
2015 // Increment indices to the next permutation by incrementing the
2016 // indices from last index backward, e.g., generate the sequence
2017 // [0, 0], [0, 1], [1, 0], [1, 1].
2018 int IdxsIdx;
2019 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2020 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2021 Idxs[IdxsIdx] = 0;
2022 else
2023 break;
2025 NotDone = (IdxsIdx >= 0);
2026 } while (NotDone);
2028 return;
2031 // Otherwise, we found a reference to a fragment. First, look up its
2032 // TreePattern record.
2033 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2035 // Verify that we are passing the right number of operands.
2036 if (Frag->getNumArgs() != Children.size()) {
2037 TP.error("'" + Op->getName() + "' fragment requires " +
2038 Twine(Frag->getNumArgs()) + " operands!");
2039 return;
2042 TreePredicateFn PredFn(Frag);
2043 unsigned Scope = 0;
2044 if (TreePredicateFn(Frag).usesOperands())
2045 Scope = TP.getDAGPatterns().allocateScope();
2047 // Compute the map of formal to actual arguments.
2048 std::map<std::string, TreePatternNodePtr> ArgMap;
2049 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2050 TreePatternNodePtr Child = getChildShared(i);
2051 if (Scope != 0) {
2052 Child = Child->clone();
2053 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2055 ArgMap[Frag->getArgName(i)] = Child;
2058 // Loop over all fragment alternatives.
2059 for (auto Alternative : Frag->getTrees()) {
2060 TreePatternNodePtr FragTree = Alternative->clone();
2062 if (!PredFn.isAlwaysTrue())
2063 FragTree->addPredicateCall(PredFn, Scope);
2065 // Resolve formal arguments to their actual value.
2066 if (Frag->getNumArgs())
2067 FragTree->SubstituteFormalArguments(ArgMap);
2069 // Transfer types. Note that the resolved alternative may have fewer
2070 // (but not more) results than the PatFrags node.
2071 FragTree->setName(getName());
2072 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2073 FragTree->UpdateNodeType(i, getExtType(i), TP);
2075 // Transfer in the old predicates.
2076 for (const TreePredicateCall &Pred : getPredicateCalls())
2077 FragTree->addPredicateCall(Pred);
2079 // The fragment we inlined could have recursive inlining that is needed. See
2080 // if there are any pattern fragments in it and inline them as needed.
2081 FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
2085 /// getImplicitType - Check to see if the specified record has an implicit
2086 /// type which should be applied to it. This will infer the type of register
2087 /// references from the register file information, for example.
2089 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2090 /// the F8RC register class argument in:
2092 /// (COPY_TO_REGCLASS GPR:$src, F8RC)
2094 /// When Unnamed is false, return the type of a named DAG operand such as the
2095 /// GPR:$src operand above.
2097 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2098 bool NotRegisters,
2099 bool Unnamed,
2100 TreePattern &TP) {
2101 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2103 // Check to see if this is a register operand.
2104 if (R->isSubClassOf("RegisterOperand")) {
2105 assert(ResNo == 0 && "Regoperand ref only has one result!");
2106 if (NotRegisters)
2107 return TypeSetByHwMode(); // Unknown.
2108 Record *RegClass = R->getValueAsDef("RegClass");
2109 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2110 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2113 // Check to see if this is a register or a register class.
2114 if (R->isSubClassOf("RegisterClass")) {
2115 assert(ResNo == 0 && "Regclass ref only has one result!");
2116 // An unnamed register class represents itself as an i32 immediate, for
2117 // example on a COPY_TO_REGCLASS instruction.
2118 if (Unnamed)
2119 return TypeSetByHwMode(MVT::i32);
2121 // In a named operand, the register class provides the possible set of
2122 // types.
2123 if (NotRegisters)
2124 return TypeSetByHwMode(); // Unknown.
2125 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2126 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2129 if (R->isSubClassOf("PatFrags")) {
2130 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2131 // Pattern fragment types will be resolved when they are inlined.
2132 return TypeSetByHwMode(); // Unknown.
2135 if (R->isSubClassOf("Register")) {
2136 assert(ResNo == 0 && "Registers only produce one result!");
2137 if (NotRegisters)
2138 return TypeSetByHwMode(); // Unknown.
2139 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2140 return TypeSetByHwMode(T.getRegisterVTs(R));
2143 if (R->isSubClassOf("SubRegIndex")) {
2144 assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2145 return TypeSetByHwMode(MVT::i32);
2148 if (R->isSubClassOf("ValueType")) {
2149 assert(ResNo == 0 && "This node only has one result!");
2150 // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2152 // (sext_inreg GPR:$src, i16)
2153 // ~~~
2154 if (Unnamed)
2155 return TypeSetByHwMode(MVT::Other);
2156 // With a name, the ValueType simply provides the type of the named
2157 // variable.
2159 // (sext_inreg i32:$src, i16)
2160 // ~~~~~~~~
2161 if (NotRegisters)
2162 return TypeSetByHwMode(); // Unknown.
2163 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2164 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2167 if (R->isSubClassOf("CondCode")) {
2168 assert(ResNo == 0 && "This node only has one result!");
2169 // Using a CondCodeSDNode.
2170 return TypeSetByHwMode(MVT::Other);
2173 if (R->isSubClassOf("ComplexPattern")) {
2174 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2175 if (NotRegisters)
2176 return TypeSetByHwMode(); // Unknown.
2177 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2179 if (R->isSubClassOf("PointerLikeRegClass")) {
2180 assert(ResNo == 0 && "Regclass can only have one result!");
2181 TypeSetByHwMode VTS(MVT::iPTR);
2182 TP.getInfer().expandOverloads(VTS);
2183 return VTS;
2186 if (R->getName() == "node" || R->getName() == "srcvalue" ||
2187 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2188 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2189 // Placeholder.
2190 return TypeSetByHwMode(); // Unknown.
2193 if (R->isSubClassOf("Operand")) {
2194 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2195 Record *T = R->getValueAsDef("Type");
2196 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2199 TP.error("Unknown node flavor used in pattern: " + R->getName());
2200 return TypeSetByHwMode(MVT::Other);
2204 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2205 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2206 const CodeGenIntrinsic *TreePatternNode::
2207 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2208 if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2209 getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2210 getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2211 return nullptr;
2213 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2214 return &CDP.getIntrinsicInfo(IID);
2217 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2218 /// return the ComplexPattern information, otherwise return null.
2219 const ComplexPattern *
2220 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2221 Record *Rec;
2222 if (isLeaf()) {
2223 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2224 if (!DI)
2225 return nullptr;
2226 Rec = DI->getDef();
2227 } else
2228 Rec = getOperator();
2230 if (!Rec->isSubClassOf("ComplexPattern"))
2231 return nullptr;
2232 return &CGP.getComplexPattern(Rec);
2235 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2236 // A ComplexPattern specifically declares how many results it fills in.
2237 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2238 return CP->getNumOperands();
2240 // If MIOperandInfo is specified, that gives the count.
2241 if (isLeaf()) {
2242 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2243 if (DI && DI->getDef()->isSubClassOf("Operand")) {
2244 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2245 if (MIOps->getNumArgs())
2246 return MIOps->getNumArgs();
2250 // Otherwise there is just one result.
2251 return 1;
2254 /// NodeHasProperty - Return true if this node has the specified property.
2255 bool TreePatternNode::NodeHasProperty(SDNP Property,
2256 const CodeGenDAGPatterns &CGP) const {
2257 if (isLeaf()) {
2258 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2259 return CP->hasProperty(Property);
2261 return false;
2264 if (Property != SDNPHasChain) {
2265 // The chain proprety is already present on the different intrinsic node
2266 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2267 // on the intrinsic. Anything else is specific to the individual intrinsic.
2268 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2269 return Int->hasProperty(Property);
2272 if (!Operator->isSubClassOf("SDPatternOperator"))
2273 return false;
2275 return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2281 /// TreeHasProperty - Return true if any node in this tree has the specified
2282 /// property.
2283 bool TreePatternNode::TreeHasProperty(SDNP Property,
2284 const CodeGenDAGPatterns &CGP) const {
2285 if (NodeHasProperty(Property, CGP))
2286 return true;
2287 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2288 if (getChild(i)->TreeHasProperty(Property, CGP))
2289 return true;
2290 return false;
2293 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2294 /// commutative intrinsic.
2295 bool
2296 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2297 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2298 return Int->isCommutative;
2299 return false;
2302 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2303 if (!N->isLeaf())
2304 return N->getOperator()->isSubClassOf(Class);
2306 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2307 if (DI && DI->getDef()->isSubClassOf(Class))
2308 return true;
2310 return false;
2313 static void emitTooManyOperandsError(TreePattern &TP,
2314 StringRef InstName,
2315 unsigned Expected,
2316 unsigned Actual) {
2317 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2318 " operands but expected only " + Twine(Expected) + "!");
2321 static void emitTooFewOperandsError(TreePattern &TP,
2322 StringRef InstName,
2323 unsigned Actual) {
2324 TP.error("Instruction '" + InstName +
2325 "' expects more than the provided " + Twine(Actual) + " operands!");
2328 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2329 /// this node and its children in the tree. This returns true if it makes a
2330 /// change, false otherwise. If a type contradiction is found, flag an error.
2331 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2332 if (TP.hasError())
2333 return false;
2335 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2336 if (isLeaf()) {
2337 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2338 // If it's a regclass or something else known, include the type.
2339 bool MadeChange = false;
2340 for (unsigned i = 0, e = Types.size(); i != e; ++i)
2341 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2342 NotRegisters,
2343 !hasName(), TP), TP);
2344 return MadeChange;
2347 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2348 assert(Types.size() == 1 && "Invalid IntInit");
2350 // Int inits are always integers. :)
2351 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2353 if (!TP.getInfer().isConcrete(Types[0], false))
2354 return MadeChange;
2356 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2357 for (auto &P : VVT) {
2358 MVT::SimpleValueType VT = P.second.SimpleTy;
2359 if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2360 continue;
2361 unsigned Size = MVT(VT).getSizeInBits();
2362 // Make sure that the value is representable for this type.
2363 if (Size >= 32)
2364 continue;
2365 // Check that the value doesn't use more bits than we have. It must
2366 // either be a sign- or zero-extended equivalent of the original.
2367 int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2368 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2369 SignBitAndAbove == 1)
2370 continue;
2372 TP.error("Integer value '" + Twine(II->getValue()) +
2373 "' is out of range for type '" + getEnumName(VT) + "'!");
2374 break;
2376 return MadeChange;
2379 return false;
2382 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2383 bool MadeChange = false;
2385 // Apply the result type to the node.
2386 unsigned NumRetVTs = Int->IS.RetVTs.size();
2387 unsigned NumParamVTs = Int->IS.ParamVTs.size();
2389 for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2390 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2392 if (getNumChildren() != NumParamVTs + 1) {
2393 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2394 " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2395 return false;
2398 // Apply type info to the intrinsic ID.
2399 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2401 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2402 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2404 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2405 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2406 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2408 return MadeChange;
2411 if (getOperator()->isSubClassOf("SDNode")) {
2412 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2414 // Check that the number of operands is sane. Negative operands -> varargs.
2415 if (NI.getNumOperands() >= 0 &&
2416 getNumChildren() != (unsigned)NI.getNumOperands()) {
2417 TP.error(getOperator()->getName() + " node requires exactly " +
2418 Twine(NI.getNumOperands()) + " operands!");
2419 return false;
2422 bool MadeChange = false;
2423 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2424 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2425 MadeChange |= NI.ApplyTypeConstraints(this, TP);
2426 return MadeChange;
2429 if (getOperator()->isSubClassOf("Instruction")) {
2430 const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2431 CodeGenInstruction &InstInfo =
2432 CDP.getTargetInfo().getInstruction(getOperator());
2434 bool MadeChange = false;
2436 // Apply the result types to the node, these come from the things in the
2437 // (outs) list of the instruction.
2438 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2439 Inst.getNumResults());
2440 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2441 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2443 // If the instruction has implicit defs, we apply the first one as a result.
2444 // FIXME: This sucks, it should apply all implicit defs.
2445 if (!InstInfo.ImplicitDefs.empty()) {
2446 unsigned ResNo = NumResultsToAdd;
2448 // FIXME: Generalize to multiple possible types and multiple possible
2449 // ImplicitDefs.
2450 MVT::SimpleValueType VT =
2451 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2453 if (VT != MVT::Other)
2454 MadeChange |= UpdateNodeType(ResNo, VT, TP);
2457 // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2458 // be the same.
2459 if (getOperator()->getName() == "INSERT_SUBREG") {
2460 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2461 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2462 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2463 } else if (getOperator()->getName() == "REG_SEQUENCE") {
2464 // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2465 // variadic.
2467 unsigned NChild = getNumChildren();
2468 if (NChild < 3) {
2469 TP.error("REG_SEQUENCE requires at least 3 operands!");
2470 return false;
2473 if (NChild % 2 == 0) {
2474 TP.error("REG_SEQUENCE requires an odd number of operands!");
2475 return false;
2478 if (!isOperandClass(getChild(0), "RegisterClass")) {
2479 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2480 return false;
2483 for (unsigned I = 1; I < NChild; I += 2) {
2484 TreePatternNode *SubIdxChild = getChild(I + 1);
2485 if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2486 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2487 Twine(I + 1) + "!");
2488 return false;
2493 // If one or more operands with a default value appear at the end of the
2494 // formal operand list for an instruction, we allow them to be overridden
2495 // by optional operands provided in the pattern.
2497 // But if an operand B without a default appears at any point after an
2498 // operand A with a default, then we don't allow A to be overridden,
2499 // because there would be no way to specify whether the next operand in
2500 // the pattern was intended to override A or skip it.
2501 unsigned NonOverridableOperands = Inst.getNumOperands();
2502 while (NonOverridableOperands > 0 &&
2503 CDP.operandHasDefault(Inst.getOperand(NonOverridableOperands-1)))
2504 --NonOverridableOperands;
2506 unsigned ChildNo = 0;
2507 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2508 Record *OperandNode = Inst.getOperand(i);
2510 // If the operand has a default value, do we use it? We must use the
2511 // default if we've run out of children of the pattern DAG to consume,
2512 // or if the operand is followed by a non-defaulted one.
2513 if (CDP.operandHasDefault(OperandNode) &&
2514 (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2515 continue;
2517 // If we have run out of child nodes and there _isn't_ a default
2518 // value we can use for the next operand, give an error.
2519 if (ChildNo >= getNumChildren()) {
2520 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2521 return false;
2524 TreePatternNode *Child = getChild(ChildNo++);
2525 unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
2527 // If the operand has sub-operands, they may be provided by distinct
2528 // child patterns, so attempt to match each sub-operand separately.
2529 if (OperandNode->isSubClassOf("Operand")) {
2530 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2531 if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2532 // But don't do that if the whole operand is being provided by
2533 // a single ComplexPattern-related Operand.
2535 if (Child->getNumMIResults(CDP) < NumArgs) {
2536 // Match first sub-operand against the child we already have.
2537 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2538 MadeChange |=
2539 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2541 // And the remaining sub-operands against subsequent children.
2542 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2543 if (ChildNo >= getNumChildren()) {
2544 emitTooFewOperandsError(TP, getOperator()->getName(),
2545 getNumChildren());
2546 return false;
2548 Child = getChild(ChildNo++);
2550 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2551 MadeChange |=
2552 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2554 continue;
2559 // If we didn't match by pieces above, attempt to match the whole
2560 // operand now.
2561 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2564 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2565 emitTooManyOperandsError(TP, getOperator()->getName(),
2566 ChildNo, getNumChildren());
2567 return false;
2570 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2571 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2572 return MadeChange;
2575 if (getOperator()->isSubClassOf("ComplexPattern")) {
2576 bool MadeChange = false;
2578 for (unsigned i = 0; i < getNumChildren(); ++i)
2579 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2581 return MadeChange;
2584 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2586 // Node transforms always take one operand.
2587 if (getNumChildren() != 1) {
2588 TP.error("Node transform '" + getOperator()->getName() +
2589 "' requires one operand!");
2590 return false;
2593 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2594 return MadeChange;
2597 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2598 /// RHS of a commutative operation, not the on LHS.
2599 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2600 if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2601 return true;
2602 if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2603 return true;
2604 return false;
2608 /// canPatternMatch - If it is impossible for this pattern to match on this
2609 /// target, fill in Reason and return false. Otherwise, return true. This is
2610 /// used as a sanity check for .td files (to prevent people from writing stuff
2611 /// that can never possibly work), and to prevent the pattern permuter from
2612 /// generating stuff that is useless.
2613 bool TreePatternNode::canPatternMatch(std::string &Reason,
2614 const CodeGenDAGPatterns &CDP) {
2615 if (isLeaf()) return true;
2617 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2618 if (!getChild(i)->canPatternMatch(Reason, CDP))
2619 return false;
2621 // If this is an intrinsic, handle cases that would make it not match. For
2622 // example, if an operand is required to be an immediate.
2623 if (getOperator()->isSubClassOf("Intrinsic")) {
2624 // TODO:
2625 return true;
2628 if (getOperator()->isSubClassOf("ComplexPattern"))
2629 return true;
2631 // If this node is a commutative operator, check that the LHS isn't an
2632 // immediate.
2633 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2634 bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2635 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2636 // Scan all of the operands of the node and make sure that only the last one
2637 // is a constant node, unless the RHS also is.
2638 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2639 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2640 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2641 if (OnlyOnRHSOfCommutative(getChild(i))) {
2642 Reason="Immediate value must be on the RHS of commutative operators!";
2643 return false;
2648 return true;
2651 //===----------------------------------------------------------------------===//
2652 // TreePattern implementation
2655 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2656 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2657 isInputPattern(isInput), HasError(false),
2658 Infer(*this) {
2659 for (Init *I : RawPat->getValues())
2660 Trees.push_back(ParseTreePattern(I, ""));
2663 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2664 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2665 isInputPattern(isInput), HasError(false),
2666 Infer(*this) {
2667 Trees.push_back(ParseTreePattern(Pat, ""));
2670 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2671 CodeGenDAGPatterns &cdp)
2672 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2673 Infer(*this) {
2674 Trees.push_back(Pat);
2677 void TreePattern::error(const Twine &Msg) {
2678 if (HasError)
2679 return;
2680 dump();
2681 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2682 HasError = true;
2685 void TreePattern::ComputeNamedNodes() {
2686 for (TreePatternNodePtr &Tree : Trees)
2687 ComputeNamedNodes(Tree.get());
2690 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2691 if (!N->getName().empty())
2692 NamedNodes[N->getName()].push_back(N);
2694 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2695 ComputeNamedNodes(N->getChild(i));
2698 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2699 StringRef OpName) {
2700 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2701 Record *R = DI->getDef();
2703 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
2704 // TreePatternNode of its own. For example:
2705 /// (foo GPR, imm) -> (foo GPR, (imm))
2706 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2707 return ParseTreePattern(
2708 DagInit::get(DI, nullptr,
2709 std::vector<std::pair<Init*, StringInit*> >()),
2710 OpName);
2712 // Input argument?
2713 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2714 if (R->getName() == "node" && !OpName.empty()) {
2715 if (OpName.empty())
2716 error("'node' argument requires a name to match with operand list");
2717 Args.push_back(OpName);
2720 Res->setName(OpName);
2721 return Res;
2724 // ?:$name or just $name.
2725 if (isa<UnsetInit>(TheInit)) {
2726 if (OpName.empty())
2727 error("'?' argument requires a name to match with operand list");
2728 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2729 Args.push_back(OpName);
2730 Res->setName(OpName);
2731 return Res;
2734 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2735 if (!OpName.empty())
2736 error("Constant int or bit argument should not have a name!");
2737 if (isa<BitInit>(TheInit))
2738 TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2739 return std::make_shared<TreePatternNode>(TheInit, 1);
2742 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2743 // Turn this into an IntInit.
2744 Init *II = BI->convertInitializerTo(IntRecTy::get());
2745 if (!II || !isa<IntInit>(II))
2746 error("Bits value must be constants!");
2747 return ParseTreePattern(II, OpName);
2750 DagInit *Dag = dyn_cast<DagInit>(TheInit);
2751 if (!Dag) {
2752 TheInit->print(errs());
2753 error("Pattern has unexpected init kind!");
2755 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2756 if (!OpDef) error("Pattern has unexpected operator type!");
2757 Record *Operator = OpDef->getDef();
2759 if (Operator->isSubClassOf("ValueType")) {
2760 // If the operator is a ValueType, then this must be "type cast" of a leaf
2761 // node.
2762 if (Dag->getNumArgs() != 1)
2763 error("Type cast only takes one operand!");
2765 TreePatternNodePtr New =
2766 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2768 // Apply the type cast.
2769 assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2770 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2771 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2773 if (!OpName.empty())
2774 error("ValueType cast should not have a name!");
2775 return New;
2778 // Verify that this is something that makes sense for an operator.
2779 if (!Operator->isSubClassOf("PatFrags") &&
2780 !Operator->isSubClassOf("SDNode") &&
2781 !Operator->isSubClassOf("Instruction") &&
2782 !Operator->isSubClassOf("SDNodeXForm") &&
2783 !Operator->isSubClassOf("Intrinsic") &&
2784 !Operator->isSubClassOf("ComplexPattern") &&
2785 Operator->getName() != "set" &&
2786 Operator->getName() != "implicit")
2787 error("Unrecognized node '" + Operator->getName() + "'!");
2789 // Check to see if this is something that is illegal in an input pattern.
2790 if (isInputPattern) {
2791 if (Operator->isSubClassOf("Instruction") ||
2792 Operator->isSubClassOf("SDNodeXForm"))
2793 error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2794 } else {
2795 if (Operator->isSubClassOf("Intrinsic"))
2796 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2798 if (Operator->isSubClassOf("SDNode") &&
2799 Operator->getName() != "imm" &&
2800 Operator->getName() != "timm" &&
2801 Operator->getName() != "fpimm" &&
2802 Operator->getName() != "tglobaltlsaddr" &&
2803 Operator->getName() != "tconstpool" &&
2804 Operator->getName() != "tjumptable" &&
2805 Operator->getName() != "tframeindex" &&
2806 Operator->getName() != "texternalsym" &&
2807 Operator->getName() != "tblockaddress" &&
2808 Operator->getName() != "tglobaladdr" &&
2809 Operator->getName() != "bb" &&
2810 Operator->getName() != "vt" &&
2811 Operator->getName() != "mcsym")
2812 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2815 std::vector<TreePatternNodePtr> Children;
2817 // Parse all the operands.
2818 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2819 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2821 // Get the actual number of results before Operator is converted to an intrinsic
2822 // node (which is hard-coded to have either zero or one result).
2823 unsigned NumResults = GetNumNodeResults(Operator, CDP);
2825 // If the operator is an intrinsic, then this is just syntactic sugar for
2826 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
2827 // convert the intrinsic name to a number.
2828 if (Operator->isSubClassOf("Intrinsic")) {
2829 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2830 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2832 // If this intrinsic returns void, it must have side-effects and thus a
2833 // chain.
2834 if (Int.IS.RetVTs.empty())
2835 Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2836 else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects)
2837 // Has side-effects, requires chain.
2838 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2839 else // Otherwise, no chain.
2840 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2842 Children.insert(Children.begin(),
2843 std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2846 if (Operator->isSubClassOf("ComplexPattern")) {
2847 for (unsigned i = 0; i < Children.size(); ++i) {
2848 TreePatternNodePtr Child = Children[i];
2850 if (Child->getName().empty())
2851 error("All arguments to a ComplexPattern must be named");
2853 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2854 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2855 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2856 auto OperandId = std::make_pair(Operator, i);
2857 auto PrevOp = ComplexPatternOperands.find(Child->getName());
2858 if (PrevOp != ComplexPatternOperands.end()) {
2859 if (PrevOp->getValue() != OperandId)
2860 error("All ComplexPattern operands must appear consistently: "
2861 "in the same order in just one ComplexPattern instance.");
2862 } else
2863 ComplexPatternOperands[Child->getName()] = OperandId;
2867 TreePatternNodePtr Result =
2868 std::make_shared<TreePatternNode>(Operator, std::move(Children),
2869 NumResults);
2870 Result->setName(OpName);
2872 if (Dag->getName()) {
2873 assert(Result->getName().empty());
2874 Result->setName(Dag->getNameStr());
2876 return Result;
2879 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2880 /// will never match in favor of something obvious that will. This is here
2881 /// strictly as a convenience to target authors because it allows them to write
2882 /// more type generic things and have useless type casts fold away.
2884 /// This returns true if any change is made.
2885 static bool SimplifyTree(TreePatternNodePtr &N) {
2886 if (N->isLeaf())
2887 return false;
2889 // If we have a bitconvert with a resolved type and if the source and
2890 // destination types are the same, then the bitconvert is useless, remove it.
2891 if (N->getOperator()->getName() == "bitconvert" &&
2892 N->getExtType(0).isValueTypeByHwMode(false) &&
2893 N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2894 N->getName().empty()) {
2895 N = N->getChildShared(0);
2896 SimplifyTree(N);
2897 return true;
2900 // Walk all children.
2901 bool MadeChange = false;
2902 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2903 TreePatternNodePtr Child = N->getChildShared(i);
2904 MadeChange |= SimplifyTree(Child);
2905 N->setChild(i, std::move(Child));
2907 return MadeChange;
2912 /// InferAllTypes - Infer/propagate as many types throughout the expression
2913 /// patterns as possible. Return true if all types are inferred, false
2914 /// otherwise. Flags an error if a type contradiction is found.
2915 bool TreePattern::
2916 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2917 if (NamedNodes.empty())
2918 ComputeNamedNodes();
2920 bool MadeChange = true;
2921 while (MadeChange) {
2922 MadeChange = false;
2923 for (TreePatternNodePtr &Tree : Trees) {
2924 MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2925 MadeChange |= SimplifyTree(Tree);
2928 // If there are constraints on our named nodes, apply them.
2929 for (auto &Entry : NamedNodes) {
2930 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2932 // If we have input named node types, propagate their types to the named
2933 // values here.
2934 if (InNamedTypes) {
2935 if (!InNamedTypes->count(Entry.getKey())) {
2936 error("Node '" + std::string(Entry.getKey()) +
2937 "' in output pattern but not input pattern");
2938 return true;
2941 const SmallVectorImpl<TreePatternNode*> &InNodes =
2942 InNamedTypes->find(Entry.getKey())->second;
2944 // The input types should be fully resolved by now.
2945 for (TreePatternNode *Node : Nodes) {
2946 // If this node is a register class, and it is the root of the pattern
2947 // then we're mapping something onto an input register. We allow
2948 // changing the type of the input register in this case. This allows
2949 // us to match things like:
2950 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2951 if (Node == Trees[0].get() && Node->isLeaf()) {
2952 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2953 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2954 DI->getDef()->isSubClassOf("RegisterOperand")))
2955 continue;
2958 assert(Node->getNumTypes() == 1 &&
2959 InNodes[0]->getNumTypes() == 1 &&
2960 "FIXME: cannot name multiple result nodes yet");
2961 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2962 *this);
2966 // If there are multiple nodes with the same name, they must all have the
2967 // same type.
2968 if (Entry.second.size() > 1) {
2969 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2970 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2971 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2972 "FIXME: cannot name multiple result nodes yet");
2974 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2975 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2981 bool HasUnresolvedTypes = false;
2982 for (const TreePatternNodePtr &Tree : Trees)
2983 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
2984 return !HasUnresolvedTypes;
2987 void TreePattern::print(raw_ostream &OS) const {
2988 OS << getRecord()->getName();
2989 if (!Args.empty()) {
2990 OS << "(" << Args[0];
2991 for (unsigned i = 1, e = Args.size(); i != e; ++i)
2992 OS << ", " << Args[i];
2993 OS << ")";
2995 OS << ": ";
2997 if (Trees.size() > 1)
2998 OS << "[\n";
2999 for (const TreePatternNodePtr &Tree : Trees) {
3000 OS << "\t";
3001 Tree->print(OS);
3002 OS << "\n";
3005 if (Trees.size() > 1)
3006 OS << "]\n";
3009 void TreePattern::dump() const { print(errs()); }
3011 //===----------------------------------------------------------------------===//
3012 // CodeGenDAGPatterns implementation
3015 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
3016 PatternRewriterFn PatternRewriter)
3017 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
3018 PatternRewriter(PatternRewriter) {
3020 Intrinsics = CodeGenIntrinsicTable(Records, false);
3021 TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
3022 ParseNodeInfo();
3023 ParseNodeTransforms();
3024 ParseComplexPatterns();
3025 ParsePatternFragments();
3026 ParseDefaultOperands();
3027 ParseInstructions();
3028 ParsePatternFragments(/*OutFrags*/true);
3029 ParsePatterns();
3031 // Break patterns with parameterized types into a series of patterns,
3032 // where each one has a fixed type and is predicated on the conditions
3033 // of the associated HW mode.
3034 ExpandHwModeBasedTypes();
3036 // Generate variants. For example, commutative patterns can match
3037 // multiple ways. Add them to PatternsToMatch as well.
3038 GenerateVariants();
3040 // Infer instruction flags. For example, we can detect loads,
3041 // stores, and side effects in many cases by examining an
3042 // instruction's pattern.
3043 InferInstructionFlags();
3045 // Verify that instruction flags match the patterns.
3046 VerifyInstructionFlags();
3049 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
3050 Record *N = Records.getDef(Name);
3051 if (!N || !N->isSubClassOf("SDNode"))
3052 PrintFatalError("Error getting SDNode '" + Name + "'!");
3054 return N;
3057 // Parse all of the SDNode definitions for the target, populating SDNodes.
3058 void CodeGenDAGPatterns::ParseNodeInfo() {
3059 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
3060 const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3062 while (!Nodes.empty()) {
3063 Record *R = Nodes.back();
3064 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
3065 Nodes.pop_back();
3068 // Get the builtin intrinsic nodes.
3069 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
3070 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
3071 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3074 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3075 /// map, and emit them to the file as functions.
3076 void CodeGenDAGPatterns::ParseNodeTransforms() {
3077 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
3078 while (!Xforms.empty()) {
3079 Record *XFormNode = Xforms.back();
3080 Record *SDNode = XFormNode->getValueAsDef("Opcode");
3081 StringRef Code = XFormNode->getValueAsString("XFormFunction");
3082 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
3084 Xforms.pop_back();
3088 void CodeGenDAGPatterns::ParseComplexPatterns() {
3089 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3090 while (!AMs.empty()) {
3091 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3092 AMs.pop_back();
3097 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3098 /// file, building up the PatternFragments map. After we've collected them all,
3099 /// inline fragments together as necessary, so that there are no references left
3100 /// inside a pattern fragment to a pattern fragment.
3102 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3103 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3105 // First step, parse all of the fragments.
3106 for (Record *Frag : Fragments) {
3107 if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3108 continue;
3110 ListInit *LI = Frag->getValueAsListInit("Fragments");
3111 TreePattern *P =
3112 (PatternFragments[Frag] = std::make_unique<TreePattern>(
3113 Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3114 *this)).get();
3116 // Validate the argument list, converting it to set, to discard duplicates.
3117 std::vector<std::string> &Args = P->getArgList();
3118 // Copy the args so we can take StringRefs to them.
3119 auto ArgsCopy = Args;
3120 SmallDenseSet<StringRef, 4> OperandsSet;
3121 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3123 if (OperandsSet.count(""))
3124 P->error("Cannot have unnamed 'node' values in pattern fragment!");
3126 // Parse the operands list.
3127 DagInit *OpsList = Frag->getValueAsDag("Operands");
3128 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3129 // Special cases: ops == outs == ins. Different names are used to
3130 // improve readability.
3131 if (!OpsOp ||
3132 (OpsOp->getDef()->getName() != "ops" &&
3133 OpsOp->getDef()->getName() != "outs" &&
3134 OpsOp->getDef()->getName() != "ins"))
3135 P->error("Operands list should start with '(ops ... '!");
3137 // Copy over the arguments.
3138 Args.clear();
3139 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3140 if (!isa<DefInit>(OpsList->getArg(j)) ||
3141 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3142 P->error("Operands list should all be 'node' values.");
3143 if (!OpsList->getArgName(j))
3144 P->error("Operands list should have names for each operand!");
3145 StringRef ArgNameStr = OpsList->getArgNameStr(j);
3146 if (!OperandsSet.count(ArgNameStr))
3147 P->error("'" + ArgNameStr +
3148 "' does not occur in pattern or was multiply specified!");
3149 OperandsSet.erase(ArgNameStr);
3150 Args.push_back(ArgNameStr);
3153 if (!OperandsSet.empty())
3154 P->error("Operands list does not contain an entry for operand '" +
3155 *OperandsSet.begin() + "'!");
3157 // If there is a node transformation corresponding to this, keep track of
3158 // it.
3159 Record *Transform = Frag->getValueAsDef("OperandTransform");
3160 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
3161 for (auto T : P->getTrees())
3162 T->setTransformFn(Transform);
3165 // Now that we've parsed all of the tree fragments, do a closure on them so
3166 // that there are not references to PatFrags left inside of them.
3167 for (Record *Frag : Fragments) {
3168 if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3169 continue;
3171 TreePattern &ThePat = *PatternFragments[Frag];
3172 ThePat.InlinePatternFragments();
3174 // Infer as many types as possible. Don't worry about it if we don't infer
3175 // all of them, some may depend on the inputs of the pattern. Also, don't
3176 // validate type sets; validation may cause spurious failures e.g. if a
3177 // fragment needs floating-point types but the current target does not have
3178 // any (this is only an error if that fragment is ever used!).
3180 TypeInfer::SuppressValidation SV(ThePat.getInfer());
3181 ThePat.InferAllTypes();
3182 ThePat.resetError();
3185 // If debugging, print out the pattern fragment result.
3186 LLVM_DEBUG(ThePat.dump());
3190 void CodeGenDAGPatterns::ParseDefaultOperands() {
3191 std::vector<Record*> DefaultOps;
3192 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3194 // Find some SDNode.
3195 assert(!SDNodes.empty() && "No SDNodes parsed?");
3196 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3198 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3199 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3201 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3202 // SomeSDnode so that we can parse this.
3203 std::vector<std::pair<Init*, StringInit*> > Ops;
3204 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3205 Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3206 DefaultInfo->getArgName(op)));
3207 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3209 // Create a TreePattern to parse this.
3210 TreePattern P(DefaultOps[i], DI, false, *this);
3211 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3213 // Copy the operands over into a DAGDefaultOperand.
3214 DAGDefaultOperand DefaultOpInfo;
3216 const TreePatternNodePtr &T = P.getTree(0);
3217 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3218 TreePatternNodePtr TPN = T->getChildShared(op);
3219 while (TPN->ApplyTypeConstraints(P, false))
3220 /* Resolve all types */;
3222 if (TPN->ContainsUnresolvedType(P)) {
3223 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3224 DefaultOps[i]->getName() +
3225 "' doesn't have a concrete type!");
3227 DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3230 // Insert it into the DefaultOperands map so we can find it later.
3231 DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3235 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3236 /// instruction input. Return true if this is a real use.
3237 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3238 std::map<std::string, TreePatternNodePtr> &InstInputs) {
3239 // No name -> not interesting.
3240 if (Pat->getName().empty()) {
3241 if (Pat->isLeaf()) {
3242 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3243 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3244 DI->getDef()->isSubClassOf("RegisterOperand")))
3245 I.error("Input " + DI->getDef()->getName() + " must be named!");
3247 return false;
3250 Record *Rec;
3251 if (Pat->isLeaf()) {
3252 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3253 if (!DI)
3254 I.error("Input $" + Pat->getName() + " must be an identifier!");
3255 Rec = DI->getDef();
3256 } else {
3257 Rec = Pat->getOperator();
3260 // SRCVALUE nodes are ignored.
3261 if (Rec->getName() == "srcvalue")
3262 return false;
3264 TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3265 if (!Slot) {
3266 Slot = Pat;
3267 return true;
3269 Record *SlotRec;
3270 if (Slot->isLeaf()) {
3271 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3272 } else {
3273 assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3274 SlotRec = Slot->getOperator();
3277 // Ensure that the inputs agree if we've already seen this input.
3278 if (Rec != SlotRec)
3279 I.error("All $" + Pat->getName() + " inputs must agree with each other");
3280 // Ensure that the types can agree as well.
3281 Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3282 Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3283 if (Slot->getExtTypes() != Pat->getExtTypes())
3284 I.error("All $" + Pat->getName() + " inputs must agree with each other");
3285 return true;
3288 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3289 /// part of "I", the instruction), computing the set of inputs and outputs of
3290 /// the pattern. Report errors if we see anything naughty.
3291 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3292 TreePattern &I, TreePatternNodePtr Pat,
3293 std::map<std::string, TreePatternNodePtr> &InstInputs,
3294 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3295 &InstResults,
3296 std::vector<Record *> &InstImpResults) {
3298 // The instruction pattern still has unresolved fragments. For *named*
3299 // nodes we must resolve those here. This may not result in multiple
3300 // alternatives.
3301 if (!Pat->getName().empty()) {
3302 TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3303 SrcPattern.InlinePatternFragments();
3304 SrcPattern.InferAllTypes();
3305 Pat = SrcPattern.getOnlyTree();
3308 if (Pat->isLeaf()) {
3309 bool isUse = HandleUse(I, Pat, InstInputs);
3310 if (!isUse && Pat->getTransformFn())
3311 I.error("Cannot specify a transform function for a non-input value!");
3312 return;
3315 if (Pat->getOperator()->getName() == "implicit") {
3316 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3317 TreePatternNode *Dest = Pat->getChild(i);
3318 if (!Dest->isLeaf())
3319 I.error("implicitly defined value should be a register!");
3321 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3322 if (!Val || !Val->getDef()->isSubClassOf("Register"))
3323 I.error("implicitly defined value should be a register!");
3324 InstImpResults.push_back(Val->getDef());
3326 return;
3329 if (Pat->getOperator()->getName() != "set") {
3330 // If this is not a set, verify that the children nodes are not void typed,
3331 // and recurse.
3332 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3333 if (Pat->getChild(i)->getNumTypes() == 0)
3334 I.error("Cannot have void nodes inside of patterns!");
3335 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3336 InstResults, InstImpResults);
3339 // If this is a non-leaf node with no children, treat it basically as if
3340 // it were a leaf. This handles nodes like (imm).
3341 bool isUse = HandleUse(I, Pat, InstInputs);
3343 if (!isUse && Pat->getTransformFn())
3344 I.error("Cannot specify a transform function for a non-input value!");
3345 return;
3348 // Otherwise, this is a set, validate and collect instruction results.
3349 if (Pat->getNumChildren() == 0)
3350 I.error("set requires operands!");
3352 if (Pat->getTransformFn())
3353 I.error("Cannot specify a transform function on a set node!");
3355 // Check the set destinations.
3356 unsigned NumDests = Pat->getNumChildren()-1;
3357 for (unsigned i = 0; i != NumDests; ++i) {
3358 TreePatternNodePtr Dest = Pat->getChildShared(i);
3359 // For set destinations we also must resolve fragments here.
3360 TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3361 DestPattern.InlinePatternFragments();
3362 DestPattern.InferAllTypes();
3363 Dest = DestPattern.getOnlyTree();
3365 if (!Dest->isLeaf())
3366 I.error("set destination should be a register!");
3368 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3369 if (!Val) {
3370 I.error("set destination should be a register!");
3371 continue;
3374 if (Val->getDef()->isSubClassOf("RegisterClass") ||
3375 Val->getDef()->isSubClassOf("ValueType") ||
3376 Val->getDef()->isSubClassOf("RegisterOperand") ||
3377 Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3378 if (Dest->getName().empty())
3379 I.error("set destination must have a name!");
3380 if (InstResults.count(Dest->getName()))
3381 I.error("cannot set '" + Dest->getName() + "' multiple times");
3382 InstResults[Dest->getName()] = Dest;
3383 } else if (Val->getDef()->isSubClassOf("Register")) {
3384 InstImpResults.push_back(Val->getDef());
3385 } else {
3386 I.error("set destination should be a register!");
3390 // Verify and collect info from the computation.
3391 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3392 InstResults, InstImpResults);
3395 //===----------------------------------------------------------------------===//
3396 // Instruction Analysis
3397 //===----------------------------------------------------------------------===//
3399 class InstAnalyzer {
3400 const CodeGenDAGPatterns &CDP;
3401 public:
3402 bool hasSideEffects;
3403 bool mayStore;
3404 bool mayLoad;
3405 bool isBitcast;
3406 bool isVariadic;
3407 bool hasChain;
3409 InstAnalyzer(const CodeGenDAGPatterns &cdp)
3410 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3411 isBitcast(false), isVariadic(false), hasChain(false) {}
3413 void Analyze(const PatternToMatch &Pat) {
3414 const TreePatternNode *N = Pat.getSrcPattern();
3415 AnalyzeNode(N);
3416 // These properties are detected only on the root node.
3417 isBitcast = IsNodeBitcast(N);
3420 private:
3421 bool IsNodeBitcast(const TreePatternNode *N) const {
3422 if (hasSideEffects || mayLoad || mayStore || isVariadic)
3423 return false;
3425 if (N->isLeaf())
3426 return false;
3427 if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3428 return false;
3430 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3431 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3432 return false;
3433 return OpInfo.getEnumName() == "ISD::BITCAST";
3436 public:
3437 void AnalyzeNode(const TreePatternNode *N) {
3438 if (N->isLeaf()) {
3439 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3440 Record *LeafRec = DI->getDef();
3441 // Handle ComplexPattern leaves.
3442 if (LeafRec->isSubClassOf("ComplexPattern")) {
3443 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3444 if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3445 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3446 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3449 return;
3452 // Analyze children.
3453 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3454 AnalyzeNode(N->getChild(i));
3456 // Notice properties of the node.
3457 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3458 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3459 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3460 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3461 if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3463 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3464 // If this is an intrinsic, analyze it.
3465 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3466 mayLoad = true;// These may load memory.
3468 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3469 mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3471 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3472 IntInfo->hasSideEffects)
3473 // ReadWriteMem intrinsics can have other strange effects.
3474 hasSideEffects = true;
3480 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3481 const InstAnalyzer &PatInfo,
3482 Record *PatDef) {
3483 bool Error = false;
3485 // Remember where InstInfo got its flags.
3486 if (InstInfo.hasUndefFlags())
3487 InstInfo.InferredFrom = PatDef;
3489 // Check explicitly set flags for consistency.
3490 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3491 !InstInfo.hasSideEffects_Unset) {
3492 // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3493 // the pattern has no side effects. That could be useful for div/rem
3494 // instructions that may trap.
3495 if (!InstInfo.hasSideEffects) {
3496 Error = true;
3497 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3498 Twine(InstInfo.hasSideEffects));
3502 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3503 Error = true;
3504 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3505 Twine(InstInfo.mayStore));
3508 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3509 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3510 // Some targets translate immediates to loads.
3511 if (!InstInfo.mayLoad) {
3512 Error = true;
3513 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3514 Twine(InstInfo.mayLoad));
3518 // Transfer inferred flags.
3519 InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3520 InstInfo.mayStore |= PatInfo.mayStore;
3521 InstInfo.mayLoad |= PatInfo.mayLoad;
3523 // These flags are silently added without any verification.
3524 // FIXME: To match historical behavior of TableGen, for now add those flags
3525 // only when we're inferring from the primary instruction pattern.
3526 if (PatDef->isSubClassOf("Instruction")) {
3527 InstInfo.isBitcast |= PatInfo.isBitcast;
3528 InstInfo.hasChain |= PatInfo.hasChain;
3529 InstInfo.hasChain_Inferred = true;
3532 // Don't infer isVariadic. This flag means something different on SDNodes and
3533 // instructions. For example, a CALL SDNode is variadic because it has the
3534 // call arguments as operands, but a CALL instruction is not variadic - it
3535 // has argument registers as implicit, not explicit uses.
3537 return Error;
3540 /// hasNullFragReference - Return true if the DAG has any reference to the
3541 /// null_frag operator.
3542 static bool hasNullFragReference(DagInit *DI) {
3543 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3544 if (!OpDef) return false;
3545 Record *Operator = OpDef->getDef();
3547 // If this is the null fragment, return true.
3548 if (Operator->getName() == "null_frag") return true;
3549 // If any of the arguments reference the null fragment, return true.
3550 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3551 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3552 if (Arg && hasNullFragReference(Arg))
3553 return true;
3556 return false;
3559 /// hasNullFragReference - Return true if any DAG in the list references
3560 /// the null_frag operator.
3561 static bool hasNullFragReference(ListInit *LI) {
3562 for (Init *I : LI->getValues()) {
3563 DagInit *DI = dyn_cast<DagInit>(I);
3564 assert(DI && "non-dag in an instruction Pattern list?!");
3565 if (hasNullFragReference(DI))
3566 return true;
3568 return false;
3571 /// Get all the instructions in a tree.
3572 static void
3573 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3574 if (Tree->isLeaf())
3575 return;
3576 if (Tree->getOperator()->isSubClassOf("Instruction"))
3577 Instrs.push_back(Tree->getOperator());
3578 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3579 getInstructionsInTree(Tree->getChild(i), Instrs);
3582 /// Check the class of a pattern leaf node against the instruction operand it
3583 /// represents.
3584 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3585 Record *Leaf) {
3586 if (OI.Rec == Leaf)
3587 return true;
3589 // Allow direct value types to be used in instruction set patterns.
3590 // The type will be checked later.
3591 if (Leaf->isSubClassOf("ValueType"))
3592 return true;
3594 // Patterns can also be ComplexPattern instances.
3595 if (Leaf->isSubClassOf("ComplexPattern"))
3596 return true;
3598 return false;
3601 void CodeGenDAGPatterns::parseInstructionPattern(
3602 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3604 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3606 // Parse the instruction.
3607 TreePattern I(CGI.TheDef, Pat, true, *this);
3609 // InstInputs - Keep track of all of the inputs of the instruction, along
3610 // with the record they are declared as.
3611 std::map<std::string, TreePatternNodePtr> InstInputs;
3613 // InstResults - Keep track of all the virtual registers that are 'set'
3614 // in the instruction, including what reg class they are.
3615 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3616 InstResults;
3618 std::vector<Record*> InstImpResults;
3620 // Verify that the top-level forms in the instruction are of void type, and
3621 // fill in the InstResults map.
3622 SmallString<32> TypesString;
3623 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3624 TypesString.clear();
3625 TreePatternNodePtr Pat = I.getTree(j);
3626 if (Pat->getNumTypes() != 0) {
3627 raw_svector_ostream OS(TypesString);
3628 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3629 if (k > 0)
3630 OS << ", ";
3631 Pat->getExtType(k).writeToStream(OS);
3633 I.error("Top-level forms in instruction pattern should have"
3634 " void types, has types " +
3635 OS.str());
3638 // Find inputs and outputs, and verify the structure of the uses/defs.
3639 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3640 InstImpResults);
3643 // Now that we have inputs and outputs of the pattern, inspect the operands
3644 // list for the instruction. This determines the order that operands are
3645 // added to the machine instruction the node corresponds to.
3646 unsigned NumResults = InstResults.size();
3648 // Parse the operands list from the (ops) list, validating it.
3649 assert(I.getArgList().empty() && "Args list should still be empty here!");
3651 // Check that all of the results occur first in the list.
3652 std::vector<Record*> Results;
3653 std::vector<unsigned> ResultIndices;
3654 SmallVector<TreePatternNodePtr, 2> ResNodes;
3655 for (unsigned i = 0; i != NumResults; ++i) {
3656 if (i == CGI.Operands.size()) {
3657 const std::string &OpName =
3658 std::find_if(InstResults.begin(), InstResults.end(),
3659 [](const std::pair<std::string, TreePatternNodePtr> &P) {
3660 return P.second;
3662 ->first;
3664 I.error("'" + OpName + "' set but does not appear in operand list!");
3667 const std::string &OpName = CGI.Operands[i].Name;
3669 // Check that it exists in InstResults.
3670 auto InstResultIter = InstResults.find(OpName);
3671 if (InstResultIter == InstResults.end() || !InstResultIter->second)
3672 I.error("Operand $" + OpName + " does not exist in operand list!");
3674 TreePatternNodePtr RNode = InstResultIter->second;
3675 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3676 ResNodes.push_back(std::move(RNode));
3677 if (!R)
3678 I.error("Operand $" + OpName + " should be a set destination: all "
3679 "outputs must occur before inputs in operand list!");
3681 if (!checkOperandClass(CGI.Operands[i], R))
3682 I.error("Operand $" + OpName + " class mismatch!");
3684 // Remember the return type.
3685 Results.push_back(CGI.Operands[i].Rec);
3687 // Remember the result index.
3688 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3690 // Okay, this one checks out.
3691 InstResultIter->second = nullptr;
3694 // Loop over the inputs next.
3695 std::vector<TreePatternNodePtr> ResultNodeOperands;
3696 std::vector<Record*> Operands;
3697 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3698 CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3699 const std::string &OpName = Op.Name;
3700 if (OpName.empty())
3701 I.error("Operand #" + Twine(i) + " in operands list has no name!");
3703 if (!InstInputs.count(OpName)) {
3704 // If this is an operand with a DefaultOps set filled in, we can ignore
3705 // this. When we codegen it, we will do so as always executed.
3706 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3707 // Does it have a non-empty DefaultOps field? If so, ignore this
3708 // operand.
3709 if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3710 continue;
3712 I.error("Operand $" + OpName +
3713 " does not appear in the instruction pattern");
3715 TreePatternNodePtr InVal = InstInputs[OpName];
3716 InstInputs.erase(OpName); // It occurred, remove from map.
3718 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3719 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3720 if (!checkOperandClass(Op, InRec))
3721 I.error("Operand $" + OpName + "'s register class disagrees"
3722 " between the operand and pattern");
3724 Operands.push_back(Op.Rec);
3726 // Construct the result for the dest-pattern operand list.
3727 TreePatternNodePtr OpNode = InVal->clone();
3729 // No predicate is useful on the result.
3730 OpNode->clearPredicateCalls();
3732 // Promote the xform function to be an explicit node if set.
3733 if (Record *Xform = OpNode->getTransformFn()) {
3734 OpNode->setTransformFn(nullptr);
3735 std::vector<TreePatternNodePtr> Children;
3736 Children.push_back(OpNode);
3737 OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3738 OpNode->getNumTypes());
3741 ResultNodeOperands.push_back(std::move(OpNode));
3744 if (!InstInputs.empty())
3745 I.error("Input operand $" + InstInputs.begin()->first +
3746 " occurs in pattern but not in operands list!");
3748 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3749 I.getRecord(), std::move(ResultNodeOperands),
3750 GetNumNodeResults(I.getRecord(), *this));
3751 // Copy fully inferred output node types to instruction result pattern.
3752 for (unsigned i = 0; i != NumResults; ++i) {
3753 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3754 ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3755 ResultPattern->setResultIndex(i, ResultIndices[i]);
3758 // FIXME: Assume only the first tree is the pattern. The others are clobber
3759 // nodes.
3760 TreePatternNodePtr Pattern = I.getTree(0);
3761 TreePatternNodePtr SrcPattern;
3762 if (Pattern->getOperator()->getName() == "set") {
3763 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3764 } else{
3765 // Not a set (store or something?)
3766 SrcPattern = Pattern;
3769 // Create and insert the instruction.
3770 // FIXME: InstImpResults should not be part of DAGInstruction.
3771 Record *R = I.getRecord();
3772 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3773 std::forward_as_tuple(Results, Operands, InstImpResults,
3774 SrcPattern, ResultPattern));
3776 LLVM_DEBUG(I.dump());
3779 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3780 /// any fragments involved. This populates the Instructions list with fully
3781 /// resolved instructions.
3782 void CodeGenDAGPatterns::ParseInstructions() {
3783 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3785 for (Record *Instr : Instrs) {
3786 ListInit *LI = nullptr;
3788 if (isa<ListInit>(Instr->getValueInit("Pattern")))
3789 LI = Instr->getValueAsListInit("Pattern");
3791 // If there is no pattern, only collect minimal information about the
3792 // instruction for its operand list. We have to assume that there is one
3793 // result, as we have no detailed info. A pattern which references the
3794 // null_frag operator is as-if no pattern were specified. Normally this
3795 // is from a multiclass expansion w/ a SDPatternOperator passed in as
3796 // null_frag.
3797 if (!LI || LI->empty() || hasNullFragReference(LI)) {
3798 std::vector<Record*> Results;
3799 std::vector<Record*> Operands;
3801 CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3803 if (InstInfo.Operands.size() != 0) {
3804 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3805 Results.push_back(InstInfo.Operands[j].Rec);
3807 // The rest are inputs.
3808 for (unsigned j = InstInfo.Operands.NumDefs,
3809 e = InstInfo.Operands.size(); j < e; ++j)
3810 Operands.push_back(InstInfo.Operands[j].Rec);
3813 // Create and insert the instruction.
3814 std::vector<Record*> ImpResults;
3815 Instructions.insert(std::make_pair(Instr,
3816 DAGInstruction(Results, Operands, ImpResults)));
3817 continue; // no pattern.
3820 CodeGenInstruction &CGI = Target.getInstruction(Instr);
3821 parseInstructionPattern(CGI, LI, Instructions);
3824 // If we can, convert the instructions to be patterns that are matched!
3825 for (auto &Entry : Instructions) {
3826 Record *Instr = Entry.first;
3827 DAGInstruction &TheInst = Entry.second;
3828 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3829 TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3831 if (SrcPattern && ResultPattern) {
3832 TreePattern Pattern(Instr, SrcPattern, true, *this);
3833 TreePattern Result(Instr, ResultPattern, false, *this);
3834 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3839 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3841 static void FindNames(TreePatternNode *P,
3842 std::map<std::string, NameRecord> &Names,
3843 TreePattern *PatternTop) {
3844 if (!P->getName().empty()) {
3845 NameRecord &Rec = Names[P->getName()];
3846 // If this is the first instance of the name, remember the node.
3847 if (Rec.second++ == 0)
3848 Rec.first = P;
3849 else if (Rec.first->getExtTypes() != P->getExtTypes())
3850 PatternTop->error("repetition of value: $" + P->getName() +
3851 " where different uses have different types!");
3854 if (!P->isLeaf()) {
3855 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3856 FindNames(P->getChild(i), Names, PatternTop);
3860 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3861 std::vector<Predicate> Preds;
3862 for (Init *I : L->getValues()) {
3863 if (DefInit *Pred = dyn_cast<DefInit>(I))
3864 Preds.push_back(Pred->getDef());
3865 else
3866 llvm_unreachable("Non-def on the list");
3869 // Sort so that different orders get canonicalized to the same string.
3870 llvm::sort(Preds);
3871 return Preds;
3874 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3875 PatternToMatch &&PTM) {
3876 // Do some sanity checking on the pattern we're about to match.
3877 std::string Reason;
3878 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3879 PrintWarning(Pattern->getRecord()->getLoc(),
3880 Twine("Pattern can never match: ") + Reason);
3881 return;
3884 // If the source pattern's root is a complex pattern, that complex pattern
3885 // must specify the nodes it can potentially match.
3886 if (const ComplexPattern *CP =
3887 PTM.getSrcPattern()->getComplexPatternInfo(*this))
3888 if (CP->getRootNodes().empty())
3889 Pattern->error("ComplexPattern at root must specify list of opcodes it"
3890 " could match");
3893 // Find all of the named values in the input and output, ensure they have the
3894 // same type.
3895 std::map<std::string, NameRecord> SrcNames, DstNames;
3896 FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3897 FindNames(PTM.getDstPattern(), DstNames, Pattern);
3899 // Scan all of the named values in the destination pattern, rejecting them if
3900 // they don't exist in the input pattern.
3901 for (const auto &Entry : DstNames) {
3902 if (SrcNames[Entry.first].first == nullptr)
3903 Pattern->error("Pattern has input without matching name in output: $" +
3904 Entry.first);
3907 // Scan all of the named values in the source pattern, rejecting them if the
3908 // name isn't used in the dest, and isn't used to tie two values together.
3909 for (const auto &Entry : SrcNames)
3910 if (DstNames[Entry.first].first == nullptr &&
3911 SrcNames[Entry.first].second == 1)
3912 Pattern->error("Pattern has dead named input: $" + Entry.first);
3914 PatternsToMatch.push_back(PTM);
3917 void CodeGenDAGPatterns::InferInstructionFlags() {
3918 ArrayRef<const CodeGenInstruction*> Instructions =
3919 Target.getInstructionsByEnumValue();
3921 unsigned Errors = 0;
3923 // Try to infer flags from all patterns in PatternToMatch. These include
3924 // both the primary instruction patterns (which always come first) and
3925 // patterns defined outside the instruction.
3926 for (const PatternToMatch &PTM : ptms()) {
3927 // We can only infer from single-instruction patterns, otherwise we won't
3928 // know which instruction should get the flags.
3929 SmallVector<Record*, 8> PatInstrs;
3930 getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3931 if (PatInstrs.size() != 1)
3932 continue;
3934 // Get the single instruction.
3935 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3937 // Only infer properties from the first pattern. We'll verify the others.
3938 if (InstInfo.InferredFrom)
3939 continue;
3941 InstAnalyzer PatInfo(*this);
3942 PatInfo.Analyze(PTM);
3943 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3946 if (Errors)
3947 PrintFatalError("pattern conflicts");
3949 // If requested by the target, guess any undefined properties.
3950 if (Target.guessInstructionProperties()) {
3951 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3952 CodeGenInstruction *InstInfo =
3953 const_cast<CodeGenInstruction *>(Instructions[i]);
3954 if (InstInfo->InferredFrom)
3955 continue;
3956 // The mayLoad and mayStore flags default to false.
3957 // Conservatively assume hasSideEffects if it wasn't explicit.
3958 if (InstInfo->hasSideEffects_Unset)
3959 InstInfo->hasSideEffects = true;
3961 return;
3964 // Complain about any flags that are still undefined.
3965 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3966 CodeGenInstruction *InstInfo =
3967 const_cast<CodeGenInstruction *>(Instructions[i]);
3968 if (InstInfo->InferredFrom)
3969 continue;
3970 if (InstInfo->hasSideEffects_Unset)
3971 PrintError(InstInfo->TheDef->getLoc(),
3972 "Can't infer hasSideEffects from patterns");
3973 if (InstInfo->mayStore_Unset)
3974 PrintError(InstInfo->TheDef->getLoc(),
3975 "Can't infer mayStore from patterns");
3976 if (InstInfo->mayLoad_Unset)
3977 PrintError(InstInfo->TheDef->getLoc(),
3978 "Can't infer mayLoad from patterns");
3983 /// Verify instruction flags against pattern node properties.
3984 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3985 unsigned Errors = 0;
3986 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3987 const PatternToMatch &PTM = *I;
3988 SmallVector<Record*, 8> Instrs;
3989 getInstructionsInTree(PTM.getDstPattern(), Instrs);
3990 if (Instrs.empty())
3991 continue;
3993 // Count the number of instructions with each flag set.
3994 unsigned NumSideEffects = 0;
3995 unsigned NumStores = 0;
3996 unsigned NumLoads = 0;
3997 for (const Record *Instr : Instrs) {
3998 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3999 NumSideEffects += InstInfo.hasSideEffects;
4000 NumStores += InstInfo.mayStore;
4001 NumLoads += InstInfo.mayLoad;
4004 // Analyze the source pattern.
4005 InstAnalyzer PatInfo(*this);
4006 PatInfo.Analyze(PTM);
4008 // Collect error messages.
4009 SmallVector<std::string, 4> Msgs;
4011 // Check for missing flags in the output.
4012 // Permit extra flags for now at least.
4013 if (PatInfo.hasSideEffects && !NumSideEffects)
4014 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4016 // Don't verify store flags on instructions with side effects. At least for
4017 // intrinsics, side effects implies mayStore.
4018 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4019 Msgs.push_back("pattern may store, but mayStore isn't set");
4021 // Similarly, mayStore implies mayLoad on intrinsics.
4022 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4023 Msgs.push_back("pattern may load, but mayLoad isn't set");
4025 // Print error messages.
4026 if (Msgs.empty())
4027 continue;
4028 ++Errors;
4030 for (const std::string &Msg : Msgs)
4031 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
4032 (Instrs.size() == 1 ?
4033 "instruction" : "output instructions"));
4034 // Provide the location of the relevant instruction definitions.
4035 for (const Record *Instr : Instrs) {
4036 if (Instr != PTM.getSrcRecord())
4037 PrintError(Instr->getLoc(), "defined here");
4038 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4039 if (InstInfo.InferredFrom &&
4040 InstInfo.InferredFrom != InstInfo.TheDef &&
4041 InstInfo.InferredFrom != PTM.getSrcRecord())
4042 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4045 if (Errors)
4046 PrintFatalError("Errors in DAG patterns");
4049 /// Given a pattern result with an unresolved type, see if we can find one
4050 /// instruction with an unresolved result type. Force this result type to an
4051 /// arbitrary element if it's possible types to converge results.
4052 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
4053 if (N->isLeaf())
4054 return false;
4056 // Analyze children.
4057 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4058 if (ForceArbitraryInstResultType(N->getChild(i), TP))
4059 return true;
4061 if (!N->getOperator()->isSubClassOf("Instruction"))
4062 return false;
4064 // If this type is already concrete or completely unknown we can't do
4065 // anything.
4066 TypeInfer &TI = TP.getInfer();
4067 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
4068 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
4069 continue;
4071 // Otherwise, force its type to an arbitrary choice.
4072 if (TI.forceArbitrary(N->getExtType(i)))
4073 return true;
4076 return false;
4079 // Promote xform function to be an explicit node wherever set.
4080 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4081 if (Record *Xform = N->getTransformFn()) {
4082 N->setTransformFn(nullptr);
4083 std::vector<TreePatternNodePtr> Children;
4084 Children.push_back(PromoteXForms(N));
4085 return std::make_shared<TreePatternNode>(Xform, std::move(Children),
4086 N->getNumTypes());
4089 if (!N->isLeaf())
4090 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4091 TreePatternNodePtr Child = N->getChildShared(i);
4092 N->setChild(i, PromoteXForms(Child));
4094 return N;
4097 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4098 TreePattern &Pattern, TreePattern &Result,
4099 const std::vector<Record *> &InstImpResults) {
4101 // Inline pattern fragments and expand multiple alternatives.
4102 Pattern.InlinePatternFragments();
4103 Result.InlinePatternFragments();
4105 if (Result.getNumTrees() != 1)
4106 Result.error("Cannot use multi-alternative fragments in result pattern!");
4108 // Infer types.
4109 bool IterateInference;
4110 bool InferredAllPatternTypes, InferredAllResultTypes;
4111 do {
4112 // Infer as many types as possible. If we cannot infer all of them, we
4113 // can never do anything with this pattern: report it to the user.
4114 InferredAllPatternTypes =
4115 Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4117 // Infer as many types as possible. If we cannot infer all of them, we
4118 // can never do anything with this pattern: report it to the user.
4119 InferredAllResultTypes =
4120 Result.InferAllTypes(&Pattern.getNamedNodesMap());
4122 IterateInference = false;
4124 // Apply the type of the result to the source pattern. This helps us
4125 // resolve cases where the input type is known to be a pointer type (which
4126 // is considered resolved), but the result knows it needs to be 32- or
4127 // 64-bits. Infer the other way for good measure.
4128 for (auto T : Pattern.getTrees())
4129 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4130 T->getNumTypes());
4131 i != e; ++i) {
4132 IterateInference |= T->UpdateNodeType(
4133 i, Result.getOnlyTree()->getExtType(i), Result);
4134 IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4135 i, T->getExtType(i), Result);
4138 // If our iteration has converged and the input pattern's types are fully
4139 // resolved but the result pattern is not fully resolved, we may have a
4140 // situation where we have two instructions in the result pattern and
4141 // the instructions require a common register class, but don't care about
4142 // what actual MVT is used. This is actually a bug in our modelling:
4143 // output patterns should have register classes, not MVTs.
4145 // In any case, to handle this, we just go through and disambiguate some
4146 // arbitrary types to the result pattern's nodes.
4147 if (!IterateInference && InferredAllPatternTypes &&
4148 !InferredAllResultTypes)
4149 IterateInference =
4150 ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4151 } while (IterateInference);
4153 // Verify that we inferred enough types that we can do something with the
4154 // pattern and result. If these fire the user has to add type casts.
4155 if (!InferredAllPatternTypes)
4156 Pattern.error("Could not infer all types in pattern!");
4157 if (!InferredAllResultTypes) {
4158 Pattern.dump();
4159 Result.error("Could not infer all types in pattern result!");
4162 // Promote xform function to be an explicit node wherever set.
4163 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4165 TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4166 Temp.InferAllTypes();
4168 ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4169 int Complexity = TheDef->getValueAsInt("AddedComplexity");
4171 if (PatternRewriter)
4172 PatternRewriter(&Pattern);
4174 // A pattern may end up with an "impossible" type, i.e. a situation
4175 // where all types have been eliminated for some node in this pattern.
4176 // This could occur for intrinsics that only make sense for a specific
4177 // value type, and use a specific register class. If, for some mode,
4178 // that register class does not accept that type, the type inference
4179 // will lead to a contradiction, which is not an error however, but
4180 // a sign that this pattern will simply never match.
4181 if (Temp.getOnlyTree()->hasPossibleType())
4182 for (auto T : Pattern.getTrees())
4183 if (T->hasPossibleType())
4184 AddPatternToMatch(&Pattern,
4185 PatternToMatch(TheDef, makePredList(Preds),
4186 T, Temp.getOnlyTree(),
4187 InstImpResults, Complexity,
4188 TheDef->getID()));
4191 void CodeGenDAGPatterns::ParsePatterns() {
4192 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4194 for (Record *CurPattern : Patterns) {
4195 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4197 // If the pattern references the null_frag, there's nothing to do.
4198 if (hasNullFragReference(Tree))
4199 continue;
4201 TreePattern Pattern(CurPattern, Tree, true, *this);
4203 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4204 if (LI->empty()) continue; // no pattern.
4206 // Parse the instruction.
4207 TreePattern Result(CurPattern, LI, false, *this);
4209 if (Result.getNumTrees() != 1)
4210 Result.error("Cannot handle instructions producing instructions "
4211 "with temporaries yet!");
4213 // Validate that the input pattern is correct.
4214 std::map<std::string, TreePatternNodePtr> InstInputs;
4215 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4216 InstResults;
4217 std::vector<Record*> InstImpResults;
4218 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4219 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4220 InstResults, InstImpResults);
4222 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4226 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4227 for (const TypeSetByHwMode &VTS : N->getExtTypes())
4228 for (const auto &I : VTS)
4229 Modes.insert(I.first);
4231 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4232 collectModes(Modes, N->getChild(i));
4235 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4236 const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4237 std::map<unsigned,std::vector<Predicate>> ModeChecks;
4238 std::vector<PatternToMatch> Copy = PatternsToMatch;
4239 PatternsToMatch.clear();
4241 auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
4242 TreePatternNodePtr NewSrc = P.SrcPattern->clone();
4243 TreePatternNodePtr NewDst = P.DstPattern->clone();
4244 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4245 return;
4248 std::vector<Predicate> Preds = P.Predicates;
4249 const std::vector<Predicate> &MC = ModeChecks[Mode];
4250 Preds.insert(Preds.end(), MC.begin(), MC.end());
4251 PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
4252 std::move(NewDst), P.getDstRegs(),
4253 P.getAddedComplexity(), Record::getNewUID(),
4254 Mode);
4257 for (PatternToMatch &P : Copy) {
4258 TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4259 if (P.SrcPattern->hasProperTypeByHwMode())
4260 SrcP = P.SrcPattern;
4261 if (P.DstPattern->hasProperTypeByHwMode())
4262 DstP = P.DstPattern;
4263 if (!SrcP && !DstP) {
4264 PatternsToMatch.push_back(P);
4265 continue;
4268 std::set<unsigned> Modes;
4269 if (SrcP)
4270 collectModes(Modes, SrcP.get());
4271 if (DstP)
4272 collectModes(Modes, DstP.get());
4274 // The predicate for the default mode needs to be constructed for each
4275 // pattern separately.
4276 // Since not all modes must be present in each pattern, if a mode m is
4277 // absent, then there is no point in constructing a check for m. If such
4278 // a check was created, it would be equivalent to checking the default
4279 // mode, except not all modes' predicates would be a part of the checking
4280 // code. The subsequently generated check for the default mode would then
4281 // have the exact same patterns, but a different predicate code. To avoid
4282 // duplicated patterns with different predicate checks, construct the
4283 // default check as a negation of all predicates that are actually present
4284 // in the source/destination patterns.
4285 std::vector<Predicate> DefaultPred;
4287 for (unsigned M : Modes) {
4288 if (M == DefaultMode)
4289 continue;
4290 if (ModeChecks.find(M) != ModeChecks.end())
4291 continue;
4293 // Fill the map entry for this mode.
4294 const HwMode &HM = CGH.getMode(M);
4295 ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4297 // Add negations of the HM's predicates to the default predicate.
4298 DefaultPred.emplace_back(Predicate(HM.Features, false));
4301 for (unsigned M : Modes) {
4302 if (M == DefaultMode)
4303 continue;
4304 AppendPattern(P, M);
4307 bool HasDefault = Modes.count(DefaultMode);
4308 if (HasDefault)
4309 AppendPattern(P, DefaultMode);
4313 /// Dependent variable map for CodeGenDAGPattern variant generation
4314 typedef StringMap<int> DepVarMap;
4316 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4317 if (N->isLeaf()) {
4318 if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4319 DepMap[N->getName()]++;
4320 } else {
4321 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4322 FindDepVarsOf(N->getChild(i), DepMap);
4326 /// Find dependent variables within child patterns
4327 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4328 DepVarMap depcounts;
4329 FindDepVarsOf(N, depcounts);
4330 for (const auto &Pair : depcounts) {
4331 if (Pair.getValue() > 1)
4332 DepVars.insert(Pair.getKey());
4336 #ifndef NDEBUG
4337 /// Dump the dependent variable set:
4338 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4339 if (DepVars.empty()) {
4340 LLVM_DEBUG(errs() << "<empty set>");
4341 } else {
4342 LLVM_DEBUG(errs() << "[ ");
4343 for (const auto &DepVar : DepVars) {
4344 LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4346 LLVM_DEBUG(errs() << "]");
4349 #endif
4352 /// CombineChildVariants - Given a bunch of permutations of each child of the
4353 /// 'operator' node, put them together in all possible ways.
4354 static void CombineChildVariants(
4355 TreePatternNodePtr Orig,
4356 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4357 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4358 const MultipleUseVarSet &DepVars) {
4359 // Make sure that each operand has at least one variant to choose from.
4360 for (const auto &Variants : ChildVariants)
4361 if (Variants.empty())
4362 return;
4364 // The end result is an all-pairs construction of the resultant pattern.
4365 std::vector<unsigned> Idxs;
4366 Idxs.resize(ChildVariants.size());
4367 bool NotDone;
4368 do {
4369 #ifndef NDEBUG
4370 LLVM_DEBUG(if (!Idxs.empty()) {
4371 errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4372 for (unsigned Idx : Idxs) {
4373 errs() << Idx << " ";
4375 errs() << "]\n";
4377 #endif
4378 // Create the variant and add it to the output list.
4379 std::vector<TreePatternNodePtr> NewChildren;
4380 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4381 NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4382 TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4383 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4385 // Copy over properties.
4386 R->setName(Orig->getName());
4387 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4388 R->setPredicateCalls(Orig->getPredicateCalls());
4389 R->setTransformFn(Orig->getTransformFn());
4390 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4391 R->setType(i, Orig->getExtType(i));
4393 // If this pattern cannot match, do not include it as a variant.
4394 std::string ErrString;
4395 // Scan to see if this pattern has already been emitted. We can get
4396 // duplication due to things like commuting:
4397 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4398 // which are the same pattern. Ignore the dups.
4399 if (R->canPatternMatch(ErrString, CDP) &&
4400 none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4401 return R->isIsomorphicTo(Variant.get(), DepVars);
4403 OutVariants.push_back(R);
4405 // Increment indices to the next permutation by incrementing the
4406 // indices from last index backward, e.g., generate the sequence
4407 // [0, 0], [0, 1], [1, 0], [1, 1].
4408 int IdxsIdx;
4409 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4410 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4411 Idxs[IdxsIdx] = 0;
4412 else
4413 break;
4415 NotDone = (IdxsIdx >= 0);
4416 } while (NotDone);
4419 /// CombineChildVariants - A helper function for binary operators.
4421 static void CombineChildVariants(TreePatternNodePtr Orig,
4422 const std::vector<TreePatternNodePtr> &LHS,
4423 const std::vector<TreePatternNodePtr> &RHS,
4424 std::vector<TreePatternNodePtr> &OutVariants,
4425 CodeGenDAGPatterns &CDP,
4426 const MultipleUseVarSet &DepVars) {
4427 std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4428 ChildVariants.push_back(LHS);
4429 ChildVariants.push_back(RHS);
4430 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4433 static void
4434 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4435 std::vector<TreePatternNodePtr> &Children) {
4436 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4437 Record *Operator = N->getOperator();
4439 // Only permit raw nodes.
4440 if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4441 N->getTransformFn()) {
4442 Children.push_back(N);
4443 return;
4446 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4447 Children.push_back(N->getChildShared(0));
4448 else
4449 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4451 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4452 Children.push_back(N->getChildShared(1));
4453 else
4454 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4457 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4458 /// the (potentially recursive) pattern by using algebraic laws.
4460 static void GenerateVariantsOf(TreePatternNodePtr N,
4461 std::vector<TreePatternNodePtr> &OutVariants,
4462 CodeGenDAGPatterns &CDP,
4463 const MultipleUseVarSet &DepVars) {
4464 // We cannot permute leaves or ComplexPattern uses.
4465 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4466 OutVariants.push_back(N);
4467 return;
4470 // Look up interesting info about the node.
4471 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4473 // If this node is associative, re-associate.
4474 if (NodeInfo.hasProperty(SDNPAssociative)) {
4475 // Re-associate by pulling together all of the linked operators
4476 std::vector<TreePatternNodePtr> MaximalChildren;
4477 GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4479 // Only handle child sizes of 3. Otherwise we'll end up trying too many
4480 // permutations.
4481 if (MaximalChildren.size() == 3) {
4482 // Find the variants of all of our maximal children.
4483 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4484 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4485 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4486 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4488 // There are only two ways we can permute the tree:
4489 // (A op B) op C and A op (B op C)
4490 // Within these forms, we can also permute A/B/C.
4492 // Generate legal pair permutations of A/B/C.
4493 std::vector<TreePatternNodePtr> ABVariants;
4494 std::vector<TreePatternNodePtr> BAVariants;
4495 std::vector<TreePatternNodePtr> ACVariants;
4496 std::vector<TreePatternNodePtr> CAVariants;
4497 std::vector<TreePatternNodePtr> BCVariants;
4498 std::vector<TreePatternNodePtr> CBVariants;
4499 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4500 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4501 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4502 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4503 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4504 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4506 // Combine those into the result: (x op x) op x
4507 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4508 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4509 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4510 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4511 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4512 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4514 // Combine those into the result: x op (x op x)
4515 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4516 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4517 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4518 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4519 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4520 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4521 return;
4525 // Compute permutations of all children.
4526 std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4527 ChildVariants.resize(N->getNumChildren());
4528 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4529 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4531 // Build all permutations based on how the children were formed.
4532 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4534 // If this node is commutative, consider the commuted order.
4535 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4536 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4537 assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4538 "Commutative but doesn't have 2 children!");
4539 // Don't count children which are actually register references.
4540 unsigned NC = 0;
4541 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4542 TreePatternNode *Child = N->getChild(i);
4543 if (Child->isLeaf())
4544 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4545 Record *RR = DI->getDef();
4546 if (RR->isSubClassOf("Register"))
4547 continue;
4549 NC++;
4551 // Consider the commuted order.
4552 if (isCommIntrinsic) {
4553 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4554 // operands are the commutative operands, and there might be more operands
4555 // after those.
4556 assert(NC >= 3 &&
4557 "Commutative intrinsic should have at least 3 children!");
4558 std::vector<std::vector<TreePatternNodePtr>> Variants;
4559 Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4560 Variants.push_back(std::move(ChildVariants[2]));
4561 Variants.push_back(std::move(ChildVariants[1]));
4562 for (unsigned i = 3; i != NC; ++i)
4563 Variants.push_back(std::move(ChildVariants[i]));
4564 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4565 } else if (NC == N->getNumChildren()) {
4566 std::vector<std::vector<TreePatternNodePtr>> Variants;
4567 Variants.push_back(std::move(ChildVariants[1]));
4568 Variants.push_back(std::move(ChildVariants[0]));
4569 for (unsigned i = 2; i != NC; ++i)
4570 Variants.push_back(std::move(ChildVariants[i]));
4571 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4577 // GenerateVariants - Generate variants. For example, commutative patterns can
4578 // match multiple ways. Add them to PatternsToMatch as well.
4579 void CodeGenDAGPatterns::GenerateVariants() {
4580 LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4582 // Loop over all of the patterns we've collected, checking to see if we can
4583 // generate variants of the instruction, through the exploitation of
4584 // identities. This permits the target to provide aggressive matching without
4585 // the .td file having to contain tons of variants of instructions.
4587 // Note that this loop adds new patterns to the PatternsToMatch list, but we
4588 // intentionally do not reconsider these. Any variants of added patterns have
4589 // already been added.
4591 const unsigned NumOriginalPatterns = PatternsToMatch.size();
4592 BitVector MatchedPatterns(NumOriginalPatterns);
4593 std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
4594 BitVector(NumOriginalPatterns));
4596 typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
4597 DepsAndVariants;
4598 std::map<unsigned, DepsAndVariants> PatternsWithVariants;
4600 // Collect patterns with more than one variant.
4601 for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
4602 MultipleUseVarSet DepVars;
4603 std::vector<TreePatternNodePtr> Variants;
4604 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4605 LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4606 LLVM_DEBUG(DumpDepVars(DepVars));
4607 LLVM_DEBUG(errs() << "\n");
4608 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4609 *this, DepVars);
4611 assert(!Variants.empty() && "Must create at least original variant!");
4612 if (Variants.size() == 1) // No additional variants for this pattern.
4613 continue;
4615 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4616 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4618 PatternsWithVariants[i] = std::make_pair(DepVars, Variants);
4620 // Cache matching predicates.
4621 if (MatchedPatterns[i])
4622 continue;
4624 const std::vector<Predicate> &Predicates =
4625 PatternsToMatch[i].getPredicates();
4627 BitVector &Matches = MatchedPredicates[i];
4628 MatchedPatterns.set(i);
4629 Matches.set(i);
4631 // Don't test patterns that have already been cached - it won't match.
4632 for (unsigned p = 0; p != NumOriginalPatterns; ++p)
4633 if (!MatchedPatterns[p])
4634 Matches[p] = (Predicates == PatternsToMatch[p].getPredicates());
4636 // Copy this to all the matching patterns.
4637 for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
4638 if (p != (int)i) {
4639 MatchedPatterns.set(p);
4640 MatchedPredicates[p] = Matches;
4644 for (auto it : PatternsWithVariants) {
4645 unsigned i = it.first;
4646 const MultipleUseVarSet &DepVars = it.second.first;
4647 const std::vector<TreePatternNodePtr> &Variants = it.second.second;
4649 for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4650 TreePatternNodePtr Variant = Variants[v];
4651 BitVector &Matches = MatchedPredicates[i];
4653 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump();
4654 errs() << "\n");
4656 // Scan to see if an instruction or explicit pattern already matches this.
4657 bool AlreadyExists = false;
4658 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4659 // Skip if the top level predicates do not match.
4660 if (!Matches[p])
4661 continue;
4662 // Check to see if this variant already exists.
4663 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4664 DepVars)) {
4665 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
4666 AlreadyExists = true;
4667 break;
4670 // If we already have it, ignore the variant.
4671 if (AlreadyExists) continue;
4673 // Otherwise, add it to the list of patterns we have.
4674 PatternsToMatch.push_back(PatternToMatch(
4675 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4676 Variant, PatternsToMatch[i].getDstPatternShared(),
4677 PatternsToMatch[i].getDstRegs(),
4678 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4679 MatchedPredicates.push_back(Matches);
4681 // Add a new match the same as this pattern.
4682 for (auto &P : MatchedPredicates)
4683 P.push_back(P[i]);
4686 LLVM_DEBUG(errs() << "\n");