[llvm] [cmake] Add possibility to use ChooseMSVCCRT.cmake when include LLVM library
[llvm-core.git] / utils / TableGen / CodeGenRegisters.cpp
blob6153c759b12306543492b86398ab79d796e54d33
1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate information gleaned from the
10 // target register and register class definitions.
12 //===----------------------------------------------------------------------===//
14 #include "CodeGenRegisters.h"
15 #include "CodeGenTarget.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/IntEqClasses.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/TableGen/Error.h"
32 #include "llvm/TableGen/Record.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstdint>
36 #include <iterator>
37 #include <map>
38 #include <queue>
39 #include <set>
40 #include <string>
41 #include <tuple>
42 #include <utility>
43 #include <vector>
45 using namespace llvm;
47 #define DEBUG_TYPE "regalloc-emitter"
49 //===----------------------------------------------------------------------===//
50 // CodeGenSubRegIndex
51 //===----------------------------------------------------------------------===//
53 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
54 : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {
55 Name = R->getName();
56 if (R->getValue("Namespace"))
57 Namespace = R->getValueAsString("Namespace");
58 Size = R->getValueAsInt("Size");
59 Offset = R->getValueAsInt("Offset");
62 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
63 unsigned Enum)
64 : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1),
65 EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {
68 std::string CodeGenSubRegIndex::getQualifiedName() const {
69 std::string N = getNamespace();
70 if (!N.empty())
71 N += "::";
72 N += getName();
73 return N;
76 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
77 if (!TheDef)
78 return;
80 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
81 if (!Comps.empty()) {
82 if (Comps.size() != 2)
83 PrintFatalError(TheDef->getLoc(),
84 "ComposedOf must have exactly two entries");
85 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
86 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
87 CodeGenSubRegIndex *X = A->addComposite(B, this);
88 if (X)
89 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
92 std::vector<Record*> Parts =
93 TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
94 if (!Parts.empty()) {
95 if (Parts.size() < 2)
96 PrintFatalError(TheDef->getLoc(),
97 "CoveredBySubRegs must have two or more entries");
98 SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
99 for (Record *Part : Parts)
100 IdxParts.push_back(RegBank.getSubRegIdx(Part));
101 setConcatenationOf(IdxParts);
105 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const {
106 // Already computed?
107 if (LaneMask.any())
108 return LaneMask;
110 // Recursion guard, shouldn't be required.
111 LaneMask = LaneBitmask::getAll();
113 // The lane mask is simply the union of all sub-indices.
114 LaneBitmask M;
115 for (const auto &C : Composed)
116 M |= C.second->computeLaneMask();
117 assert(M.any() && "Missing lane mask, sub-register cycle?");
118 LaneMask = M;
119 return LaneMask;
122 void CodeGenSubRegIndex::setConcatenationOf(
123 ArrayRef<CodeGenSubRegIndex*> Parts) {
124 if (ConcatenationOf.empty())
125 ConcatenationOf.assign(Parts.begin(), Parts.end());
126 else
127 assert(std::equal(Parts.begin(), Parts.end(),
128 ConcatenationOf.begin()) && "parts consistent");
131 void CodeGenSubRegIndex::computeConcatTransitiveClosure() {
132 for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator
133 I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) {
134 CodeGenSubRegIndex *SubIdx = *I;
135 SubIdx->computeConcatTransitiveClosure();
136 #ifndef NDEBUG
137 for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf)
138 assert(SRI->ConcatenationOf.empty() && "No transitive closure?");
139 #endif
141 if (SubIdx->ConcatenationOf.empty()) {
142 ++I;
143 } else {
144 I = ConcatenationOf.erase(I);
145 I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(),
146 SubIdx->ConcatenationOf.end());
147 I += SubIdx->ConcatenationOf.size();
152 //===----------------------------------------------------------------------===//
153 // CodeGenRegister
154 //===----------------------------------------------------------------------===//
156 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
157 : TheDef(R),
158 EnumValue(Enum),
159 CostPerUse(R->getValueAsInt("CostPerUse")),
160 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
161 HasDisjunctSubRegs(false),
162 SubRegsComplete(false),
163 SuperRegsComplete(false),
164 TopoSig(~0u) {
165 Artificial = R->getValueAsBit("isArtificial");
168 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
169 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
170 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
172 if (SRIs.size() != SRs.size())
173 PrintFatalError(TheDef->getLoc(),
174 "SubRegs and SubRegIndices must have the same size");
176 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
177 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
178 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
181 // Also compute leading super-registers. Each register has a list of
182 // covered-by-subregs super-registers where it appears as the first explicit
183 // sub-register.
185 // This is used by computeSecondarySubRegs() to find candidates.
186 if (CoveredBySubRegs && !ExplicitSubRegs.empty())
187 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
189 // Add ad hoc alias links. This is a symmetric relationship between two
190 // registers, so build a symmetric graph by adding links in both ends.
191 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
192 for (Record *Alias : Aliases) {
193 CodeGenRegister *Reg = RegBank.getReg(Alias);
194 ExplicitAliases.push_back(Reg);
195 Reg->ExplicitAliases.push_back(this);
199 const StringRef CodeGenRegister::getName() const {
200 assert(TheDef && "no def");
201 return TheDef->getName();
204 namespace {
206 // Iterate over all register units in a set of registers.
207 class RegUnitIterator {
208 CodeGenRegister::Vec::const_iterator RegI, RegE;
209 CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
211 public:
212 RegUnitIterator(const CodeGenRegister::Vec &Regs):
213 RegI(Regs.begin()), RegE(Regs.end()) {
215 if (RegI != RegE) {
216 UnitI = (*RegI)->getRegUnits().begin();
217 UnitE = (*RegI)->getRegUnits().end();
218 advance();
222 bool isValid() const { return UnitI != UnitE; }
224 unsigned operator* () const { assert(isValid()); return *UnitI; }
226 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
228 /// Preincrement. Move to the next unit.
229 void operator++() {
230 assert(isValid() && "Cannot advance beyond the last operand");
231 ++UnitI;
232 advance();
235 protected:
236 void advance() {
237 while (UnitI == UnitE) {
238 if (++RegI == RegE)
239 break;
240 UnitI = (*RegI)->getRegUnits().begin();
241 UnitE = (*RegI)->getRegUnits().end();
246 } // end anonymous namespace
248 // Return true of this unit appears in RegUnits.
249 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
250 return RegUnits.test(Unit);
253 // Inherit register units from subregisters.
254 // Return true if the RegUnits changed.
255 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
256 bool changed = false;
257 for (const auto &SubReg : SubRegs) {
258 CodeGenRegister *SR = SubReg.second;
259 // Merge the subregister's units into this register's RegUnits.
260 changed |= (RegUnits |= SR->RegUnits);
263 return changed;
266 const CodeGenRegister::SubRegMap &
267 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
268 // Only compute this map once.
269 if (SubRegsComplete)
270 return SubRegs;
271 SubRegsComplete = true;
273 HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
275 // First insert the explicit subregs and make sure they are fully indexed.
276 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
277 CodeGenRegister *SR = ExplicitSubRegs[i];
278 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
279 if (!SR->Artificial)
280 Idx->Artificial = false;
281 if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
282 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
283 " appears twice in Register " + getName());
284 // Map explicit sub-registers first, so the names take precedence.
285 // The inherited sub-registers are mapped below.
286 SubReg2Idx.insert(std::make_pair(SR, Idx));
289 // Keep track of inherited subregs and how they can be reached.
290 SmallPtrSet<CodeGenRegister*, 8> Orphans;
292 // Clone inherited subregs and place duplicate entries in Orphans.
293 // Here the order is important - earlier subregs take precedence.
294 for (CodeGenRegister *ESR : ExplicitSubRegs) {
295 const SubRegMap &Map = ESR->computeSubRegs(RegBank);
296 HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs;
298 for (const auto &SR : Map) {
299 if (!SubRegs.insert(SR).second)
300 Orphans.insert(SR.second);
304 // Expand any composed subreg indices.
305 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
306 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process
307 // expanded subreg indices recursively.
308 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
309 for (unsigned i = 0; i != Indices.size(); ++i) {
310 CodeGenSubRegIndex *Idx = Indices[i];
311 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
312 CodeGenRegister *SR = SubRegs[Idx];
313 const SubRegMap &Map = SR->computeSubRegs(RegBank);
315 // Look at the possible compositions of Idx.
316 // They may not all be supported by SR.
317 for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
318 E = Comps.end(); I != E; ++I) {
319 SubRegMap::const_iterator SRI = Map.find(I->first);
320 if (SRI == Map.end())
321 continue; // Idx + I->first doesn't exist in SR.
322 // Add I->second as a name for the subreg SRI->second, assuming it is
323 // orphaned, and the name isn't already used for something else.
324 if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
325 continue;
326 // We found a new name for the orphaned sub-register.
327 SubRegs.insert(std::make_pair(I->second, SRI->second));
328 Indices.push_back(I->second);
332 // Now Orphans contains the inherited subregisters without a direct index.
333 // Create inferred indexes for all missing entries.
334 // Work backwards in the Indices vector in order to compose subregs bottom-up.
335 // Consider this subreg sequence:
337 // qsub_1 -> dsub_0 -> ssub_0
339 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
340 // can be reached in two different ways:
342 // qsub_1 -> ssub_0
343 // dsub_2 -> ssub_0
345 // We pick the latter composition because another register may have [dsub_0,
346 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The
347 // dsub_2 -> ssub_0 composition can be shared.
348 while (!Indices.empty() && !Orphans.empty()) {
349 CodeGenSubRegIndex *Idx = Indices.pop_back_val();
350 CodeGenRegister *SR = SubRegs[Idx];
351 const SubRegMap &Map = SR->computeSubRegs(RegBank);
352 for (const auto &SubReg : Map)
353 if (Orphans.erase(SubReg.second))
354 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second;
357 // Compute the inverse SubReg -> Idx map.
358 for (const auto &SubReg : SubRegs) {
359 if (SubReg.second == this) {
360 ArrayRef<SMLoc> Loc;
361 if (TheDef)
362 Loc = TheDef->getLoc();
363 PrintFatalError(Loc, "Register " + getName() +
364 " has itself as a sub-register");
367 // Compute AllSuperRegsCovered.
368 if (!CoveredBySubRegs)
369 SubReg.first->AllSuperRegsCovered = false;
371 // Ensure that every sub-register has a unique name.
372 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
373 SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first;
374 if (Ins->second == SubReg.first)
375 continue;
376 // Trouble: Two different names for SubReg.second.
377 ArrayRef<SMLoc> Loc;
378 if (TheDef)
379 Loc = TheDef->getLoc();
380 PrintFatalError(Loc, "Sub-register can't have two names: " +
381 SubReg.second->getName() + " available as " +
382 SubReg.first->getName() + " and " + Ins->second->getName());
385 // Derive possible names for sub-register concatenations from any explicit
386 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
387 // that getConcatSubRegIndex() won't invent any concatenated indices that the
388 // user already specified.
389 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
390 CodeGenRegister *SR = ExplicitSubRegs[i];
391 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 ||
392 SR->Artificial)
393 continue;
395 // SR is composed of multiple sub-regs. Find their names in this register.
396 SmallVector<CodeGenSubRegIndex*, 8> Parts;
397 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) {
398 CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j];
399 if (!I.Artificial)
400 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
403 // Offer this as an existing spelling for the concatenation of Parts.
404 CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i];
405 Idx.setConcatenationOf(Parts);
408 // Initialize RegUnitList. Because getSubRegs is called recursively, this
409 // processes the register hierarchy in postorder.
411 // Inherit all sub-register units. It is good enough to look at the explicit
412 // sub-registers, the other registers won't contribute any more units.
413 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
414 CodeGenRegister *SR = ExplicitSubRegs[i];
415 RegUnits |= SR->RegUnits;
418 // Absent any ad hoc aliasing, we create one register unit per leaf register.
419 // These units correspond to the maximal cliques in the register overlap
420 // graph which is optimal.
422 // When there is ad hoc aliasing, we simply create one unit per edge in the
423 // undirected ad hoc aliasing graph. Technically, we could do better by
424 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
425 // are extremely rare anyway (I've never seen one), so we don't bother with
426 // the added complexity.
427 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
428 CodeGenRegister *AR = ExplicitAliases[i];
429 // Only visit each edge once.
430 if (AR->SubRegsComplete)
431 continue;
432 // Create a RegUnit representing this alias edge, and add it to both
433 // registers.
434 unsigned Unit = RegBank.newRegUnit(this, AR);
435 RegUnits.set(Unit);
436 AR->RegUnits.set(Unit);
439 // Finally, create units for leaf registers without ad hoc aliases. Note that
440 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
441 // necessary. This means the aliasing leaf registers can share a single unit.
442 if (RegUnits.empty())
443 RegUnits.set(RegBank.newRegUnit(this));
445 // We have now computed the native register units. More may be adopted later
446 // for balancing purposes.
447 NativeRegUnits = RegUnits;
449 return SubRegs;
452 // In a register that is covered by its sub-registers, try to find redundant
453 // sub-registers. For example:
455 // QQ0 = {Q0, Q1}
456 // Q0 = {D0, D1}
457 // Q1 = {D2, D3}
459 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
460 // the register definition.
462 // The explicitly specified registers form a tree. This function discovers
463 // sub-register relationships that would force a DAG.
465 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
466 SmallVector<SubRegMap::value_type, 8> NewSubRegs;
468 std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue;
469 for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs)
470 SubRegQueue.push(P);
472 // Look at the leading super-registers of each sub-register. Those are the
473 // candidates for new sub-registers, assuming they are fully contained in
474 // this register.
475 while (!SubRegQueue.empty()) {
476 CodeGenSubRegIndex *SubRegIdx;
477 const CodeGenRegister *SubReg;
478 std::tie(SubRegIdx, SubReg) = SubRegQueue.front();
479 SubRegQueue.pop();
481 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
482 for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
483 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
484 // Already got this sub-register?
485 if (Cand == this || getSubRegIndex(Cand))
486 continue;
487 // Check if each component of Cand is already a sub-register.
488 assert(!Cand->ExplicitSubRegs.empty() &&
489 "Super-register has no sub-registers");
490 if (Cand->ExplicitSubRegs.size() == 1)
491 continue;
492 SmallVector<CodeGenSubRegIndex*, 8> Parts;
493 // We know that the first component is (SubRegIdx,SubReg). However we
494 // may still need to split it into smaller subregister parts.
495 assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct");
496 assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct");
497 for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) {
498 if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) {
499 if (SubRegIdx->ConcatenationOf.empty()) {
500 Parts.push_back(SubRegIdx);
501 } else
502 for (CodeGenSubRegIndex *SubIdx : SubRegIdx->ConcatenationOf)
503 Parts.push_back(SubIdx);
504 } else {
505 // Sub-register doesn't exist.
506 Parts.clear();
507 break;
510 // There is nothing to do if some Cand sub-register is not part of this
511 // register.
512 if (Parts.empty())
513 continue;
515 // Each part of Cand is a sub-register of this. Make the full Cand also
516 // a sub-register with a concatenated sub-register index.
517 CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts);
518 std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg =
519 std::make_pair(Concat, Cand);
521 if (!SubRegs.insert(NewSubReg).second)
522 continue;
524 // We inserted a new subregister.
525 NewSubRegs.push_back(NewSubReg);
526 SubRegQueue.push(NewSubReg);
527 SubReg2Idx.insert(std::make_pair(Cand, Concat));
531 // Create sub-register index composition maps for the synthesized indices.
532 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
533 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
534 CodeGenRegister *NewSubReg = NewSubRegs[i].second;
535 for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
536 SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
537 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
538 if (!SubIdx)
539 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
540 SI->second->getName() + " in " + getName());
541 NewIdx->addComposite(SI->first, SubIdx);
546 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
547 // Only visit each register once.
548 if (SuperRegsComplete)
549 return;
550 SuperRegsComplete = true;
552 // Make sure all sub-registers have been visited first, so the super-reg
553 // lists will be topologically ordered.
554 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
555 I != E; ++I)
556 I->second->computeSuperRegs(RegBank);
558 // Now add this as a super-register on all sub-registers.
559 // Also compute the TopoSigId in post-order.
560 TopoSigId Id;
561 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
562 I != E; ++I) {
563 // Topological signature computed from SubIdx, TopoId(SubReg).
564 // Loops and idempotent indices have TopoSig = ~0u.
565 Id.push_back(I->first->EnumValue);
566 Id.push_back(I->second->TopoSig);
568 // Don't add duplicate entries.
569 if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
570 continue;
571 I->second->SuperRegs.push_back(this);
573 TopoSig = RegBank.getTopoSig(Id);
576 void
577 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
578 CodeGenRegBank &RegBank) const {
579 assert(SubRegsComplete && "Must precompute sub-registers");
580 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
581 CodeGenRegister *SR = ExplicitSubRegs[i];
582 if (OSet.insert(SR))
583 SR->addSubRegsPreOrder(OSet, RegBank);
585 // Add any secondary sub-registers that weren't part of the explicit tree.
586 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
587 I != E; ++I)
588 OSet.insert(I->second);
591 // Get the sum of this register's unit weights.
592 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
593 unsigned Weight = 0;
594 for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end();
595 I != E; ++I) {
596 Weight += RegBank.getRegUnit(*I).Weight;
598 return Weight;
601 //===----------------------------------------------------------------------===//
602 // RegisterTuples
603 //===----------------------------------------------------------------------===//
605 // A RegisterTuples def is used to generate pseudo-registers from lists of
606 // sub-registers. We provide a SetTheory expander class that returns the new
607 // registers.
608 namespace {
610 struct TupleExpander : SetTheory::Expander {
611 // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of
612 // the synthesized definitions for their lifetime.
613 std::vector<std::unique_ptr<Record>> &SynthDefs;
615 TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs)
616 : SynthDefs(SynthDefs) {}
618 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
619 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
620 unsigned Dim = Indices.size();
621 ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
622 if (Dim != SubRegs->size())
623 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
624 if (Dim < 2)
625 PrintFatalError(Def->getLoc(),
626 "Tuples must have at least 2 sub-registers");
628 // Evaluate the sub-register lists to be zipped.
629 unsigned Length = ~0u;
630 SmallVector<SetTheory::RecSet, 4> Lists(Dim);
631 for (unsigned i = 0; i != Dim; ++i) {
632 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
633 Length = std::min(Length, unsigned(Lists[i].size()));
636 if (Length == 0)
637 return;
639 // Precompute some types.
640 Record *RegisterCl = Def->getRecords().getClass("Register");
641 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
642 std::vector<StringRef> RegNames =
643 Def->getValueAsListOfStrings("RegAsmNames");
645 // Zip them up.
646 for (unsigned n = 0; n != Length; ++n) {
647 std::string Name;
648 Record *Proto = Lists[0][n];
649 std::vector<Init*> Tuple;
650 unsigned CostPerUse = 0;
651 for (unsigned i = 0; i != Dim; ++i) {
652 Record *Reg = Lists[i][n];
653 if (i) Name += '_';
654 Name += Reg->getName();
655 Tuple.push_back(DefInit::get(Reg));
656 CostPerUse = std::max(CostPerUse,
657 unsigned(Reg->getValueAsInt("CostPerUse")));
660 StringInit *AsmName = StringInit::get("");
661 if (!RegNames.empty()) {
662 if (RegNames.size() <= n)
663 PrintFatalError(Def->getLoc(),
664 "Register tuple definition missing name for '" +
665 Name + "'.");
666 AsmName = StringInit::get(RegNames[n]);
669 // Create a new Record representing the synthesized register. This record
670 // is only for consumption by CodeGenRegister, it is not added to the
671 // RecordKeeper.
672 SynthDefs.emplace_back(
673 std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords()));
674 Record *NewReg = SynthDefs.back().get();
675 Elts.insert(NewReg);
677 // Copy Proto super-classes.
678 ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
679 for (const auto &SuperPair : Supers)
680 NewReg->addSuperClass(SuperPair.first, SuperPair.second);
682 // Copy Proto fields.
683 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
684 RecordVal RV = Proto->getValues()[i];
686 // Skip existing fields, like NAME.
687 if (NewReg->getValue(RV.getNameInit()))
688 continue;
690 StringRef Field = RV.getName();
692 // Replace the sub-register list with Tuple.
693 if (Field == "SubRegs")
694 RV.setValue(ListInit::get(Tuple, RegisterRecTy));
696 if (Field == "AsmName")
697 RV.setValue(AsmName);
699 // CostPerUse is aggregated from all Tuple members.
700 if (Field == "CostPerUse")
701 RV.setValue(IntInit::get(CostPerUse));
703 // Composite registers are always covered by sub-registers.
704 if (Field == "CoveredBySubRegs")
705 RV.setValue(BitInit::get(true));
707 // Copy fields from the RegisterTuples def.
708 if (Field == "SubRegIndices" ||
709 Field == "CompositeIndices") {
710 NewReg->addValue(*Def->getValue(Field));
711 continue;
714 // Some fields get their default uninitialized value.
715 if (Field == "DwarfNumbers" ||
716 Field == "DwarfAlias" ||
717 Field == "Aliases") {
718 if (const RecordVal *DefRV = RegisterCl->getValue(Field))
719 NewReg->addValue(*DefRV);
720 continue;
723 // Everything else is copied from Proto.
724 NewReg->addValue(RV);
730 } // end anonymous namespace
732 //===----------------------------------------------------------------------===//
733 // CodeGenRegisterClass
734 //===----------------------------------------------------------------------===//
736 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
737 llvm::sort(M, deref<std::less<>>());
738 M.erase(std::unique(M.begin(), M.end(), deref<std::equal_to<>>()), M.end());
741 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
742 : TheDef(R),
743 Name(R->getName()),
744 TopoSigs(RegBank.getNumTopoSigs()),
745 EnumValue(-1) {
747 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
748 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
749 Record *Type = TypeList[i];
750 if (!Type->isSubClassOf("ValueType"))
751 PrintFatalError(R->getLoc(),
752 "RegTypes list member '" + Type->getName() +
753 "' does not derive from the ValueType class!");
754 VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes()));
756 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
758 // Allocation order 0 is the full set. AltOrders provides others.
759 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
760 ListInit *AltOrders = R->getValueAsListInit("AltOrders");
761 Orders.resize(1 + AltOrders->size());
763 // Default allocation order always contains all registers.
764 Artificial = true;
765 for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
766 Orders[0].push_back((*Elements)[i]);
767 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
768 Members.push_back(Reg);
769 Artificial &= Reg->Artificial;
770 TopoSigs.set(Reg->getTopoSig());
772 sortAndUniqueRegisters(Members);
774 // Alternative allocation orders may be subsets.
775 SetTheory::RecSet Order;
776 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
777 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
778 Orders[1 + i].append(Order.begin(), Order.end());
779 // Verify that all altorder members are regclass members.
780 while (!Order.empty()) {
781 CodeGenRegister *Reg = RegBank.getReg(Order.back());
782 Order.pop_back();
783 if (!contains(Reg))
784 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
785 " is not a class member");
789 Namespace = R->getValueAsString("Namespace");
791 if (const RecordVal *RV = R->getValue("RegInfos"))
792 if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue()))
793 RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes());
794 unsigned Size = R->getValueAsInt("Size");
795 assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) &&
796 "Impossible to determine register size");
797 if (!RSI.hasDefault()) {
798 RegSizeInfo RI;
799 RI.RegSize = RI.SpillSize = Size ? Size
800 : VTs[0].getSimple().getSizeInBits();
801 RI.SpillAlignment = R->getValueAsInt("Alignment");
802 RSI.Map.insert({DefaultMode, RI});
805 CopyCost = R->getValueAsInt("CopyCost");
806 Allocatable = R->getValueAsBit("isAllocatable");
807 AltOrderSelect = R->getValueAsString("AltOrderSelect");
808 int AllocationPriority = R->getValueAsInt("AllocationPriority");
809 if (AllocationPriority < 0 || AllocationPriority > 63)
810 PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
811 this->AllocationPriority = AllocationPriority;
814 // Create an inferred register class that was missing from the .td files.
815 // Most properties will be inherited from the closest super-class after the
816 // class structure has been computed.
817 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
818 StringRef Name, Key Props)
819 : Members(*Props.Members),
820 TheDef(nullptr),
821 Name(Name),
822 TopoSigs(RegBank.getNumTopoSigs()),
823 EnumValue(-1),
824 RSI(Props.RSI),
825 CopyCost(0),
826 Allocatable(true),
827 AllocationPriority(0) {
828 Artificial = true;
829 for (const auto R : Members) {
830 TopoSigs.set(R->getTopoSig());
831 Artificial &= R->Artificial;
835 // Compute inherited propertied for a synthesized register class.
836 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
837 assert(!getDef() && "Only synthesized classes can inherit properties");
838 assert(!SuperClasses.empty() && "Synthesized class without super class");
840 // The last super-class is the smallest one.
841 CodeGenRegisterClass &Super = *SuperClasses.back();
843 // Most properties are copied directly.
844 // Exceptions are members, size, and alignment
845 Namespace = Super.Namespace;
846 VTs = Super.VTs;
847 CopyCost = Super.CopyCost;
848 Allocatable = Super.Allocatable;
849 AltOrderSelect = Super.AltOrderSelect;
850 AllocationPriority = Super.AllocationPriority;
852 // Copy all allocation orders, filter out foreign registers from the larger
853 // super-class.
854 Orders.resize(Super.Orders.size());
855 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
856 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
857 if (contains(RegBank.getReg(Super.Orders[i][j])))
858 Orders[i].push_back(Super.Orders[i][j]);
861 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
862 return std::binary_search(Members.begin(), Members.end(), Reg,
863 deref<std::less<>>());
866 namespace llvm {
868 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
869 OS << "{ " << K.RSI;
870 for (const auto R : *K.Members)
871 OS << ", " << R->getName();
872 return OS << " }";
875 } // end namespace llvm
877 // This is a simple lexicographical order that can be used to search for sets.
878 // It is not the same as the topological order provided by TopoOrderRC.
879 bool CodeGenRegisterClass::Key::
880 operator<(const CodeGenRegisterClass::Key &B) const {
881 assert(Members && B.Members);
882 return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI);
885 // Returns true if RC is a strict subclass.
886 // RC is a sub-class of this class if it is a valid replacement for any
887 // instruction operand where a register of this classis required. It must
888 // satisfy these conditions:
890 // 1. All RC registers are also in this.
891 // 2. The RC spill size must not be smaller than our spill size.
892 // 3. RC spill alignment must be compatible with ours.
894 static bool testSubClass(const CodeGenRegisterClass *A,
895 const CodeGenRegisterClass *B) {
896 return A->RSI.isSubClassOf(B->RSI) &&
897 std::includes(A->getMembers().begin(), A->getMembers().end(),
898 B->getMembers().begin(), B->getMembers().end(),
899 deref<std::less<>>());
902 /// Sorting predicate for register classes. This provides a topological
903 /// ordering that arranges all register classes before their sub-classes.
905 /// Register classes with the same registers, spill size, and alignment form a
906 /// clique. They will be ordered alphabetically.
908 static bool TopoOrderRC(const CodeGenRegisterClass &PA,
909 const CodeGenRegisterClass &PB) {
910 auto *A = &PA;
911 auto *B = &PB;
912 if (A == B)
913 return false;
915 if (A->RSI < B->RSI)
916 return true;
917 if (A->RSI != B->RSI)
918 return false;
920 // Order by descending set size. Note that the classes' allocation order may
921 // not have been computed yet. The Members set is always vaild.
922 if (A->getMembers().size() > B->getMembers().size())
923 return true;
924 if (A->getMembers().size() < B->getMembers().size())
925 return false;
927 // Finally order by name as a tie breaker.
928 return StringRef(A->getName()) < B->getName();
931 std::string CodeGenRegisterClass::getQualifiedName() const {
932 if (Namespace.empty())
933 return getName();
934 else
935 return (Namespace + "::" + getName()).str();
938 // Compute sub-classes of all register classes.
939 // Assume the classes are ordered topologically.
940 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
941 auto &RegClasses = RegBank.getRegClasses();
943 // Visit backwards so sub-classes are seen first.
944 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
945 CodeGenRegisterClass &RC = *I;
946 RC.SubClasses.resize(RegClasses.size());
947 RC.SubClasses.set(RC.EnumValue);
948 if (RC.Artificial)
949 continue;
951 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
952 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
953 CodeGenRegisterClass &SubRC = *I2;
954 if (RC.SubClasses.test(SubRC.EnumValue))
955 continue;
956 if (!testSubClass(&RC, &SubRC))
957 continue;
958 // SubRC is a sub-class. Grap all its sub-classes so we won't have to
959 // check them again.
960 RC.SubClasses |= SubRC.SubClasses;
963 // Sweep up missed clique members. They will be immediately preceding RC.
964 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
965 RC.SubClasses.set(I2->EnumValue);
968 // Compute the SuperClasses lists from the SubClasses vectors.
969 for (auto &RC : RegClasses) {
970 const BitVector &SC = RC.getSubClasses();
971 auto I = RegClasses.begin();
972 for (int s = 0, next_s = SC.find_first(); next_s != -1;
973 next_s = SC.find_next(s)) {
974 std::advance(I, next_s - s);
975 s = next_s;
976 if (&*I == &RC)
977 continue;
978 I->SuperClasses.push_back(&RC);
982 // With the class hierarchy in place, let synthesized register classes inherit
983 // properties from their closest super-class. The iteration order here can
984 // propagate properties down multiple levels.
985 for (auto &RC : RegClasses)
986 if (!RC.getDef())
987 RC.inheritProperties(RegBank);
990 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
991 CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
992 CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const {
993 auto SizeOrder = [](const CodeGenRegisterClass *A,
994 const CodeGenRegisterClass *B) {
995 return A->getMembers().size() > B->getMembers().size();
998 auto &RegClasses = RegBank.getRegClasses();
1000 // Find all the subclasses of this one that fully support the sub-register
1001 // index and order them by size. BiggestSuperRC should always be first.
1002 CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx);
1003 if (!BiggestSuperRegRC)
1004 return None;
1005 BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses();
1006 std::vector<CodeGenRegisterClass *> SuperRegRCs;
1007 for (auto &RC : RegClasses)
1008 if (SuperRegRCsBV[RC.EnumValue])
1009 SuperRegRCs.emplace_back(&RC);
1010 llvm::sort(SuperRegRCs, SizeOrder);
1011 assert(SuperRegRCs.front() == BiggestSuperRegRC && "Biggest class wasn't first");
1013 // Find all the subreg classes and order them by size too.
1014 std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses;
1015 for (auto &RC: RegClasses) {
1016 BitVector SuperRegClassesBV(RegClasses.size());
1017 RC.getSuperRegClasses(SubIdx, SuperRegClassesBV);
1018 if (SuperRegClassesBV.any())
1019 SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV));
1021 llvm::sort(SuperRegClasses,
1022 [&](const std::pair<CodeGenRegisterClass *, BitVector> &A,
1023 const std::pair<CodeGenRegisterClass *, BitVector> &B) {
1024 return SizeOrder(A.first, B.first);
1027 // Find the biggest subclass and subreg class such that R:subidx is in the
1028 // subreg class for all R in subclass.
1030 // For example:
1031 // All registers in X86's GR64 have a sub_32bit subregister but no class
1032 // exists that contains all the 32-bit subregisters because GR64 contains RIP
1033 // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
1034 // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
1035 // having excluded RIP, we are able to find a SubRegRC (GR32).
1036 CodeGenRegisterClass *ChosenSuperRegClass = nullptr;
1037 CodeGenRegisterClass *SubRegRC = nullptr;
1038 for (auto *SuperRegRC : SuperRegRCs) {
1039 for (const auto &SuperRegClassPair : SuperRegClasses) {
1040 const BitVector &SuperRegClassBV = SuperRegClassPair.second;
1041 if (SuperRegClassBV[SuperRegRC->EnumValue]) {
1042 SubRegRC = SuperRegClassPair.first;
1043 ChosenSuperRegClass = SuperRegRC;
1045 // If SubRegRC is bigger than SuperRegRC then there are members of
1046 // SubRegRC that don't have super registers via SubIdx. Keep looking to
1047 // find a better fit and fall back on this one if there isn't one.
1049 // This is intended to prevent X86 from making odd choices such as
1050 // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
1051 // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
1052 // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
1053 // mapping.
1054 if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size())
1055 return std::make_pair(ChosenSuperRegClass, SubRegRC);
1059 // If we found a fit but it wasn't quite ideal because SubRegRC had excess
1060 // registers, then we're done.
1061 if (ChosenSuperRegClass)
1062 return std::make_pair(ChosenSuperRegClass, SubRegRC);
1065 return None;
1068 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
1069 BitVector &Out) const {
1070 auto FindI = SuperRegClasses.find(SubIdx);
1071 if (FindI == SuperRegClasses.end())
1072 return;
1073 for (CodeGenRegisterClass *RC : FindI->second)
1074 Out.set(RC->EnumValue);
1077 // Populate a unique sorted list of units from a register set.
1078 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank,
1079 std::vector<unsigned> &RegUnits) const {
1080 std::vector<unsigned> TmpUnits;
1081 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) {
1082 const RegUnit &RU = RegBank.getRegUnit(*UnitI);
1083 if (!RU.Artificial)
1084 TmpUnits.push_back(*UnitI);
1086 llvm::sort(TmpUnits);
1087 std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
1088 std::back_inserter(RegUnits));
1091 //===----------------------------------------------------------------------===//
1092 // CodeGenRegBank
1093 //===----------------------------------------------------------------------===//
1095 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records,
1096 const CodeGenHwModes &Modes) : CGH(Modes) {
1097 // Configure register Sets to understand register classes and tuples.
1098 Sets.addFieldExpander("RegisterClass", "MemberList");
1099 Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
1100 Sets.addExpander("RegisterTuples",
1101 std::make_unique<TupleExpander>(SynthDefs));
1103 // Read in the user-defined (named) sub-register indices.
1104 // More indices will be synthesized later.
1105 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
1106 llvm::sort(SRIs, LessRecord());
1107 for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
1108 getSubRegIdx(SRIs[i]);
1109 // Build composite maps from ComposedOf fields.
1110 for (auto &Idx : SubRegIndices)
1111 Idx.updateComponents(*this);
1113 // Read in the register definitions.
1114 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
1115 llvm::sort(Regs, LessRecordRegister());
1116 // Assign the enumeration values.
1117 for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1118 getReg(Regs[i]);
1120 // Expand tuples and number the new registers.
1121 std::vector<Record*> Tups =
1122 Records.getAllDerivedDefinitions("RegisterTuples");
1124 for (Record *R : Tups) {
1125 std::vector<Record *> TupRegs = *Sets.expand(R);
1126 llvm::sort(TupRegs, LessRecordRegister());
1127 for (Record *RC : TupRegs)
1128 getReg(RC);
1131 // Now all the registers are known. Build the object graph of explicit
1132 // register-register references.
1133 for (auto &Reg : Registers)
1134 Reg.buildObjectGraph(*this);
1136 // Compute register name map.
1137 for (auto &Reg : Registers)
1138 // FIXME: This could just be RegistersByName[name] = register, except that
1139 // causes some failures in MIPS - perhaps they have duplicate register name
1140 // entries? (or maybe there's a reason for it - I don't know much about this
1141 // code, just drive-by refactoring)
1142 RegistersByName.insert(
1143 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
1145 // Precompute all sub-register maps.
1146 // This will create Composite entries for all inferred sub-register indices.
1147 for (auto &Reg : Registers)
1148 Reg.computeSubRegs(*this);
1150 // Compute transitive closure of subregister index ConcatenationOf vectors
1151 // and initialize ConcatIdx map.
1152 for (CodeGenSubRegIndex &SRI : SubRegIndices) {
1153 SRI.computeConcatTransitiveClosure();
1154 if (!SRI.ConcatenationOf.empty())
1155 ConcatIdx.insert(std::make_pair(
1156 SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(),
1157 SRI.ConcatenationOf.end()), &SRI));
1160 // Infer even more sub-registers by combining leading super-registers.
1161 for (auto &Reg : Registers)
1162 if (Reg.CoveredBySubRegs)
1163 Reg.computeSecondarySubRegs(*this);
1165 // After the sub-register graph is complete, compute the topologically
1166 // ordered SuperRegs list.
1167 for (auto &Reg : Registers)
1168 Reg.computeSuperRegs(*this);
1170 // For each pair of Reg:SR, if both are non-artificial, mark the
1171 // corresponding sub-register index as non-artificial.
1172 for (auto &Reg : Registers) {
1173 if (Reg.Artificial)
1174 continue;
1175 for (auto P : Reg.getSubRegs()) {
1176 const CodeGenRegister *SR = P.second;
1177 if (!SR->Artificial)
1178 P.first->Artificial = false;
1182 // Native register units are associated with a leaf register. They've all been
1183 // discovered now.
1184 NumNativeRegUnits = RegUnits.size();
1186 // Read in register class definitions.
1187 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1188 if (RCs.empty())
1189 PrintFatalError("No 'RegisterClass' subclasses defined!");
1191 // Allocate user-defined register classes.
1192 for (auto *R : RCs) {
1193 RegClasses.emplace_back(*this, R);
1194 CodeGenRegisterClass &RC = RegClasses.back();
1195 if (!RC.Artificial)
1196 addToMaps(&RC);
1199 // Infer missing classes to create a full algebra.
1200 computeInferredRegisterClasses();
1202 // Order register classes topologically and assign enum values.
1203 RegClasses.sort(TopoOrderRC);
1204 unsigned i = 0;
1205 for (auto &RC : RegClasses)
1206 RC.EnumValue = i++;
1207 CodeGenRegisterClass::computeSubClasses(*this);
1210 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1211 CodeGenSubRegIndex*
1212 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1213 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1214 return &SubRegIndices.back();
1217 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1218 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1219 if (Idx)
1220 return Idx;
1221 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1222 Idx = &SubRegIndices.back();
1223 return Idx;
1226 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1227 CodeGenRegister *&Reg = Def2Reg[Def];
1228 if (Reg)
1229 return Reg;
1230 Registers.emplace_back(Def, Registers.size() + 1);
1231 Reg = &Registers.back();
1232 return Reg;
1235 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1236 if (Record *Def = RC->getDef())
1237 Def2RC.insert(std::make_pair(Def, RC));
1239 // Duplicate classes are rejected by insert().
1240 // That's OK, we only care about the properties handled by CGRC::Key.
1241 CodeGenRegisterClass::Key K(*RC);
1242 Key2RC.insert(std::make_pair(K, RC));
1245 // Create a synthetic sub-class if it is missing.
1246 CodeGenRegisterClass*
1247 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1248 const CodeGenRegister::Vec *Members,
1249 StringRef Name) {
1250 // Synthetic sub-class has the same size and alignment as RC.
1251 CodeGenRegisterClass::Key K(Members, RC->RSI);
1252 RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1253 if (FoundI != Key2RC.end())
1254 return FoundI->second;
1256 // Sub-class doesn't exist, create a new one.
1257 RegClasses.emplace_back(*this, Name, K);
1258 addToMaps(&RegClasses.back());
1259 return &RegClasses.back();
1262 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
1263 if (CodeGenRegisterClass *RC = Def2RC[Def])
1264 return RC;
1266 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1269 CodeGenSubRegIndex*
1270 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1271 CodeGenSubRegIndex *B) {
1272 // Look for an existing entry.
1273 CodeGenSubRegIndex *Comp = A->compose(B);
1274 if (Comp)
1275 return Comp;
1277 // None exists, synthesize one.
1278 std::string Name = A->getName() + "_then_" + B->getName();
1279 Comp = createSubRegIndex(Name, A->getNamespace());
1280 A->addComposite(B, Comp);
1281 return Comp;
1284 CodeGenSubRegIndex *CodeGenRegBank::
1285 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1286 assert(Parts.size() > 1 && "Need two parts to concatenate");
1287 #ifndef NDEBUG
1288 for (CodeGenSubRegIndex *Idx : Parts) {
1289 assert(Idx->ConcatenationOf.empty() && "No transitive closure?");
1291 #endif
1293 // Look for an existing entry.
1294 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1295 if (Idx)
1296 return Idx;
1298 // None exists, synthesize one.
1299 std::string Name = Parts.front()->getName();
1300 // Determine whether all parts are contiguous.
1301 bool isContinuous = true;
1302 unsigned Size = Parts.front()->Size;
1303 unsigned LastOffset = Parts.front()->Offset;
1304 unsigned LastSize = Parts.front()->Size;
1305 for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1306 Name += '_';
1307 Name += Parts[i]->getName();
1308 Size += Parts[i]->Size;
1309 if (Parts[i]->Offset != (LastOffset + LastSize))
1310 isContinuous = false;
1311 LastOffset = Parts[i]->Offset;
1312 LastSize = Parts[i]->Size;
1314 Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1315 Idx->Size = Size;
1316 Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1317 Idx->ConcatenationOf.assign(Parts.begin(), Parts.end());
1318 return Idx;
1321 void CodeGenRegBank::computeComposites() {
1322 using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>;
1324 // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from
1325 // register to (sub)register associated with the action of the left-hand
1326 // side subregister.
1327 std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction;
1328 for (const CodeGenRegister &R : Registers) {
1329 const CodeGenRegister::SubRegMap &SM = R.getSubRegs();
1330 for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM)
1331 SubRegAction[P.first].insert({&R, P.second});
1334 // Calculate the composition of two subregisters as compositions of their
1335 // associated actions.
1336 auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1,
1337 const CodeGenSubRegIndex *Sub2) {
1338 RegMap C;
1339 const RegMap &Img1 = SubRegAction.at(Sub1);
1340 const RegMap &Img2 = SubRegAction.at(Sub2);
1341 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) {
1342 auto F = Img2.find(P.second);
1343 if (F != Img2.end())
1344 C.insert({P.first, F->second});
1346 return C;
1349 // Check if the two maps agree on the intersection of their domains.
1350 auto agree = [] (const RegMap &Map1, const RegMap &Map2) {
1351 // Technically speaking, an empty map agrees with any other map, but
1352 // this could flag false positives. We're interested in non-vacuous
1353 // agreements.
1354 if (Map1.empty() || Map2.empty())
1355 return false;
1356 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) {
1357 auto F = Map2.find(P.first);
1358 if (F == Map2.end() || P.second != F->second)
1359 return false;
1361 return true;
1364 using CompositePair = std::pair<const CodeGenSubRegIndex*,
1365 const CodeGenSubRegIndex*>;
1366 SmallSet<CompositePair,4> UserDefined;
1367 for (const CodeGenSubRegIndex &Idx : SubRegIndices)
1368 for (auto P : Idx.getComposites())
1369 UserDefined.insert(std::make_pair(&Idx, P.first));
1371 // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1372 // and many registers will share TopoSigs on regular architectures.
1373 BitVector TopoSigs(getNumTopoSigs());
1375 for (const auto &Reg1 : Registers) {
1376 // Skip identical subreg structures already processed.
1377 if (TopoSigs.test(Reg1.getTopoSig()))
1378 continue;
1379 TopoSigs.set(Reg1.getTopoSig());
1381 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1382 for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
1383 e1 = SRM1.end(); i1 != e1; ++i1) {
1384 CodeGenSubRegIndex *Idx1 = i1->first;
1385 CodeGenRegister *Reg2 = i1->second;
1386 // Ignore identity compositions.
1387 if (&Reg1 == Reg2)
1388 continue;
1389 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1390 // Try composing Idx1 with another SubRegIndex.
1391 for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
1392 e2 = SRM2.end(); i2 != e2; ++i2) {
1393 CodeGenSubRegIndex *Idx2 = i2->first;
1394 CodeGenRegister *Reg3 = i2->second;
1395 // Ignore identity compositions.
1396 if (Reg2 == Reg3)
1397 continue;
1398 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1399 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1400 assert(Idx3 && "Sub-register doesn't have an index");
1402 // Conflicting composition? Emit a warning but allow it.
1403 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) {
1404 // If the composition was not user-defined, always emit a warning.
1405 if (!UserDefined.count({Idx1, Idx2}) ||
1406 agree(compose(Idx1, Idx2), SubRegAction.at(Idx3)))
1407 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1408 " and " + Idx2->getQualifiedName() +
1409 " compose ambiguously as " + Prev->getQualifiedName() +
1410 " or " + Idx3->getQualifiedName());
1417 // Compute lane masks. This is similar to register units, but at the
1418 // sub-register index level. Each bit in the lane mask is like a register unit
1419 // class, and two lane masks will have a bit in common if two sub-register
1420 // indices overlap in some register.
1422 // Conservatively share a lane mask bit if two sub-register indices overlap in
1423 // some registers, but not in others. That shouldn't happen a lot.
1424 void CodeGenRegBank::computeSubRegLaneMasks() {
1425 // First assign individual bits to all the leaf indices.
1426 unsigned Bit = 0;
1427 // Determine mask of lanes that cover their registers.
1428 CoveringLanes = LaneBitmask::getAll();
1429 for (auto &Idx : SubRegIndices) {
1430 if (Idx.getComposites().empty()) {
1431 if (Bit > LaneBitmask::BitWidth) {
1432 PrintFatalError(
1433 Twine("Ran out of lanemask bits to represent subregister ")
1434 + Idx.getName());
1436 Idx.LaneMask = LaneBitmask::getLane(Bit);
1437 ++Bit;
1438 } else {
1439 Idx.LaneMask = LaneBitmask::getNone();
1443 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1444 // here is that for each possible target subregister we look at the leafs
1445 // in the subregister graph that compose for this target and create
1446 // transformation sequences for the lanemasks. Each step in the sequence
1447 // consists of a bitmask and a bitrotate operation. As the rotation amounts
1448 // are usually the same for many subregisters we can easily combine the steps
1449 // by combining the masks.
1450 for (const auto &Idx : SubRegIndices) {
1451 const auto &Composites = Idx.getComposites();
1452 auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1454 if (Composites.empty()) {
1455 // Moving from a class with no subregisters we just had a single lane:
1456 // The subregister must be a leaf subregister and only occupies 1 bit.
1457 // Move the bit from the class without subregisters into that position.
1458 unsigned DstBit = Idx.LaneMask.getHighestLane();
1459 assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) &&
1460 "Must be a leaf subregister");
1461 MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit };
1462 LaneTransforms.push_back(MaskRol);
1463 } else {
1464 // Go through all leaf subregisters and find the ones that compose with
1465 // Idx. These make out all possible valid bits in the lane mask we want to
1466 // transform. Looking only at the leafs ensure that only a single bit in
1467 // the mask is set.
1468 unsigned NextBit = 0;
1469 for (auto &Idx2 : SubRegIndices) {
1470 // Skip non-leaf subregisters.
1471 if (!Idx2.getComposites().empty())
1472 continue;
1473 // Replicate the behaviour from the lane mask generation loop above.
1474 unsigned SrcBit = NextBit;
1475 LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit);
1476 if (NextBit < LaneBitmask::BitWidth-1)
1477 ++NextBit;
1478 assert(Idx2.LaneMask == SrcMask);
1480 // Get the composed subregister if there is any.
1481 auto C = Composites.find(&Idx2);
1482 if (C == Composites.end())
1483 continue;
1484 const CodeGenSubRegIndex *Composite = C->second;
1485 // The Composed subreg should be a leaf subreg too
1486 assert(Composite->getComposites().empty());
1488 // Create Mask+Rotate operation and merge with existing ops if possible.
1489 unsigned DstBit = Composite->LaneMask.getHighestLane();
1490 int Shift = DstBit - SrcBit;
1491 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift
1492 : LaneBitmask::BitWidth + Shift;
1493 for (auto &I : LaneTransforms) {
1494 if (I.RotateLeft == RotateLeft) {
1495 I.Mask |= SrcMask;
1496 SrcMask = LaneBitmask::getNone();
1499 if (SrcMask.any()) {
1500 MaskRolPair MaskRol = { SrcMask, RotateLeft };
1501 LaneTransforms.push_back(MaskRol);
1506 // Optimize if the transformation consists of one step only: Set mask to
1507 // 0xffffffff (including some irrelevant invalid bits) so that it should
1508 // merge with more entries later while compressing the table.
1509 if (LaneTransforms.size() == 1)
1510 LaneTransforms[0].Mask = LaneBitmask::getAll();
1512 // Further compression optimization: For invalid compositions resulting
1513 // in a sequence with 0 entries we can just pick any other. Choose
1514 // Mask 0xffffffff with Rotation 0.
1515 if (LaneTransforms.size() == 0) {
1516 MaskRolPair P = { LaneBitmask::getAll(), 0 };
1517 LaneTransforms.push_back(P);
1521 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1522 // by the sub-register graph? This doesn't occur in any known targets.
1524 // Inherit lanes from composites.
1525 for (const auto &Idx : SubRegIndices) {
1526 LaneBitmask Mask = Idx.computeLaneMask();
1527 // If some super-registers without CoveredBySubRegs use this index, we can
1528 // no longer assume that the lanes are covering their registers.
1529 if (!Idx.AllSuperRegsCovered)
1530 CoveringLanes &= ~Mask;
1533 // Compute lane mask combinations for register classes.
1534 for (auto &RegClass : RegClasses) {
1535 LaneBitmask LaneMask;
1536 for (const auto &SubRegIndex : SubRegIndices) {
1537 if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1538 continue;
1539 LaneMask |= SubRegIndex.LaneMask;
1542 // For classes without any subregisters set LaneMask to 1 instead of 0.
1543 // This makes it easier for client code to handle classes uniformly.
1544 if (LaneMask.none())
1545 LaneMask = LaneBitmask::getLane(0);
1547 RegClass.LaneMask = LaneMask;
1551 namespace {
1553 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1554 // the transitive closure of the union of overlapping register
1555 // classes. Together, the UberRegSets form a partition of the registers. If we
1556 // consider overlapping register classes to be connected, then each UberRegSet
1557 // is a set of connected components.
1559 // An UberRegSet will likely be a horizontal slice of register names of
1560 // the same width. Nontrivial subregisters should then be in a separate
1561 // UberRegSet. But this property isn't required for valid computation of
1562 // register unit weights.
1564 // A Weight field caches the max per-register unit weight in each UberRegSet.
1566 // A set of SingularDeterminants flags single units of some register in this set
1567 // for which the unit weight equals the set weight. These units should not have
1568 // their weight increased.
1569 struct UberRegSet {
1570 CodeGenRegister::Vec Regs;
1571 unsigned Weight = 0;
1572 CodeGenRegister::RegUnitList SingularDeterminants;
1574 UberRegSet() = default;
1577 } // end anonymous namespace
1579 // Partition registers into UberRegSets, where each set is the transitive
1580 // closure of the union of overlapping register classes.
1582 // UberRegSets[0] is a special non-allocatable set.
1583 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1584 std::vector<UberRegSet*> &RegSets,
1585 CodeGenRegBank &RegBank) {
1586 const auto &Registers = RegBank.getRegisters();
1588 // The Register EnumValue is one greater than its index into Registers.
1589 assert(Registers.size() == Registers.back().EnumValue &&
1590 "register enum value mismatch");
1592 // For simplicitly make the SetID the same as EnumValue.
1593 IntEqClasses UberSetIDs(Registers.size()+1);
1594 std::set<unsigned> AllocatableRegs;
1595 for (auto &RegClass : RegBank.getRegClasses()) {
1596 if (!RegClass.Allocatable)
1597 continue;
1599 const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1600 if (Regs.empty())
1601 continue;
1603 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1604 assert(USetID && "register number 0 is invalid");
1606 AllocatableRegs.insert((*Regs.begin())->EnumValue);
1607 for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) {
1608 AllocatableRegs.insert((*I)->EnumValue);
1609 UberSetIDs.join(USetID, (*I)->EnumValue);
1612 // Combine non-allocatable regs.
1613 for (const auto &Reg : Registers) {
1614 unsigned RegNum = Reg.EnumValue;
1615 if (AllocatableRegs.count(RegNum))
1616 continue;
1618 UberSetIDs.join(0, RegNum);
1620 UberSetIDs.compress();
1622 // Make the first UberSet a special unallocatable set.
1623 unsigned ZeroID = UberSetIDs[0];
1625 // Insert Registers into the UberSets formed by union-find.
1626 // Do not resize after this.
1627 UberSets.resize(UberSetIDs.getNumClasses());
1628 unsigned i = 0;
1629 for (const CodeGenRegister &Reg : Registers) {
1630 unsigned USetID = UberSetIDs[Reg.EnumValue];
1631 if (!USetID)
1632 USetID = ZeroID;
1633 else if (USetID == ZeroID)
1634 USetID = 0;
1636 UberRegSet *USet = &UberSets[USetID];
1637 USet->Regs.push_back(&Reg);
1638 sortAndUniqueRegisters(USet->Regs);
1639 RegSets[i++] = USet;
1643 // Recompute each UberSet weight after changing unit weights.
1644 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1645 CodeGenRegBank &RegBank) {
1646 // Skip the first unallocatable set.
1647 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1648 E = UberSets.end(); I != E; ++I) {
1650 // Initialize all unit weights in this set, and remember the max units/reg.
1651 const CodeGenRegister *Reg = nullptr;
1652 unsigned MaxWeight = 0, Weight = 0;
1653 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1654 if (Reg != UnitI.getReg()) {
1655 if (Weight > MaxWeight)
1656 MaxWeight = Weight;
1657 Reg = UnitI.getReg();
1658 Weight = 0;
1660 if (!RegBank.getRegUnit(*UnitI).Artificial) {
1661 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1662 if (!UWeight) {
1663 UWeight = 1;
1664 RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1666 Weight += UWeight;
1669 if (Weight > MaxWeight)
1670 MaxWeight = Weight;
1671 if (I->Weight != MaxWeight) {
1672 LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight "
1673 << MaxWeight;
1674 for (auto &Unit
1675 : I->Regs) dbgs()
1676 << " " << Unit->getName();
1677 dbgs() << "\n");
1678 // Update the set weight.
1679 I->Weight = MaxWeight;
1682 // Find singular determinants.
1683 for (const auto R : I->Regs) {
1684 if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1685 I->SingularDeterminants |= R->getRegUnits();
1691 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1692 // a register and its subregisters so that they have the same weight as their
1693 // UberSet. Self-recursion processes the subregister tree in postorder so
1694 // subregisters are normalized first.
1696 // Side effects:
1697 // - creates new adopted register units
1698 // - causes superregisters to inherit adopted units
1699 // - increases the weight of "singular" units
1700 // - induces recomputation of UberWeights.
1701 static bool normalizeWeight(CodeGenRegister *Reg,
1702 std::vector<UberRegSet> &UberSets,
1703 std::vector<UberRegSet*> &RegSets,
1704 BitVector &NormalRegs,
1705 CodeGenRegister::RegUnitList &NormalUnits,
1706 CodeGenRegBank &RegBank) {
1707 NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size()));
1708 if (NormalRegs.test(Reg->EnumValue))
1709 return false;
1710 NormalRegs.set(Reg->EnumValue);
1712 bool Changed = false;
1713 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1714 for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
1715 SRE = SRM.end(); SRI != SRE; ++SRI) {
1716 if (SRI->second == Reg)
1717 continue; // self-cycles happen
1719 Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
1720 NormalRegs, NormalUnits, RegBank);
1722 // Postorder register normalization.
1724 // Inherit register units newly adopted by subregisters.
1725 if (Reg->inheritRegUnits(RegBank))
1726 computeUberWeights(UberSets, RegBank);
1728 // Check if this register is too skinny for its UberRegSet.
1729 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1731 unsigned RegWeight = Reg->getWeight(RegBank);
1732 if (UberSet->Weight > RegWeight) {
1733 // A register unit's weight can be adjusted only if it is the singular unit
1734 // for this register, has not been used to normalize a subregister's set,
1735 // and has not already been used to singularly determine this UberRegSet.
1736 unsigned AdjustUnit = *Reg->getRegUnits().begin();
1737 if (Reg->getRegUnits().count() != 1
1738 || hasRegUnit(NormalUnits, AdjustUnit)
1739 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1740 // We don't have an adjustable unit, so adopt a new one.
1741 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1742 Reg->adoptRegUnit(AdjustUnit);
1743 // Adopting a unit does not immediately require recomputing set weights.
1745 else {
1746 // Adjust the existing single unit.
1747 if (!RegBank.getRegUnit(AdjustUnit).Artificial)
1748 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1749 // The unit may be shared among sets and registers within this set.
1750 computeUberWeights(UberSets, RegBank);
1752 Changed = true;
1755 // Mark these units normalized so superregisters can't change their weights.
1756 NormalUnits |= Reg->getRegUnits();
1758 return Changed;
1761 // Compute a weight for each register unit created during getSubRegs.
1763 // The goal is that two registers in the same class will have the same weight,
1764 // where each register's weight is defined as sum of its units' weights.
1765 void CodeGenRegBank::computeRegUnitWeights() {
1766 std::vector<UberRegSet> UberSets;
1767 std::vector<UberRegSet*> RegSets(Registers.size());
1768 computeUberSets(UberSets, RegSets, *this);
1769 // UberSets and RegSets are now immutable.
1771 computeUberWeights(UberSets, *this);
1773 // Iterate over each Register, normalizing the unit weights until reaching
1774 // a fix point.
1775 unsigned NumIters = 0;
1776 for (bool Changed = true; Changed; ++NumIters) {
1777 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1778 Changed = false;
1779 for (auto &Reg : Registers) {
1780 CodeGenRegister::RegUnitList NormalUnits;
1781 BitVector NormalRegs;
1782 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1783 NormalUnits, *this);
1788 // Find a set in UniqueSets with the same elements as Set.
1789 // Return an iterator into UniqueSets.
1790 static std::vector<RegUnitSet>::const_iterator
1791 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1792 const RegUnitSet &Set) {
1793 std::vector<RegUnitSet>::const_iterator
1794 I = UniqueSets.begin(), E = UniqueSets.end();
1795 for(;I != E; ++I) {
1796 if (I->Units == Set.Units)
1797 break;
1799 return I;
1802 // Return true if the RUSubSet is a subset of RUSuperSet.
1803 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1804 const std::vector<unsigned> &RUSuperSet) {
1805 return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1806 RUSubSet.begin(), RUSubSet.end());
1809 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1810 /// but with one or two registers removed. We occasionally have registers like
1811 /// APSR and PC thrown in with the general registers. We also see many
1812 /// special-purpose register subsets, such as tail-call and Thumb
1813 /// encodings. Generating all possible overlapping sets is combinatorial and
1814 /// overkill for modeling pressure. Ideally we could fix this statically in
1815 /// tablegen by (1) having the target define register classes that only include
1816 /// the allocatable registers and marking other classes as non-allocatable and
1817 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1818 /// the purpose of pressure. However, we make an attempt to handle targets that
1819 /// are not nicely defined by merging nearly identical register unit sets
1820 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1821 /// set limit by filtering the reserved registers.
1823 /// Merge sets only if the units have the same weight. For example, on ARM,
1824 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1825 /// should not expand the S set to include D regs.
1826 void CodeGenRegBank::pruneUnitSets() {
1827 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1829 // Form an equivalence class of UnitSets with no significant difference.
1830 std::vector<unsigned> SuperSetIDs;
1831 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1832 SubIdx != EndIdx; ++SubIdx) {
1833 const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1834 unsigned SuperIdx = 0;
1835 for (; SuperIdx != EndIdx; ++SuperIdx) {
1836 if (SuperIdx == SubIdx)
1837 continue;
1839 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1840 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1841 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1842 && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1843 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1844 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1845 LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1846 << "\n");
1847 // We can pick any of the set names for the merged set. Go for the
1848 // shortest one to avoid picking the name of one of the classes that are
1849 // artificially created by tablegen. So "FPR128_lo" instead of
1850 // "QQQQ_with_qsub3_in_FPR128_lo".
1851 if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
1852 RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
1853 break;
1856 if (SuperIdx == EndIdx)
1857 SuperSetIDs.push_back(SubIdx);
1859 // Populate PrunedUnitSets with each equivalence class's superset.
1860 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1861 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1862 unsigned SuperIdx = SuperSetIDs[i];
1863 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1864 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1866 RegUnitSets.swap(PrunedUnitSets);
1869 // Create a RegUnitSet for each RegClass that contains all units in the class
1870 // including adopted units that are necessary to model register pressure. Then
1871 // iteratively compute RegUnitSets such that the union of any two overlapping
1872 // RegUnitSets is repreresented.
1874 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1875 // RegUnitSet that is a superset of that RegUnitClass.
1876 void CodeGenRegBank::computeRegUnitSets() {
1877 assert(RegUnitSets.empty() && "dirty RegUnitSets");
1879 // Compute a unique RegUnitSet for each RegClass.
1880 auto &RegClasses = getRegClasses();
1881 for (auto &RC : RegClasses) {
1882 if (!RC.Allocatable || RC.Artificial)
1883 continue;
1885 // Speculatively grow the RegUnitSets to hold the new set.
1886 RegUnitSets.resize(RegUnitSets.size() + 1);
1887 RegUnitSets.back().Name = RC.getName();
1889 // Compute a sorted list of units in this class.
1890 RC.buildRegUnitSet(*this, RegUnitSets.back().Units);
1892 // Find an existing RegUnitSet.
1893 std::vector<RegUnitSet>::const_iterator SetI =
1894 findRegUnitSet(RegUnitSets, RegUnitSets.back());
1895 if (SetI != std::prev(RegUnitSets.end()))
1896 RegUnitSets.pop_back();
1899 LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0,
1900 USEnd = RegUnitSets.size();
1901 USIdx < USEnd; ++USIdx) {
1902 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1903 for (auto &U : RegUnitSets[USIdx].Units)
1904 printRegUnitName(U);
1905 dbgs() << "\n";
1908 // Iteratively prune unit sets.
1909 pruneUnitSets();
1911 LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0,
1912 USEnd = RegUnitSets.size();
1913 USIdx < USEnd; ++USIdx) {
1914 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1915 for (auto &U : RegUnitSets[USIdx].Units)
1916 printRegUnitName(U);
1917 dbgs() << "\n";
1918 } dbgs() << "\nUnion sets:\n");
1920 // Iterate over all unit sets, including new ones added by this loop.
1921 unsigned NumRegUnitSubSets = RegUnitSets.size();
1922 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1923 // In theory, this is combinatorial. In practice, it needs to be bounded
1924 // by a small number of sets for regpressure to be efficient.
1925 // If the assert is hit, we need to implement pruning.
1926 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1928 // Compare new sets with all original classes.
1929 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1930 SearchIdx != EndIdx; ++SearchIdx) {
1931 std::set<unsigned> Intersection;
1932 std::set_intersection(RegUnitSets[Idx].Units.begin(),
1933 RegUnitSets[Idx].Units.end(),
1934 RegUnitSets[SearchIdx].Units.begin(),
1935 RegUnitSets[SearchIdx].Units.end(),
1936 std::inserter(Intersection, Intersection.begin()));
1937 if (Intersection.empty())
1938 continue;
1940 // Speculatively grow the RegUnitSets to hold the new set.
1941 RegUnitSets.resize(RegUnitSets.size() + 1);
1942 RegUnitSets.back().Name =
1943 RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
1945 std::set_union(RegUnitSets[Idx].Units.begin(),
1946 RegUnitSets[Idx].Units.end(),
1947 RegUnitSets[SearchIdx].Units.begin(),
1948 RegUnitSets[SearchIdx].Units.end(),
1949 std::inserter(RegUnitSets.back().Units,
1950 RegUnitSets.back().Units.begin()));
1952 // Find an existing RegUnitSet, or add the union to the unique sets.
1953 std::vector<RegUnitSet>::const_iterator SetI =
1954 findRegUnitSet(RegUnitSets, RegUnitSets.back());
1955 if (SetI != std::prev(RegUnitSets.end()))
1956 RegUnitSets.pop_back();
1957 else {
1958 LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " "
1959 << RegUnitSets.back().Name << ":";
1960 for (auto &U
1961 : RegUnitSets.back().Units) printRegUnitName(U);
1962 dbgs() << "\n";);
1967 // Iteratively prune unit sets after inferring supersets.
1968 pruneUnitSets();
1970 LLVM_DEBUG(
1971 dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1972 USIdx < USEnd; ++USIdx) {
1973 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1974 for (auto &U : RegUnitSets[USIdx].Units)
1975 printRegUnitName(U);
1976 dbgs() << "\n";
1979 // For each register class, list the UnitSets that are supersets.
1980 RegClassUnitSets.resize(RegClasses.size());
1981 int RCIdx = -1;
1982 for (auto &RC : RegClasses) {
1983 ++RCIdx;
1984 if (!RC.Allocatable)
1985 continue;
1987 // Recompute the sorted list of units in this class.
1988 std::vector<unsigned> RCRegUnits;
1989 RC.buildRegUnitSet(*this, RCRegUnits);
1991 // Don't increase pressure for unallocatable regclasses.
1992 if (RCRegUnits.empty())
1993 continue;
1995 LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n";
1996 for (auto U
1997 : RCRegUnits) printRegUnitName(U);
1998 dbgs() << "\n UnitSetIDs:");
2000 // Find all supersets.
2001 for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
2002 USIdx != USEnd; ++USIdx) {
2003 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
2004 LLVM_DEBUG(dbgs() << " " << USIdx);
2005 RegClassUnitSets[RCIdx].push_back(USIdx);
2008 LLVM_DEBUG(dbgs() << "\n");
2009 assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
2012 // For each register unit, ensure that we have the list of UnitSets that
2013 // contain the unit. Normally, this matches an existing list of UnitSets for a
2014 // register class. If not, we create a new entry in RegClassUnitSets as a
2015 // "fake" register class.
2016 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
2017 UnitIdx < UnitEnd; ++UnitIdx) {
2018 std::vector<unsigned> RUSets;
2019 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
2020 RegUnitSet &RUSet = RegUnitSets[i];
2021 if (!is_contained(RUSet.Units, UnitIdx))
2022 continue;
2023 RUSets.push_back(i);
2025 unsigned RCUnitSetsIdx = 0;
2026 for (unsigned e = RegClassUnitSets.size();
2027 RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
2028 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
2029 break;
2032 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
2033 if (RCUnitSetsIdx == RegClassUnitSets.size()) {
2034 // Create a new list of UnitSets as a "fake" register class.
2035 RegClassUnitSets.resize(RCUnitSetsIdx + 1);
2036 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
2041 void CodeGenRegBank::computeRegUnitLaneMasks() {
2042 for (auto &Register : Registers) {
2043 // Create an initial lane mask for all register units.
2044 const auto &RegUnits = Register.getRegUnits();
2045 CodeGenRegister::RegUnitLaneMaskList
2046 RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone());
2047 // Iterate through SubRegisters.
2048 typedef CodeGenRegister::SubRegMap SubRegMap;
2049 const SubRegMap &SubRegs = Register.getSubRegs();
2050 for (SubRegMap::const_iterator S = SubRegs.begin(),
2051 SE = SubRegs.end(); S != SE; ++S) {
2052 CodeGenRegister *SubReg = S->second;
2053 // Ignore non-leaf subregisters, their lane masks are fully covered by
2054 // the leaf subregisters anyway.
2055 if (!SubReg->getSubRegs().empty())
2056 continue;
2057 CodeGenSubRegIndex *SubRegIndex = S->first;
2058 const CodeGenRegister *SubRegister = S->second;
2059 LaneBitmask LaneMask = SubRegIndex->LaneMask;
2060 // Distribute LaneMask to Register Units touched.
2061 for (unsigned SUI : SubRegister->getRegUnits()) {
2062 bool Found = false;
2063 unsigned u = 0;
2064 for (unsigned RU : RegUnits) {
2065 if (SUI == RU) {
2066 RegUnitLaneMasks[u] |= LaneMask;
2067 assert(!Found);
2068 Found = true;
2070 ++u;
2072 (void)Found;
2073 assert(Found);
2076 Register.setRegUnitLaneMasks(RegUnitLaneMasks);
2080 void CodeGenRegBank::computeDerivedInfo() {
2081 computeComposites();
2082 computeSubRegLaneMasks();
2084 // Compute a weight for each register unit created during getSubRegs.
2085 // This may create adopted register units (with unit # >= NumNativeRegUnits).
2086 computeRegUnitWeights();
2088 // Compute a unique set of RegUnitSets. One for each RegClass and inferred
2089 // supersets for the union of overlapping sets.
2090 computeRegUnitSets();
2092 computeRegUnitLaneMasks();
2094 // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
2095 for (CodeGenRegisterClass &RC : RegClasses) {
2096 RC.HasDisjunctSubRegs = false;
2097 RC.CoveredBySubRegs = true;
2098 for (const CodeGenRegister *Reg : RC.getMembers()) {
2099 RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
2100 RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
2104 // Get the weight of each set.
2105 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2106 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
2108 // Find the order of each set.
2109 RegUnitSetOrder.reserve(RegUnitSets.size());
2110 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2111 RegUnitSetOrder.push_back(Idx);
2113 llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) {
2114 return getRegPressureSet(ID1).Units.size() <
2115 getRegPressureSet(ID2).Units.size();
2117 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
2118 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
2123 // Synthesize missing register class intersections.
2125 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
2126 // returns a maximal register class for all X.
2128 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
2129 assert(!RegClasses.empty());
2130 // Stash the iterator to the last element so that this loop doesn't visit
2131 // elements added by the getOrCreateSubClass call within it.
2132 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
2133 I != std::next(E); ++I) {
2134 CodeGenRegisterClass *RC1 = RC;
2135 CodeGenRegisterClass *RC2 = &*I;
2136 if (RC1 == RC2)
2137 continue;
2139 // Compute the set intersection of RC1 and RC2.
2140 const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
2141 const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
2142 CodeGenRegister::Vec Intersection;
2143 std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(),
2144 Memb2.end(),
2145 std::inserter(Intersection, Intersection.begin()),
2146 deref<std::less<>>());
2148 // Skip disjoint class pairs.
2149 if (Intersection.empty())
2150 continue;
2152 // If RC1 and RC2 have different spill sizes or alignments, use the
2153 // stricter one for sub-classing. If they are equal, prefer RC1.
2154 if (RC2->RSI.hasStricterSpillThan(RC1->RSI))
2155 std::swap(RC1, RC2);
2157 getOrCreateSubClass(RC1, &Intersection,
2158 RC1->getName() + "_and_" + RC2->getName());
2163 // Synthesize missing sub-classes for getSubClassWithSubReg().
2165 // Make sure that the set of registers in RC with a given SubIdx sub-register
2166 // form a register class. Update RC->SubClassWithSubReg.
2168 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
2169 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
2170 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
2171 deref<std::less<>>>
2172 SubReg2SetMap;
2174 // Compute the set of registers supporting each SubRegIndex.
2175 SubReg2SetMap SRSets;
2176 for (const auto R : RC->getMembers()) {
2177 if (R->Artificial)
2178 continue;
2179 const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
2180 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
2181 E = SRM.end(); I != E; ++I) {
2182 if (!I->first->Artificial)
2183 SRSets[I->first].push_back(R);
2187 for (auto I : SRSets)
2188 sortAndUniqueRegisters(I.second);
2190 // Find matching classes for all SRSets entries. Iterate in SubRegIndex
2191 // numerical order to visit synthetic indices last.
2192 for (const auto &SubIdx : SubRegIndices) {
2193 if (SubIdx.Artificial)
2194 continue;
2195 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
2196 // Unsupported SubRegIndex. Skip it.
2197 if (I == SRSets.end())
2198 continue;
2199 // In most cases, all RC registers support the SubRegIndex.
2200 if (I->second.size() == RC->getMembers().size()) {
2201 RC->setSubClassWithSubReg(&SubIdx, RC);
2202 continue;
2204 // This is a real subset. See if we have a matching class.
2205 CodeGenRegisterClass *SubRC =
2206 getOrCreateSubClass(RC, &I->second,
2207 RC->getName() + "_with_" + I->first->getName());
2208 RC->setSubClassWithSubReg(&SubIdx, SubRC);
2213 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
2215 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
2216 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
2219 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
2220 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
2221 SmallVector<std::pair<const CodeGenRegister*,
2222 const CodeGenRegister*>, 16> SSPairs;
2223 BitVector TopoSigs(getNumTopoSigs());
2225 // Iterate in SubRegIndex numerical order to visit synthetic indices last.
2226 for (auto &SubIdx : SubRegIndices) {
2227 // Skip indexes that aren't fully supported by RC's registers. This was
2228 // computed by inferSubClassWithSubReg() above which should have been
2229 // called first.
2230 if (RC->getSubClassWithSubReg(&SubIdx) != RC)
2231 continue;
2233 // Build list of (Super, Sub) pairs for this SubIdx.
2234 SSPairs.clear();
2235 TopoSigs.reset();
2236 for (const auto Super : RC->getMembers()) {
2237 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
2238 assert(Sub && "Missing sub-register");
2239 SSPairs.push_back(std::make_pair(Super, Sub));
2240 TopoSigs.set(Sub->getTopoSig());
2243 // Iterate over sub-register class candidates. Ignore classes created by
2244 // this loop. They will never be useful.
2245 // Store an iterator to the last element (not end) so that this loop doesn't
2246 // visit newly inserted elements.
2247 assert(!RegClasses.empty());
2248 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
2249 I != std::next(E); ++I) {
2250 CodeGenRegisterClass &SubRC = *I;
2251 if (SubRC.Artificial)
2252 continue;
2253 // Topological shortcut: SubRC members have the wrong shape.
2254 if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
2255 continue;
2256 // Compute the subset of RC that maps into SubRC.
2257 CodeGenRegister::Vec SubSetVec;
2258 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
2259 if (SubRC.contains(SSPairs[i].second))
2260 SubSetVec.push_back(SSPairs[i].first);
2262 if (SubSetVec.empty())
2263 continue;
2265 // RC injects completely into SubRC.
2266 sortAndUniqueRegisters(SubSetVec);
2267 if (SubSetVec.size() == SSPairs.size()) {
2268 SubRC.addSuperRegClass(&SubIdx, RC);
2269 continue;
2272 // Only a subset of RC maps into SubRC. Make sure it is represented by a
2273 // class.
2274 getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
2275 SubIdx.getName() + "_in_" +
2276 SubRC.getName());
2282 // Infer missing register classes.
2284 void CodeGenRegBank::computeInferredRegisterClasses() {
2285 assert(!RegClasses.empty());
2286 // When this function is called, the register classes have not been sorted
2287 // and assigned EnumValues yet. That means getSubClasses(),
2288 // getSuperClasses(), and hasSubClass() functions are defunct.
2290 // Use one-before-the-end so it doesn't move forward when new elements are
2291 // added.
2292 auto FirstNewRC = std::prev(RegClasses.end());
2294 // Visit all register classes, including the ones being added by the loop.
2295 // Watch out for iterator invalidation here.
2296 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2297 CodeGenRegisterClass *RC = &*I;
2298 if (RC->Artificial)
2299 continue;
2301 // Synthesize answers for getSubClassWithSubReg().
2302 inferSubClassWithSubReg(RC);
2304 // Synthesize answers for getCommonSubClass().
2305 inferCommonSubClass(RC);
2307 // Synthesize answers for getMatchingSuperRegClass().
2308 inferMatchingSuperRegClass(RC);
2310 // New register classes are created while this loop is running, and we need
2311 // to visit all of them. I particular, inferMatchingSuperRegClass needs
2312 // to match old super-register classes with sub-register classes created
2313 // after inferMatchingSuperRegClass was called. At this point,
2314 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2315 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci].
2316 if (I == FirstNewRC) {
2317 auto NextNewRC = std::prev(RegClasses.end());
2318 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2319 ++I2)
2320 inferMatchingSuperRegClass(&*I2, E2);
2321 FirstNewRC = NextNewRC;
2326 /// getRegisterClassForRegister - Find the register class that contains the
2327 /// specified physical register. If the register is not in a register class,
2328 /// return null. If the register is in multiple classes, and the classes have a
2329 /// superset-subset relationship and the same set of types, return the
2330 /// superclass. Otherwise return null.
2331 const CodeGenRegisterClass*
2332 CodeGenRegBank::getRegClassForRegister(Record *R) {
2333 const CodeGenRegister *Reg = getReg(R);
2334 const CodeGenRegisterClass *FoundRC = nullptr;
2335 for (const auto &RC : getRegClasses()) {
2336 if (!RC.contains(Reg))
2337 continue;
2339 // If this is the first class that contains the register,
2340 // make a note of it and go on to the next class.
2341 if (!FoundRC) {
2342 FoundRC = &RC;
2343 continue;
2346 // If a register's classes have different types, return null.
2347 if (RC.getValueTypes() != FoundRC->getValueTypes())
2348 return nullptr;
2350 // Check to see if the previously found class that contains
2351 // the register is a subclass of the current class. If so,
2352 // prefer the superclass.
2353 if (RC.hasSubClass(FoundRC)) {
2354 FoundRC = &RC;
2355 continue;
2358 // Check to see if the previously found class that contains
2359 // the register is a superclass of the current class. If so,
2360 // prefer the superclass.
2361 if (FoundRC->hasSubClass(&RC))
2362 continue;
2364 // Multiple classes, and neither is a superclass of the other.
2365 // Return null.
2366 return nullptr;
2368 return FoundRC;
2371 const CodeGenRegisterClass *
2372 CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord,
2373 ValueTypeByHwMode *VT) {
2374 const CodeGenRegister *Reg = getReg(RegRecord);
2375 const CodeGenRegisterClass *BestRC = nullptr;
2376 for (const auto &RC : getRegClasses()) {
2377 if ((!VT || RC.hasType(*VT)) &&
2378 RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC)))
2379 BestRC = &RC;
2382 assert(BestRC && "Couldn't find the register class");
2383 return BestRC;
2386 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2387 SetVector<const CodeGenRegister*> Set;
2389 // First add Regs with all sub-registers.
2390 for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2391 CodeGenRegister *Reg = getReg(Regs[i]);
2392 if (Set.insert(Reg))
2393 // Reg is new, add all sub-registers.
2394 // The pre-ordering is not important here.
2395 Reg->addSubRegsPreOrder(Set, *this);
2398 // Second, find all super-registers that are completely covered by the set.
2399 for (unsigned i = 0; i != Set.size(); ++i) {
2400 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2401 for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2402 const CodeGenRegister *Super = SR[j];
2403 if (!Super->CoveredBySubRegs || Set.count(Super))
2404 continue;
2405 // This new super-register is covered by its sub-registers.
2406 bool AllSubsInSet = true;
2407 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2408 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
2409 E = SRM.end(); I != E; ++I)
2410 if (!Set.count(I->second)) {
2411 AllSubsInSet = false;
2412 break;
2414 // All sub-registers in Set, add Super as well.
2415 // We will visit Super later to recheck its super-registers.
2416 if (AllSubsInSet)
2417 Set.insert(Super);
2421 // Convert to BitVector.
2422 BitVector BV(Registers.size() + 1);
2423 for (unsigned i = 0, e = Set.size(); i != e; ++i)
2424 BV.set(Set[i]->EnumValue);
2425 return BV;
2428 void CodeGenRegBank::printRegUnitName(unsigned Unit) const {
2429 if (Unit < NumNativeRegUnits)
2430 dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName();
2431 else
2432 dbgs() << " #" << Unit;