[llvm] [cmake] Add possibility to use ChooseMSVCCRT.cmake when include LLVM library
[llvm-core.git] / utils / benchmark / src / statistics.cc
blob1c91e1015ab6fb7a385834075ff2c5b3dd6528d5
1 // Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
2 // Copyright 2017 Roman Lebedev. All rights reserved.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 // http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
16 #include "benchmark/benchmark.h"
18 #include <algorithm>
19 #include <cmath>
20 #include <string>
21 #include <vector>
22 #include <numeric>
23 #include "check.h"
24 #include "statistics.h"
26 namespace benchmark {
28 auto StatisticsSum = [](const std::vector<double>& v) {
29 return std::accumulate(v.begin(), v.end(), 0.0);
32 double StatisticsMean(const std::vector<double>& v) {
33 if (v.empty()) return 0.0;
34 return StatisticsSum(v) * (1.0 / v.size());
37 double StatisticsMedian(const std::vector<double>& v) {
38 if (v.size() < 3) return StatisticsMean(v);
39 std::vector<double> copy(v);
41 auto center = copy.begin() + v.size() / 2;
42 std::nth_element(copy.begin(), center, copy.end());
44 // did we have an odd number of samples?
45 // if yes, then center is the median
46 // it no, then we are looking for the average between center and the value before
47 if(v.size() % 2 == 1)
48 return *center;
49 auto center2 = copy.begin() + v.size() / 2 - 1;
50 std::nth_element(copy.begin(), center2, copy.end());
51 return (*center + *center2) / 2.0;
54 // Return the sum of the squares of this sample set
55 auto SumSquares = [](const std::vector<double>& v) {
56 return std::inner_product(v.begin(), v.end(), v.begin(), 0.0);
59 auto Sqr = [](const double dat) { return dat * dat; };
60 auto Sqrt = [](const double dat) {
61 // Avoid NaN due to imprecision in the calculations
62 if (dat < 0.0) return 0.0;
63 return std::sqrt(dat);
66 double StatisticsStdDev(const std::vector<double>& v) {
67 const auto mean = StatisticsMean(v);
68 if (v.empty()) return mean;
70 // Sample standard deviation is undefined for n = 1
71 if (v.size() == 1)
72 return 0.0;
74 const double avg_squares = SumSquares(v) * (1.0 / v.size());
75 return Sqrt(v.size() / (v.size() - 1.0) * (avg_squares - Sqr(mean)));
78 std::vector<BenchmarkReporter::Run> ComputeStats(
79 const std::vector<BenchmarkReporter::Run>& reports) {
80 typedef BenchmarkReporter::Run Run;
81 std::vector<Run> results;
83 auto error_count =
84 std::count_if(reports.begin(), reports.end(),
85 [](Run const& run) { return run.error_occurred; });
87 if (reports.size() - error_count < 2) {
88 // We don't report aggregated data if there was a single run.
89 return results;
92 // Accumulators.
93 std::vector<double> real_accumulated_time_stat;
94 std::vector<double> cpu_accumulated_time_stat;
95 std::vector<double> bytes_per_second_stat;
96 std::vector<double> items_per_second_stat;
98 real_accumulated_time_stat.reserve(reports.size());
99 cpu_accumulated_time_stat.reserve(reports.size());
100 bytes_per_second_stat.reserve(reports.size());
101 items_per_second_stat.reserve(reports.size());
103 // All repetitions should be run with the same number of iterations so we
104 // can take this information from the first benchmark.
105 int64_t const run_iterations = reports.front().iterations;
106 // create stats for user counters
107 struct CounterStat {
108 Counter c;
109 std::vector<double> s;
111 std::map< std::string, CounterStat > counter_stats;
112 for(Run const& r : reports) {
113 for(auto const& cnt : r.counters) {
114 auto it = counter_stats.find(cnt.first);
115 if(it == counter_stats.end()) {
116 counter_stats.insert({cnt.first, {cnt.second, std::vector<double>{}}});
117 it = counter_stats.find(cnt.first);
118 it->second.s.reserve(reports.size());
119 } else {
120 CHECK_EQ(counter_stats[cnt.first].c.flags, cnt.second.flags);
125 // Populate the accumulators.
126 for (Run const& run : reports) {
127 CHECK_EQ(reports[0].benchmark_name, run.benchmark_name);
128 CHECK_EQ(run_iterations, run.iterations);
129 if (run.error_occurred) continue;
130 real_accumulated_time_stat.emplace_back(run.real_accumulated_time);
131 cpu_accumulated_time_stat.emplace_back(run.cpu_accumulated_time);
132 items_per_second_stat.emplace_back(run.items_per_second);
133 bytes_per_second_stat.emplace_back(run.bytes_per_second);
134 // user counters
135 for(auto const& cnt : run.counters) {
136 auto it = counter_stats.find(cnt.first);
137 CHECK_NE(it, counter_stats.end());
138 it->second.s.emplace_back(cnt.second);
142 // Only add label if it is same for all runs
143 std::string report_label = reports[0].report_label;
144 for (std::size_t i = 1; i < reports.size(); i++) {
145 if (reports[i].report_label != report_label) {
146 report_label = "";
147 break;
151 for(const auto& Stat : *reports[0].statistics) {
152 // Get the data from the accumulator to BenchmarkReporter::Run's.
153 Run data;
154 data.benchmark_name = reports[0].benchmark_name + "_" + Stat.name_;
155 data.report_label = report_label;
156 data.iterations = run_iterations;
158 data.real_accumulated_time = Stat.compute_(real_accumulated_time_stat);
159 data.cpu_accumulated_time = Stat.compute_(cpu_accumulated_time_stat);
160 data.bytes_per_second = Stat.compute_(bytes_per_second_stat);
161 data.items_per_second = Stat.compute_(items_per_second_stat);
163 data.time_unit = reports[0].time_unit;
165 // user counters
166 for(auto const& kv : counter_stats) {
167 const auto uc_stat = Stat.compute_(kv.second.s);
168 auto c = Counter(uc_stat, counter_stats[kv.first].c.flags);
169 data.counters[kv.first] = c;
172 results.push_back(data);
175 return results;
178 } // end namespace benchmark