1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the PowerPC implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #include "PPCInstrInfo.h"
15 #include "MCTargetDesc/PPCPredicates.h"
17 #include "PPCHazardRecognizers.h"
18 #include "PPCInstrBuilder.h"
19 #include "PPCMachineFunctionInfo.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCInst.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/raw_ostream.h"
43 #define DEBUG_TYPE "ppc-instr-info"
45 #define GET_INSTRMAP_INFO
46 #define GET_INSTRINFO_CTOR_DTOR
47 #include "PPCGenInstrInfo.inc"
49 STATISTIC(NumStoreSPILLVSRRCAsVec
,
50 "Number of spillvsrrc spilled to stack as vec");
51 STATISTIC(NumStoreSPILLVSRRCAsGpr
,
52 "Number of spillvsrrc spilled to stack as gpr");
53 STATISTIC(NumGPRtoVSRSpill
, "Number of gpr spills to spillvsrrc");
54 STATISTIC(CmpIselsConverted
,
55 "Number of ISELs that depend on comparison of constants converted");
56 STATISTIC(MissedConvertibleImmediateInstrs
,
57 "Number of compare-immediate instructions fed by constants");
58 STATISTIC(NumRcRotatesConvertedToRcAnd
,
59 "Number of record-form rotates converted to record-form andi");
62 opt
<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden
,
63 cl::desc("Disable analysis for CTR loops"));
65 static cl::opt
<bool> DisableCmpOpt("disable-ppc-cmp-opt",
66 cl::desc("Disable compare instruction optimization"), cl::Hidden
);
68 static cl::opt
<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
69 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
73 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden
,
74 cl::desc("Use the old (incorrect) instruction latency calculation"));
76 // Index into the OpcodesForSpill array.
86 SOK_VectorFloat8Spill
,
87 SOK_VectorFloat4Spill
,
95 SOK_LastOpcodeSpill
// This must be last on the enum.
98 // Pin the vtable to this file.
99 void PPCInstrInfo::anchor() {}
101 PPCInstrInfo::PPCInstrInfo(PPCSubtarget
&STI
)
102 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN
, PPC::ADJCALLSTACKUP
,
103 /* CatchRetOpcode */ -1,
104 STI
.isPPC64() ? PPC::BLR8
: PPC::BLR
),
105 Subtarget(STI
), RI(STI
.getTargetMachine()) {}
107 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
108 /// this target when scheduling the DAG.
109 ScheduleHazardRecognizer
*
110 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo
*STI
,
111 const ScheduleDAG
*DAG
) const {
113 static_cast<const PPCSubtarget
*>(STI
)->getDarwinDirective();
114 if (Directive
== PPC::DIR_440
|| Directive
== PPC::DIR_A2
||
115 Directive
== PPC::DIR_E500mc
|| Directive
== PPC::DIR_E5500
) {
116 const InstrItineraryData
*II
=
117 static_cast<const PPCSubtarget
*>(STI
)->getInstrItineraryData();
118 return new ScoreboardHazardRecognizer(II
, DAG
);
121 return TargetInstrInfo::CreateTargetHazardRecognizer(STI
, DAG
);
124 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
125 /// to use for this target when scheduling the DAG.
126 ScheduleHazardRecognizer
*
127 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData
*II
,
128 const ScheduleDAG
*DAG
) const {
130 DAG
->MF
.getSubtarget
<PPCSubtarget
>().getDarwinDirective();
132 // FIXME: Leaving this as-is until we have POWER9 scheduling info
133 if (Directive
== PPC::DIR_PWR7
|| Directive
== PPC::DIR_PWR8
)
134 return new PPCDispatchGroupSBHazardRecognizer(II
, DAG
);
136 // Most subtargets use a PPC970 recognizer.
137 if (Directive
!= PPC::DIR_440
&& Directive
!= PPC::DIR_A2
&&
138 Directive
!= PPC::DIR_E500mc
&& Directive
!= PPC::DIR_E5500
) {
139 assert(DAG
->TII
&& "No InstrInfo?");
141 return new PPCHazardRecognizer970(*DAG
);
144 return new ScoreboardHazardRecognizer(II
, DAG
);
147 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData
*ItinData
,
148 const MachineInstr
&MI
,
149 unsigned *PredCost
) const {
150 if (!ItinData
|| UseOldLatencyCalc
)
151 return PPCGenInstrInfo::getInstrLatency(ItinData
, MI
, PredCost
);
153 // The default implementation of getInstrLatency calls getStageLatency, but
154 // getStageLatency does not do the right thing for us. While we have
155 // itinerary, most cores are fully pipelined, and so the itineraries only
156 // express the first part of the pipeline, not every stage. Instead, we need
157 // to use the listed output operand cycle number (using operand 0 here, which
160 unsigned Latency
= 1;
161 unsigned DefClass
= MI
.getDesc().getSchedClass();
162 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
163 const MachineOperand
&MO
= MI
.getOperand(i
);
164 if (!MO
.isReg() || !MO
.isDef() || MO
.isImplicit())
167 int Cycle
= ItinData
->getOperandCycle(DefClass
, i
);
171 Latency
= std::max(Latency
, (unsigned) Cycle
);
177 int PPCInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
178 const MachineInstr
&DefMI
, unsigned DefIdx
,
179 const MachineInstr
&UseMI
,
180 unsigned UseIdx
) const {
181 int Latency
= PPCGenInstrInfo::getOperandLatency(ItinData
, DefMI
, DefIdx
,
184 if (!DefMI
.getParent())
187 const MachineOperand
&DefMO
= DefMI
.getOperand(DefIdx
);
188 unsigned Reg
= DefMO
.getReg();
191 if (TargetRegisterInfo::isVirtualRegister(Reg
)) {
192 const MachineRegisterInfo
*MRI
=
193 &DefMI
.getParent()->getParent()->getRegInfo();
194 IsRegCR
= MRI
->getRegClass(Reg
)->hasSuperClassEq(&PPC::CRRCRegClass
) ||
195 MRI
->getRegClass(Reg
)->hasSuperClassEq(&PPC::CRBITRCRegClass
);
197 IsRegCR
= PPC::CRRCRegClass
.contains(Reg
) ||
198 PPC::CRBITRCRegClass
.contains(Reg
);
201 if (UseMI
.isBranch() && IsRegCR
) {
203 Latency
= getInstrLatency(ItinData
, DefMI
);
205 // On some cores, there is an additional delay between writing to a condition
206 // register, and using it from a branch.
207 unsigned Directive
= Subtarget
.getDarwinDirective();
221 // FIXME: Is this needed for POWER9?
230 // This function does not list all associative and commutative operations, but
231 // only those worth feeding through the machine combiner in an attempt to
232 // reduce the critical path. Mostly, this means floating-point operations,
233 // because they have high latencies (compared to other operations, such and
234 // and/or, which are also associative and commutative, but have low latencies).
235 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr
&Inst
) const {
236 switch (Inst
.getOpcode()) {
269 bool PPCInstrInfo::getMachineCombinerPatterns(
271 SmallVectorImpl
<MachineCombinerPattern
> &Patterns
) const {
272 // Using the machine combiner in this way is potentially expensive, so
273 // restrict to when aggressive optimizations are desired.
274 if (Subtarget
.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive
)
277 // FP reassociation is only legal when we don't need strict IEEE semantics.
278 if (!Root
.getParent()->getParent()->getTarget().Options
.UnsafeFPMath
)
281 return TargetInstrInfo::getMachineCombinerPatterns(Root
, Patterns
);
284 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
285 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr
&MI
,
286 unsigned &SrcReg
, unsigned &DstReg
,
287 unsigned &SubIdx
) const {
288 switch (MI
.getOpcode()) {
289 default: return false;
292 case PPC::EXTSW_32_64
:
293 SrcReg
= MI
.getOperand(1).getReg();
294 DstReg
= MI
.getOperand(0).getReg();
295 SubIdx
= PPC::sub_32
;
300 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr
&MI
,
301 int &FrameIndex
) const {
302 unsigned Opcode
= MI
.getOpcode();
303 const unsigned *OpcodesForSpill
= getLoadOpcodesForSpillArray();
304 const unsigned *End
= OpcodesForSpill
+ SOK_LastOpcodeSpill
;
306 if (End
!= std::find(OpcodesForSpill
, End
, Opcode
)) {
307 // Check for the operands added by addFrameReference (the immediate is the
308 // offset which defaults to 0).
309 if (MI
.getOperand(1).isImm() && !MI
.getOperand(1).getImm() &&
310 MI
.getOperand(2).isFI()) {
311 FrameIndex
= MI
.getOperand(2).getIndex();
312 return MI
.getOperand(0).getReg();
318 // For opcodes with the ReMaterializable flag set, this function is called to
319 // verify the instruction is really rematable.
320 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr
&MI
,
321 AliasAnalysis
*AA
) const {
322 switch (MI
.getOpcode()) {
324 // This function should only be called for opcodes with the ReMaterializable
326 llvm_unreachable("Unknown rematerializable operation!");
333 case PPC::ADDIStocHA
:
335 case PPC::LOAD_STACK_GUARD
:
341 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr
&MI
,
342 int &FrameIndex
) const {
343 unsigned Opcode
= MI
.getOpcode();
344 const unsigned *OpcodesForSpill
= getStoreOpcodesForSpillArray();
345 const unsigned *End
= OpcodesForSpill
+ SOK_LastOpcodeSpill
;
347 if (End
!= std::find(OpcodesForSpill
, End
, Opcode
)) {
348 if (MI
.getOperand(1).isImm() && !MI
.getOperand(1).getImm() &&
349 MI
.getOperand(2).isFI()) {
350 FrameIndex
= MI
.getOperand(2).getIndex();
351 return MI
.getOperand(0).getReg();
357 MachineInstr
*PPCInstrInfo::commuteInstructionImpl(MachineInstr
&MI
, bool NewMI
,
359 unsigned OpIdx2
) const {
360 MachineFunction
&MF
= *MI
.getParent()->getParent();
362 // Normal instructions can be commuted the obvious way.
363 if (MI
.getOpcode() != PPC::RLWIMI
&& MI
.getOpcode() != PPC::RLWIMIo
)
364 return TargetInstrInfo::commuteInstructionImpl(MI
, NewMI
, OpIdx1
, OpIdx2
);
365 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
366 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
367 // changing the relative order of the mask operands might change what happens
368 // to the high-bits of the mask (and, thus, the result).
370 // Cannot commute if it has a non-zero rotate count.
371 if (MI
.getOperand(3).getImm() != 0)
374 // If we have a zero rotate count, we have:
376 // Op0 = (Op1 & ~M) | (Op2 & M)
378 // M = mask((ME+1)&31, (MB-1)&31)
379 // Op0 = (Op2 & ~M) | (Op1 & M)
382 assert(((OpIdx1
== 1 && OpIdx2
== 2) || (OpIdx1
== 2 && OpIdx2
== 1)) &&
383 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
384 unsigned Reg0
= MI
.getOperand(0).getReg();
385 unsigned Reg1
= MI
.getOperand(1).getReg();
386 unsigned Reg2
= MI
.getOperand(2).getReg();
387 unsigned SubReg1
= MI
.getOperand(1).getSubReg();
388 unsigned SubReg2
= MI
.getOperand(2).getSubReg();
389 bool Reg1IsKill
= MI
.getOperand(1).isKill();
390 bool Reg2IsKill
= MI
.getOperand(2).isKill();
391 bool ChangeReg0
= false;
392 // If machine instrs are no longer in two-address forms, update
393 // destination register as well.
395 // Must be two address instruction!
396 assert(MI
.getDesc().getOperandConstraint(0, MCOI::TIED_TO
) &&
397 "Expecting a two-address instruction!");
398 assert(MI
.getOperand(0).getSubReg() == SubReg1
&& "Tied subreg mismatch");
404 unsigned MB
= MI
.getOperand(4).getImm();
405 unsigned ME
= MI
.getOperand(5).getImm();
407 // We can't commute a trivial mask (there is no way to represent an all-zero
409 if (MB
== 0 && ME
== 31)
413 // Create a new instruction.
414 unsigned Reg0
= ChangeReg0
? Reg2
: MI
.getOperand(0).getReg();
415 bool Reg0IsDead
= MI
.getOperand(0).isDead();
416 return BuildMI(MF
, MI
.getDebugLoc(), MI
.getDesc())
417 .addReg(Reg0
, RegState::Define
| getDeadRegState(Reg0IsDead
))
418 .addReg(Reg2
, getKillRegState(Reg2IsKill
))
419 .addReg(Reg1
, getKillRegState(Reg1IsKill
))
420 .addImm((ME
+ 1) & 31)
421 .addImm((MB
- 1) & 31);
425 MI
.getOperand(0).setReg(Reg2
);
426 MI
.getOperand(0).setSubReg(SubReg2
);
428 MI
.getOperand(2).setReg(Reg1
);
429 MI
.getOperand(1).setReg(Reg2
);
430 MI
.getOperand(2).setSubReg(SubReg1
);
431 MI
.getOperand(1).setSubReg(SubReg2
);
432 MI
.getOperand(2).setIsKill(Reg1IsKill
);
433 MI
.getOperand(1).setIsKill(Reg2IsKill
);
435 // Swap the mask around.
436 MI
.getOperand(4).setImm((ME
+ 1) & 31);
437 MI
.getOperand(5).setImm((MB
- 1) & 31);
441 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr
&MI
, unsigned &SrcOpIdx1
,
442 unsigned &SrcOpIdx2
) const {
443 // For VSX A-Type FMA instructions, it is the first two operands that can be
444 // commuted, however, because the non-encoded tied input operand is listed
445 // first, the operands to swap are actually the second and third.
447 int AltOpc
= PPC::getAltVSXFMAOpcode(MI
.getOpcode());
449 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
451 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
453 return fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
, 2, 3);
456 void PPCInstrInfo::insertNoop(MachineBasicBlock
&MBB
,
457 MachineBasicBlock::iterator MI
) const {
458 // This function is used for scheduling, and the nop wanted here is the type
459 // that terminates dispatch groups on the POWER cores.
460 unsigned Directive
= Subtarget
.getDarwinDirective();
463 default: Opcode
= PPC::NOP
; break;
464 case PPC::DIR_PWR6
: Opcode
= PPC::NOP_GT_PWR6
; break;
465 case PPC::DIR_PWR7
: Opcode
= PPC::NOP_GT_PWR7
; break;
466 case PPC::DIR_PWR8
: Opcode
= PPC::NOP_GT_PWR7
; break; /* FIXME: Update when P8 InstrScheduling model is ready */
467 // FIXME: Update when POWER9 scheduling model is ready.
468 case PPC::DIR_PWR9
: Opcode
= PPC::NOP_GT_PWR7
; break;
472 BuildMI(MBB
, MI
, DL
, get(Opcode
));
475 /// Return the noop instruction to use for a noop.
476 void PPCInstrInfo::getNoop(MCInst
&NopInst
) const {
477 NopInst
.setOpcode(PPC::NOP
);
481 // Note: If the condition register is set to CTR or CTR8 then this is a
482 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
483 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock
&MBB
,
484 MachineBasicBlock
*&TBB
,
485 MachineBasicBlock
*&FBB
,
486 SmallVectorImpl
<MachineOperand
> &Cond
,
487 bool AllowModify
) const {
488 bool isPPC64
= Subtarget
.isPPC64();
490 // If the block has no terminators, it just falls into the block after it.
491 MachineBasicBlock::iterator I
= MBB
.getLastNonDebugInstr();
495 if (!isUnpredicatedTerminator(*I
))
499 // If the BB ends with an unconditional branch to the fallthrough BB,
500 // we eliminate the branch instruction.
501 if (I
->getOpcode() == PPC::B
&&
502 MBB
.isLayoutSuccessor(I
->getOperand(0).getMBB())) {
503 I
->eraseFromParent();
505 // We update iterator after deleting the last branch.
506 I
= MBB
.getLastNonDebugInstr();
507 if (I
== MBB
.end() || !isUnpredicatedTerminator(*I
))
512 // Get the last instruction in the block.
513 MachineInstr
&LastInst
= *I
;
515 // If there is only one terminator instruction, process it.
516 if (I
== MBB
.begin() || !isUnpredicatedTerminator(*--I
)) {
517 if (LastInst
.getOpcode() == PPC::B
) {
518 if (!LastInst
.getOperand(0).isMBB())
520 TBB
= LastInst
.getOperand(0).getMBB();
522 } else if (LastInst
.getOpcode() == PPC::BCC
) {
523 if (!LastInst
.getOperand(2).isMBB())
525 // Block ends with fall-through condbranch.
526 TBB
= LastInst
.getOperand(2).getMBB();
527 Cond
.push_back(LastInst
.getOperand(0));
528 Cond
.push_back(LastInst
.getOperand(1));
530 } else if (LastInst
.getOpcode() == PPC::BC
) {
531 if (!LastInst
.getOperand(1).isMBB())
533 // Block ends with fall-through condbranch.
534 TBB
= LastInst
.getOperand(1).getMBB();
535 Cond
.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET
));
536 Cond
.push_back(LastInst
.getOperand(0));
538 } else if (LastInst
.getOpcode() == PPC::BCn
) {
539 if (!LastInst
.getOperand(1).isMBB())
541 // Block ends with fall-through condbranch.
542 TBB
= LastInst
.getOperand(1).getMBB();
543 Cond
.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET
));
544 Cond
.push_back(LastInst
.getOperand(0));
546 } else if (LastInst
.getOpcode() == PPC::BDNZ8
||
547 LastInst
.getOpcode() == PPC::BDNZ
) {
548 if (!LastInst
.getOperand(0).isMBB())
550 if (DisableCTRLoopAnal
)
552 TBB
= LastInst
.getOperand(0).getMBB();
553 Cond
.push_back(MachineOperand::CreateImm(1));
554 Cond
.push_back(MachineOperand::CreateReg(isPPC64
? PPC::CTR8
: PPC::CTR
,
557 } else if (LastInst
.getOpcode() == PPC::BDZ8
||
558 LastInst
.getOpcode() == PPC::BDZ
) {
559 if (!LastInst
.getOperand(0).isMBB())
561 if (DisableCTRLoopAnal
)
563 TBB
= LastInst
.getOperand(0).getMBB();
564 Cond
.push_back(MachineOperand::CreateImm(0));
565 Cond
.push_back(MachineOperand::CreateReg(isPPC64
? PPC::CTR8
: PPC::CTR
,
570 // Otherwise, don't know what this is.
574 // Get the instruction before it if it's a terminator.
575 MachineInstr
&SecondLastInst
= *I
;
577 // If there are three terminators, we don't know what sort of block this is.
578 if (I
!= MBB
.begin() && isUnpredicatedTerminator(*--I
))
581 // If the block ends with PPC::B and PPC:BCC, handle it.
582 if (SecondLastInst
.getOpcode() == PPC::BCC
&&
583 LastInst
.getOpcode() == PPC::B
) {
584 if (!SecondLastInst
.getOperand(2).isMBB() ||
585 !LastInst
.getOperand(0).isMBB())
587 TBB
= SecondLastInst
.getOperand(2).getMBB();
588 Cond
.push_back(SecondLastInst
.getOperand(0));
589 Cond
.push_back(SecondLastInst
.getOperand(1));
590 FBB
= LastInst
.getOperand(0).getMBB();
592 } else if (SecondLastInst
.getOpcode() == PPC::BC
&&
593 LastInst
.getOpcode() == PPC::B
) {
594 if (!SecondLastInst
.getOperand(1).isMBB() ||
595 !LastInst
.getOperand(0).isMBB())
597 TBB
= SecondLastInst
.getOperand(1).getMBB();
598 Cond
.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET
));
599 Cond
.push_back(SecondLastInst
.getOperand(0));
600 FBB
= LastInst
.getOperand(0).getMBB();
602 } else if (SecondLastInst
.getOpcode() == PPC::BCn
&&
603 LastInst
.getOpcode() == PPC::B
) {
604 if (!SecondLastInst
.getOperand(1).isMBB() ||
605 !LastInst
.getOperand(0).isMBB())
607 TBB
= SecondLastInst
.getOperand(1).getMBB();
608 Cond
.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET
));
609 Cond
.push_back(SecondLastInst
.getOperand(0));
610 FBB
= LastInst
.getOperand(0).getMBB();
612 } else if ((SecondLastInst
.getOpcode() == PPC::BDNZ8
||
613 SecondLastInst
.getOpcode() == PPC::BDNZ
) &&
614 LastInst
.getOpcode() == PPC::B
) {
615 if (!SecondLastInst
.getOperand(0).isMBB() ||
616 !LastInst
.getOperand(0).isMBB())
618 if (DisableCTRLoopAnal
)
620 TBB
= SecondLastInst
.getOperand(0).getMBB();
621 Cond
.push_back(MachineOperand::CreateImm(1));
622 Cond
.push_back(MachineOperand::CreateReg(isPPC64
? PPC::CTR8
: PPC::CTR
,
624 FBB
= LastInst
.getOperand(0).getMBB();
626 } else if ((SecondLastInst
.getOpcode() == PPC::BDZ8
||
627 SecondLastInst
.getOpcode() == PPC::BDZ
) &&
628 LastInst
.getOpcode() == PPC::B
) {
629 if (!SecondLastInst
.getOperand(0).isMBB() ||
630 !LastInst
.getOperand(0).isMBB())
632 if (DisableCTRLoopAnal
)
634 TBB
= SecondLastInst
.getOperand(0).getMBB();
635 Cond
.push_back(MachineOperand::CreateImm(0));
636 Cond
.push_back(MachineOperand::CreateReg(isPPC64
? PPC::CTR8
: PPC::CTR
,
638 FBB
= LastInst
.getOperand(0).getMBB();
642 // If the block ends with two PPC:Bs, handle it. The second one is not
643 // executed, so remove it.
644 if (SecondLastInst
.getOpcode() == PPC::B
&& LastInst
.getOpcode() == PPC::B
) {
645 if (!SecondLastInst
.getOperand(0).isMBB())
647 TBB
= SecondLastInst
.getOperand(0).getMBB();
650 I
->eraseFromParent();
654 // Otherwise, can't handle this.
658 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock
&MBB
,
659 int *BytesRemoved
) const {
660 assert(!BytesRemoved
&& "code size not handled");
662 MachineBasicBlock::iterator I
= MBB
.getLastNonDebugInstr();
666 if (I
->getOpcode() != PPC::B
&& I
->getOpcode() != PPC::BCC
&&
667 I
->getOpcode() != PPC::BC
&& I
->getOpcode() != PPC::BCn
&&
668 I
->getOpcode() != PPC::BDNZ8
&& I
->getOpcode() != PPC::BDNZ
&&
669 I
->getOpcode() != PPC::BDZ8
&& I
->getOpcode() != PPC::BDZ
)
672 // Remove the branch.
673 I
->eraseFromParent();
677 if (I
== MBB
.begin()) return 1;
679 if (I
->getOpcode() != PPC::BCC
&&
680 I
->getOpcode() != PPC::BC
&& I
->getOpcode() != PPC::BCn
&&
681 I
->getOpcode() != PPC::BDNZ8
&& I
->getOpcode() != PPC::BDNZ
&&
682 I
->getOpcode() != PPC::BDZ8
&& I
->getOpcode() != PPC::BDZ
)
685 // Remove the branch.
686 I
->eraseFromParent();
690 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock
&MBB
,
691 MachineBasicBlock
*TBB
,
692 MachineBasicBlock
*FBB
,
693 ArrayRef
<MachineOperand
> Cond
,
695 int *BytesAdded
) const {
696 // Shouldn't be a fall through.
697 assert(TBB
&& "insertBranch must not be told to insert a fallthrough");
698 assert((Cond
.size() == 2 || Cond
.size() == 0) &&
699 "PPC branch conditions have two components!");
700 assert(!BytesAdded
&& "code size not handled");
702 bool isPPC64
= Subtarget
.isPPC64();
706 if (Cond
.empty()) // Unconditional branch
707 BuildMI(&MBB
, DL
, get(PPC::B
)).addMBB(TBB
);
708 else if (Cond
[1].getReg() == PPC::CTR
|| Cond
[1].getReg() == PPC::CTR8
)
709 BuildMI(&MBB
, DL
, get(Cond
[0].getImm() ?
710 (isPPC64
? PPC::BDNZ8
: PPC::BDNZ
) :
711 (isPPC64
? PPC::BDZ8
: PPC::BDZ
))).addMBB(TBB
);
712 else if (Cond
[0].getImm() == PPC::PRED_BIT_SET
)
713 BuildMI(&MBB
, DL
, get(PPC::BC
)).add(Cond
[1]).addMBB(TBB
);
714 else if (Cond
[0].getImm() == PPC::PRED_BIT_UNSET
)
715 BuildMI(&MBB
, DL
, get(PPC::BCn
)).add(Cond
[1]).addMBB(TBB
);
716 else // Conditional branch
717 BuildMI(&MBB
, DL
, get(PPC::BCC
))
718 .addImm(Cond
[0].getImm())
724 // Two-way Conditional Branch.
725 if (Cond
[1].getReg() == PPC::CTR
|| Cond
[1].getReg() == PPC::CTR8
)
726 BuildMI(&MBB
, DL
, get(Cond
[0].getImm() ?
727 (isPPC64
? PPC::BDNZ8
: PPC::BDNZ
) :
728 (isPPC64
? PPC::BDZ8
: PPC::BDZ
))).addMBB(TBB
);
729 else if (Cond
[0].getImm() == PPC::PRED_BIT_SET
)
730 BuildMI(&MBB
, DL
, get(PPC::BC
)).add(Cond
[1]).addMBB(TBB
);
731 else if (Cond
[0].getImm() == PPC::PRED_BIT_UNSET
)
732 BuildMI(&MBB
, DL
, get(PPC::BCn
)).add(Cond
[1]).addMBB(TBB
);
734 BuildMI(&MBB
, DL
, get(PPC::BCC
))
735 .addImm(Cond
[0].getImm())
738 BuildMI(&MBB
, DL
, get(PPC::B
)).addMBB(FBB
);
743 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock
&MBB
,
744 ArrayRef
<MachineOperand
> Cond
,
745 unsigned TrueReg
, unsigned FalseReg
,
746 int &CondCycles
, int &TrueCycles
, int &FalseCycles
) const {
747 if (Cond
.size() != 2)
750 // If this is really a bdnz-like condition, then it cannot be turned into a
752 if (Cond
[1].getReg() == PPC::CTR
|| Cond
[1].getReg() == PPC::CTR8
)
755 // Check register classes.
756 const MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
757 const TargetRegisterClass
*RC
=
758 RI
.getCommonSubClass(MRI
.getRegClass(TrueReg
), MRI
.getRegClass(FalseReg
));
762 // isel is for regular integer GPRs only.
763 if (!PPC::GPRCRegClass
.hasSubClassEq(RC
) &&
764 !PPC::GPRC_NOR0RegClass
.hasSubClassEq(RC
) &&
765 !PPC::G8RCRegClass
.hasSubClassEq(RC
) &&
766 !PPC::G8RC_NOX0RegClass
.hasSubClassEq(RC
))
769 // FIXME: These numbers are for the A2, how well they work for other cores is
770 // an open question. On the A2, the isel instruction has a 2-cycle latency
771 // but single-cycle throughput. These numbers are used in combination with
772 // the MispredictPenalty setting from the active SchedMachineModel.
780 void PPCInstrInfo::insertSelect(MachineBasicBlock
&MBB
,
781 MachineBasicBlock::iterator MI
,
782 const DebugLoc
&dl
, unsigned DestReg
,
783 ArrayRef
<MachineOperand
> Cond
, unsigned TrueReg
,
784 unsigned FalseReg
) const {
785 assert(Cond
.size() == 2 &&
786 "PPC branch conditions have two components!");
788 // Get the register classes.
789 MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
790 const TargetRegisterClass
*RC
=
791 RI
.getCommonSubClass(MRI
.getRegClass(TrueReg
), MRI
.getRegClass(FalseReg
));
792 assert(RC
&& "TrueReg and FalseReg must have overlapping register classes");
794 bool Is64Bit
= PPC::G8RCRegClass
.hasSubClassEq(RC
) ||
795 PPC::G8RC_NOX0RegClass
.hasSubClassEq(RC
);
797 PPC::GPRCRegClass
.hasSubClassEq(RC
) ||
798 PPC::GPRC_NOR0RegClass
.hasSubClassEq(RC
)) &&
799 "isel is for regular integer GPRs only");
801 unsigned OpCode
= Is64Bit
? PPC::ISEL8
: PPC::ISEL
;
802 auto SelectPred
= static_cast<PPC::Predicate
>(Cond
[0].getImm());
805 bool SwapOps
= false;
806 switch (SelectPred
) {
808 case PPC::PRED_EQ_MINUS
:
809 case PPC::PRED_EQ_PLUS
:
810 SubIdx
= PPC::sub_eq
; SwapOps
= false; break;
812 case PPC::PRED_NE_MINUS
:
813 case PPC::PRED_NE_PLUS
:
814 SubIdx
= PPC::sub_eq
; SwapOps
= true; break;
816 case PPC::PRED_LT_MINUS
:
817 case PPC::PRED_LT_PLUS
:
818 SubIdx
= PPC::sub_lt
; SwapOps
= false; break;
820 case PPC::PRED_GE_MINUS
:
821 case PPC::PRED_GE_PLUS
:
822 SubIdx
= PPC::sub_lt
; SwapOps
= true; break;
824 case PPC::PRED_GT_MINUS
:
825 case PPC::PRED_GT_PLUS
:
826 SubIdx
= PPC::sub_gt
; SwapOps
= false; break;
828 case PPC::PRED_LE_MINUS
:
829 case PPC::PRED_LE_PLUS
:
830 SubIdx
= PPC::sub_gt
; SwapOps
= true; break;
832 case PPC::PRED_UN_MINUS
:
833 case PPC::PRED_UN_PLUS
:
834 SubIdx
= PPC::sub_un
; SwapOps
= false; break;
836 case PPC::PRED_NU_MINUS
:
837 case PPC::PRED_NU_PLUS
:
838 SubIdx
= PPC::sub_un
; SwapOps
= true; break;
839 case PPC::PRED_BIT_SET
: SubIdx
= 0; SwapOps
= false; break;
840 case PPC::PRED_BIT_UNSET
: SubIdx
= 0; SwapOps
= true; break;
843 unsigned FirstReg
= SwapOps
? FalseReg
: TrueReg
,
844 SecondReg
= SwapOps
? TrueReg
: FalseReg
;
846 // The first input register of isel cannot be r0. If it is a member
847 // of a register class that can be r0, then copy it first (the
848 // register allocator should eliminate the copy).
849 if (MRI
.getRegClass(FirstReg
)->contains(PPC::R0
) ||
850 MRI
.getRegClass(FirstReg
)->contains(PPC::X0
)) {
851 const TargetRegisterClass
*FirstRC
=
852 MRI
.getRegClass(FirstReg
)->contains(PPC::X0
) ?
853 &PPC::G8RC_NOX0RegClass
: &PPC::GPRC_NOR0RegClass
;
854 unsigned OldFirstReg
= FirstReg
;
855 FirstReg
= MRI
.createVirtualRegister(FirstRC
);
856 BuildMI(MBB
, MI
, dl
, get(TargetOpcode::COPY
), FirstReg
)
857 .addReg(OldFirstReg
);
860 BuildMI(MBB
, MI
, dl
, get(OpCode
), DestReg
)
861 .addReg(FirstReg
).addReg(SecondReg
)
862 .addReg(Cond
[1].getReg(), 0, SubIdx
);
865 static unsigned getCRBitValue(unsigned CRBit
) {
867 if (CRBit
== PPC::CR0LT
|| CRBit
== PPC::CR1LT
||
868 CRBit
== PPC::CR2LT
|| CRBit
== PPC::CR3LT
||
869 CRBit
== PPC::CR4LT
|| CRBit
== PPC::CR5LT
||
870 CRBit
== PPC::CR6LT
|| CRBit
== PPC::CR7LT
)
872 if (CRBit
== PPC::CR0GT
|| CRBit
== PPC::CR1GT
||
873 CRBit
== PPC::CR2GT
|| CRBit
== PPC::CR3GT
||
874 CRBit
== PPC::CR4GT
|| CRBit
== PPC::CR5GT
||
875 CRBit
== PPC::CR6GT
|| CRBit
== PPC::CR7GT
)
877 if (CRBit
== PPC::CR0EQ
|| CRBit
== PPC::CR1EQ
||
878 CRBit
== PPC::CR2EQ
|| CRBit
== PPC::CR3EQ
||
879 CRBit
== PPC::CR4EQ
|| CRBit
== PPC::CR5EQ
||
880 CRBit
== PPC::CR6EQ
|| CRBit
== PPC::CR7EQ
)
882 if (CRBit
== PPC::CR0UN
|| CRBit
== PPC::CR1UN
||
883 CRBit
== PPC::CR2UN
|| CRBit
== PPC::CR3UN
||
884 CRBit
== PPC::CR4UN
|| CRBit
== PPC::CR5UN
||
885 CRBit
== PPC::CR6UN
|| CRBit
== PPC::CR7UN
)
888 assert(Ret
!= 4 && "Invalid CR bit register");
892 void PPCInstrInfo::copyPhysReg(MachineBasicBlock
&MBB
,
893 MachineBasicBlock::iterator I
,
894 const DebugLoc
&DL
, unsigned DestReg
,
895 unsigned SrcReg
, bool KillSrc
) const {
896 // We can end up with self copies and similar things as a result of VSX copy
897 // legalization. Promote them here.
898 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
899 if (PPC::F8RCRegClass
.contains(DestReg
) &&
900 PPC::VSRCRegClass
.contains(SrcReg
)) {
902 TRI
->getMatchingSuperReg(DestReg
, PPC::sub_64
, &PPC::VSRCRegClass
);
904 if (VSXSelfCopyCrash
&& SrcReg
== SuperReg
)
905 llvm_unreachable("nop VSX copy");
908 } else if (PPC::F8RCRegClass
.contains(SrcReg
) &&
909 PPC::VSRCRegClass
.contains(DestReg
)) {
911 TRI
->getMatchingSuperReg(SrcReg
, PPC::sub_64
, &PPC::VSRCRegClass
);
913 if (VSXSelfCopyCrash
&& DestReg
== SuperReg
)
914 llvm_unreachable("nop VSX copy");
919 // Different class register copy
920 if (PPC::CRBITRCRegClass
.contains(SrcReg
) &&
921 PPC::GPRCRegClass
.contains(DestReg
)) {
922 unsigned CRReg
= getCRFromCRBit(SrcReg
);
923 BuildMI(MBB
, I
, DL
, get(PPC::MFOCRF
), DestReg
).addReg(CRReg
);
924 getKillRegState(KillSrc
);
925 // Rotate the CR bit in the CR fields to be the least significant bit and
926 // then mask with 0x1 (MB = ME = 31).
927 BuildMI(MBB
, I
, DL
, get(PPC::RLWINM
), DestReg
)
928 .addReg(DestReg
, RegState::Kill
)
929 .addImm(TRI
->getEncodingValue(CRReg
) * 4 + (4 - getCRBitValue(SrcReg
)))
933 } else if (PPC::CRRCRegClass
.contains(SrcReg
) &&
934 PPC::G8RCRegClass
.contains(DestReg
)) {
935 BuildMI(MBB
, I
, DL
, get(PPC::MFOCRF8
), DestReg
).addReg(SrcReg
);
936 getKillRegState(KillSrc
);
938 } else if (PPC::CRRCRegClass
.contains(SrcReg
) &&
939 PPC::GPRCRegClass
.contains(DestReg
)) {
940 BuildMI(MBB
, I
, DL
, get(PPC::MFOCRF
), DestReg
).addReg(SrcReg
);
941 getKillRegState(KillSrc
);
943 } else if (PPC::G8RCRegClass
.contains(SrcReg
) &&
944 PPC::VSFRCRegClass
.contains(DestReg
)) {
945 BuildMI(MBB
, I
, DL
, get(PPC::MTVSRD
), DestReg
).addReg(SrcReg
);
947 getKillRegState(KillSrc
);
949 } else if (PPC::VSFRCRegClass
.contains(SrcReg
) &&
950 PPC::G8RCRegClass
.contains(DestReg
)) {
951 BuildMI(MBB
, I
, DL
, get(PPC::MFVSRD
), DestReg
).addReg(SrcReg
);
952 getKillRegState(KillSrc
);
954 } else if (PPC::SPERCRegClass
.contains(SrcReg
) &&
955 PPC::SPE4RCRegClass
.contains(DestReg
)) {
956 BuildMI(MBB
, I
, DL
, get(PPC::EFSCFD
), DestReg
).addReg(SrcReg
);
957 getKillRegState(KillSrc
);
959 } else if (PPC::SPE4RCRegClass
.contains(SrcReg
) &&
960 PPC::SPERCRegClass
.contains(DestReg
)) {
961 BuildMI(MBB
, I
, DL
, get(PPC::EFDCFS
), DestReg
).addReg(SrcReg
);
962 getKillRegState(KillSrc
);
968 if (PPC::GPRCRegClass
.contains(DestReg
, SrcReg
))
970 else if (PPC::G8RCRegClass
.contains(DestReg
, SrcReg
))
972 else if (PPC::F4RCRegClass
.contains(DestReg
, SrcReg
))
974 else if (PPC::CRRCRegClass
.contains(DestReg
, SrcReg
))
976 else if (PPC::VRRCRegClass
.contains(DestReg
, SrcReg
))
978 else if (PPC::VSRCRegClass
.contains(DestReg
, SrcReg
))
979 // There are two different ways this can be done:
980 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
981 // issue in VSU pipeline 0.
982 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
983 // can go to either pipeline.
984 // We'll always use xxlor here, because in practically all cases where
985 // copies are generated, they are close enough to some use that the
986 // lower-latency form is preferable.
988 else if (PPC::VSFRCRegClass
.contains(DestReg
, SrcReg
) ||
989 PPC::VSSRCRegClass
.contains(DestReg
, SrcReg
))
990 Opc
= (Subtarget
.hasP9Vector()) ? PPC::XSCPSGNDP
: PPC::XXLORf
;
991 else if (PPC::QFRCRegClass
.contains(DestReg
, SrcReg
))
993 else if (PPC::QSRCRegClass
.contains(DestReg
, SrcReg
))
995 else if (PPC::QBRCRegClass
.contains(DestReg
, SrcReg
))
997 else if (PPC::CRBITRCRegClass
.contains(DestReg
, SrcReg
))
999 else if (PPC::SPERCRegClass
.contains(DestReg
, SrcReg
))
1002 llvm_unreachable("Impossible reg-to-reg copy");
1004 const MCInstrDesc
&MCID
= get(Opc
);
1005 if (MCID
.getNumOperands() == 3)
1006 BuildMI(MBB
, I
, DL
, MCID
, DestReg
)
1007 .addReg(SrcReg
).addReg(SrcReg
, getKillRegState(KillSrc
));
1009 BuildMI(MBB
, I
, DL
, MCID
, DestReg
).addReg(SrcReg
, getKillRegState(KillSrc
));
1012 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg
,
1013 const TargetRegisterClass
*RC
)
1015 const unsigned *OpcodesForSpill
= getStoreOpcodesForSpillArray();
1016 int OpcodeIndex
= 0;
1018 if (RC
!= nullptr) {
1019 if (PPC::GPRCRegClass
.hasSubClassEq(RC
) ||
1020 PPC::GPRC_NOR0RegClass
.hasSubClassEq(RC
)) {
1021 OpcodeIndex
= SOK_Int4Spill
;
1022 } else if (PPC::G8RCRegClass
.hasSubClassEq(RC
) ||
1023 PPC::G8RC_NOX0RegClass
.hasSubClassEq(RC
)) {
1024 OpcodeIndex
= SOK_Int8Spill
;
1025 } else if (PPC::F8RCRegClass
.hasSubClassEq(RC
)) {
1026 OpcodeIndex
= SOK_Float8Spill
;
1027 } else if (PPC::F4RCRegClass
.hasSubClassEq(RC
)) {
1028 OpcodeIndex
= SOK_Float4Spill
;
1029 } else if (PPC::SPERCRegClass
.hasSubClassEq(RC
)) {
1030 OpcodeIndex
= SOK_SPESpill
;
1031 } else if (PPC::SPE4RCRegClass
.hasSubClassEq(RC
)) {
1032 OpcodeIndex
= SOK_SPE4Spill
;
1033 } else if (PPC::CRRCRegClass
.hasSubClassEq(RC
)) {
1034 OpcodeIndex
= SOK_CRSpill
;
1035 } else if (PPC::CRBITRCRegClass
.hasSubClassEq(RC
)) {
1036 OpcodeIndex
= SOK_CRBitSpill
;
1037 } else if (PPC::VRRCRegClass
.hasSubClassEq(RC
)) {
1038 OpcodeIndex
= SOK_VRVectorSpill
;
1039 } else if (PPC::VSRCRegClass
.hasSubClassEq(RC
)) {
1040 OpcodeIndex
= SOK_VSXVectorSpill
;
1041 } else if (PPC::VSFRCRegClass
.hasSubClassEq(RC
)) {
1042 OpcodeIndex
= SOK_VectorFloat8Spill
;
1043 } else if (PPC::VSSRCRegClass
.hasSubClassEq(RC
)) {
1044 OpcodeIndex
= SOK_VectorFloat4Spill
;
1045 } else if (PPC::VRSAVERCRegClass
.hasSubClassEq(RC
)) {
1046 OpcodeIndex
= SOK_VRSaveSpill
;
1047 } else if (PPC::QFRCRegClass
.hasSubClassEq(RC
)) {
1048 OpcodeIndex
= SOK_QuadFloat8Spill
;
1049 } else if (PPC::QSRCRegClass
.hasSubClassEq(RC
)) {
1050 OpcodeIndex
= SOK_QuadFloat4Spill
;
1051 } else if (PPC::QBRCRegClass
.hasSubClassEq(RC
)) {
1052 OpcodeIndex
= SOK_QuadBitSpill
;
1053 } else if (PPC::SPILLTOVSRRCRegClass
.hasSubClassEq(RC
)) {
1054 OpcodeIndex
= SOK_SpillToVSR
;
1056 llvm_unreachable("Unknown regclass!");
1059 if (PPC::GPRCRegClass
.contains(Reg
) ||
1060 PPC::GPRC_NOR0RegClass
.contains(Reg
)) {
1061 OpcodeIndex
= SOK_Int4Spill
;
1062 } else if (PPC::G8RCRegClass
.contains(Reg
) ||
1063 PPC::G8RC_NOX0RegClass
.contains(Reg
)) {
1064 OpcodeIndex
= SOK_Int8Spill
;
1065 } else if (PPC::F8RCRegClass
.contains(Reg
)) {
1066 OpcodeIndex
= SOK_Float8Spill
;
1067 } else if (PPC::F4RCRegClass
.contains(Reg
)) {
1068 OpcodeIndex
= SOK_Float4Spill
;
1069 } else if (PPC::CRRCRegClass
.contains(Reg
)) {
1070 OpcodeIndex
= SOK_CRSpill
;
1071 } else if (PPC::CRBITRCRegClass
.contains(Reg
)) {
1072 OpcodeIndex
= SOK_CRBitSpill
;
1073 } else if (PPC::VRRCRegClass
.contains(Reg
)) {
1074 OpcodeIndex
= SOK_VRVectorSpill
;
1075 } else if (PPC::VSRCRegClass
.contains(Reg
)) {
1076 OpcodeIndex
= SOK_VSXVectorSpill
;
1077 } else if (PPC::VSFRCRegClass
.contains(Reg
)) {
1078 OpcodeIndex
= SOK_VectorFloat8Spill
;
1079 } else if (PPC::VSSRCRegClass
.contains(Reg
)) {
1080 OpcodeIndex
= SOK_VectorFloat4Spill
;
1081 } else if (PPC::VRSAVERCRegClass
.contains(Reg
)) {
1082 OpcodeIndex
= SOK_VRSaveSpill
;
1083 } else if (PPC::QFRCRegClass
.contains(Reg
)) {
1084 OpcodeIndex
= SOK_QuadFloat8Spill
;
1085 } else if (PPC::QSRCRegClass
.contains(Reg
)) {
1086 OpcodeIndex
= SOK_QuadFloat4Spill
;
1087 } else if (PPC::QBRCRegClass
.contains(Reg
)) {
1088 OpcodeIndex
= SOK_QuadBitSpill
;
1089 } else if (PPC::SPILLTOVSRRCRegClass
.contains(Reg
)) {
1090 OpcodeIndex
= SOK_SpillToVSR
;
1092 llvm_unreachable("Unknown regclass!");
1095 return OpcodesForSpill
[OpcodeIndex
];
1099 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg
,
1100 const TargetRegisterClass
*RC
) const {
1101 const unsigned *OpcodesForSpill
= getLoadOpcodesForSpillArray();
1102 int OpcodeIndex
= 0;
1104 if (RC
!= nullptr) {
1105 if (PPC::GPRCRegClass
.hasSubClassEq(RC
) ||
1106 PPC::GPRC_NOR0RegClass
.hasSubClassEq(RC
)) {
1107 OpcodeIndex
= SOK_Int4Spill
;
1108 } else if (PPC::G8RCRegClass
.hasSubClassEq(RC
) ||
1109 PPC::G8RC_NOX0RegClass
.hasSubClassEq(RC
)) {
1110 OpcodeIndex
= SOK_Int8Spill
;
1111 } else if (PPC::F8RCRegClass
.hasSubClassEq(RC
)) {
1112 OpcodeIndex
= SOK_Float8Spill
;
1113 } else if (PPC::F4RCRegClass
.hasSubClassEq(RC
)) {
1114 OpcodeIndex
= SOK_Float4Spill
;
1115 } else if (PPC::SPERCRegClass
.hasSubClassEq(RC
)) {
1116 OpcodeIndex
= SOK_SPESpill
;
1117 } else if (PPC::SPE4RCRegClass
.hasSubClassEq(RC
)) {
1118 OpcodeIndex
= SOK_SPE4Spill
;
1119 } else if (PPC::CRRCRegClass
.hasSubClassEq(RC
)) {
1120 OpcodeIndex
= SOK_CRSpill
;
1121 } else if (PPC::CRBITRCRegClass
.hasSubClassEq(RC
)) {
1122 OpcodeIndex
= SOK_CRBitSpill
;
1123 } else if (PPC::VRRCRegClass
.hasSubClassEq(RC
)) {
1124 OpcodeIndex
= SOK_VRVectorSpill
;
1125 } else if (PPC::VSRCRegClass
.hasSubClassEq(RC
)) {
1126 OpcodeIndex
= SOK_VSXVectorSpill
;
1127 } else if (PPC::VSFRCRegClass
.hasSubClassEq(RC
)) {
1128 OpcodeIndex
= SOK_VectorFloat8Spill
;
1129 } else if (PPC::VSSRCRegClass
.hasSubClassEq(RC
)) {
1130 OpcodeIndex
= SOK_VectorFloat4Spill
;
1131 } else if (PPC::VRSAVERCRegClass
.hasSubClassEq(RC
)) {
1132 OpcodeIndex
= SOK_VRSaveSpill
;
1133 } else if (PPC::QFRCRegClass
.hasSubClassEq(RC
)) {
1134 OpcodeIndex
= SOK_QuadFloat8Spill
;
1135 } else if (PPC::QSRCRegClass
.hasSubClassEq(RC
)) {
1136 OpcodeIndex
= SOK_QuadFloat4Spill
;
1137 } else if (PPC::QBRCRegClass
.hasSubClassEq(RC
)) {
1138 OpcodeIndex
= SOK_QuadBitSpill
;
1139 } else if (PPC::SPILLTOVSRRCRegClass
.hasSubClassEq(RC
)) {
1140 OpcodeIndex
= SOK_SpillToVSR
;
1142 llvm_unreachable("Unknown regclass!");
1145 if (PPC::GPRCRegClass
.contains(Reg
) ||
1146 PPC::GPRC_NOR0RegClass
.contains(Reg
)) {
1147 OpcodeIndex
= SOK_Int4Spill
;
1148 } else if (PPC::G8RCRegClass
.contains(Reg
) ||
1149 PPC::G8RC_NOX0RegClass
.contains(Reg
)) {
1150 OpcodeIndex
= SOK_Int8Spill
;
1151 } else if (PPC::F8RCRegClass
.contains(Reg
)) {
1152 OpcodeIndex
= SOK_Float8Spill
;
1153 } else if (PPC::F4RCRegClass
.contains(Reg
)) {
1154 OpcodeIndex
= SOK_Float4Spill
;
1155 } else if (PPC::CRRCRegClass
.contains(Reg
)) {
1156 OpcodeIndex
= SOK_CRSpill
;
1157 } else if (PPC::CRBITRCRegClass
.contains(Reg
)) {
1158 OpcodeIndex
= SOK_CRBitSpill
;
1159 } else if (PPC::VRRCRegClass
.contains(Reg
)) {
1160 OpcodeIndex
= SOK_VRVectorSpill
;
1161 } else if (PPC::VSRCRegClass
.contains(Reg
)) {
1162 OpcodeIndex
= SOK_VSXVectorSpill
;
1163 } else if (PPC::VSFRCRegClass
.contains(Reg
)) {
1164 OpcodeIndex
= SOK_VectorFloat8Spill
;
1165 } else if (PPC::VSSRCRegClass
.contains(Reg
)) {
1166 OpcodeIndex
= SOK_VectorFloat4Spill
;
1167 } else if (PPC::VRSAVERCRegClass
.contains(Reg
)) {
1168 OpcodeIndex
= SOK_VRSaveSpill
;
1169 } else if (PPC::QFRCRegClass
.contains(Reg
)) {
1170 OpcodeIndex
= SOK_QuadFloat8Spill
;
1171 } else if (PPC::QSRCRegClass
.contains(Reg
)) {
1172 OpcodeIndex
= SOK_QuadFloat4Spill
;
1173 } else if (PPC::QBRCRegClass
.contains(Reg
)) {
1174 OpcodeIndex
= SOK_QuadBitSpill
;
1175 } else if (PPC::SPILLTOVSRRCRegClass
.contains(Reg
)) {
1176 OpcodeIndex
= SOK_SpillToVSR
;
1178 llvm_unreachable("Unknown regclass!");
1181 return OpcodesForSpill
[OpcodeIndex
];
1184 void PPCInstrInfo::StoreRegToStackSlot(
1185 MachineFunction
&MF
, unsigned SrcReg
, bool isKill
, int FrameIdx
,
1186 const TargetRegisterClass
*RC
,
1187 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
1188 unsigned Opcode
= getStoreOpcodeForSpill(PPC::NoRegister
, RC
);
1191 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
1192 FuncInfo
->setHasSpills();
1194 NewMIs
.push_back(addFrameReference(
1195 BuildMI(MF
, DL
, get(Opcode
)).addReg(SrcReg
, getKillRegState(isKill
)),
1198 if (PPC::CRRCRegClass
.hasSubClassEq(RC
) ||
1199 PPC::CRBITRCRegClass
.hasSubClassEq(RC
))
1200 FuncInfo
->setSpillsCR();
1202 if (PPC::VRSAVERCRegClass
.hasSubClassEq(RC
))
1203 FuncInfo
->setSpillsVRSAVE();
1205 if (isXFormMemOp(Opcode
))
1206 FuncInfo
->setHasNonRISpills();
1209 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock
&MBB
,
1210 MachineBasicBlock::iterator MI
,
1211 unsigned SrcReg
, bool isKill
,
1213 const TargetRegisterClass
*RC
,
1214 const TargetRegisterInfo
*TRI
) const {
1215 MachineFunction
&MF
= *MBB
.getParent();
1216 SmallVector
<MachineInstr
*, 4> NewMIs
;
1218 // We need to avoid a situation in which the value from a VRRC register is
1219 // spilled using an Altivec instruction and reloaded into a VSRC register
1220 // using a VSX instruction. The issue with this is that the VSX
1221 // load/store instructions swap the doublewords in the vector and the Altivec
1222 // ones don't. The register classes on the spill/reload may be different if
1223 // the register is defined using an Altivec instruction and is then used by a
1227 StoreRegToStackSlot(MF
, SrcReg
, isKill
, FrameIdx
, RC
, NewMIs
);
1229 for (unsigned i
= 0, e
= NewMIs
.size(); i
!= e
; ++i
)
1230 MBB
.insert(MI
, NewMIs
[i
]);
1232 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1233 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
1234 MachinePointerInfo::getFixedStack(MF
, FrameIdx
),
1235 MachineMemOperand::MOStore
, MFI
.getObjectSize(FrameIdx
),
1236 MFI
.getObjectAlignment(FrameIdx
));
1237 NewMIs
.back()->addMemOperand(MF
, MMO
);
1240 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction
&MF
, const DebugLoc
&DL
,
1241 unsigned DestReg
, int FrameIdx
,
1242 const TargetRegisterClass
*RC
,
1243 SmallVectorImpl
<MachineInstr
*> &NewMIs
)
1245 unsigned Opcode
= getLoadOpcodeForSpill(PPC::NoRegister
, RC
);
1246 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(Opcode
), DestReg
),
1248 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
1250 if (PPC::CRRCRegClass
.hasSubClassEq(RC
) ||
1251 PPC::CRBITRCRegClass
.hasSubClassEq(RC
))
1252 FuncInfo
->setSpillsCR();
1254 if (PPC::VRSAVERCRegClass
.hasSubClassEq(RC
))
1255 FuncInfo
->setSpillsVRSAVE();
1257 if (isXFormMemOp(Opcode
))
1258 FuncInfo
->setHasNonRISpills();
1262 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock
&MBB
,
1263 MachineBasicBlock::iterator MI
,
1264 unsigned DestReg
, int FrameIdx
,
1265 const TargetRegisterClass
*RC
,
1266 const TargetRegisterInfo
*TRI
) const {
1267 MachineFunction
&MF
= *MBB
.getParent();
1268 SmallVector
<MachineInstr
*, 4> NewMIs
;
1270 if (MI
!= MBB
.end()) DL
= MI
->getDebugLoc();
1272 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
1273 FuncInfo
->setHasSpills();
1275 // We need to avoid a situation in which the value from a VRRC register is
1276 // spilled using an Altivec instruction and reloaded into a VSRC register
1277 // using a VSX instruction. The issue with this is that the VSX
1278 // load/store instructions swap the doublewords in the vector and the Altivec
1279 // ones don't. The register classes on the spill/reload may be different if
1280 // the register is defined using an Altivec instruction and is then used by a
1282 if (Subtarget
.hasVSX() && RC
== &PPC::VRRCRegClass
)
1283 RC
= &PPC::VSRCRegClass
;
1285 LoadRegFromStackSlot(MF
, DL
, DestReg
, FrameIdx
, RC
, NewMIs
);
1287 for (unsigned i
= 0, e
= NewMIs
.size(); i
!= e
; ++i
)
1288 MBB
.insert(MI
, NewMIs
[i
]);
1290 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1291 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
1292 MachinePointerInfo::getFixedStack(MF
, FrameIdx
),
1293 MachineMemOperand::MOLoad
, MFI
.getObjectSize(FrameIdx
),
1294 MFI
.getObjectAlignment(FrameIdx
));
1295 NewMIs
.back()->addMemOperand(MF
, MMO
);
1299 reverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
) const {
1300 assert(Cond
.size() == 2 && "Invalid PPC branch opcode!");
1301 if (Cond
[1].getReg() == PPC::CTR8
|| Cond
[1].getReg() == PPC::CTR
)
1302 Cond
[0].setImm(Cond
[0].getImm() == 0 ? 1 : 0);
1304 // Leave the CR# the same, but invert the condition.
1305 Cond
[0].setImm(PPC::InvertPredicate((PPC::Predicate
)Cond
[0].getImm()));
1309 bool PPCInstrInfo::FoldImmediate(MachineInstr
&UseMI
, MachineInstr
&DefMI
,
1310 unsigned Reg
, MachineRegisterInfo
*MRI
) const {
1311 // For some instructions, it is legal to fold ZERO into the RA register field.
1312 // A zero immediate should always be loaded with a single li.
1313 unsigned DefOpc
= DefMI
.getOpcode();
1314 if (DefOpc
!= PPC::LI
&& DefOpc
!= PPC::LI8
)
1316 if (!DefMI
.getOperand(1).isImm())
1318 if (DefMI
.getOperand(1).getImm() != 0)
1321 // Note that we cannot here invert the arguments of an isel in order to fold
1322 // a ZERO into what is presented as the second argument. All we have here
1323 // is the condition bit, and that might come from a CR-logical bit operation.
1325 const MCInstrDesc
&UseMCID
= UseMI
.getDesc();
1327 // Only fold into real machine instructions.
1328 if (UseMCID
.isPseudo())
1332 for (UseIdx
= 0; UseIdx
< UseMI
.getNumOperands(); ++UseIdx
)
1333 if (UseMI
.getOperand(UseIdx
).isReg() &&
1334 UseMI
.getOperand(UseIdx
).getReg() == Reg
)
1337 assert(UseIdx
< UseMI
.getNumOperands() && "Cannot find Reg in UseMI");
1338 assert(UseIdx
< UseMCID
.getNumOperands() && "No operand description for Reg");
1340 const MCOperandInfo
*UseInfo
= &UseMCID
.OpInfo
[UseIdx
];
1342 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1343 // register (which might also be specified as a pointer class kind).
1344 if (UseInfo
->isLookupPtrRegClass()) {
1345 if (UseInfo
->RegClass
/* Kind */ != 1)
1348 if (UseInfo
->RegClass
!= PPC::GPRC_NOR0RegClassID
&&
1349 UseInfo
->RegClass
!= PPC::G8RC_NOX0RegClassID
)
1353 // Make sure this is not tied to an output register (or otherwise
1354 // constrained). This is true for ST?UX registers, for example, which
1355 // are tied to their output registers.
1356 if (UseInfo
->Constraints
!= 0)
1360 if (UseInfo
->isLookupPtrRegClass()) {
1361 bool isPPC64
= Subtarget
.isPPC64();
1362 ZeroReg
= isPPC64
? PPC::ZERO8
: PPC::ZERO
;
1364 ZeroReg
= UseInfo
->RegClass
== PPC::G8RC_NOX0RegClassID
?
1365 PPC::ZERO8
: PPC::ZERO
;
1368 bool DeleteDef
= MRI
->hasOneNonDBGUse(Reg
);
1369 UseMI
.getOperand(UseIdx
).setReg(ZeroReg
);
1372 DefMI
.eraseFromParent();
1377 static bool MBBDefinesCTR(MachineBasicBlock
&MBB
) {
1378 for (MachineBasicBlock::iterator I
= MBB
.begin(), IE
= MBB
.end();
1380 if (I
->definesRegister(PPC::CTR
) || I
->definesRegister(PPC::CTR8
))
1385 // We should make sure that, if we're going to predicate both sides of a
1386 // condition (a diamond), that both sides don't define the counter register. We
1387 // can predicate counter-decrement-based branches, but while that predicates
1388 // the branching, it does not predicate the counter decrement. If we tried to
1389 // merge the triangle into one predicated block, we'd decrement the counter
1391 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock
&TMBB
,
1392 unsigned NumT
, unsigned ExtraT
,
1393 MachineBasicBlock
&FMBB
,
1394 unsigned NumF
, unsigned ExtraF
,
1395 BranchProbability Probability
) const {
1396 return !(MBBDefinesCTR(TMBB
) && MBBDefinesCTR(FMBB
));
1400 bool PPCInstrInfo::isPredicated(const MachineInstr
&MI
) const {
1401 // The predicated branches are identified by their type, not really by the
1402 // explicit presence of a predicate. Furthermore, some of them can be
1403 // predicated more than once. Because if conversion won't try to predicate
1404 // any instruction which already claims to be predicated (by returning true
1405 // here), always return false. In doing so, we let isPredicable() be the
1406 // final word on whether not the instruction can be (further) predicated.
1411 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr
&MI
) const {
1412 if (!MI
.isTerminator())
1415 // Conditional branch is a special case.
1416 if (MI
.isBranch() && !MI
.isBarrier())
1419 return !isPredicated(MI
);
1422 bool PPCInstrInfo::PredicateInstruction(MachineInstr
&MI
,
1423 ArrayRef
<MachineOperand
> Pred
) const {
1424 unsigned OpC
= MI
.getOpcode();
1425 if (OpC
== PPC::BLR
|| OpC
== PPC::BLR8
) {
1426 if (Pred
[1].getReg() == PPC::CTR8
|| Pred
[1].getReg() == PPC::CTR
) {
1427 bool isPPC64
= Subtarget
.isPPC64();
1428 MI
.setDesc(get(Pred
[0].getImm() ? (isPPC64
? PPC::BDNZLR8
: PPC::BDNZLR
)
1429 : (isPPC64
? PPC::BDZLR8
: PPC::BDZLR
)));
1430 } else if (Pred
[0].getImm() == PPC::PRED_BIT_SET
) {
1431 MI
.setDesc(get(PPC::BCLR
));
1432 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1433 .addReg(Pred
[1].getReg());
1434 } else if (Pred
[0].getImm() == PPC::PRED_BIT_UNSET
) {
1435 MI
.setDesc(get(PPC::BCLRn
));
1436 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1437 .addReg(Pred
[1].getReg());
1439 MI
.setDesc(get(PPC::BCCLR
));
1440 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1441 .addImm(Pred
[0].getImm())
1442 .addReg(Pred
[1].getReg());
1446 } else if (OpC
== PPC::B
) {
1447 if (Pred
[1].getReg() == PPC::CTR8
|| Pred
[1].getReg() == PPC::CTR
) {
1448 bool isPPC64
= Subtarget
.isPPC64();
1449 MI
.setDesc(get(Pred
[0].getImm() ? (isPPC64
? PPC::BDNZ8
: PPC::BDNZ
)
1450 : (isPPC64
? PPC::BDZ8
: PPC::BDZ
)));
1451 } else if (Pred
[0].getImm() == PPC::PRED_BIT_SET
) {
1452 MachineBasicBlock
*MBB
= MI
.getOperand(0).getMBB();
1453 MI
.RemoveOperand(0);
1455 MI
.setDesc(get(PPC::BC
));
1456 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1457 .addReg(Pred
[1].getReg())
1459 } else if (Pred
[0].getImm() == PPC::PRED_BIT_UNSET
) {
1460 MachineBasicBlock
*MBB
= MI
.getOperand(0).getMBB();
1461 MI
.RemoveOperand(0);
1463 MI
.setDesc(get(PPC::BCn
));
1464 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1465 .addReg(Pred
[1].getReg())
1468 MachineBasicBlock
*MBB
= MI
.getOperand(0).getMBB();
1469 MI
.RemoveOperand(0);
1471 MI
.setDesc(get(PPC::BCC
));
1472 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1473 .addImm(Pred
[0].getImm())
1474 .addReg(Pred
[1].getReg())
1479 } else if (OpC
== PPC::BCTR
|| OpC
== PPC::BCTR8
||
1480 OpC
== PPC::BCTRL
|| OpC
== PPC::BCTRL8
) {
1481 if (Pred
[1].getReg() == PPC::CTR8
|| Pred
[1].getReg() == PPC::CTR
)
1482 llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1484 bool setLR
= OpC
== PPC::BCTRL
|| OpC
== PPC::BCTRL8
;
1485 bool isPPC64
= Subtarget
.isPPC64();
1487 if (Pred
[0].getImm() == PPC::PRED_BIT_SET
) {
1488 MI
.setDesc(get(isPPC64
? (setLR
? PPC::BCCTRL8
: PPC::BCCTR8
)
1489 : (setLR
? PPC::BCCTRL
: PPC::BCCTR
)));
1490 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1491 .addReg(Pred
[1].getReg());
1493 } else if (Pred
[0].getImm() == PPC::PRED_BIT_UNSET
) {
1494 MI
.setDesc(get(isPPC64
? (setLR
? PPC::BCCTRL8n
: PPC::BCCTR8n
)
1495 : (setLR
? PPC::BCCTRLn
: PPC::BCCTRn
)));
1496 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1497 .addReg(Pred
[1].getReg());
1501 MI
.setDesc(get(isPPC64
? (setLR
? PPC::BCCCTRL8
: PPC::BCCCTR8
)
1502 : (setLR
? PPC::BCCCTRL
: PPC::BCCCTR
)));
1503 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1504 .addImm(Pred
[0].getImm())
1505 .addReg(Pred
[1].getReg());
1512 bool PPCInstrInfo::SubsumesPredicate(ArrayRef
<MachineOperand
> Pred1
,
1513 ArrayRef
<MachineOperand
> Pred2
) const {
1514 assert(Pred1
.size() == 2 && "Invalid PPC first predicate");
1515 assert(Pred2
.size() == 2 && "Invalid PPC second predicate");
1517 if (Pred1
[1].getReg() == PPC::CTR8
|| Pred1
[1].getReg() == PPC::CTR
)
1519 if (Pred2
[1].getReg() == PPC::CTR8
|| Pred2
[1].getReg() == PPC::CTR
)
1522 // P1 can only subsume P2 if they test the same condition register.
1523 if (Pred1
[1].getReg() != Pred2
[1].getReg())
1526 PPC::Predicate P1
= (PPC::Predicate
) Pred1
[0].getImm();
1527 PPC::Predicate P2
= (PPC::Predicate
) Pred2
[0].getImm();
1532 // Does P1 subsume P2, e.g. GE subsumes GT.
1533 if (P1
== PPC::PRED_LE
&&
1534 (P2
== PPC::PRED_LT
|| P2
== PPC::PRED_EQ
))
1536 if (P1
== PPC::PRED_GE
&&
1537 (P2
== PPC::PRED_GT
|| P2
== PPC::PRED_EQ
))
1543 bool PPCInstrInfo::DefinesPredicate(MachineInstr
&MI
,
1544 std::vector
<MachineOperand
> &Pred
) const {
1545 // Note: At the present time, the contents of Pred from this function is
1546 // unused by IfConversion. This implementation follows ARM by pushing the
1547 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1548 // predicate, instructions defining CTR or CTR8 are also included as
1549 // predicate-defining instructions.
1551 const TargetRegisterClass
*RCs
[] =
1552 { &PPC::CRRCRegClass
, &PPC::CRBITRCRegClass
,
1553 &PPC::CTRRCRegClass
, &PPC::CTRRC8RegClass
};
1556 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1557 const MachineOperand
&MO
= MI
.getOperand(i
);
1558 for (unsigned c
= 0; c
< array_lengthof(RCs
) && !Found
; ++c
) {
1559 const TargetRegisterClass
*RC
= RCs
[c
];
1561 if (MO
.isDef() && RC
->contains(MO
.getReg())) {
1565 } else if (MO
.isRegMask()) {
1566 for (TargetRegisterClass::iterator I
= RC
->begin(),
1567 IE
= RC
->end(); I
!= IE
; ++I
)
1568 if (MO
.clobbersPhysReg(*I
)) {
1579 bool PPCInstrInfo::isPredicable(const MachineInstr
&MI
) const {
1580 unsigned OpC
= MI
.getOpcode();
1595 bool PPCInstrInfo::analyzeCompare(const MachineInstr
&MI
, unsigned &SrcReg
,
1596 unsigned &SrcReg2
, int &Mask
,
1598 unsigned Opc
= MI
.getOpcode();
1601 default: return false;
1606 SrcReg
= MI
.getOperand(1).getReg();
1608 Value
= MI
.getOperand(2).getImm();
1617 SrcReg
= MI
.getOperand(1).getReg();
1618 SrcReg2
= MI
.getOperand(2).getReg();
1625 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr
&CmpInstr
, unsigned SrcReg
,
1626 unsigned SrcReg2
, int Mask
, int Value
,
1627 const MachineRegisterInfo
*MRI
) const {
1631 int OpC
= CmpInstr
.getOpcode();
1632 unsigned CRReg
= CmpInstr
.getOperand(0).getReg();
1634 // FP record forms set CR1 based on the exception status bits, not a
1635 // comparison with zero.
1636 if (OpC
== PPC::FCMPUS
|| OpC
== PPC::FCMPUD
)
1639 // The record forms set the condition register based on a signed comparison
1640 // with zero (so says the ISA manual). This is not as straightforward as it
1641 // seems, however, because this is always a 64-bit comparison on PPC64, even
1642 // for instructions that are 32-bit in nature (like slw for example).
1643 // So, on PPC32, for unsigned comparisons, we can use the record forms only
1644 // for equality checks (as those don't depend on the sign). On PPC64,
1645 // we are restricted to equality for unsigned 64-bit comparisons and for
1646 // signed 32-bit comparisons the applicability is more restricted.
1647 bool isPPC64
= Subtarget
.isPPC64();
1648 bool is32BitSignedCompare
= OpC
== PPC::CMPWI
|| OpC
== PPC::CMPW
;
1649 bool is32BitUnsignedCompare
= OpC
== PPC::CMPLWI
|| OpC
== PPC::CMPLW
;
1650 bool is64BitUnsignedCompare
= OpC
== PPC::CMPLDI
|| OpC
== PPC::CMPLD
;
1652 // Get the unique definition of SrcReg.
1653 MachineInstr
*MI
= MRI
->getUniqueVRegDef(SrcReg
);
1654 if (!MI
) return false;
1656 bool equalityOnly
= false;
1659 if (is32BitSignedCompare
) {
1660 // We can perform this optimization only if MI is sign-extending.
1661 if (isSignExtended(*MI
))
1665 } else if (is32BitUnsignedCompare
) {
1666 // We can perform this optimization, equality only, if MI is
1668 if (isZeroExtended(*MI
)) {
1670 equalityOnly
= true;
1674 equalityOnly
= is64BitUnsignedCompare
;
1676 equalityOnly
= is32BitUnsignedCompare
;
1679 // We need to check the uses of the condition register in order to reject
1680 // non-equality comparisons.
1681 for (MachineRegisterInfo::use_instr_iterator
1682 I
= MRI
->use_instr_begin(CRReg
), IE
= MRI
->use_instr_end();
1684 MachineInstr
*UseMI
= &*I
;
1685 if (UseMI
->getOpcode() == PPC::BCC
) {
1686 PPC::Predicate Pred
= (PPC::Predicate
)UseMI
->getOperand(0).getImm();
1687 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
1688 // We ignore hint bits when checking for non-equality comparisons.
1689 if (PredCond
!= PPC::PRED_EQ
&& PredCond
!= PPC::PRED_NE
)
1691 } else if (UseMI
->getOpcode() == PPC::ISEL
||
1692 UseMI
->getOpcode() == PPC::ISEL8
) {
1693 unsigned SubIdx
= UseMI
->getOperand(3).getSubReg();
1694 if (SubIdx
!= PPC::sub_eq
)
1701 MachineBasicBlock::iterator I
= CmpInstr
;
1703 // Scan forward to find the first use of the compare.
1704 for (MachineBasicBlock::iterator EL
= CmpInstr
.getParent()->end(); I
!= EL
;
1706 bool FoundUse
= false;
1707 for (MachineRegisterInfo::use_instr_iterator
1708 J
= MRI
->use_instr_begin(CRReg
), JE
= MRI
->use_instr_end();
1719 SmallVector
<std::pair
<MachineOperand
*, PPC::Predicate
>, 4> PredsToUpdate
;
1720 SmallVector
<std::pair
<MachineOperand
*, unsigned>, 4> SubRegsToUpdate
;
1722 // There are two possible candidates which can be changed to set CR[01].
1723 // One is MI, the other is a SUB instruction.
1724 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1725 MachineInstr
*Sub
= nullptr;
1727 // MI is not a candidate for CMPrr.
1729 // FIXME: Conservatively refuse to convert an instruction which isn't in the
1730 // same BB as the comparison. This is to allow the check below to avoid calls
1731 // (and other explicit clobbers); instead we should really check for these
1732 // more explicitly (in at least a few predecessors).
1733 else if (MI
->getParent() != CmpInstr
.getParent())
1735 else if (Value
!= 0) {
1736 // The record-form instructions set CR bit based on signed comparison
1737 // against 0. We try to convert a compare against 1 or -1 into a compare
1738 // against 0 to exploit record-form instructions. For example, we change
1739 // the condition "greater than -1" into "greater than or equal to 0"
1740 // and "less than 1" into "less than or equal to 0".
1742 // Since we optimize comparison based on a specific branch condition,
1743 // we don't optimize if condition code is used by more than once.
1744 if (equalityOnly
|| !MRI
->hasOneUse(CRReg
))
1747 MachineInstr
*UseMI
= &*MRI
->use_instr_begin(CRReg
);
1748 if (UseMI
->getOpcode() != PPC::BCC
)
1751 PPC::Predicate Pred
= (PPC::Predicate
)UseMI
->getOperand(0).getImm();
1752 PPC::Predicate NewPred
= Pred
;
1753 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
1754 unsigned PredHint
= PPC::getPredicateHint(Pred
);
1755 int16_t Immed
= (int16_t)Value
;
1757 // When modifying the condition in the predicate, we propagate hint bits
1758 // from the original predicate to the new one.
1759 if (Immed
== -1 && PredCond
== PPC::PRED_GT
)
1760 // We convert "greater than -1" into "greater than or equal to 0",
1761 // since we are assuming signed comparison by !equalityOnly
1762 NewPred
= PPC::getPredicate(PPC::PRED_GE
, PredHint
);
1763 else if (Immed
== -1 && PredCond
== PPC::PRED_LE
)
1764 // We convert "less than or equal to -1" into "less than 0".
1765 NewPred
= PPC::getPredicate(PPC::PRED_LT
, PredHint
);
1766 else if (Immed
== 1 && PredCond
== PPC::PRED_LT
)
1767 // We convert "less than 1" into "less than or equal to 0".
1768 NewPred
= PPC::getPredicate(PPC::PRED_LE
, PredHint
);
1769 else if (Immed
== 1 && PredCond
== PPC::PRED_GE
)
1770 // We convert "greater than or equal to 1" into "greater than 0".
1771 NewPred
= PPC::getPredicate(PPC::PRED_GT
, PredHint
);
1775 PredsToUpdate
.push_back(std::make_pair(&(UseMI
->getOperand(0)),
1780 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
1783 // Get ready to iterate backward from CmpInstr.
1784 MachineBasicBlock::iterator E
= MI
, B
= CmpInstr
.getParent()->begin();
1786 for (; I
!= E
&& !noSub
; --I
) {
1787 const MachineInstr
&Instr
= *I
;
1788 unsigned IOpC
= Instr
.getOpcode();
1790 if (&*I
!= &CmpInstr
&& (Instr
.modifiesRegister(PPC::CR0
, TRI
) ||
1791 Instr
.readsRegister(PPC::CR0
, TRI
)))
1792 // This instruction modifies or uses the record condition register after
1793 // the one we want to change. While we could do this transformation, it
1794 // would likely not be profitable. This transformation removes one
1795 // instruction, and so even forcing RA to generate one move probably
1796 // makes it unprofitable.
1799 // Check whether CmpInstr can be made redundant by the current instruction.
1800 if ((OpC
== PPC::CMPW
|| OpC
== PPC::CMPLW
||
1801 OpC
== PPC::CMPD
|| OpC
== PPC::CMPLD
) &&
1802 (IOpC
== PPC::SUBF
|| IOpC
== PPC::SUBF8
) &&
1803 ((Instr
.getOperand(1).getReg() == SrcReg
&&
1804 Instr
.getOperand(2).getReg() == SrcReg2
) ||
1805 (Instr
.getOperand(1).getReg() == SrcReg2
&&
1806 Instr
.getOperand(2).getReg() == SrcReg
))) {
1812 // The 'and' is below the comparison instruction.
1816 // Return false if no candidates exist.
1820 // The single candidate is called MI.
1824 int MIOpC
= MI
->getOpcode();
1825 if (MIOpC
== PPC::ANDIo
|| MIOpC
== PPC::ANDIo8
||
1826 MIOpC
== PPC::ANDISo
|| MIOpC
== PPC::ANDISo8
)
1829 NewOpC
= PPC::getRecordFormOpcode(MIOpC
);
1830 if (NewOpC
== -1 && PPC::getNonRecordFormOpcode(MIOpC
) != -1)
1834 // FIXME: On the non-embedded POWER architectures, only some of the record
1835 // forms are fast, and we should use only the fast ones.
1837 // The defining instruction has a record form (or is already a record
1838 // form). It is possible, however, that we'll need to reverse the condition
1839 // code of the users.
1843 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1844 // needs to be updated to be based on SUB. Push the condition code
1845 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the
1846 // condition code of these operands will be modified.
1847 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
1848 // comparison against 0, which may modify predicate.
1849 bool ShouldSwap
= false;
1850 if (Sub
&& Value
== 0) {
1851 ShouldSwap
= SrcReg2
!= 0 && Sub
->getOperand(1).getReg() == SrcReg2
&&
1852 Sub
->getOperand(2).getReg() == SrcReg
;
1854 // The operands to subf are the opposite of sub, so only in the fixed-point
1855 // case, invert the order.
1856 ShouldSwap
= !ShouldSwap
;
1860 for (MachineRegisterInfo::use_instr_iterator
1861 I
= MRI
->use_instr_begin(CRReg
), IE
= MRI
->use_instr_end();
1863 MachineInstr
*UseMI
= &*I
;
1864 if (UseMI
->getOpcode() == PPC::BCC
) {
1865 PPC::Predicate Pred
= (PPC::Predicate
) UseMI
->getOperand(0).getImm();
1866 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
1867 assert((!equalityOnly
||
1868 PredCond
== PPC::PRED_EQ
|| PredCond
== PPC::PRED_NE
) &&
1869 "Invalid predicate for equality-only optimization");
1870 (void)PredCond
; // To suppress warning in release build.
1871 PredsToUpdate
.push_back(std::make_pair(&(UseMI
->getOperand(0)),
1872 PPC::getSwappedPredicate(Pred
)));
1873 } else if (UseMI
->getOpcode() == PPC::ISEL
||
1874 UseMI
->getOpcode() == PPC::ISEL8
) {
1875 unsigned NewSubReg
= UseMI
->getOperand(3).getSubReg();
1876 assert((!equalityOnly
|| NewSubReg
== PPC::sub_eq
) &&
1877 "Invalid CR bit for equality-only optimization");
1879 if (NewSubReg
== PPC::sub_lt
)
1880 NewSubReg
= PPC::sub_gt
;
1881 else if (NewSubReg
== PPC::sub_gt
)
1882 NewSubReg
= PPC::sub_lt
;
1884 SubRegsToUpdate
.push_back(std::make_pair(&(UseMI
->getOperand(3)),
1886 } else // We need to abort on a user we don't understand.
1889 assert(!(Value
!= 0 && ShouldSwap
) &&
1890 "Non-zero immediate support and ShouldSwap"
1891 "may conflict in updating predicate");
1893 // Create a new virtual register to hold the value of the CR set by the
1894 // record-form instruction. If the instruction was not previously in
1895 // record form, then set the kill flag on the CR.
1896 CmpInstr
.eraseFromParent();
1898 MachineBasicBlock::iterator MII
= MI
;
1899 BuildMI(*MI
->getParent(), std::next(MII
), MI
->getDebugLoc(),
1900 get(TargetOpcode::COPY
), CRReg
)
1901 .addReg(PPC::CR0
, MIOpC
!= NewOpC
? RegState::Kill
: 0);
1903 // Even if CR0 register were dead before, it is alive now since the
1904 // instruction we just built uses it.
1905 MI
->clearRegisterDeads(PPC::CR0
);
1907 if (MIOpC
!= NewOpC
) {
1908 // We need to be careful here: we're replacing one instruction with
1909 // another, and we need to make sure that we get all of the right
1910 // implicit uses and defs. On the other hand, the caller may be holding
1911 // an iterator to this instruction, and so we can't delete it (this is
1912 // specifically the case if this is the instruction directly after the
1915 // Rotates are expensive instructions. If we're emitting a record-form
1916 // rotate that can just be an andi/andis, we should just emit that.
1917 if (MIOpC
== PPC::RLWINM
|| MIOpC
== PPC::RLWINM8
) {
1918 unsigned GPRRes
= MI
->getOperand(0).getReg();
1919 int64_t SH
= MI
->getOperand(2).getImm();
1920 int64_t MB
= MI
->getOperand(3).getImm();
1921 int64_t ME
= MI
->getOperand(4).getImm();
1922 // We can only do this if both the start and end of the mask are in the
1924 bool MBInLoHWord
= MB
>= 16;
1925 bool MEInLoHWord
= ME
>= 16;
1926 uint64_t Mask
= ~0LLU;
1928 if (MB
<= ME
&& MBInLoHWord
== MEInLoHWord
&& SH
== 0) {
1929 Mask
= ((1LLU << (32 - MB
)) - 1) & ~((1LLU << (31 - ME
)) - 1);
1930 // The mask value needs to shift right 16 if we're emitting andis.
1931 Mask
>>= MBInLoHWord
? 0 : 16;
1932 NewOpC
= MIOpC
== PPC::RLWINM
?
1933 (MBInLoHWord
? PPC::ANDIo
: PPC::ANDISo
) :
1934 (MBInLoHWord
? PPC::ANDIo8
:PPC::ANDISo8
);
1935 } else if (MRI
->use_empty(GPRRes
) && (ME
== 31) &&
1936 (ME
- MB
+ 1 == SH
) && (MB
>= 16)) {
1937 // If we are rotating by the exact number of bits as are in the mask
1938 // and the mask is in the least significant bits of the register,
1939 // that's just an andis. (as long as the GPR result has no uses).
1940 Mask
= ((1LLU << 32) - 1) & ~((1LLU << (32 - SH
)) - 1);
1942 NewOpC
= MIOpC
== PPC::RLWINM
? PPC::ANDISo
:PPC::ANDISo8
;
1944 // If we've set the mask, we can transform.
1945 if (Mask
!= ~0LLU) {
1946 MI
->RemoveOperand(4);
1947 MI
->RemoveOperand(3);
1948 MI
->getOperand(2).setImm(Mask
);
1949 NumRcRotatesConvertedToRcAnd
++;
1951 } else if (MIOpC
== PPC::RLDICL
&& MI
->getOperand(2).getImm() == 0) {
1952 int64_t MB
= MI
->getOperand(3).getImm();
1954 uint64_t Mask
= (1LLU << (63 - MB
+ 1)) - 1;
1955 NewOpC
= PPC::ANDIo8
;
1956 MI
->RemoveOperand(3);
1957 MI
->getOperand(2).setImm(Mask
);
1958 NumRcRotatesConvertedToRcAnd
++;
1962 const MCInstrDesc
&NewDesc
= get(NewOpC
);
1963 MI
->setDesc(NewDesc
);
1965 if (NewDesc
.ImplicitDefs
)
1966 for (const MCPhysReg
*ImpDefs
= NewDesc
.getImplicitDefs();
1967 *ImpDefs
; ++ImpDefs
)
1968 if (!MI
->definesRegister(*ImpDefs
))
1969 MI
->addOperand(*MI
->getParent()->getParent(),
1970 MachineOperand::CreateReg(*ImpDefs
, true, true));
1971 if (NewDesc
.ImplicitUses
)
1972 for (const MCPhysReg
*ImpUses
= NewDesc
.getImplicitUses();
1973 *ImpUses
; ++ImpUses
)
1974 if (!MI
->readsRegister(*ImpUses
))
1975 MI
->addOperand(*MI
->getParent()->getParent(),
1976 MachineOperand::CreateReg(*ImpUses
, false, true));
1978 assert(MI
->definesRegister(PPC::CR0
) &&
1979 "Record-form instruction does not define cr0?");
1981 // Modify the condition code of operands in OperandsToUpdate.
1982 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1983 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1984 for (unsigned i
= 0, e
= PredsToUpdate
.size(); i
< e
; i
++)
1985 PredsToUpdate
[i
].first
->setImm(PredsToUpdate
[i
].second
);
1987 for (unsigned i
= 0, e
= SubRegsToUpdate
.size(); i
< e
; i
++)
1988 SubRegsToUpdate
[i
].first
->setSubReg(SubRegsToUpdate
[i
].second
);
1993 /// GetInstSize - Return the number of bytes of code the specified
1994 /// instruction may be. This returns the maximum number of bytes.
1996 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr
&MI
) const {
1997 unsigned Opcode
= MI
.getOpcode();
1999 if (Opcode
== PPC::INLINEASM
) {
2000 const MachineFunction
*MF
= MI
.getParent()->getParent();
2001 const char *AsmStr
= MI
.getOperand(0).getSymbolName();
2002 return getInlineAsmLength(AsmStr
, *MF
->getTarget().getMCAsmInfo());
2003 } else if (Opcode
== TargetOpcode::STACKMAP
) {
2004 StackMapOpers
Opers(&MI
);
2005 return Opers
.getNumPatchBytes();
2006 } else if (Opcode
== TargetOpcode::PATCHPOINT
) {
2007 PatchPointOpers
Opers(&MI
);
2008 return Opers
.getNumPatchBytes();
2010 return get(Opcode
).getSize();
2014 std::pair
<unsigned, unsigned>
2015 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF
) const {
2016 const unsigned Mask
= PPCII::MO_ACCESS_MASK
;
2017 return std::make_pair(TF
& Mask
, TF
& ~Mask
);
2020 ArrayRef
<std::pair
<unsigned, const char *>>
2021 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2022 using namespace PPCII
;
2023 static const std::pair
<unsigned, const char *> TargetFlags
[] = {
2026 {MO_TPREL_LO
, "ppc-tprel-lo"},
2027 {MO_TPREL_HA
, "ppc-tprel-ha"},
2028 {MO_DTPREL_LO
, "ppc-dtprel-lo"},
2029 {MO_TLSLD_LO
, "ppc-tlsld-lo"},
2030 {MO_TOC_LO
, "ppc-toc-lo"},
2031 {MO_TLS
, "ppc-tls"}};
2032 return makeArrayRef(TargetFlags
);
2035 ArrayRef
<std::pair
<unsigned, const char *>>
2036 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2037 using namespace PPCII
;
2038 static const std::pair
<unsigned, const char *> TargetFlags
[] = {
2039 {MO_PLT
, "ppc-plt"},
2040 {MO_PIC_FLAG
, "ppc-pic"},
2041 {MO_NLP_FLAG
, "ppc-nlp"},
2042 {MO_NLP_HIDDEN_FLAG
, "ppc-nlp-hidden"}};
2043 return makeArrayRef(TargetFlags
);
2046 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2047 // The VSX versions have the advantage of a full 64-register target whereas
2048 // the FP ones have the advantage of lower latency and higher throughput. So
2049 // what we are after is using the faster instructions in low register pressure
2050 // situations and using the larger register file in high register pressure
2052 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr
&MI
) const {
2053 unsigned UpperOpcode
, LowerOpcode
;
2054 switch (MI
.getOpcode()) {
2055 case PPC::DFLOADf32
:
2056 UpperOpcode
= PPC::LXSSP
;
2057 LowerOpcode
= PPC::LFS
;
2059 case PPC::DFLOADf64
:
2060 UpperOpcode
= PPC::LXSD
;
2061 LowerOpcode
= PPC::LFD
;
2063 case PPC::DFSTOREf32
:
2064 UpperOpcode
= PPC::STXSSP
;
2065 LowerOpcode
= PPC::STFS
;
2067 case PPC::DFSTOREf64
:
2068 UpperOpcode
= PPC::STXSD
;
2069 LowerOpcode
= PPC::STFD
;
2071 case PPC::XFLOADf32
:
2072 UpperOpcode
= PPC::LXSSPX
;
2073 LowerOpcode
= PPC::LFSX
;
2075 case PPC::XFLOADf64
:
2076 UpperOpcode
= PPC::LXSDX
;
2077 LowerOpcode
= PPC::LFDX
;
2079 case PPC::XFSTOREf32
:
2080 UpperOpcode
= PPC::STXSSPX
;
2081 LowerOpcode
= PPC::STFSX
;
2083 case PPC::XFSTOREf64
:
2084 UpperOpcode
= PPC::STXSDX
;
2085 LowerOpcode
= PPC::STFDX
;
2088 UpperOpcode
= PPC::LXSIWAX
;
2089 LowerOpcode
= PPC::LFIWAX
;
2092 UpperOpcode
= PPC::LXSIWZX
;
2093 LowerOpcode
= PPC::LFIWZX
;
2096 UpperOpcode
= PPC::STXSIWX
;
2097 LowerOpcode
= PPC::STFIWX
;
2100 llvm_unreachable("Unknown Operation!");
2103 unsigned TargetReg
= MI
.getOperand(0).getReg();
2105 if ((TargetReg
>= PPC::F0
&& TargetReg
<= PPC::F31
) ||
2106 (TargetReg
>= PPC::VSL0
&& TargetReg
<= PPC::VSL31
))
2107 Opcode
= LowerOpcode
;
2109 Opcode
= UpperOpcode
;
2110 MI
.setDesc(get(Opcode
));
2114 static bool isAnImmediateOperand(const MachineOperand
&MO
) {
2115 return MO
.isCPI() || MO
.isGlobal() || MO
.isImm();
2118 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr
&MI
) const {
2119 auto &MBB
= *MI
.getParent();
2120 auto DL
= MI
.getDebugLoc();
2122 switch (MI
.getOpcode()) {
2123 case TargetOpcode::LOAD_STACK_GUARD
: {
2124 assert(Subtarget
.isTargetLinux() &&
2125 "Only Linux target is expected to contain LOAD_STACK_GUARD");
2126 const int64_t Offset
= Subtarget
.isPPC64() ? -0x7010 : -0x7008;
2127 const unsigned Reg
= Subtarget
.isPPC64() ? PPC::X13
: PPC::R2
;
2128 MI
.setDesc(get(Subtarget
.isPPC64() ? PPC::LD
: PPC::LWZ
));
2129 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
2134 case PPC::DFLOADf32
:
2135 case PPC::DFLOADf64
:
2136 case PPC::DFSTOREf32
:
2137 case PPC::DFSTOREf64
: {
2138 assert(Subtarget
.hasP9Vector() &&
2139 "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2140 assert(MI
.getOperand(2).isReg() &&
2141 isAnImmediateOperand(MI
.getOperand(1)) &&
2142 "D-form op must have register and immediate operands");
2143 return expandVSXMemPseudo(MI
);
2145 case PPC::XFLOADf32
:
2146 case PPC::XFSTOREf32
:
2150 assert(Subtarget
.hasP8Vector() &&
2151 "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2152 assert(MI
.getOperand(2).isReg() && MI
.getOperand(1).isReg() &&
2153 "X-form op must have register and register operands");
2154 return expandVSXMemPseudo(MI
);
2156 case PPC::XFLOADf64
:
2157 case PPC::XFSTOREf64
: {
2158 assert(Subtarget
.hasVSX() &&
2159 "Invalid X-Form Pseudo-ops on target that has no VSX.");
2160 assert(MI
.getOperand(2).isReg() && MI
.getOperand(1).isReg() &&
2161 "X-form op must have register and register operands");
2162 return expandVSXMemPseudo(MI
);
2164 case PPC::SPILLTOVSR_LD
: {
2165 unsigned TargetReg
= MI
.getOperand(0).getReg();
2166 if (PPC::VSFRCRegClass
.contains(TargetReg
)) {
2167 MI
.setDesc(get(PPC::DFLOADf64
));
2168 return expandPostRAPseudo(MI
);
2171 MI
.setDesc(get(PPC::LD
));
2174 case PPC::SPILLTOVSR_ST
: {
2175 unsigned SrcReg
= MI
.getOperand(0).getReg();
2176 if (PPC::VSFRCRegClass
.contains(SrcReg
)) {
2177 NumStoreSPILLVSRRCAsVec
++;
2178 MI
.setDesc(get(PPC::DFSTOREf64
));
2179 return expandPostRAPseudo(MI
);
2181 NumStoreSPILLVSRRCAsGpr
++;
2182 MI
.setDesc(get(PPC::STD
));
2186 case PPC::SPILLTOVSR_LDX
: {
2187 unsigned TargetReg
= MI
.getOperand(0).getReg();
2188 if (PPC::VSFRCRegClass
.contains(TargetReg
))
2189 MI
.setDesc(get(PPC::LXSDX
));
2191 MI
.setDesc(get(PPC::LDX
));
2194 case PPC::SPILLTOVSR_STX
: {
2195 unsigned SrcReg
= MI
.getOperand(0).getReg();
2196 if (PPC::VSFRCRegClass
.contains(SrcReg
)) {
2197 NumStoreSPILLVSRRCAsVec
++;
2198 MI
.setDesc(get(PPC::STXSDX
));
2200 NumStoreSPILLVSRRCAsGpr
++;
2201 MI
.setDesc(get(PPC::STDX
));
2206 case PPC::CFENCE8
: {
2207 auto Val
= MI
.getOperand(0).getReg();
2208 BuildMI(MBB
, MI
, DL
, get(PPC::CMPD
), PPC::CR7
).addReg(Val
).addReg(Val
);
2209 BuildMI(MBB
, MI
, DL
, get(PPC::CTRL_DEP
))
2210 .addImm(PPC::PRED_NE_MINUS
)
2213 MI
.setDesc(get(PPC::ISYNC
));
2214 MI
.RemoveOperand(0);
2221 // Essentially a compile-time implementation of a compare->isel sequence.
2222 // It takes two constants to compare, along with the true/false registers
2223 // and the comparison type (as a subreg to a CR field) and returns one
2224 // of the true/false registers, depending on the comparison results.
2225 static unsigned selectReg(int64_t Imm1
, int64_t Imm2
, unsigned CompareOpc
,
2226 unsigned TrueReg
, unsigned FalseReg
,
2227 unsigned CRSubReg
) {
2228 // Signed comparisons. The immediates are assumed to be sign-extended.
2229 if (CompareOpc
== PPC::CMPWI
|| CompareOpc
== PPC::CMPDI
) {
2231 default: llvm_unreachable("Unknown integer comparison type.");
2233 return Imm1
< Imm2
? TrueReg
: FalseReg
;
2235 return Imm1
> Imm2
? TrueReg
: FalseReg
;
2237 return Imm1
== Imm2
? TrueReg
: FalseReg
;
2240 // Unsigned comparisons.
2241 else if (CompareOpc
== PPC::CMPLWI
|| CompareOpc
== PPC::CMPLDI
) {
2243 default: llvm_unreachable("Unknown integer comparison type.");
2245 return (uint64_t)Imm1
< (uint64_t)Imm2
? TrueReg
: FalseReg
;
2247 return (uint64_t)Imm1
> (uint64_t)Imm2
? TrueReg
: FalseReg
;
2249 return Imm1
== Imm2
? TrueReg
: FalseReg
;
2252 return PPC::NoRegister
;
2255 // Replace an instruction with one that materializes a constant (and sets
2256 // CR0 if the original instruction was a record-form instruction).
2257 void PPCInstrInfo::replaceInstrWithLI(MachineInstr
&MI
,
2258 const LoadImmediateInfo
&LII
) const {
2259 // Remove existing operands.
2260 int OperandToKeep
= LII
.SetCR
? 1 : 0;
2261 for (int i
= MI
.getNumOperands() - 1; i
> OperandToKeep
; i
--)
2262 MI
.RemoveOperand(i
);
2264 // Replace the instruction.
2266 MI
.setDesc(get(LII
.Is64Bit
? PPC::ANDIo8
: PPC::ANDIo
));
2267 // Set the immediate.
2268 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
2269 .addImm(LII
.Imm
).addReg(PPC::CR0
, RegState::ImplicitDefine
);
2273 MI
.setDesc(get(LII
.Is64Bit
? PPC::LI8
: PPC::LI
));
2275 // Set the immediate.
2276 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
2280 MachineInstr
*PPCInstrInfo::getForwardingDefMI(
2282 unsigned &OpNoForForwarding
,
2283 bool &SeenIntermediateUse
) const {
2284 OpNoForForwarding
= ~0U;
2285 MachineInstr
*DefMI
= nullptr;
2286 MachineRegisterInfo
*MRI
= &MI
.getParent()->getParent()->getRegInfo();
2287 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2288 // If we're in SSA, get the defs through the MRI. Otherwise, only look
2289 // within the basic block to see if the register is defined using an LI/LI8.
2291 for (int i
= 1, e
= MI
.getNumOperands(); i
< e
; i
++) {
2292 if (!MI
.getOperand(i
).isReg())
2294 unsigned Reg
= MI
.getOperand(i
).getReg();
2295 if (!TargetRegisterInfo::isVirtualRegister(Reg
))
2297 unsigned TrueReg
= TRI
->lookThruCopyLike(Reg
, MRI
);
2298 if (TargetRegisterInfo::isVirtualRegister(TrueReg
)) {
2299 DefMI
= MRI
->getVRegDef(TrueReg
);
2300 if (DefMI
->getOpcode() == PPC::LI
|| DefMI
->getOpcode() == PPC::LI8
) {
2301 OpNoForForwarding
= i
;
2307 // Looking back through the definition for each operand could be expensive,
2308 // so exit early if this isn't an instruction that either has an immediate
2309 // form or is already an immediate form that we can handle.
2311 unsigned Opc
= MI
.getOpcode();
2312 bool ConvertibleImmForm
=
2313 Opc
== PPC::CMPWI
|| Opc
== PPC::CMPLWI
||
2314 Opc
== PPC::CMPDI
|| Opc
== PPC::CMPLDI
||
2315 Opc
== PPC::ADDI
|| Opc
== PPC::ADDI8
||
2316 Opc
== PPC::ORI
|| Opc
== PPC::ORI8
||
2317 Opc
== PPC::XORI
|| Opc
== PPC::XORI8
||
2318 Opc
== PPC::RLDICL
|| Opc
== PPC::RLDICLo
||
2319 Opc
== PPC::RLDICL_32
|| Opc
== PPC::RLDICL_32_64
||
2320 Opc
== PPC::RLWINM
|| Opc
== PPC::RLWINMo
||
2321 Opc
== PPC::RLWINM8
|| Opc
== PPC::RLWINM8o
;
2322 if (!instrHasImmForm(MI
, III
, true) && !ConvertibleImmForm
)
2325 // Don't convert or %X, %Y, %Y since that's just a register move.
2326 if ((Opc
== PPC::OR
|| Opc
== PPC::OR8
) &&
2327 MI
.getOperand(1).getReg() == MI
.getOperand(2).getReg())
2329 for (int i
= 1, e
= MI
.getNumOperands(); i
< e
; i
++) {
2330 MachineOperand
&MO
= MI
.getOperand(i
);
2331 SeenIntermediateUse
= false;
2332 if (MO
.isReg() && MO
.isUse() && !MO
.isImplicit()) {
2333 MachineBasicBlock::reverse_iterator E
= MI
.getParent()->rend(), It
= MI
;
2335 unsigned Reg
= MI
.getOperand(i
).getReg();
2336 // MachineInstr::readsRegister only returns true if the machine
2337 // instruction reads the exact register or its super-register. It
2338 // does not consider uses of sub-registers which seems like strange
2339 // behaviour. Nonetheless, if we end up with a 64-bit register here,
2340 // get the corresponding 32-bit register to check.
2341 if (PPC::G8RCRegClass
.contains(Reg
))
2342 Reg
= Reg
- PPC::X0
+ PPC::R0
;
2344 // Is this register defined by some form of add-immediate (including
2345 // load-immediate) within this basic block?
2346 for ( ; It
!= E
; ++It
) {
2347 if (It
->modifiesRegister(Reg
, &getRegisterInfo())) {
2348 switch (It
->getOpcode()) {
2355 OpNoForForwarding
= i
;
2359 } else if (It
->readsRegister(Reg
, &getRegisterInfo()))
2360 // If we see another use of this reg between the def and the MI,
2361 // we want to flat it so the def isn't deleted.
2362 SeenIntermediateUse
= true;
2367 return OpNoForForwarding
== ~0U ? nullptr : DefMI
;
2370 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2371 static const unsigned OpcodesForSpill
[2][SOK_LastOpcodeSpill
] = {
2373 {PPC::STW
, PPC::STD
, PPC::STFD
, PPC::STFS
, PPC::SPILL_CR
,
2374 PPC::SPILL_CRBIT
, PPC::STVX
, PPC::STXVD2X
, PPC::STXSDX
, PPC::STXSSPX
,
2375 PPC::SPILL_VRSAVE
, PPC::QVSTFDX
, PPC::QVSTFSXs
, PPC::QVSTFDXb
,
2376 PPC::SPILLTOVSR_ST
, PPC::EVSTDD
, PPC::SPESTW
},
2378 {PPC::STW
, PPC::STD
, PPC::STFD
, PPC::STFS
, PPC::SPILL_CR
,
2379 PPC::SPILL_CRBIT
, PPC::STVX
, PPC::STXV
, PPC::DFSTOREf64
, PPC::DFSTOREf32
,
2380 PPC::SPILL_VRSAVE
, PPC::QVSTFDX
, PPC::QVSTFSXs
, PPC::QVSTFDXb
,
2381 PPC::SPILLTOVSR_ST
}};
2383 return OpcodesForSpill
[(Subtarget
.hasP9Vector()) ? 1 : 0];
2386 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2387 static const unsigned OpcodesForSpill
[2][SOK_LastOpcodeSpill
] = {
2389 {PPC::LWZ
, PPC::LD
, PPC::LFD
, PPC::LFS
, PPC::RESTORE_CR
,
2390 PPC::RESTORE_CRBIT
, PPC::LVX
, PPC::LXVD2X
, PPC::LXSDX
, PPC::LXSSPX
,
2391 PPC::RESTORE_VRSAVE
, PPC::QVLFDX
, PPC::QVLFSXs
, PPC::QVLFDXb
,
2392 PPC::SPILLTOVSR_LD
, PPC::EVLDD
, PPC::SPELWZ
},
2394 {PPC::LWZ
, PPC::LD
, PPC::LFD
, PPC::LFS
, PPC::RESTORE_CR
,
2395 PPC::RESTORE_CRBIT
, PPC::LVX
, PPC::LXV
, PPC::DFLOADf64
, PPC::DFLOADf32
,
2396 PPC::RESTORE_VRSAVE
, PPC::QVLFDX
, PPC::QVLFSXs
, PPC::QVLFDXb
,
2397 PPC::SPILLTOVSR_LD
}};
2399 return OpcodesForSpill
[(Subtarget
.hasP9Vector()) ? 1 : 0];
2402 // If this instruction has an immediate form and one of its operands is a
2403 // result of a load-immediate or an add-immediate, convert it to
2404 // the immediate form if the constant is in range.
2405 bool PPCInstrInfo::convertToImmediateForm(MachineInstr
&MI
,
2406 MachineInstr
**KilledDef
) const {
2407 MachineFunction
*MF
= MI
.getParent()->getParent();
2408 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
2409 bool PostRA
= !MRI
->isSSA();
2410 bool SeenIntermediateUse
= true;
2411 unsigned ForwardingOperand
= ~0U;
2412 MachineInstr
*DefMI
= getForwardingDefMI(MI
, ForwardingOperand
,
2413 SeenIntermediateUse
);
2416 assert(ForwardingOperand
< MI
.getNumOperands() &&
2417 "The forwarding operand needs to be valid at this point");
2418 bool KillFwdDefMI
= !SeenIntermediateUse
&&
2419 MI
.getOperand(ForwardingOperand
).isKill();
2420 if (KilledDef
&& KillFwdDefMI
)
2424 bool HasImmForm
= instrHasImmForm(MI
, III
, PostRA
);
2425 // If this is a reg+reg instruction that has a reg+imm form,
2426 // and one of the operands is produced by an add-immediate,
2427 // try to convert it.
2428 if (HasImmForm
&& transformToImmFormFedByAdd(MI
, III
, ForwardingOperand
,
2429 *DefMI
, KillFwdDefMI
))
2432 if ((DefMI
->getOpcode() != PPC::LI
&& DefMI
->getOpcode() != PPC::LI8
) ||
2433 !DefMI
->getOperand(1).isImm())
2436 int64_t Immediate
= DefMI
->getOperand(1).getImm();
2437 // Sign-extend to 64-bits.
2438 int64_t SExtImm
= ((uint64_t)Immediate
& ~0x7FFFuLL
) != 0 ?
2439 (Immediate
| 0xFFFFFFFFFFFF0000) : Immediate
;
2441 // If this is a reg+reg instruction that has a reg+imm form,
2442 // and one of the operands is produced by LI, convert it now.
2444 return transformToImmFormFedByLI(MI
, III
, ForwardingOperand
, SExtImm
);
2446 bool ReplaceWithLI
= false;
2447 bool Is64BitLI
= false;
2450 unsigned Opc
= MI
.getOpcode();
2452 default: return false;
2454 // FIXME: Any branches conditional on such a comparison can be made
2455 // unconditional. At this time, this happens too infrequently to be worth
2456 // the implementation effort, but if that ever changes, we could convert
2457 // such a pattern here.
2462 // Doing this post-RA would require dataflow analysis to reliably find uses
2463 // of the CR register set by the compare.
2466 // If a compare-immediate is fed by an immediate and is itself an input of
2467 // an ISEL (the most common case) into a COPY of the correct register.
2468 bool Changed
= false;
2469 unsigned DefReg
= MI
.getOperand(0).getReg();
2470 int64_t Comparand
= MI
.getOperand(2).getImm();
2471 int64_t SExtComparand
= ((uint64_t)Comparand
& ~0x7FFFuLL
) != 0 ?
2472 (Comparand
| 0xFFFFFFFFFFFF0000) : Comparand
;
2474 for (auto &CompareUseMI
: MRI
->use_instructions(DefReg
)) {
2475 unsigned UseOpc
= CompareUseMI
.getOpcode();
2476 if (UseOpc
!= PPC::ISEL
&& UseOpc
!= PPC::ISEL8
)
2478 unsigned CRSubReg
= CompareUseMI
.getOperand(3).getSubReg();
2479 unsigned TrueReg
= CompareUseMI
.getOperand(1).getReg();
2480 unsigned FalseReg
= CompareUseMI
.getOperand(2).getReg();
2481 unsigned RegToCopy
= selectReg(SExtImm
, SExtComparand
, Opc
, TrueReg
,
2482 FalseReg
, CRSubReg
);
2483 if (RegToCopy
== PPC::NoRegister
)
2485 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
2486 if (RegToCopy
== PPC::ZERO
|| RegToCopy
== PPC::ZERO8
) {
2487 CompareUseMI
.setDesc(get(UseOpc
== PPC::ISEL8
? PPC::LI8
: PPC::LI
));
2488 CompareUseMI
.getOperand(1).ChangeToImmediate(0);
2489 CompareUseMI
.RemoveOperand(3);
2490 CompareUseMI
.RemoveOperand(2);
2494 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
2495 LLVM_DEBUG(DefMI
->dump(); MI
.dump(); CompareUseMI
.dump());
2496 LLVM_DEBUG(dbgs() << "Is converted to:\n");
2497 // Convert to copy and remove unneeded operands.
2498 CompareUseMI
.setDesc(get(PPC::COPY
));
2499 CompareUseMI
.RemoveOperand(3);
2500 CompareUseMI
.RemoveOperand(RegToCopy
== TrueReg
? 2 : 1);
2501 CmpIselsConverted
++;
2503 LLVM_DEBUG(CompareUseMI
.dump());
2507 // This may end up incremented multiple times since this function is called
2508 // during a fixed-point transformation, but it is only meant to indicate the
2509 // presence of this opportunity.
2510 MissedConvertibleImmediateInstrs
++;
2514 // Immediate forms - may simply be convertable to an LI.
2517 // Does the sum fit in a 16-bit signed field?
2518 int64_t Addend
= MI
.getOperand(2).getImm();
2519 if (isInt
<16>(Addend
+ SExtImm
)) {
2520 ReplaceWithLI
= true;
2521 Is64BitLI
= Opc
== PPC::ADDI8
;
2522 NewImm
= Addend
+ SExtImm
;
2529 case PPC::RLDICL_32
:
2530 case PPC::RLDICL_32_64
: {
2531 // Use APInt's rotate function.
2532 int64_t SH
= MI
.getOperand(2).getImm();
2533 int64_t MB
= MI
.getOperand(3).getImm();
2534 APInt
InVal((Opc
== PPC::RLDICL
|| Opc
== PPC::RLDICLo
) ?
2535 64 : 32, SExtImm
, true);
2536 InVal
= InVal
.rotl(SH
);
2537 uint64_t Mask
= (1LLU << (63 - MB
+ 1)) - 1;
2539 // Can't replace negative values with an LI as that will sign-extend
2540 // and not clear the left bits. If we're setting the CR bit, we will use
2541 // ANDIo which won't sign extend, so that's safe.
2542 if (isUInt
<15>(InVal
.getSExtValue()) ||
2543 (Opc
== PPC::RLDICLo
&& isUInt
<16>(InVal
.getSExtValue()))) {
2544 ReplaceWithLI
= true;
2545 Is64BitLI
= Opc
!= PPC::RLDICL_32
;
2546 NewImm
= InVal
.getSExtValue();
2547 SetCR
= Opc
== PPC::RLDICLo
;
2555 case PPC::RLWINM8o
: {
2556 int64_t SH
= MI
.getOperand(2).getImm();
2557 int64_t MB
= MI
.getOperand(3).getImm();
2558 int64_t ME
= MI
.getOperand(4).getImm();
2559 APInt
InVal(32, SExtImm
, true);
2560 InVal
= InVal
.rotl(SH
);
2561 // Set the bits ( MB + 32 ) to ( ME + 32 ).
2562 uint64_t Mask
= ((1LLU << (32 - MB
)) - 1) & ~((1LLU << (31 - ME
)) - 1);
2564 // Can't replace negative values with an LI as that will sign-extend
2565 // and not clear the left bits. If we're setting the CR bit, we will use
2566 // ANDIo which won't sign extend, so that's safe.
2567 bool ValueFits
= isUInt
<15>(InVal
.getSExtValue());
2568 ValueFits
|= ((Opc
== PPC::RLWINMo
|| Opc
== PPC::RLWINM8o
) &&
2569 isUInt
<16>(InVal
.getSExtValue()));
2571 ReplaceWithLI
= true;
2572 Is64BitLI
= Opc
== PPC::RLWINM8
|| Opc
== PPC::RLWINM8o
;
2573 NewImm
= InVal
.getSExtValue();
2574 SetCR
= Opc
== PPC::RLWINMo
|| Opc
== PPC::RLWINM8o
;
2583 int64_t LogicalImm
= MI
.getOperand(2).getImm();
2585 if (Opc
== PPC::ORI
|| Opc
== PPC::ORI8
)
2586 Result
= LogicalImm
| SExtImm
;
2588 Result
= LogicalImm
^ SExtImm
;
2589 if (isInt
<16>(Result
)) {
2590 ReplaceWithLI
= true;
2591 Is64BitLI
= Opc
== PPC::ORI8
|| Opc
== PPC::XORI8
;
2599 if (ReplaceWithLI
) {
2600 // We need to be careful with CR-setting instructions we're replacing.
2602 // We don't know anything about uses when we're out of SSA, so only
2603 // replace if the new immediate will be reproduced.
2604 bool ImmChanged
= (SExtImm
& NewImm
) != NewImm
;
2605 if (PostRA
&& ImmChanged
)
2609 // If the defining load-immediate has no other uses, we can just replace
2610 // the immediate with the new immediate.
2611 if (MRI
->hasOneUse(DefMI
->getOperand(0).getReg()))
2612 DefMI
->getOperand(1).setImm(NewImm
);
2614 // If we're not using the GPR result of the CR-setting instruction, we
2615 // just need to and with zero/non-zero depending on the new immediate.
2616 else if (MRI
->use_empty(MI
.getOperand(0).getReg())) {
2618 assert(Immediate
&& "Transformation converted zero to non-zero?");
2622 else if (ImmChanged
)
2627 LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
2628 LLVM_DEBUG(MI
.dump());
2629 LLVM_DEBUG(dbgs() << "Fed by:\n");
2630 LLVM_DEBUG(DefMI
->dump());
2631 LoadImmediateInfo LII
;
2633 LII
.Is64Bit
= Is64BitLI
;
2635 // If we're setting the CR, the original load-immediate must be kept (as an
2636 // operand to ANDIo/ANDI8o).
2637 if (KilledDef
&& SetCR
)
2638 *KilledDef
= nullptr;
2639 replaceInstrWithLI(MI
, LII
);
2640 LLVM_DEBUG(dbgs() << "With:\n");
2641 LLVM_DEBUG(MI
.dump());
2647 static bool isVFReg(unsigned Reg
) {
2648 return PPC::VFRCRegClass
.contains(Reg
);
2651 bool PPCInstrInfo::instrHasImmForm(const MachineInstr
&MI
,
2652 ImmInstrInfo
&III
, bool PostRA
) const {
2653 unsigned Opc
= MI
.getOpcode();
2654 // The vast majority of the instructions would need their operand 2 replaced
2655 // with an immediate when switching to the reg+imm form. A marked exception
2656 // are the update form loads/stores for which a constant operand 2 would need
2657 // to turn into a displacement and move operand 1 to the operand 2 position.
2659 III
.OpNoForForwarding
= 2;
2661 III
.ImmMustBeMultipleOf
= 1;
2662 III
.TruncateImmTo
= 0;
2663 III
.IsSummingOperands
= false;
2665 default: return false;
2668 III
.SignedImm
= true;
2669 III
.ZeroIsSpecialOrig
= 0;
2670 III
.ZeroIsSpecialNew
= 1;
2671 III
.IsCommutative
= true;
2672 III
.IsSummingOperands
= true;
2673 III
.ImmOpcode
= Opc
== PPC::ADD4
? PPC::ADDI
: PPC::ADDI8
;
2677 III
.SignedImm
= true;
2678 III
.ZeroIsSpecialOrig
= 0;
2679 III
.ZeroIsSpecialNew
= 0;
2680 III
.IsCommutative
= true;
2681 III
.IsSummingOperands
= true;
2682 III
.ImmOpcode
= Opc
== PPC::ADDC
? PPC::ADDIC
: PPC::ADDIC8
;
2685 III
.SignedImm
= true;
2686 III
.ZeroIsSpecialOrig
= 0;
2687 III
.ZeroIsSpecialNew
= 0;
2688 III
.IsCommutative
= true;
2689 III
.IsSummingOperands
= true;
2690 III
.ImmOpcode
= PPC::ADDICo
;
2694 III
.SignedImm
= true;
2695 III
.ZeroIsSpecialOrig
= 0;
2696 III
.ZeroIsSpecialNew
= 0;
2697 III
.IsCommutative
= false;
2698 III
.ImmOpcode
= Opc
== PPC::SUBFC
? PPC::SUBFIC
: PPC::SUBFIC8
;
2702 III
.SignedImm
= true;
2703 III
.ZeroIsSpecialOrig
= 0;
2704 III
.ZeroIsSpecialNew
= 0;
2705 III
.IsCommutative
= false;
2706 III
.ImmOpcode
= Opc
== PPC::CMPW
? PPC::CMPWI
: PPC::CMPDI
;
2710 III
.SignedImm
= false;
2711 III
.ZeroIsSpecialOrig
= 0;
2712 III
.ZeroIsSpecialNew
= 0;
2713 III
.IsCommutative
= false;
2714 III
.ImmOpcode
= Opc
== PPC::CMPLW
? PPC::CMPLWI
: PPC::CMPLDI
;
2722 III
.SignedImm
= false;
2723 III
.ZeroIsSpecialOrig
= 0;
2724 III
.ZeroIsSpecialNew
= 0;
2725 III
.IsCommutative
= true;
2727 default: llvm_unreachable("Unknown opcode");
2728 case PPC::ANDo
: III
.ImmOpcode
= PPC::ANDIo
; break;
2729 case PPC::AND8o
: III
.ImmOpcode
= PPC::ANDIo8
; break;
2730 case PPC::OR
: III
.ImmOpcode
= PPC::ORI
; break;
2731 case PPC::OR8
: III
.ImmOpcode
= PPC::ORI8
; break;
2732 case PPC::XOR
: III
.ImmOpcode
= PPC::XORI
; break;
2733 case PPC::XOR8
: III
.ImmOpcode
= PPC::XORI8
; break;
2750 III
.SignedImm
= false;
2751 III
.ZeroIsSpecialOrig
= 0;
2752 III
.ZeroIsSpecialNew
= 0;
2753 III
.IsCommutative
= false;
2754 // This isn't actually true, but the instructions ignore any of the
2755 // upper bits, so any immediate loaded with an LI is acceptable.
2756 // This does not apply to shift right algebraic because a value
2757 // out of range will produce a -1/0.
2759 if (Opc
== PPC::RLWNM
|| Opc
== PPC::RLWNM8
||
2760 Opc
== PPC::RLWNMo
|| Opc
== PPC::RLWNM8o
)
2761 III
.TruncateImmTo
= 5;
2763 III
.TruncateImmTo
= 6;
2765 default: llvm_unreachable("Unknown opcode");
2766 case PPC::RLWNM
: III
.ImmOpcode
= PPC::RLWINM
; break;
2767 case PPC::RLWNM8
: III
.ImmOpcode
= PPC::RLWINM8
; break;
2768 case PPC::RLWNMo
: III
.ImmOpcode
= PPC::RLWINMo
; break;
2769 case PPC::RLWNM8o
: III
.ImmOpcode
= PPC::RLWINM8o
; break;
2770 case PPC::SLW
: III
.ImmOpcode
= PPC::RLWINM
; break;
2771 case PPC::SLW8
: III
.ImmOpcode
= PPC::RLWINM8
; break;
2772 case PPC::SLWo
: III
.ImmOpcode
= PPC::RLWINMo
; break;
2773 case PPC::SLW8o
: III
.ImmOpcode
= PPC::RLWINM8o
; break;
2774 case PPC::SRW
: III
.ImmOpcode
= PPC::RLWINM
; break;
2775 case PPC::SRW8
: III
.ImmOpcode
= PPC::RLWINM8
; break;
2776 case PPC::SRWo
: III
.ImmOpcode
= PPC::RLWINMo
; break;
2777 case PPC::SRW8o
: III
.ImmOpcode
= PPC::RLWINM8o
; break;
2780 III
.TruncateImmTo
= 0;
2781 III
.ImmOpcode
= PPC::SRAWI
;
2785 III
.TruncateImmTo
= 0;
2786 III
.ImmOpcode
= PPC::SRAWIo
;
2800 III
.SignedImm
= false;
2801 III
.ZeroIsSpecialOrig
= 0;
2802 III
.ZeroIsSpecialNew
= 0;
2803 III
.IsCommutative
= false;
2804 // This isn't actually true, but the instructions ignore any of the
2805 // upper bits, so any immediate loaded with an LI is acceptable.
2806 // This does not apply to shift right algebraic because a value
2807 // out of range will produce a -1/0.
2809 if (Opc
== PPC::RLDCL
|| Opc
== PPC::RLDCLo
||
2810 Opc
== PPC::RLDCR
|| Opc
== PPC::RLDCRo
)
2811 III
.TruncateImmTo
= 6;
2813 III
.TruncateImmTo
= 7;
2815 default: llvm_unreachable("Unknown opcode");
2816 case PPC::RLDCL
: III
.ImmOpcode
= PPC::RLDICL
; break;
2817 case PPC::RLDCLo
: III
.ImmOpcode
= PPC::RLDICLo
; break;
2818 case PPC::RLDCR
: III
.ImmOpcode
= PPC::RLDICR
; break;
2819 case PPC::RLDCRo
: III
.ImmOpcode
= PPC::RLDICRo
; break;
2820 case PPC::SLD
: III
.ImmOpcode
= PPC::RLDICR
; break;
2821 case PPC::SLDo
: III
.ImmOpcode
= PPC::RLDICRo
; break;
2822 case PPC::SRD
: III
.ImmOpcode
= PPC::RLDICL
; break;
2823 case PPC::SRDo
: III
.ImmOpcode
= PPC::RLDICLo
; break;
2826 III
.TruncateImmTo
= 0;
2827 III
.ImmOpcode
= PPC::SRADI
;
2831 III
.TruncateImmTo
= 0;
2832 III
.ImmOpcode
= PPC::SRADIo
;
2836 // Loads and stores:
2858 III
.SignedImm
= true;
2859 III
.ZeroIsSpecialOrig
= 1;
2860 III
.ZeroIsSpecialNew
= 2;
2861 III
.IsCommutative
= true;
2862 III
.IsSummingOperands
= true;
2864 III
.OpNoForForwarding
= 2;
2866 default: llvm_unreachable("Unknown opcode");
2867 case PPC::LBZX
: III
.ImmOpcode
= PPC::LBZ
; break;
2868 case PPC::LBZX8
: III
.ImmOpcode
= PPC::LBZ8
; break;
2869 case PPC::LHZX
: III
.ImmOpcode
= PPC::LHZ
; break;
2870 case PPC::LHZX8
: III
.ImmOpcode
= PPC::LHZ8
; break;
2871 case PPC::LHAX
: III
.ImmOpcode
= PPC::LHA
; break;
2872 case PPC::LHAX8
: III
.ImmOpcode
= PPC::LHA8
; break;
2873 case PPC::LWZX
: III
.ImmOpcode
= PPC::LWZ
; break;
2874 case PPC::LWZX8
: III
.ImmOpcode
= PPC::LWZ8
; break;
2876 III
.ImmOpcode
= PPC::LWA
;
2877 III
.ImmMustBeMultipleOf
= 4;
2879 case PPC::LDX
: III
.ImmOpcode
= PPC::LD
; III
.ImmMustBeMultipleOf
= 4; break;
2880 case PPC::LFSX
: III
.ImmOpcode
= PPC::LFS
; break;
2881 case PPC::LFDX
: III
.ImmOpcode
= PPC::LFD
; break;
2882 case PPC::STBX
: III
.ImmOpcode
= PPC::STB
; break;
2883 case PPC::STBX8
: III
.ImmOpcode
= PPC::STB8
; break;
2884 case PPC::STHX
: III
.ImmOpcode
= PPC::STH
; break;
2885 case PPC::STHX8
: III
.ImmOpcode
= PPC::STH8
; break;
2886 case PPC::STWX
: III
.ImmOpcode
= PPC::STW
; break;
2887 case PPC::STWX8
: III
.ImmOpcode
= PPC::STW8
; break;
2889 III
.ImmOpcode
= PPC::STD
;
2890 III
.ImmMustBeMultipleOf
= 4;
2892 case PPC::STFSX
: III
.ImmOpcode
= PPC::STFS
; break;
2893 case PPC::STFDX
: III
.ImmOpcode
= PPC::STFD
; break;
2916 III
.SignedImm
= true;
2917 III
.ZeroIsSpecialOrig
= 2;
2918 III
.ZeroIsSpecialNew
= 3;
2919 III
.IsCommutative
= false;
2920 III
.IsSummingOperands
= true;
2922 III
.OpNoForForwarding
= 3;
2924 default: llvm_unreachable("Unknown opcode");
2925 case PPC::LBZUX
: III
.ImmOpcode
= PPC::LBZU
; break;
2926 case PPC::LBZUX8
: III
.ImmOpcode
= PPC::LBZU8
; break;
2927 case PPC::LHZUX
: III
.ImmOpcode
= PPC::LHZU
; break;
2928 case PPC::LHZUX8
: III
.ImmOpcode
= PPC::LHZU8
; break;
2929 case PPC::LHAUX
: III
.ImmOpcode
= PPC::LHAU
; break;
2930 case PPC::LHAUX8
: III
.ImmOpcode
= PPC::LHAU8
; break;
2931 case PPC::LWZUX
: III
.ImmOpcode
= PPC::LWZU
; break;
2932 case PPC::LWZUX8
: III
.ImmOpcode
= PPC::LWZU8
; break;
2934 III
.ImmOpcode
= PPC::LDU
;
2935 III
.ImmMustBeMultipleOf
= 4;
2937 case PPC::LFSUX
: III
.ImmOpcode
= PPC::LFSU
; break;
2938 case PPC::LFDUX
: III
.ImmOpcode
= PPC::LFDU
; break;
2939 case PPC::STBUX
: III
.ImmOpcode
= PPC::STBU
; break;
2940 case PPC::STBUX8
: III
.ImmOpcode
= PPC::STBU8
; break;
2941 case PPC::STHUX
: III
.ImmOpcode
= PPC::STHU
; break;
2942 case PPC::STHUX8
: III
.ImmOpcode
= PPC::STHU8
; break;
2943 case PPC::STWUX
: III
.ImmOpcode
= PPC::STWU
; break;
2944 case PPC::STWUX8
: III
.ImmOpcode
= PPC::STWU8
; break;
2946 III
.ImmOpcode
= PPC::STDU
;
2947 III
.ImmMustBeMultipleOf
= 4;
2949 case PPC::STFSUX
: III
.ImmOpcode
= PPC::STFSU
; break;
2950 case PPC::STFDUX
: III
.ImmOpcode
= PPC::STFDU
; break;
2953 // Power9 and up only. For some of these, the X-Form version has access to all
2954 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
2955 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
2956 // into or stored from is one of the VR registers.
2963 case PPC::XFLOADf32
:
2964 case PPC::XFLOADf64
:
2965 case PPC::XFSTOREf32
:
2966 case PPC::XFSTOREf64
:
2967 if (!Subtarget
.hasP9Vector())
2969 III
.SignedImm
= true;
2970 III
.ZeroIsSpecialOrig
= 1;
2971 III
.ZeroIsSpecialNew
= 2;
2972 III
.IsCommutative
= true;
2973 III
.IsSummingOperands
= true;
2975 III
.OpNoForForwarding
= 2;
2976 III
.ImmMustBeMultipleOf
= 4;
2978 default: llvm_unreachable("Unknown opcode");
2980 III
.ImmOpcode
= PPC::LXV
;
2981 III
.ImmMustBeMultipleOf
= 16;
2985 if (isVFReg(MI
.getOperand(0).getReg()))
2986 III
.ImmOpcode
= PPC::LXSSP
;
2988 III
.ImmOpcode
= PPC::LFS
;
2992 case PPC::XFLOADf32
:
2993 III
.ImmOpcode
= PPC::DFLOADf32
;
2997 if (isVFReg(MI
.getOperand(0).getReg()))
2998 III
.ImmOpcode
= PPC::LXSD
;
3000 III
.ImmOpcode
= PPC::LFD
;
3004 case PPC::XFLOADf64
:
3005 III
.ImmOpcode
= PPC::DFLOADf64
;
3008 III
.ImmOpcode
= PPC::STXV
;
3009 III
.ImmMustBeMultipleOf
= 16;
3013 if (isVFReg(MI
.getOperand(0).getReg()))
3014 III
.ImmOpcode
= PPC::STXSSP
;
3016 III
.ImmOpcode
= PPC::STFS
;
3020 case PPC::XFSTOREf32
:
3021 III
.ImmOpcode
= PPC::DFSTOREf32
;
3025 if (isVFReg(MI
.getOperand(0).getReg()))
3026 III
.ImmOpcode
= PPC::STXSD
;
3028 III
.ImmOpcode
= PPC::STFD
;
3032 case PPC::XFSTOREf64
:
3033 III
.ImmOpcode
= PPC::DFSTOREf64
;
3041 // Utility function for swaping two arbitrary operands of an instruction.
3042 static void swapMIOperands(MachineInstr
&MI
, unsigned Op1
, unsigned Op2
) {
3043 assert(Op1
!= Op2
&& "Cannot swap operand with itself.");
3045 unsigned MaxOp
= std::max(Op1
, Op2
);
3046 unsigned MinOp
= std::min(Op1
, Op2
);
3047 MachineOperand MOp1
= MI
.getOperand(MinOp
);
3048 MachineOperand MOp2
= MI
.getOperand(MaxOp
);
3049 MI
.RemoveOperand(std::max(Op1
, Op2
));
3050 MI
.RemoveOperand(std::min(Op1
, Op2
));
3052 // If the operands we are swapping are the two at the end (the common case)
3053 // we can just remove both and add them in the opposite order.
3054 if (MaxOp
- MinOp
== 1 && MI
.getNumOperands() == MinOp
) {
3055 MI
.addOperand(MOp2
);
3056 MI
.addOperand(MOp1
);
3058 // Store all operands in a temporary vector, remove them and re-add in the
3060 SmallVector
<MachineOperand
, 2> MOps
;
3061 unsigned TotalOps
= MI
.getNumOperands() + 2; // We've already removed 2 ops.
3062 for (unsigned i
= MI
.getNumOperands() - 1; i
>= MinOp
; i
--) {
3063 MOps
.push_back(MI
.getOperand(i
));
3064 MI
.RemoveOperand(i
);
3066 // MOp2 needs to be added next.
3067 MI
.addOperand(MOp2
);
3068 // Now add the rest.
3069 for (unsigned i
= MI
.getNumOperands(); i
< TotalOps
; i
++) {
3071 MI
.addOperand(MOp1
);
3073 MI
.addOperand(MOps
.back());
3080 // Check if the 'MI' that has the index OpNoForForwarding
3081 // meets the requirement described in the ImmInstrInfo.
3082 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr
&MI
,
3083 const ImmInstrInfo
&III
,
3084 unsigned OpNoForForwarding
3086 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3087 // would not work pre-RA, we can only do the check post RA.
3088 MachineRegisterInfo
&MRI
= MI
.getParent()->getParent()->getRegInfo();
3092 // Cannot do the transform if MI isn't summing the operands.
3093 if (!III
.IsSummingOperands
)
3096 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3097 if (!III
.ZeroIsSpecialOrig
)
3100 // We cannot do the transform if the operand we are trying to replace
3101 // isn't the same as the operand the instruction allows.
3102 if (OpNoForForwarding
!= III
.OpNoForForwarding
)
3105 // Check if the instruction we are trying to transform really has
3106 // the special zero register as its operand.
3107 if (MI
.getOperand(III
.ZeroIsSpecialOrig
).getReg() != PPC::ZERO
&&
3108 MI
.getOperand(III
.ZeroIsSpecialOrig
).getReg() != PPC::ZERO8
)
3111 // This machine instruction is convertible if it is,
3112 // 1. summing the operands.
3113 // 2. one of the operands is special zero register.
3114 // 3. the operand we are trying to replace is allowed by the MI.
3118 // Check if the DefMI is the add inst and set the ImmMO and RegMO
3120 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr
&DefMI
,
3121 const ImmInstrInfo
&III
,
3122 MachineOperand
*&ImmMO
,
3123 MachineOperand
*&RegMO
) const {
3124 unsigned Opc
= DefMI
.getOpcode();
3125 if (Opc
!= PPC::ADDItocL
&& Opc
!= PPC::ADDI
&& Opc
!= PPC::ADDI8
)
3128 assert(DefMI
.getNumOperands() >= 3 &&
3129 "Add inst must have at least three operands");
3130 RegMO
= &DefMI
.getOperand(1);
3131 ImmMO
= &DefMI
.getOperand(2);
3133 // This DefMI is elgible for forwarding if it is:
3135 // 2. one of the operands is Imm/CPI/Global.
3136 return isAnImmediateOperand(*ImmMO
);
3139 bool PPCInstrInfo::isRegElgibleForForwarding(const MachineOperand
&RegMO
,
3140 const MachineInstr
&DefMI
,
3141 const MachineInstr
&MI
,
3146 // z = lfdx 0, x -> z = lfd imm(y)
3147 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3148 // of "y" between the DEF of "x" and "z".
3149 // The query is only valid post RA.
3150 const MachineRegisterInfo
&MRI
= MI
.getParent()->getParent()->getRegInfo();
3154 // MachineInstr::readsRegister only returns true if the machine
3155 // instruction reads the exact register or its super-register. It
3156 // does not consider uses of sub-registers which seems like strange
3157 // behaviour. Nonetheless, if we end up with a 64-bit register here,
3158 // get the corresponding 32-bit register to check.
3159 unsigned Reg
= RegMO
.getReg();
3160 if (PPC::G8RCRegClass
.contains(Reg
))
3161 Reg
= Reg
- PPC::X0
+ PPC::R0
;
3163 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3164 MachineBasicBlock::const_reverse_iterator It
= MI
;
3165 MachineBasicBlock::const_reverse_iterator E
= MI
.getParent()->rend();
3167 for (; It
!= E
; ++It
) {
3168 if (It
->modifiesRegister(Reg
, &getRegisterInfo()) && (&*It
) != &DefMI
)
3170 // Made it to DefMI without encountering a clobber.
3171 if ((&*It
) == &DefMI
)
3174 assert((&*It
) == &DefMI
&& "DefMI is missing");
3176 // If DefMI also uses the register to be forwarded, we can only forward it
3177 // if DefMI is being erased.
3178 if (DefMI
.readsRegister(Reg
, &getRegisterInfo()))
3184 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand
&ImmMO
,
3185 const MachineInstr
&DefMI
,
3186 const ImmInstrInfo
&III
,
3187 int64_t &Imm
) const {
3188 assert(isAnImmediateOperand(ImmMO
) && "ImmMO is NOT an immediate");
3189 if (DefMI
.getOpcode() == PPC::ADDItocL
) {
3190 // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3191 // However, we know that, it is 16-bit width, and has the alignment of 4.
3192 // Check if the instruction met the requirement.
3193 if (III
.ImmMustBeMultipleOf
> 4 ||
3194 III
.TruncateImmTo
|| III
.ImmWidth
!= 16)
3197 // Going from XForm to DForm loads means that the displacement needs to be
3198 // not just an immediate but also a multiple of 4, or 16 depending on the
3199 // load. A DForm load cannot be represented if it is a multiple of say 2.
3200 // XForm loads do not have this restriction.
3201 if (ImmMO
.isGlobal() &&
3202 ImmMO
.getGlobal()->getAlignment() < III
.ImmMustBeMultipleOf
)
3208 if (ImmMO
.isImm()) {
3209 // It is Imm, we need to check if the Imm fit the range.
3210 int64_t Immediate
= ImmMO
.getImm();
3211 // Sign-extend to 64-bits.
3212 Imm
= ((uint64_t)Immediate
& ~0x7FFFuLL
) != 0 ?
3213 (Immediate
| 0xFFFFFFFFFFFF0000) : Immediate
;
3215 if (Imm
% III
.ImmMustBeMultipleOf
)
3217 if (III
.TruncateImmTo
)
3218 Imm
&= ((1 << III
.TruncateImmTo
) - 1);
3219 if (III
.SignedImm
) {
3220 APInt
ActualValue(64, Imm
, true);
3221 if (!ActualValue
.isSignedIntN(III
.ImmWidth
))
3224 uint64_t UnsignedMax
= (1 << III
.ImmWidth
) - 1;
3225 if ((uint64_t)Imm
> UnsignedMax
)
3232 // This ImmMO is forwarded if it meets the requriement describle
3237 // If an X-Form instruction is fed by an add-immediate and one of its operands
3238 // is the literal zero, attempt to forward the source of the add-immediate to
3239 // the corresponding D-Form instruction with the displacement coming from
3240 // the immediate being added.
3241 bool PPCInstrInfo::transformToImmFormFedByAdd(MachineInstr
&MI
,
3242 const ImmInstrInfo
&III
,
3243 unsigned OpNoForForwarding
,
3244 MachineInstr
&DefMI
,
3245 bool KillDefMI
) const {
3248 // x = addi reg, imm <----- DefMI
3249 // y = op 0 , x <----- MI
3251 // OpNoForForwarding
3252 // Check if the MI meet the requirement described in the III.
3253 if (!isUseMIElgibleForForwarding(MI
, III
, OpNoForForwarding
))
3256 // Check if the DefMI meet the requirement
3257 // described in the III. If yes, set the ImmMO and RegMO accordingly.
3258 MachineOperand
*ImmMO
= nullptr;
3259 MachineOperand
*RegMO
= nullptr;
3260 if (!isDefMIElgibleForForwarding(DefMI
, III
, ImmMO
, RegMO
))
3262 assert(ImmMO
&& RegMO
&& "Imm and Reg operand must have been set");
3264 // As we get the Imm operand now, we need to check if the ImmMO meet
3265 // the requirement described in the III. If yes set the Imm.
3267 if (!isImmElgibleForForwarding(*ImmMO
, DefMI
, III
, Imm
))
3270 // Check if the RegMO can be forwarded to MI.
3271 if (!isRegElgibleForForwarding(*RegMO
, DefMI
, MI
, KillDefMI
))
3274 // We know that, the MI and DefMI both meet the pattern, and
3275 // the Imm also meet the requirement with the new Imm-form.
3276 // It is safe to do the transformation now.
3277 LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
3278 LLVM_DEBUG(MI
.dump());
3279 LLVM_DEBUG(dbgs() << "Fed by:\n");
3280 LLVM_DEBUG(DefMI
.dump());
3282 // Update the base reg first.
3283 MI
.getOperand(III
.OpNoForForwarding
).ChangeToRegister(RegMO
->getReg(),
3287 // Then, update the imm.
3288 if (ImmMO
->isImm()) {
3289 // If the ImmMO is Imm, change the operand that has ZERO to that Imm
3291 MI
.getOperand(III
.ZeroIsSpecialOrig
).ChangeToImmediate(Imm
);
3294 // Otherwise, it is Constant Pool Index(CPI) or Global,
3295 // which is relocation in fact. We need to replace the special zero
3296 // register with ImmMO.
3297 // Before that, we need to fixup the target flags for imm.
3298 // For some reason, we miss to set the flag for the ImmMO if it is CPI.
3299 if (DefMI
.getOpcode() == PPC::ADDItocL
)
3300 ImmMO
->setTargetFlags(PPCII::MO_TOC_LO
);
3302 // MI didn't have the interface such as MI.setOperand(i) though
3303 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
3304 // ImmMO, we need to remove ZERO operand and all the operands behind it,
3305 // and, add the ImmMO, then, move back all the operands behind ZERO.
3306 SmallVector
<MachineOperand
, 2> MOps
;
3307 for (unsigned i
= MI
.getNumOperands() - 1; i
>= III
.ZeroIsSpecialOrig
; i
--) {
3308 MOps
.push_back(MI
.getOperand(i
));
3309 MI
.RemoveOperand(i
);
3312 // Remove the last MO in the list, which is ZERO operand in fact.
3314 // Add the imm operand.
3315 MI
.addOperand(*ImmMO
);
3316 // Now add the rest back.
3317 for (auto &MO
: MOps
)
3321 // Update the opcode.
3322 MI
.setDesc(get(III
.ImmOpcode
));
3324 LLVM_DEBUG(dbgs() << "With:\n");
3325 LLVM_DEBUG(MI
.dump());
3330 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr
&MI
,
3331 const ImmInstrInfo
&III
,
3332 unsigned ConstantOpNo
,
3333 int64_t Imm
) const {
3334 MachineRegisterInfo
&MRI
= MI
.getParent()->getParent()->getRegInfo();
3335 bool PostRA
= !MRI
.isSSA();
3336 // Exit early if we can't convert this.
3337 if ((ConstantOpNo
!= III
.OpNoForForwarding
) && !III
.IsCommutative
)
3339 if (Imm
% III
.ImmMustBeMultipleOf
)
3341 if (III
.TruncateImmTo
)
3342 Imm
&= ((1 << III
.TruncateImmTo
) - 1);
3343 if (III
.SignedImm
) {
3344 APInt
ActualValue(64, Imm
, true);
3345 if (!ActualValue
.isSignedIntN(III
.ImmWidth
))
3348 uint64_t UnsignedMax
= (1 << III
.ImmWidth
) - 1;
3349 if ((uint64_t)Imm
> UnsignedMax
)
3353 // If we're post-RA, the instructions don't agree on whether register zero is
3354 // special, we can transform this as long as the register operand that will
3355 // end up in the location where zero is special isn't R0.
3356 if (PostRA
&& III
.ZeroIsSpecialOrig
!= III
.ZeroIsSpecialNew
) {
3357 unsigned PosForOrigZero
= III
.ZeroIsSpecialOrig
? III
.ZeroIsSpecialOrig
:
3358 III
.ZeroIsSpecialNew
+ 1;
3359 unsigned OrigZeroReg
= MI
.getOperand(PosForOrigZero
).getReg();
3360 unsigned NewZeroReg
= MI
.getOperand(III
.ZeroIsSpecialNew
).getReg();
3361 // If R0 is in the operand where zero is special for the new instruction,
3362 // it is unsafe to transform if the constant operand isn't that operand.
3363 if ((NewZeroReg
== PPC::R0
|| NewZeroReg
== PPC::X0
) &&
3364 ConstantOpNo
!= III
.ZeroIsSpecialNew
)
3366 if ((OrigZeroReg
== PPC::R0
|| OrigZeroReg
== PPC::X0
) &&
3367 ConstantOpNo
!= PosForOrigZero
)
3371 unsigned Opc
= MI
.getOpcode();
3372 bool SpecialShift32
=
3373 Opc
== PPC::SLW
|| Opc
== PPC::SLWo
|| Opc
== PPC::SRW
|| Opc
== PPC::SRWo
;
3374 bool SpecialShift64
=
3375 Opc
== PPC::SLD
|| Opc
== PPC::SLDo
|| Opc
== PPC::SRD
|| Opc
== PPC::SRDo
;
3376 bool SetCR
= Opc
== PPC::SLWo
|| Opc
== PPC::SRWo
||
3377 Opc
== PPC::SLDo
|| Opc
== PPC::SRDo
;
3379 Opc
== PPC::SRW
|| Opc
== PPC::SRWo
|| Opc
== PPC::SRD
|| Opc
== PPC::SRDo
;
3381 MI
.setDesc(get(III
.ImmOpcode
));
3382 if (ConstantOpNo
== III
.OpNoForForwarding
) {
3383 // Converting shifts to immediate form is a bit tricky since they may do
3384 // one of three things:
3385 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
3386 // 2. If the shift amount is zero, the result is unchanged (save for maybe
3388 // 3. If the shift amount is in [1, OpSize), it's just a shift
3389 if (SpecialShift32
|| SpecialShift64
) {
3390 LoadImmediateInfo LII
;
3393 LII
.Is64Bit
= SpecialShift64
;
3394 uint64_t ShAmt
= Imm
& (SpecialShift32
? 0x1F : 0x3F);
3395 if (Imm
& (SpecialShift32
? 0x20 : 0x40))
3396 replaceInstrWithLI(MI
, LII
);
3397 // Shifts by zero don't change the value. If we don't need to set CR0,
3398 // just convert this to a COPY. Can't do this post-RA since we've already
3399 // cleaned up the copies.
3400 else if (!SetCR
&& ShAmt
== 0 && !PostRA
) {
3401 MI
.RemoveOperand(2);
3402 MI
.setDesc(get(PPC::COPY
));
3404 // The 32 bit and 64 bit instructions are quite different.
3405 if (SpecialShift32
) {
3406 // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31).
3407 uint64_t SH
= RightShift
? 32 - ShAmt
: ShAmt
;
3408 uint64_t MB
= RightShift
? ShAmt
: 0;
3409 uint64_t ME
= RightShift
? 31 : 31 - ShAmt
;
3410 MI
.getOperand(III
.OpNoForForwarding
).ChangeToImmediate(SH
);
3411 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
).addImm(MB
)
3414 // Left shifts use (N, 63-N), right shifts use (64-N, N).
3415 uint64_t SH
= RightShift
? 64 - ShAmt
: ShAmt
;
3416 uint64_t ME
= RightShift
? ShAmt
: 63 - ShAmt
;
3417 MI
.getOperand(III
.OpNoForForwarding
).ChangeToImmediate(SH
);
3418 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
).addImm(ME
);
3422 MI
.getOperand(ConstantOpNo
).ChangeToImmediate(Imm
);
3424 // Convert commutative instructions (switch the operands and convert the
3425 // desired one to an immediate.
3426 else if (III
.IsCommutative
) {
3427 MI
.getOperand(ConstantOpNo
).ChangeToImmediate(Imm
);
3428 swapMIOperands(MI
, ConstantOpNo
, III
.OpNoForForwarding
);
3430 llvm_unreachable("Should have exited early!");
3432 // For instructions for which the constant register replaces a different
3433 // operand than where the immediate goes, we need to swap them.
3434 if (III
.OpNoForForwarding
!= III
.ImmOpNo
)
3435 swapMIOperands(MI
, III
.OpNoForForwarding
, III
.ImmOpNo
);
3437 // If the R0/X0 register is special for the original instruction and not for
3438 // the new instruction (or vice versa), we need to fix up the register class.
3439 if (!PostRA
&& III
.ZeroIsSpecialOrig
!= III
.ZeroIsSpecialNew
) {
3440 if (!III
.ZeroIsSpecialOrig
) {
3441 unsigned RegToModify
= MI
.getOperand(III
.ZeroIsSpecialNew
).getReg();
3442 const TargetRegisterClass
*NewRC
=
3443 MRI
.getRegClass(RegToModify
)->hasSuperClassEq(&PPC::GPRCRegClass
) ?
3444 &PPC::GPRC_and_GPRC_NOR0RegClass
: &PPC::G8RC_and_G8RC_NOX0RegClass
;
3445 MRI
.setRegClass(RegToModify
, NewRC
);
3451 const TargetRegisterClass
*
3452 PPCInstrInfo::updatedRC(const TargetRegisterClass
*RC
) const {
3453 if (Subtarget
.hasVSX() && RC
== &PPC::VRRCRegClass
)
3454 return &PPC::VSRCRegClass
;
3458 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode
) {
3459 return PPC::getRecordFormOpcode(Opcode
);
3462 // This function returns true if the machine instruction
3463 // always outputs a value by sign-extending a 32 bit value,
3464 // i.e. 0 to 31-th bits are same as 32-th bit.
3465 static bool isSignExtendingOp(const MachineInstr
&MI
) {
3466 int Opcode
= MI
.getOpcode();
3467 if (Opcode
== PPC::LI
|| Opcode
== PPC::LI8
||
3468 Opcode
== PPC::LIS
|| Opcode
== PPC::LIS8
||
3469 Opcode
== PPC::SRAW
|| Opcode
== PPC::SRAWo
||
3470 Opcode
== PPC::SRAWI
|| Opcode
== PPC::SRAWIo
||
3471 Opcode
== PPC::LWA
|| Opcode
== PPC::LWAX
||
3472 Opcode
== PPC::LWA_32
|| Opcode
== PPC::LWAX_32
||
3473 Opcode
== PPC::LHA
|| Opcode
== PPC::LHAX
||
3474 Opcode
== PPC::LHA8
|| Opcode
== PPC::LHAX8
||
3475 Opcode
== PPC::LBZ
|| Opcode
== PPC::LBZX
||
3476 Opcode
== PPC::LBZ8
|| Opcode
== PPC::LBZX8
||
3477 Opcode
== PPC::LBZU
|| Opcode
== PPC::LBZUX
||
3478 Opcode
== PPC::LBZU8
|| Opcode
== PPC::LBZUX8
||
3479 Opcode
== PPC::LHZ
|| Opcode
== PPC::LHZX
||
3480 Opcode
== PPC::LHZ8
|| Opcode
== PPC::LHZX8
||
3481 Opcode
== PPC::LHZU
|| Opcode
== PPC::LHZUX
||
3482 Opcode
== PPC::LHZU8
|| Opcode
== PPC::LHZUX8
||
3483 Opcode
== PPC::EXTSB
|| Opcode
== PPC::EXTSBo
||
3484 Opcode
== PPC::EXTSH
|| Opcode
== PPC::EXTSHo
||
3485 Opcode
== PPC::EXTSB8
|| Opcode
== PPC::EXTSH8
||
3486 Opcode
== PPC::EXTSW
|| Opcode
== PPC::EXTSWo
||
3487 Opcode
== PPC::EXTSH8_32_64
|| Opcode
== PPC::EXTSW_32_64
||
3488 Opcode
== PPC::EXTSB8_32_64
)
3491 if (Opcode
== PPC::RLDICL
&& MI
.getOperand(3).getImm() >= 33)
3494 if ((Opcode
== PPC::RLWINM
|| Opcode
== PPC::RLWINMo
||
3495 Opcode
== PPC::RLWNM
|| Opcode
== PPC::RLWNMo
) &&
3496 MI
.getOperand(3).getImm() > 0 &&
3497 MI
.getOperand(3).getImm() <= MI
.getOperand(4).getImm())
3503 // This function returns true if the machine instruction
3504 // always outputs zeros in higher 32 bits.
3505 static bool isZeroExtendingOp(const MachineInstr
&MI
) {
3506 int Opcode
= MI
.getOpcode();
3507 // The 16-bit immediate is sign-extended in li/lis.
3508 // If the most significant bit is zero, all higher bits are zero.
3509 if (Opcode
== PPC::LI
|| Opcode
== PPC::LI8
||
3510 Opcode
== PPC::LIS
|| Opcode
== PPC::LIS8
) {
3511 int64_t Imm
= MI
.getOperand(1).getImm();
3512 if (((uint64_t)Imm
& ~0x7FFFuLL
) == 0)
3516 // We have some variations of rotate-and-mask instructions
3517 // that clear higher 32-bits.
3518 if ((Opcode
== PPC::RLDICL
|| Opcode
== PPC::RLDICLo
||
3519 Opcode
== PPC::RLDCL
|| Opcode
== PPC::RLDCLo
||
3520 Opcode
== PPC::RLDICL_32_64
) &&
3521 MI
.getOperand(3).getImm() >= 32)
3524 if ((Opcode
== PPC::RLDIC
|| Opcode
== PPC::RLDICo
) &&
3525 MI
.getOperand(3).getImm() >= 32 &&
3526 MI
.getOperand(3).getImm() <= 63 - MI
.getOperand(2).getImm())
3529 if ((Opcode
== PPC::RLWINM
|| Opcode
== PPC::RLWINMo
||
3530 Opcode
== PPC::RLWNM
|| Opcode
== PPC::RLWNMo
||
3531 Opcode
== PPC::RLWINM8
|| Opcode
== PPC::RLWNM8
) &&
3532 MI
.getOperand(3).getImm() <= MI
.getOperand(4).getImm())
3535 // There are other instructions that clear higher 32-bits.
3536 if (Opcode
== PPC::CNTLZW
|| Opcode
== PPC::CNTLZWo
||
3537 Opcode
== PPC::CNTTZW
|| Opcode
== PPC::CNTTZWo
||
3538 Opcode
== PPC::CNTLZW8
|| Opcode
== PPC::CNTTZW8
||
3539 Opcode
== PPC::CNTLZD
|| Opcode
== PPC::CNTLZDo
||
3540 Opcode
== PPC::CNTTZD
|| Opcode
== PPC::CNTTZDo
||
3541 Opcode
== PPC::POPCNTD
|| Opcode
== PPC::POPCNTW
||
3542 Opcode
== PPC::SLW
|| Opcode
== PPC::SLWo
||
3543 Opcode
== PPC::SRW
|| Opcode
== PPC::SRWo
||
3544 Opcode
== PPC::SLW8
|| Opcode
== PPC::SRW8
||
3545 Opcode
== PPC::SLWI
|| Opcode
== PPC::SLWIo
||
3546 Opcode
== PPC::SRWI
|| Opcode
== PPC::SRWIo
||
3547 Opcode
== PPC::LWZ
|| Opcode
== PPC::LWZX
||
3548 Opcode
== PPC::LWZU
|| Opcode
== PPC::LWZUX
||
3549 Opcode
== PPC::LWBRX
|| Opcode
== PPC::LHBRX
||
3550 Opcode
== PPC::LHZ
|| Opcode
== PPC::LHZX
||
3551 Opcode
== PPC::LHZU
|| Opcode
== PPC::LHZUX
||
3552 Opcode
== PPC::LBZ
|| Opcode
== PPC::LBZX
||
3553 Opcode
== PPC::LBZU
|| Opcode
== PPC::LBZUX
||
3554 Opcode
== PPC::LWZ8
|| Opcode
== PPC::LWZX8
||
3555 Opcode
== PPC::LWZU8
|| Opcode
== PPC::LWZUX8
||
3556 Opcode
== PPC::LWBRX8
|| Opcode
== PPC::LHBRX8
||
3557 Opcode
== PPC::LHZ8
|| Opcode
== PPC::LHZX8
||
3558 Opcode
== PPC::LHZU8
|| Opcode
== PPC::LHZUX8
||
3559 Opcode
== PPC::LBZ8
|| Opcode
== PPC::LBZX8
||
3560 Opcode
== PPC::LBZU8
|| Opcode
== PPC::LBZUX8
||
3561 Opcode
== PPC::ANDIo
|| Opcode
== PPC::ANDISo
||
3562 Opcode
== PPC::ROTRWI
|| Opcode
== PPC::ROTRWIo
||
3563 Opcode
== PPC::EXTLWI
|| Opcode
== PPC::EXTLWIo
||
3564 Opcode
== PPC::MFVSRWZ
)
3570 // This function returns true if the input MachineInstr is a TOC save
3572 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr
&MI
) const {
3573 if (!MI
.getOperand(1).isImm() || !MI
.getOperand(2).isReg())
3575 unsigned TOCSaveOffset
= Subtarget
.getFrameLowering()->getTOCSaveOffset();
3576 unsigned StackOffset
= MI
.getOperand(1).getImm();
3577 unsigned StackReg
= MI
.getOperand(2).getReg();
3578 if (StackReg
== PPC::X1
&& StackOffset
== TOCSaveOffset
)
3584 // We limit the max depth to track incoming values of PHIs or binary ops
3585 // (e.g. AND) to avoid excessive cost.
3586 const unsigned MAX_DEPTH
= 1;
3589 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr
&MI
, bool SignExt
,
3590 const unsigned Depth
) const {
3591 const MachineFunction
*MF
= MI
.getParent()->getParent();
3592 const MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
3594 // If we know this instruction returns sign- or zero-extended result,
3596 if (SignExt
? isSignExtendingOp(MI
):
3597 isZeroExtendingOp(MI
))
3600 switch (MI
.getOpcode()) {
3602 unsigned SrcReg
= MI
.getOperand(1).getReg();
3604 // In both ELFv1 and v2 ABI, method parameters and the return value
3605 // are sign- or zero-extended.
3606 if (MF
->getSubtarget
<PPCSubtarget
>().isSVR4ABI()) {
3607 const PPCFunctionInfo
*FuncInfo
= MF
->getInfo
<PPCFunctionInfo
>();
3608 // We check the ZExt/SExt flags for a method parameter.
3609 if (MI
.getParent()->getBasicBlock() ==
3610 &MF
->getFunction().getEntryBlock()) {
3611 unsigned VReg
= MI
.getOperand(0).getReg();
3612 if (MF
->getRegInfo().isLiveIn(VReg
))
3613 return SignExt
? FuncInfo
->isLiveInSExt(VReg
) :
3614 FuncInfo
->isLiveInZExt(VReg
);
3617 // For a method return value, we check the ZExt/SExt flags in attribute.
3618 // We assume the following code sequence for method call.
3619 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
3620 // BL8_NOP @func,...
3621 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
3622 // %5 = COPY %x3; G8RC:%5
3623 if (SrcReg
== PPC::X3
) {
3624 const MachineBasicBlock
*MBB
= MI
.getParent();
3625 MachineBasicBlock::const_instr_iterator II
=
3626 MachineBasicBlock::const_instr_iterator(&MI
);
3627 if (II
!= MBB
->instr_begin() &&
3628 (--II
)->getOpcode() == PPC::ADJCALLSTACKUP
) {
3629 const MachineInstr
&CallMI
= *(--II
);
3630 if (CallMI
.isCall() && CallMI
.getOperand(0).isGlobal()) {
3631 const Function
*CalleeFn
=
3632 dyn_cast
<Function
>(CallMI
.getOperand(0).getGlobal());
3635 const IntegerType
*IntTy
=
3636 dyn_cast
<IntegerType
>(CalleeFn
->getReturnType());
3637 const AttributeSet
&Attrs
=
3638 CalleeFn
->getAttributes().getRetAttributes();
3639 if (IntTy
&& IntTy
->getBitWidth() <= 32)
3640 return Attrs
.hasAttribute(SignExt
? Attribute::SExt
:
3647 // If this is a copy from another register, we recursively check source.
3648 if (!TargetRegisterInfo::isVirtualRegister(SrcReg
))
3650 const MachineInstr
*SrcMI
= MRI
->getVRegDef(SrcReg
);
3652 return isSignOrZeroExtended(*SrcMI
, SignExt
, Depth
);
3669 // logical operation with 16-bit immediate does not change the upper bits.
3670 // So, we track the operand register as we do for register copy.
3671 unsigned SrcReg
= MI
.getOperand(1).getReg();
3672 if (!TargetRegisterInfo::isVirtualRegister(SrcReg
))
3674 const MachineInstr
*SrcMI
= MRI
->getVRegDef(SrcReg
);
3676 return isSignOrZeroExtended(*SrcMI
, SignExt
, Depth
);
3681 // If all incoming values are sign-/zero-extended,
3682 // the output of OR, ISEL or PHI is also sign-/zero-extended.
3687 if (Depth
>= MAX_DEPTH
)
3690 // The input registers for PHI are operand 1, 3, ...
3691 // The input registers for others are operand 1 and 2.
3692 unsigned E
= 3, D
= 1;
3693 if (MI
.getOpcode() == PPC::PHI
) {
3694 E
= MI
.getNumOperands();
3698 for (unsigned I
= 1; I
!= E
; I
+= D
) {
3699 if (MI
.getOperand(I
).isReg()) {
3700 unsigned SrcReg
= MI
.getOperand(I
).getReg();
3701 if (!TargetRegisterInfo::isVirtualRegister(SrcReg
))
3703 const MachineInstr
*SrcMI
= MRI
->getVRegDef(SrcReg
);
3704 if (SrcMI
== NULL
|| !isSignOrZeroExtended(*SrcMI
, SignExt
, Depth
+1))
3713 // If at least one of the incoming values of an AND is zero extended
3714 // then the output is also zero-extended. If both of the incoming values
3715 // are sign-extended then the output is also sign extended.
3718 if (Depth
>= MAX_DEPTH
)
3721 assert(MI
.getOperand(1).isReg() && MI
.getOperand(2).isReg());
3723 unsigned SrcReg1
= MI
.getOperand(1).getReg();
3724 unsigned SrcReg2
= MI
.getOperand(2).getReg();
3726 if (!TargetRegisterInfo::isVirtualRegister(SrcReg1
) ||
3727 !TargetRegisterInfo::isVirtualRegister(SrcReg2
))
3730 const MachineInstr
*MISrc1
= MRI
->getVRegDef(SrcReg1
);
3731 const MachineInstr
*MISrc2
= MRI
->getVRegDef(SrcReg2
);
3732 if (!MISrc1
|| !MISrc2
)
3736 return isSignOrZeroExtended(*MISrc1
, SignExt
, Depth
+1) &&
3737 isSignOrZeroExtended(*MISrc2
, SignExt
, Depth
+1);
3739 return isSignOrZeroExtended(*MISrc1
, SignExt
, Depth
+1) ||
3740 isSignOrZeroExtended(*MISrc2
, SignExt
, Depth
+1);