1 //===- InstCombineCalls.cpp -----------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the visitCall, visitInvoke, and visitCallBr functions.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/PatternMatch.h"
46 #include "llvm/IR/Statepoint.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/IR/ValueHandle.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/KnownBits.h"
58 #include "llvm/Support/MathExtras.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
71 using namespace PatternMatch
;
73 #define DEBUG_TYPE "instcombine"
75 STATISTIC(NumSimplified
, "Number of library calls simplified");
77 static cl::opt
<unsigned> GuardWideningWindow(
78 "instcombine-guard-widening-window",
80 cl::desc("How wide an instruction window to bypass looking for "
83 /// Return the specified type promoted as it would be to pass though a va_arg
85 static Type
*getPromotedType(Type
*Ty
) {
86 if (IntegerType
* ITy
= dyn_cast
<IntegerType
>(Ty
)) {
87 if (ITy
->getBitWidth() < 32)
88 return Type::getInt32Ty(Ty
->getContext());
93 /// Return a constant boolean vector that has true elements in all positions
94 /// where the input constant data vector has an element with the sign bit set.
95 static Constant
*getNegativeIsTrueBoolVec(ConstantDataVector
*V
) {
96 SmallVector
<Constant
*, 32> BoolVec
;
97 IntegerType
*BoolTy
= Type::getInt1Ty(V
->getContext());
98 for (unsigned I
= 0, E
= V
->getNumElements(); I
!= E
; ++I
) {
99 Constant
*Elt
= V
->getElementAsConstant(I
);
100 assert((isa
<ConstantInt
>(Elt
) || isa
<ConstantFP
>(Elt
)) &&
101 "Unexpected constant data vector element type");
102 bool Sign
= V
->getElementType()->isIntegerTy()
103 ? cast
<ConstantInt
>(Elt
)->isNegative()
104 : cast
<ConstantFP
>(Elt
)->isNegative();
105 BoolVec
.push_back(ConstantInt::get(BoolTy
, Sign
));
107 return ConstantVector::get(BoolVec
);
110 Instruction
*InstCombiner::SimplifyAnyMemTransfer(AnyMemTransferInst
*MI
) {
111 unsigned DstAlign
= getKnownAlignment(MI
->getRawDest(), DL
, MI
, &AC
, &DT
);
112 unsigned CopyDstAlign
= MI
->getDestAlignment();
113 if (CopyDstAlign
< DstAlign
){
114 MI
->setDestAlignment(DstAlign
);
118 unsigned SrcAlign
= getKnownAlignment(MI
->getRawSource(), DL
, MI
, &AC
, &DT
);
119 unsigned CopySrcAlign
= MI
->getSourceAlignment();
120 if (CopySrcAlign
< SrcAlign
) {
121 MI
->setSourceAlignment(SrcAlign
);
125 // If we have a store to a location which is known constant, we can conclude
126 // that the store must be storing the constant value (else the memory
127 // wouldn't be constant), and this must be a noop.
128 if (AA
->pointsToConstantMemory(MI
->getDest())) {
129 // Set the size of the copy to 0, it will be deleted on the next iteration.
130 MI
->setLength(Constant::getNullValue(MI
->getLength()->getType()));
134 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
136 ConstantInt
*MemOpLength
= dyn_cast
<ConstantInt
>(MI
->getLength());
137 if (!MemOpLength
) return nullptr;
139 // Source and destination pointer types are always "i8*" for intrinsic. See
140 // if the size is something we can handle with a single primitive load/store.
141 // A single load+store correctly handles overlapping memory in the memmove
143 uint64_t Size
= MemOpLength
->getLimitedValue();
144 assert(Size
&& "0-sized memory transferring should be removed already.");
146 if (Size
> 8 || (Size
&(Size
-1)))
147 return nullptr; // If not 1/2/4/8 bytes, exit.
149 // If it is an atomic and alignment is less than the size then we will
150 // introduce the unaligned memory access which will be later transformed
151 // into libcall in CodeGen. This is not evident performance gain so disable
153 if (isa
<AtomicMemTransferInst
>(MI
))
154 if (CopyDstAlign
< Size
|| CopySrcAlign
< Size
)
157 // Use an integer load+store unless we can find something better.
159 cast
<PointerType
>(MI
->getArgOperand(1)->getType())->getAddressSpace();
161 cast
<PointerType
>(MI
->getArgOperand(0)->getType())->getAddressSpace();
163 IntegerType
* IntType
= IntegerType::get(MI
->getContext(), Size
<<3);
164 Type
*NewSrcPtrTy
= PointerType::get(IntType
, SrcAddrSp
);
165 Type
*NewDstPtrTy
= PointerType::get(IntType
, DstAddrSp
);
167 // If the memcpy has metadata describing the members, see if we can get the
168 // TBAA tag describing our copy.
169 MDNode
*CopyMD
= nullptr;
170 if (MDNode
*M
= MI
->getMetadata(LLVMContext::MD_tbaa
)) {
172 } else if (MDNode
*M
= MI
->getMetadata(LLVMContext::MD_tbaa_struct
)) {
173 if (M
->getNumOperands() == 3 && M
->getOperand(0) &&
174 mdconst::hasa
<ConstantInt
>(M
->getOperand(0)) &&
175 mdconst::extract
<ConstantInt
>(M
->getOperand(0))->isZero() &&
177 mdconst::hasa
<ConstantInt
>(M
->getOperand(1)) &&
178 mdconst::extract
<ConstantInt
>(M
->getOperand(1))->getValue() ==
180 M
->getOperand(2) && isa
<MDNode
>(M
->getOperand(2)))
181 CopyMD
= cast
<MDNode
>(M
->getOperand(2));
184 Value
*Src
= Builder
.CreateBitCast(MI
->getArgOperand(1), NewSrcPtrTy
);
185 Value
*Dest
= Builder
.CreateBitCast(MI
->getArgOperand(0), NewDstPtrTy
);
186 LoadInst
*L
= Builder
.CreateLoad(IntType
, Src
);
187 // Alignment from the mem intrinsic will be better, so use it.
189 MaybeAlign(CopySrcAlign
)); // FIXME: Check if we can use Align instead.
191 L
->setMetadata(LLVMContext::MD_tbaa
, CopyMD
);
192 MDNode
*LoopMemParallelMD
=
193 MI
->getMetadata(LLVMContext::MD_mem_parallel_loop_access
);
194 if (LoopMemParallelMD
)
195 L
->setMetadata(LLVMContext::MD_mem_parallel_loop_access
, LoopMemParallelMD
);
196 MDNode
*AccessGroupMD
= MI
->getMetadata(LLVMContext::MD_access_group
);
198 L
->setMetadata(LLVMContext::MD_access_group
, AccessGroupMD
);
200 StoreInst
*S
= Builder
.CreateStore(L
, Dest
);
201 // Alignment from the mem intrinsic will be better, so use it.
203 MaybeAlign(CopyDstAlign
)); // FIXME: Check if we can use Align instead.
205 S
->setMetadata(LLVMContext::MD_tbaa
, CopyMD
);
206 if (LoopMemParallelMD
)
207 S
->setMetadata(LLVMContext::MD_mem_parallel_loop_access
, LoopMemParallelMD
);
209 S
->setMetadata(LLVMContext::MD_access_group
, AccessGroupMD
);
211 if (auto *MT
= dyn_cast
<MemTransferInst
>(MI
)) {
212 // non-atomics can be volatile
213 L
->setVolatile(MT
->isVolatile());
214 S
->setVolatile(MT
->isVolatile());
216 if (isa
<AtomicMemTransferInst
>(MI
)) {
217 // atomics have to be unordered
218 L
->setOrdering(AtomicOrdering::Unordered
);
219 S
->setOrdering(AtomicOrdering::Unordered
);
222 // Set the size of the copy to 0, it will be deleted on the next iteration.
223 MI
->setLength(Constant::getNullValue(MemOpLength
->getType()));
227 Instruction
*InstCombiner::SimplifyAnyMemSet(AnyMemSetInst
*MI
) {
228 const unsigned KnownAlignment
=
229 getKnownAlignment(MI
->getDest(), DL
, MI
, &AC
, &DT
);
230 if (MI
->getDestAlignment() < KnownAlignment
) {
231 MI
->setDestAlignment(KnownAlignment
);
235 // If we have a store to a location which is known constant, we can conclude
236 // that the store must be storing the constant value (else the memory
237 // wouldn't be constant), and this must be a noop.
238 if (AA
->pointsToConstantMemory(MI
->getDest())) {
239 // Set the size of the copy to 0, it will be deleted on the next iteration.
240 MI
->setLength(Constant::getNullValue(MI
->getLength()->getType()));
244 // Extract the length and alignment and fill if they are constant.
245 ConstantInt
*LenC
= dyn_cast
<ConstantInt
>(MI
->getLength());
246 ConstantInt
*FillC
= dyn_cast
<ConstantInt
>(MI
->getValue());
247 if (!LenC
|| !FillC
|| !FillC
->getType()->isIntegerTy(8))
249 const uint64_t Len
= LenC
->getLimitedValue();
250 assert(Len
&& "0-sized memory setting should be removed already.");
251 const Align Alignment
= assumeAligned(MI
->getDestAlignment());
253 // If it is an atomic and alignment is less than the size then we will
254 // introduce the unaligned memory access which will be later transformed
255 // into libcall in CodeGen. This is not evident performance gain so disable
257 if (isa
<AtomicMemSetInst
>(MI
))
261 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
262 if (Len
<= 8 && isPowerOf2_32((uint32_t)Len
)) {
263 Type
*ITy
= IntegerType::get(MI
->getContext(), Len
*8); // n=1 -> i8.
265 Value
*Dest
= MI
->getDest();
266 unsigned DstAddrSp
= cast
<PointerType
>(Dest
->getType())->getAddressSpace();
267 Type
*NewDstPtrTy
= PointerType::get(ITy
, DstAddrSp
);
268 Dest
= Builder
.CreateBitCast(Dest
, NewDstPtrTy
);
270 // Extract the fill value and store.
271 uint64_t Fill
= FillC
->getZExtValue()*0x0101010101010101ULL
;
272 StoreInst
*S
= Builder
.CreateStore(ConstantInt::get(ITy
, Fill
), Dest
,
274 S
->setAlignment(Alignment
);
275 if (isa
<AtomicMemSetInst
>(MI
))
276 S
->setOrdering(AtomicOrdering::Unordered
);
278 // Set the size of the copy to 0, it will be deleted on the next iteration.
279 MI
->setLength(Constant::getNullValue(LenC
->getType()));
286 static Value
*simplifyX86immShift(const IntrinsicInst
&II
,
287 InstCombiner::BuilderTy
&Builder
) {
288 bool LogicalShift
= false;
289 bool ShiftLeft
= false;
291 switch (II
.getIntrinsicID()) {
292 default: llvm_unreachable("Unexpected intrinsic!");
293 case Intrinsic::x86_sse2_psra_d
:
294 case Intrinsic::x86_sse2_psra_w
:
295 case Intrinsic::x86_sse2_psrai_d
:
296 case Intrinsic::x86_sse2_psrai_w
:
297 case Intrinsic::x86_avx2_psra_d
:
298 case Intrinsic::x86_avx2_psra_w
:
299 case Intrinsic::x86_avx2_psrai_d
:
300 case Intrinsic::x86_avx2_psrai_w
:
301 case Intrinsic::x86_avx512_psra_q_128
:
302 case Intrinsic::x86_avx512_psrai_q_128
:
303 case Intrinsic::x86_avx512_psra_q_256
:
304 case Intrinsic::x86_avx512_psrai_q_256
:
305 case Intrinsic::x86_avx512_psra_d_512
:
306 case Intrinsic::x86_avx512_psra_q_512
:
307 case Intrinsic::x86_avx512_psra_w_512
:
308 case Intrinsic::x86_avx512_psrai_d_512
:
309 case Intrinsic::x86_avx512_psrai_q_512
:
310 case Intrinsic::x86_avx512_psrai_w_512
:
311 LogicalShift
= false; ShiftLeft
= false;
313 case Intrinsic::x86_sse2_psrl_d
:
314 case Intrinsic::x86_sse2_psrl_q
:
315 case Intrinsic::x86_sse2_psrl_w
:
316 case Intrinsic::x86_sse2_psrli_d
:
317 case Intrinsic::x86_sse2_psrli_q
:
318 case Intrinsic::x86_sse2_psrli_w
:
319 case Intrinsic::x86_avx2_psrl_d
:
320 case Intrinsic::x86_avx2_psrl_q
:
321 case Intrinsic::x86_avx2_psrl_w
:
322 case Intrinsic::x86_avx2_psrli_d
:
323 case Intrinsic::x86_avx2_psrli_q
:
324 case Intrinsic::x86_avx2_psrli_w
:
325 case Intrinsic::x86_avx512_psrl_d_512
:
326 case Intrinsic::x86_avx512_psrl_q_512
:
327 case Intrinsic::x86_avx512_psrl_w_512
:
328 case Intrinsic::x86_avx512_psrli_d_512
:
329 case Intrinsic::x86_avx512_psrli_q_512
:
330 case Intrinsic::x86_avx512_psrli_w_512
:
331 LogicalShift
= true; ShiftLeft
= false;
333 case Intrinsic::x86_sse2_psll_d
:
334 case Intrinsic::x86_sse2_psll_q
:
335 case Intrinsic::x86_sse2_psll_w
:
336 case Intrinsic::x86_sse2_pslli_d
:
337 case Intrinsic::x86_sse2_pslli_q
:
338 case Intrinsic::x86_sse2_pslli_w
:
339 case Intrinsic::x86_avx2_psll_d
:
340 case Intrinsic::x86_avx2_psll_q
:
341 case Intrinsic::x86_avx2_psll_w
:
342 case Intrinsic::x86_avx2_pslli_d
:
343 case Intrinsic::x86_avx2_pslli_q
:
344 case Intrinsic::x86_avx2_pslli_w
:
345 case Intrinsic::x86_avx512_psll_d_512
:
346 case Intrinsic::x86_avx512_psll_q_512
:
347 case Intrinsic::x86_avx512_psll_w_512
:
348 case Intrinsic::x86_avx512_pslli_d_512
:
349 case Intrinsic::x86_avx512_pslli_q_512
:
350 case Intrinsic::x86_avx512_pslli_w_512
:
351 LogicalShift
= true; ShiftLeft
= true;
354 assert((LogicalShift
|| !ShiftLeft
) && "Only logical shifts can shift left");
356 // Simplify if count is constant.
357 auto Arg1
= II
.getArgOperand(1);
358 auto CAZ
= dyn_cast
<ConstantAggregateZero
>(Arg1
);
359 auto CDV
= dyn_cast
<ConstantDataVector
>(Arg1
);
360 auto CInt
= dyn_cast
<ConstantInt
>(Arg1
);
361 if (!CAZ
&& !CDV
&& !CInt
)
366 // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
367 // operand to compute the shift amount.
368 auto VT
= cast
<VectorType
>(CDV
->getType());
369 unsigned BitWidth
= VT
->getElementType()->getPrimitiveSizeInBits();
370 assert((64 % BitWidth
) == 0 && "Unexpected packed shift size");
371 unsigned NumSubElts
= 64 / BitWidth
;
373 // Concatenate the sub-elements to create the 64-bit value.
374 for (unsigned i
= 0; i
!= NumSubElts
; ++i
) {
375 unsigned SubEltIdx
= (NumSubElts
- 1) - i
;
376 auto SubElt
= cast
<ConstantInt
>(CDV
->getElementAsConstant(SubEltIdx
));
378 Count
|= SubElt
->getValue().zextOrTrunc(64);
382 Count
= CInt
->getValue();
384 auto Vec
= II
.getArgOperand(0);
385 auto VT
= cast
<VectorType
>(Vec
->getType());
386 auto SVT
= VT
->getElementType();
387 unsigned VWidth
= VT
->getNumElements();
388 unsigned BitWidth
= SVT
->getPrimitiveSizeInBits();
390 // If shift-by-zero then just return the original value.
391 if (Count
.isNullValue())
394 // Handle cases when Shift >= BitWidth.
395 if (Count
.uge(BitWidth
)) {
396 // If LogicalShift - just return zero.
398 return ConstantAggregateZero::get(VT
);
400 // If ArithmeticShift - clamp Shift to (BitWidth - 1).
401 Count
= APInt(64, BitWidth
- 1);
404 // Get a constant vector of the same type as the first operand.
405 auto ShiftAmt
= ConstantInt::get(SVT
, Count
.zextOrTrunc(BitWidth
));
406 auto ShiftVec
= Builder
.CreateVectorSplat(VWidth
, ShiftAmt
);
409 return Builder
.CreateShl(Vec
, ShiftVec
);
412 return Builder
.CreateLShr(Vec
, ShiftVec
);
414 return Builder
.CreateAShr(Vec
, ShiftVec
);
417 // Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift.
418 // Unlike the generic IR shifts, the intrinsics have defined behaviour for out
419 // of range shift amounts (logical - set to zero, arithmetic - splat sign bit).
420 static Value
*simplifyX86varShift(const IntrinsicInst
&II
,
421 InstCombiner::BuilderTy
&Builder
) {
422 bool LogicalShift
= false;
423 bool ShiftLeft
= false;
425 switch (II
.getIntrinsicID()) {
426 default: llvm_unreachable("Unexpected intrinsic!");
427 case Intrinsic::x86_avx2_psrav_d
:
428 case Intrinsic::x86_avx2_psrav_d_256
:
429 case Intrinsic::x86_avx512_psrav_q_128
:
430 case Intrinsic::x86_avx512_psrav_q_256
:
431 case Intrinsic::x86_avx512_psrav_d_512
:
432 case Intrinsic::x86_avx512_psrav_q_512
:
433 case Intrinsic::x86_avx512_psrav_w_128
:
434 case Intrinsic::x86_avx512_psrav_w_256
:
435 case Intrinsic::x86_avx512_psrav_w_512
:
436 LogicalShift
= false;
439 case Intrinsic::x86_avx2_psrlv_d
:
440 case Intrinsic::x86_avx2_psrlv_d_256
:
441 case Intrinsic::x86_avx2_psrlv_q
:
442 case Intrinsic::x86_avx2_psrlv_q_256
:
443 case Intrinsic::x86_avx512_psrlv_d_512
:
444 case Intrinsic::x86_avx512_psrlv_q_512
:
445 case Intrinsic::x86_avx512_psrlv_w_128
:
446 case Intrinsic::x86_avx512_psrlv_w_256
:
447 case Intrinsic::x86_avx512_psrlv_w_512
:
451 case Intrinsic::x86_avx2_psllv_d
:
452 case Intrinsic::x86_avx2_psllv_d_256
:
453 case Intrinsic::x86_avx2_psllv_q
:
454 case Intrinsic::x86_avx2_psllv_q_256
:
455 case Intrinsic::x86_avx512_psllv_d_512
:
456 case Intrinsic::x86_avx512_psllv_q_512
:
457 case Intrinsic::x86_avx512_psllv_w_128
:
458 case Intrinsic::x86_avx512_psllv_w_256
:
459 case Intrinsic::x86_avx512_psllv_w_512
:
464 assert((LogicalShift
|| !ShiftLeft
) && "Only logical shifts can shift left");
466 // Simplify if all shift amounts are constant/undef.
467 auto *CShift
= dyn_cast
<Constant
>(II
.getArgOperand(1));
471 auto Vec
= II
.getArgOperand(0);
472 auto VT
= cast
<VectorType
>(II
.getType());
473 auto SVT
= VT
->getVectorElementType();
474 int NumElts
= VT
->getNumElements();
475 int BitWidth
= SVT
->getIntegerBitWidth();
477 // Collect each element's shift amount.
478 // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth.
479 bool AnyOutOfRange
= false;
480 SmallVector
<int, 8> ShiftAmts
;
481 for (int I
= 0; I
< NumElts
; ++I
) {
482 auto *CElt
= CShift
->getAggregateElement(I
);
483 if (CElt
&& isa
<UndefValue
>(CElt
)) {
484 ShiftAmts
.push_back(-1);
488 auto *COp
= dyn_cast_or_null
<ConstantInt
>(CElt
);
492 // Handle out of range shifts.
493 // If LogicalShift - set to BitWidth (special case).
494 // If ArithmeticShift - set to (BitWidth - 1) (sign splat).
495 APInt ShiftVal
= COp
->getValue();
496 if (ShiftVal
.uge(BitWidth
)) {
497 AnyOutOfRange
= LogicalShift
;
498 ShiftAmts
.push_back(LogicalShift
? BitWidth
: BitWidth
- 1);
502 ShiftAmts
.push_back((int)ShiftVal
.getZExtValue());
505 // If all elements out of range or UNDEF, return vector of zeros/undefs.
506 // ArithmeticShift should only hit this if they are all UNDEF.
507 auto OutOfRange
= [&](int Idx
) { return (Idx
< 0) || (BitWidth
<= Idx
); };
508 if (llvm::all_of(ShiftAmts
, OutOfRange
)) {
509 SmallVector
<Constant
*, 8> ConstantVec
;
510 for (int Idx
: ShiftAmts
) {
512 ConstantVec
.push_back(UndefValue::get(SVT
));
514 assert(LogicalShift
&& "Logical shift expected");
515 ConstantVec
.push_back(ConstantInt::getNullValue(SVT
));
518 return ConstantVector::get(ConstantVec
);
521 // We can't handle only some out of range values with generic logical shifts.
525 // Build the shift amount constant vector.
526 SmallVector
<Constant
*, 8> ShiftVecAmts
;
527 for (int Idx
: ShiftAmts
) {
529 ShiftVecAmts
.push_back(UndefValue::get(SVT
));
531 ShiftVecAmts
.push_back(ConstantInt::get(SVT
, Idx
));
533 auto ShiftVec
= ConstantVector::get(ShiftVecAmts
);
536 return Builder
.CreateShl(Vec
, ShiftVec
);
539 return Builder
.CreateLShr(Vec
, ShiftVec
);
541 return Builder
.CreateAShr(Vec
, ShiftVec
);
544 static Value
*simplifyX86pack(IntrinsicInst
&II
,
545 InstCombiner::BuilderTy
&Builder
, bool IsSigned
) {
546 Value
*Arg0
= II
.getArgOperand(0);
547 Value
*Arg1
= II
.getArgOperand(1);
548 Type
*ResTy
= II
.getType();
550 // Fast all undef handling.
551 if (isa
<UndefValue
>(Arg0
) && isa
<UndefValue
>(Arg1
))
552 return UndefValue::get(ResTy
);
554 Type
*ArgTy
= Arg0
->getType();
555 unsigned NumLanes
= ResTy
->getPrimitiveSizeInBits() / 128;
556 unsigned NumSrcElts
= ArgTy
->getVectorNumElements();
557 assert(ResTy
->getVectorNumElements() == (2 * NumSrcElts
) &&
558 "Unexpected packing types");
560 unsigned NumSrcEltsPerLane
= NumSrcElts
/ NumLanes
;
561 unsigned DstScalarSizeInBits
= ResTy
->getScalarSizeInBits();
562 unsigned SrcScalarSizeInBits
= ArgTy
->getScalarSizeInBits();
563 assert(SrcScalarSizeInBits
== (2 * DstScalarSizeInBits
) &&
564 "Unexpected packing types");
567 if (!isa
<Constant
>(Arg0
) || !isa
<Constant
>(Arg1
))
570 // Clamp Values - signed/unsigned both use signed clamp values, but they
571 // differ on the min/max values.
572 APInt MinValue
, MaxValue
;
574 // PACKSS: Truncate signed value with signed saturation.
575 // Source values less than dst minint are saturated to minint.
576 // Source values greater than dst maxint are saturated to maxint.
578 APInt::getSignedMinValue(DstScalarSizeInBits
).sext(SrcScalarSizeInBits
);
580 APInt::getSignedMaxValue(DstScalarSizeInBits
).sext(SrcScalarSizeInBits
);
582 // PACKUS: Truncate signed value with unsigned saturation.
583 // Source values less than zero are saturated to zero.
584 // Source values greater than dst maxuint are saturated to maxuint.
585 MinValue
= APInt::getNullValue(SrcScalarSizeInBits
);
586 MaxValue
= APInt::getLowBitsSet(SrcScalarSizeInBits
, DstScalarSizeInBits
);
589 auto *MinC
= Constant::getIntegerValue(ArgTy
, MinValue
);
590 auto *MaxC
= Constant::getIntegerValue(ArgTy
, MaxValue
);
591 Arg0
= Builder
.CreateSelect(Builder
.CreateICmpSLT(Arg0
, MinC
), MinC
, Arg0
);
592 Arg1
= Builder
.CreateSelect(Builder
.CreateICmpSLT(Arg1
, MinC
), MinC
, Arg1
);
593 Arg0
= Builder
.CreateSelect(Builder
.CreateICmpSGT(Arg0
, MaxC
), MaxC
, Arg0
);
594 Arg1
= Builder
.CreateSelect(Builder
.CreateICmpSGT(Arg1
, MaxC
), MaxC
, Arg1
);
596 // Shuffle clamped args together at the lane level.
597 SmallVector
<unsigned, 32> PackMask
;
598 for (unsigned Lane
= 0; Lane
!= NumLanes
; ++Lane
) {
599 for (unsigned Elt
= 0; Elt
!= NumSrcEltsPerLane
; ++Elt
)
600 PackMask
.push_back(Elt
+ (Lane
* NumSrcEltsPerLane
));
601 for (unsigned Elt
= 0; Elt
!= NumSrcEltsPerLane
; ++Elt
)
602 PackMask
.push_back(Elt
+ (Lane
* NumSrcEltsPerLane
) + NumSrcElts
);
604 auto *Shuffle
= Builder
.CreateShuffleVector(Arg0
, Arg1
, PackMask
);
606 // Truncate to dst size.
607 return Builder
.CreateTrunc(Shuffle
, ResTy
);
610 static Value
*simplifyX86movmsk(const IntrinsicInst
&II
,
611 InstCombiner::BuilderTy
&Builder
) {
612 Value
*Arg
= II
.getArgOperand(0);
613 Type
*ResTy
= II
.getType();
614 Type
*ArgTy
= Arg
->getType();
616 // movmsk(undef) -> zero as we must ensure the upper bits are zero.
617 if (isa
<UndefValue
>(Arg
))
618 return Constant::getNullValue(ResTy
);
620 // We can't easily peek through x86_mmx types.
621 if (!ArgTy
->isVectorTy())
624 // Expand MOVMSK to compare/bitcast/zext:
625 // e.g. PMOVMSKB(v16i8 x):
626 // %cmp = icmp slt <16 x i8> %x, zeroinitializer
627 // %int = bitcast <16 x i1> %cmp to i16
628 // %res = zext i16 %int to i32
629 unsigned NumElts
= ArgTy
->getVectorNumElements();
630 Type
*IntegerVecTy
= VectorType::getInteger(cast
<VectorType
>(ArgTy
));
631 Type
*IntegerTy
= Builder
.getIntNTy(NumElts
);
633 Value
*Res
= Builder
.CreateBitCast(Arg
, IntegerVecTy
);
634 Res
= Builder
.CreateICmpSLT(Res
, Constant::getNullValue(IntegerVecTy
));
635 Res
= Builder
.CreateBitCast(Res
, IntegerTy
);
636 Res
= Builder
.CreateZExtOrTrunc(Res
, ResTy
);
640 static Value
*simplifyX86addcarry(const IntrinsicInst
&II
,
641 InstCombiner::BuilderTy
&Builder
) {
642 Value
*CarryIn
= II
.getArgOperand(0);
643 Value
*Op1
= II
.getArgOperand(1);
644 Value
*Op2
= II
.getArgOperand(2);
645 Type
*RetTy
= II
.getType();
646 Type
*OpTy
= Op1
->getType();
647 assert(RetTy
->getStructElementType(0)->isIntegerTy(8) &&
648 RetTy
->getStructElementType(1) == OpTy
&& OpTy
== Op2
->getType() &&
649 "Unexpected types for x86 addcarry");
651 // If carry-in is zero, this is just an unsigned add with overflow.
652 if (match(CarryIn
, m_ZeroInt())) {
653 Value
*UAdd
= Builder
.CreateIntrinsic(Intrinsic::uadd_with_overflow
, OpTy
,
655 // The types have to be adjusted to match the x86 call types.
656 Value
*UAddResult
= Builder
.CreateExtractValue(UAdd
, 0);
657 Value
*UAddOV
= Builder
.CreateZExt(Builder
.CreateExtractValue(UAdd
, 1),
658 Builder
.getInt8Ty());
659 Value
*Res
= UndefValue::get(RetTy
);
660 Res
= Builder
.CreateInsertValue(Res
, UAddOV
, 0);
661 return Builder
.CreateInsertValue(Res
, UAddResult
, 1);
667 static Value
*simplifyX86insertps(const IntrinsicInst
&II
,
668 InstCombiner::BuilderTy
&Builder
) {
669 auto *CInt
= dyn_cast
<ConstantInt
>(II
.getArgOperand(2));
673 VectorType
*VecTy
= cast
<VectorType
>(II
.getType());
674 assert(VecTy
->getNumElements() == 4 && "insertps with wrong vector type");
676 // The immediate permute control byte looks like this:
677 // [3:0] - zero mask for each 32-bit lane
678 // [5:4] - select one 32-bit destination lane
679 // [7:6] - select one 32-bit source lane
681 uint8_t Imm
= CInt
->getZExtValue();
682 uint8_t ZMask
= Imm
& 0xf;
683 uint8_t DestLane
= (Imm
>> 4) & 0x3;
684 uint8_t SourceLane
= (Imm
>> 6) & 0x3;
686 ConstantAggregateZero
*ZeroVector
= ConstantAggregateZero::get(VecTy
);
688 // If all zero mask bits are set, this was just a weird way to
689 // generate a zero vector.
693 // Initialize by passing all of the first source bits through.
694 uint32_t ShuffleMask
[4] = { 0, 1, 2, 3 };
696 // We may replace the second operand with the zero vector.
697 Value
*V1
= II
.getArgOperand(1);
700 // If the zero mask is being used with a single input or the zero mask
701 // overrides the destination lane, this is a shuffle with the zero vector.
702 if ((II
.getArgOperand(0) == II
.getArgOperand(1)) ||
703 (ZMask
& (1 << DestLane
))) {
705 // We may still move 32-bits of the first source vector from one lane
707 ShuffleMask
[DestLane
] = SourceLane
;
708 // The zero mask may override the previous insert operation.
709 for (unsigned i
= 0; i
< 4; ++i
)
710 if ((ZMask
>> i
) & 0x1)
711 ShuffleMask
[i
] = i
+ 4;
713 // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
717 // Replace the selected destination lane with the selected source lane.
718 ShuffleMask
[DestLane
] = SourceLane
+ 4;
721 return Builder
.CreateShuffleVector(II
.getArgOperand(0), V1
, ShuffleMask
);
724 /// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
725 /// or conversion to a shuffle vector.
726 static Value
*simplifyX86extrq(IntrinsicInst
&II
, Value
*Op0
,
727 ConstantInt
*CILength
, ConstantInt
*CIIndex
,
728 InstCombiner::BuilderTy
&Builder
) {
729 auto LowConstantHighUndef
= [&](uint64_t Val
) {
730 Type
*IntTy64
= Type::getInt64Ty(II
.getContext());
731 Constant
*Args
[] = {ConstantInt::get(IntTy64
, Val
),
732 UndefValue::get(IntTy64
)};
733 return ConstantVector::get(Args
);
736 // See if we're dealing with constant values.
737 Constant
*C0
= dyn_cast
<Constant
>(Op0
);
739 C0
? dyn_cast_or_null
<ConstantInt
>(C0
->getAggregateElement((unsigned)0))
742 // Attempt to constant fold.
743 if (CILength
&& CIIndex
) {
744 // From AMD documentation: "The bit index and field length are each six
745 // bits in length other bits of the field are ignored."
746 APInt APIndex
= CIIndex
->getValue().zextOrTrunc(6);
747 APInt APLength
= CILength
->getValue().zextOrTrunc(6);
749 unsigned Index
= APIndex
.getZExtValue();
751 // From AMD documentation: "a value of zero in the field length is
752 // defined as length of 64".
753 unsigned Length
= APLength
== 0 ? 64 : APLength
.getZExtValue();
755 // From AMD documentation: "If the sum of the bit index + length field
756 // is greater than 64, the results are undefined".
757 unsigned End
= Index
+ Length
;
759 // Note that both field index and field length are 8-bit quantities.
760 // Since variables 'Index' and 'Length' are unsigned values
761 // obtained from zero-extending field index and field length
762 // respectively, their sum should never wrap around.
764 return UndefValue::get(II
.getType());
766 // If we are inserting whole bytes, we can convert this to a shuffle.
767 // Lowering can recognize EXTRQI shuffle masks.
768 if ((Length
% 8) == 0 && (Index
% 8) == 0) {
769 // Convert bit indices to byte indices.
773 Type
*IntTy8
= Type::getInt8Ty(II
.getContext());
774 Type
*IntTy32
= Type::getInt32Ty(II
.getContext());
775 VectorType
*ShufTy
= VectorType::get(IntTy8
, 16);
777 SmallVector
<Constant
*, 16> ShuffleMask
;
778 for (int i
= 0; i
!= (int)Length
; ++i
)
779 ShuffleMask
.push_back(
780 Constant::getIntegerValue(IntTy32
, APInt(32, i
+ Index
)));
781 for (int i
= Length
; i
!= 8; ++i
)
782 ShuffleMask
.push_back(
783 Constant::getIntegerValue(IntTy32
, APInt(32, i
+ 16)));
784 for (int i
= 8; i
!= 16; ++i
)
785 ShuffleMask
.push_back(UndefValue::get(IntTy32
));
787 Value
*SV
= Builder
.CreateShuffleVector(
788 Builder
.CreateBitCast(Op0
, ShufTy
),
789 ConstantAggregateZero::get(ShufTy
), ConstantVector::get(ShuffleMask
));
790 return Builder
.CreateBitCast(SV
, II
.getType());
793 // Constant Fold - shift Index'th bit to lowest position and mask off
796 APInt Elt
= CI0
->getValue();
797 Elt
.lshrInPlace(Index
);
798 Elt
= Elt
.zextOrTrunc(Length
);
799 return LowConstantHighUndef(Elt
.getZExtValue());
802 // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
803 if (II
.getIntrinsicID() == Intrinsic::x86_sse4a_extrq
) {
804 Value
*Args
[] = {Op0
, CILength
, CIIndex
};
805 Module
*M
= II
.getModule();
806 Function
*F
= Intrinsic::getDeclaration(M
, Intrinsic::x86_sse4a_extrqi
);
807 return Builder
.CreateCall(F
, Args
);
811 // Constant Fold - extraction from zero is always {zero, undef}.
812 if (CI0
&& CI0
->isZero())
813 return LowConstantHighUndef(0);
818 /// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
819 /// folding or conversion to a shuffle vector.
820 static Value
*simplifyX86insertq(IntrinsicInst
&II
, Value
*Op0
, Value
*Op1
,
821 APInt APLength
, APInt APIndex
,
822 InstCombiner::BuilderTy
&Builder
) {
823 // From AMD documentation: "The bit index and field length are each six bits
824 // in length other bits of the field are ignored."
825 APIndex
= APIndex
.zextOrTrunc(6);
826 APLength
= APLength
.zextOrTrunc(6);
828 // Attempt to constant fold.
829 unsigned Index
= APIndex
.getZExtValue();
831 // From AMD documentation: "a value of zero in the field length is
832 // defined as length of 64".
833 unsigned Length
= APLength
== 0 ? 64 : APLength
.getZExtValue();
835 // From AMD documentation: "If the sum of the bit index + length field
836 // is greater than 64, the results are undefined".
837 unsigned End
= Index
+ Length
;
839 // Note that both field index and field length are 8-bit quantities.
840 // Since variables 'Index' and 'Length' are unsigned values
841 // obtained from zero-extending field index and field length
842 // respectively, their sum should never wrap around.
844 return UndefValue::get(II
.getType());
846 // If we are inserting whole bytes, we can convert this to a shuffle.
847 // Lowering can recognize INSERTQI shuffle masks.
848 if ((Length
% 8) == 0 && (Index
% 8) == 0) {
849 // Convert bit indices to byte indices.
853 Type
*IntTy8
= Type::getInt8Ty(II
.getContext());
854 Type
*IntTy32
= Type::getInt32Ty(II
.getContext());
855 VectorType
*ShufTy
= VectorType::get(IntTy8
, 16);
857 SmallVector
<Constant
*, 16> ShuffleMask
;
858 for (int i
= 0; i
!= (int)Index
; ++i
)
859 ShuffleMask
.push_back(Constant::getIntegerValue(IntTy32
, APInt(32, i
)));
860 for (int i
= 0; i
!= (int)Length
; ++i
)
861 ShuffleMask
.push_back(
862 Constant::getIntegerValue(IntTy32
, APInt(32, i
+ 16)));
863 for (int i
= Index
+ Length
; i
!= 8; ++i
)
864 ShuffleMask
.push_back(Constant::getIntegerValue(IntTy32
, APInt(32, i
)));
865 for (int i
= 8; i
!= 16; ++i
)
866 ShuffleMask
.push_back(UndefValue::get(IntTy32
));
868 Value
*SV
= Builder
.CreateShuffleVector(Builder
.CreateBitCast(Op0
, ShufTy
),
869 Builder
.CreateBitCast(Op1
, ShufTy
),
870 ConstantVector::get(ShuffleMask
));
871 return Builder
.CreateBitCast(SV
, II
.getType());
874 // See if we're dealing with constant values.
875 Constant
*C0
= dyn_cast
<Constant
>(Op0
);
876 Constant
*C1
= dyn_cast
<Constant
>(Op1
);
878 C0
? dyn_cast_or_null
<ConstantInt
>(C0
->getAggregateElement((unsigned)0))
881 C1
? dyn_cast_or_null
<ConstantInt
>(C1
->getAggregateElement((unsigned)0))
884 // Constant Fold - insert bottom Length bits starting at the Index'th bit.
886 APInt V00
= CI00
->getValue();
887 APInt V10
= CI10
->getValue();
888 APInt Mask
= APInt::getLowBitsSet(64, Length
).shl(Index
);
890 V10
= V10
.zextOrTrunc(Length
).zextOrTrunc(64).shl(Index
);
891 APInt Val
= V00
| V10
;
892 Type
*IntTy64
= Type::getInt64Ty(II
.getContext());
893 Constant
*Args
[] = {ConstantInt::get(IntTy64
, Val
.getZExtValue()),
894 UndefValue::get(IntTy64
)};
895 return ConstantVector::get(Args
);
898 // If we were an INSERTQ call, we'll save demanded elements if we convert to
900 if (II
.getIntrinsicID() == Intrinsic::x86_sse4a_insertq
) {
901 Type
*IntTy8
= Type::getInt8Ty(II
.getContext());
902 Constant
*CILength
= ConstantInt::get(IntTy8
, Length
, false);
903 Constant
*CIIndex
= ConstantInt::get(IntTy8
, Index
, false);
905 Value
*Args
[] = {Op0
, Op1
, CILength
, CIIndex
};
906 Module
*M
= II
.getModule();
907 Function
*F
= Intrinsic::getDeclaration(M
, Intrinsic::x86_sse4a_insertqi
);
908 return Builder
.CreateCall(F
, Args
);
914 /// Attempt to convert pshufb* to shufflevector if the mask is constant.
915 static Value
*simplifyX86pshufb(const IntrinsicInst
&II
,
916 InstCombiner::BuilderTy
&Builder
) {
917 Constant
*V
= dyn_cast
<Constant
>(II
.getArgOperand(1));
921 auto *VecTy
= cast
<VectorType
>(II
.getType());
922 auto *MaskEltTy
= Type::getInt32Ty(II
.getContext());
923 unsigned NumElts
= VecTy
->getNumElements();
924 assert((NumElts
== 16 || NumElts
== 32 || NumElts
== 64) &&
925 "Unexpected number of elements in shuffle mask!");
927 // Construct a shuffle mask from constant integers or UNDEFs.
928 Constant
*Indexes
[64] = {nullptr};
930 // Each byte in the shuffle control mask forms an index to permute the
931 // corresponding byte in the destination operand.
932 for (unsigned I
= 0; I
< NumElts
; ++I
) {
933 Constant
*COp
= V
->getAggregateElement(I
);
934 if (!COp
|| (!isa
<UndefValue
>(COp
) && !isa
<ConstantInt
>(COp
)))
937 if (isa
<UndefValue
>(COp
)) {
938 Indexes
[I
] = UndefValue::get(MaskEltTy
);
942 int8_t Index
= cast
<ConstantInt
>(COp
)->getValue().getZExtValue();
944 // If the most significant bit (bit[7]) of each byte of the shuffle
945 // control mask is set, then zero is written in the result byte.
946 // The zero vector is in the right-hand side of the resulting
949 // The value of each index for the high 128-bit lane is the least
950 // significant 4 bits of the respective shuffle control byte.
951 Index
= ((Index
< 0) ? NumElts
: Index
& 0x0F) + (I
& 0xF0);
952 Indexes
[I
] = ConstantInt::get(MaskEltTy
, Index
);
955 auto ShuffleMask
= ConstantVector::get(makeArrayRef(Indexes
, NumElts
));
956 auto V1
= II
.getArgOperand(0);
957 auto V2
= Constant::getNullValue(VecTy
);
958 return Builder
.CreateShuffleVector(V1
, V2
, ShuffleMask
);
961 /// Attempt to convert vpermilvar* to shufflevector if the mask is constant.
962 static Value
*simplifyX86vpermilvar(const IntrinsicInst
&II
,
963 InstCombiner::BuilderTy
&Builder
) {
964 Constant
*V
= dyn_cast
<Constant
>(II
.getArgOperand(1));
968 auto *VecTy
= cast
<VectorType
>(II
.getType());
969 auto *MaskEltTy
= Type::getInt32Ty(II
.getContext());
970 unsigned NumElts
= VecTy
->getVectorNumElements();
971 bool IsPD
= VecTy
->getScalarType()->isDoubleTy();
972 unsigned NumLaneElts
= IsPD
? 2 : 4;
973 assert(NumElts
== 16 || NumElts
== 8 || NumElts
== 4 || NumElts
== 2);
975 // Construct a shuffle mask from constant integers or UNDEFs.
976 Constant
*Indexes
[16] = {nullptr};
978 // The intrinsics only read one or two bits, clear the rest.
979 for (unsigned I
= 0; I
< NumElts
; ++I
) {
980 Constant
*COp
= V
->getAggregateElement(I
);
981 if (!COp
|| (!isa
<UndefValue
>(COp
) && !isa
<ConstantInt
>(COp
)))
984 if (isa
<UndefValue
>(COp
)) {
985 Indexes
[I
] = UndefValue::get(MaskEltTy
);
989 APInt Index
= cast
<ConstantInt
>(COp
)->getValue();
990 Index
= Index
.zextOrTrunc(32).getLoBits(2);
992 // The PD variants uses bit 1 to select per-lane element index, so
993 // shift down to convert to generic shuffle mask index.
995 Index
.lshrInPlace(1);
997 // The _256 variants are a bit trickier since the mask bits always index
998 // into the corresponding 128 half. In order to convert to a generic
999 // shuffle, we have to make that explicit.
1000 Index
+= APInt(32, (I
/ NumLaneElts
) * NumLaneElts
);
1002 Indexes
[I
] = ConstantInt::get(MaskEltTy
, Index
);
1005 auto ShuffleMask
= ConstantVector::get(makeArrayRef(Indexes
, NumElts
));
1006 auto V1
= II
.getArgOperand(0);
1007 auto V2
= UndefValue::get(V1
->getType());
1008 return Builder
.CreateShuffleVector(V1
, V2
, ShuffleMask
);
1011 /// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
1012 static Value
*simplifyX86vpermv(const IntrinsicInst
&II
,
1013 InstCombiner::BuilderTy
&Builder
) {
1014 auto *V
= dyn_cast
<Constant
>(II
.getArgOperand(1));
1018 auto *VecTy
= cast
<VectorType
>(II
.getType());
1019 auto *MaskEltTy
= Type::getInt32Ty(II
.getContext());
1020 unsigned Size
= VecTy
->getNumElements();
1021 assert((Size
== 4 || Size
== 8 || Size
== 16 || Size
== 32 || Size
== 64) &&
1022 "Unexpected shuffle mask size");
1024 // Construct a shuffle mask from constant integers or UNDEFs.
1025 Constant
*Indexes
[64] = {nullptr};
1027 for (unsigned I
= 0; I
< Size
; ++I
) {
1028 Constant
*COp
= V
->getAggregateElement(I
);
1029 if (!COp
|| (!isa
<UndefValue
>(COp
) && !isa
<ConstantInt
>(COp
)))
1032 if (isa
<UndefValue
>(COp
)) {
1033 Indexes
[I
] = UndefValue::get(MaskEltTy
);
1037 uint32_t Index
= cast
<ConstantInt
>(COp
)->getZExtValue();
1039 Indexes
[I
] = ConstantInt::get(MaskEltTy
, Index
);
1042 auto ShuffleMask
= ConstantVector::get(makeArrayRef(Indexes
, Size
));
1043 auto V1
= II
.getArgOperand(0);
1044 auto V2
= UndefValue::get(VecTy
);
1045 return Builder
.CreateShuffleVector(V1
, V2
, ShuffleMask
);
1048 // TODO, Obvious Missing Transforms:
1049 // * Narrow width by halfs excluding zero/undef lanes
1050 Value
*InstCombiner::simplifyMaskedLoad(IntrinsicInst
&II
) {
1051 Value
*LoadPtr
= II
.getArgOperand(0);
1052 unsigned Alignment
= cast
<ConstantInt
>(II
.getArgOperand(1))->getZExtValue();
1054 // If the mask is all ones or undefs, this is a plain vector load of the 1st
1056 if (maskIsAllOneOrUndef(II
.getArgOperand(2)))
1057 return Builder
.CreateAlignedLoad(II
.getType(), LoadPtr
, Alignment
,
1060 // If we can unconditionally load from this address, replace with a
1061 // load/select idiom. TODO: use DT for context sensitive query
1062 if (isDereferenceableAndAlignedPointer(
1063 LoadPtr
, II
.getType(), MaybeAlign(Alignment
),
1064 II
.getModule()->getDataLayout(), &II
, nullptr)) {
1065 Value
*LI
= Builder
.CreateAlignedLoad(II
.getType(), LoadPtr
, Alignment
,
1067 return Builder
.CreateSelect(II
.getArgOperand(2), LI
, II
.getArgOperand(3));
1073 // TODO, Obvious Missing Transforms:
1074 // * Single constant active lane -> store
1075 // * Narrow width by halfs excluding zero/undef lanes
1076 Instruction
*InstCombiner::simplifyMaskedStore(IntrinsicInst
&II
) {
1077 auto *ConstMask
= dyn_cast
<Constant
>(II
.getArgOperand(3));
1081 // If the mask is all zeros, this instruction does nothing.
1082 if (ConstMask
->isNullValue())
1083 return eraseInstFromFunction(II
);
1085 // If the mask is all ones, this is a plain vector store of the 1st argument.
1086 if (ConstMask
->isAllOnesValue()) {
1087 Value
*StorePtr
= II
.getArgOperand(1);
1088 unsigned Alignment
= cast
<ConstantInt
>(II
.getArgOperand(2))->getZExtValue();
1089 return new StoreInst(II
.getArgOperand(0), StorePtr
, false, Alignment
);
1092 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
1093 APInt DemandedElts
= possiblyDemandedEltsInMask(ConstMask
);
1094 APInt
UndefElts(DemandedElts
.getBitWidth(), 0);
1095 if (Value
*V
= SimplifyDemandedVectorElts(II
.getOperand(0),
1096 DemandedElts
, UndefElts
)) {
1097 II
.setOperand(0, V
);
1104 // TODO, Obvious Missing Transforms:
1105 // * Single constant active lane load -> load
1106 // * Dereferenceable address & few lanes -> scalarize speculative load/selects
1107 // * Adjacent vector addresses -> masked.load
1108 // * Narrow width by halfs excluding zero/undef lanes
1109 // * Vector splat address w/known mask -> scalar load
1110 // * Vector incrementing address -> vector masked load
1111 Instruction
*InstCombiner::simplifyMaskedGather(IntrinsicInst
&II
) {
1115 // TODO, Obvious Missing Transforms:
1116 // * Single constant active lane -> store
1117 // * Adjacent vector addresses -> masked.store
1118 // * Narrow store width by halfs excluding zero/undef lanes
1119 // * Vector splat address w/known mask -> scalar store
1120 // * Vector incrementing address -> vector masked store
1121 Instruction
*InstCombiner::simplifyMaskedScatter(IntrinsicInst
&II
) {
1122 auto *ConstMask
= dyn_cast
<Constant
>(II
.getArgOperand(3));
1126 // If the mask is all zeros, a scatter does nothing.
1127 if (ConstMask
->isNullValue())
1128 return eraseInstFromFunction(II
);
1130 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
1131 APInt DemandedElts
= possiblyDemandedEltsInMask(ConstMask
);
1132 APInt
UndefElts(DemandedElts
.getBitWidth(), 0);
1133 if (Value
*V
= SimplifyDemandedVectorElts(II
.getOperand(0),
1134 DemandedElts
, UndefElts
)) {
1135 II
.setOperand(0, V
);
1138 if (Value
*V
= SimplifyDemandedVectorElts(II
.getOperand(1),
1139 DemandedElts
, UndefElts
)) {
1140 II
.setOperand(1, V
);
1147 /// This function transforms launder.invariant.group and strip.invariant.group
1149 /// launder(launder(%x)) -> launder(%x) (the result is not the argument)
1150 /// launder(strip(%x)) -> launder(%x)
1151 /// strip(strip(%x)) -> strip(%x) (the result is not the argument)
1152 /// strip(launder(%x)) -> strip(%x)
1153 /// This is legal because it preserves the most recent information about
1154 /// the presence or absence of invariant.group.
1155 static Instruction
*simplifyInvariantGroupIntrinsic(IntrinsicInst
&II
,
1157 auto *Arg
= II
.getArgOperand(0);
1158 auto *StrippedArg
= Arg
->stripPointerCasts();
1159 auto *StrippedInvariantGroupsArg
= Arg
->stripPointerCastsAndInvariantGroups();
1160 if (StrippedArg
== StrippedInvariantGroupsArg
)
1161 return nullptr; // No launders/strips to remove.
1163 Value
*Result
= nullptr;
1165 if (II
.getIntrinsicID() == Intrinsic::launder_invariant_group
)
1166 Result
= IC
.Builder
.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg
);
1167 else if (II
.getIntrinsicID() == Intrinsic::strip_invariant_group
)
1168 Result
= IC
.Builder
.CreateStripInvariantGroup(StrippedInvariantGroupsArg
);
1171 "simplifyInvariantGroupIntrinsic only handles launder and strip");
1172 if (Result
->getType()->getPointerAddressSpace() !=
1173 II
.getType()->getPointerAddressSpace())
1174 Result
= IC
.Builder
.CreateAddrSpaceCast(Result
, II
.getType());
1175 if (Result
->getType() != II
.getType())
1176 Result
= IC
.Builder
.CreateBitCast(Result
, II
.getType());
1178 return cast
<Instruction
>(Result
);
1181 static Instruction
*foldCttzCtlz(IntrinsicInst
&II
, InstCombiner
&IC
) {
1182 assert((II
.getIntrinsicID() == Intrinsic::cttz
||
1183 II
.getIntrinsicID() == Intrinsic::ctlz
) &&
1184 "Expected cttz or ctlz intrinsic");
1185 bool IsTZ
= II
.getIntrinsicID() == Intrinsic::cttz
;
1186 Value
*Op0
= II
.getArgOperand(0);
1188 // ctlz(bitreverse(x)) -> cttz(x)
1189 // cttz(bitreverse(x)) -> ctlz(x)
1190 if (match(Op0
, m_BitReverse(m_Value(X
)))) {
1191 Intrinsic::ID ID
= IsTZ
? Intrinsic::ctlz
: Intrinsic::cttz
;
1192 Function
*F
= Intrinsic::getDeclaration(II
.getModule(), ID
, II
.getType());
1193 return CallInst::Create(F
, {X
, II
.getArgOperand(1)});
1197 // cttz(-x) -> cttz(x)
1198 if (match(Op0
, m_Neg(m_Value(X
)))) {
1199 II
.setOperand(0, X
);
1203 // cttz(abs(x)) -> cttz(x)
1204 // cttz(nabs(x)) -> cttz(x)
1206 SelectPatternFlavor SPF
= matchSelectPattern(Op0
, X
, Y
).Flavor
;
1207 if (SPF
== SPF_ABS
|| SPF
== SPF_NABS
) {
1208 II
.setOperand(0, X
);
1213 KnownBits Known
= IC
.computeKnownBits(Op0
, 0, &II
);
1215 // Create a mask for bits above (ctlz) or below (cttz) the first known one.
1216 unsigned PossibleZeros
= IsTZ
? Known
.countMaxTrailingZeros()
1217 : Known
.countMaxLeadingZeros();
1218 unsigned DefiniteZeros
= IsTZ
? Known
.countMinTrailingZeros()
1219 : Known
.countMinLeadingZeros();
1221 // If all bits above (ctlz) or below (cttz) the first known one are known
1222 // zero, this value is constant.
1223 // FIXME: This should be in InstSimplify because we're replacing an
1224 // instruction with a constant.
1225 if (PossibleZeros
== DefiniteZeros
) {
1226 auto *C
= ConstantInt::get(Op0
->getType(), DefiniteZeros
);
1227 return IC
.replaceInstUsesWith(II
, C
);
1230 // If the input to cttz/ctlz is known to be non-zero,
1231 // then change the 'ZeroIsUndef' parameter to 'true'
1232 // because we know the zero behavior can't affect the result.
1233 if (!Known
.One
.isNullValue() ||
1234 isKnownNonZero(Op0
, IC
.getDataLayout(), 0, &IC
.getAssumptionCache(), &II
,
1235 &IC
.getDominatorTree())) {
1236 if (!match(II
.getArgOperand(1), m_One())) {
1237 II
.setOperand(1, IC
.Builder
.getTrue());
1242 // Add range metadata since known bits can't completely reflect what we know.
1243 // TODO: Handle splat vectors.
1244 auto *IT
= dyn_cast
<IntegerType
>(Op0
->getType());
1245 if (IT
&& IT
->getBitWidth() != 1 && !II
.getMetadata(LLVMContext::MD_range
)) {
1246 Metadata
*LowAndHigh
[] = {
1247 ConstantAsMetadata::get(ConstantInt::get(IT
, DefiniteZeros
)),
1248 ConstantAsMetadata::get(ConstantInt::get(IT
, PossibleZeros
+ 1))};
1249 II
.setMetadata(LLVMContext::MD_range
,
1250 MDNode::get(II
.getContext(), LowAndHigh
));
1257 static Instruction
*foldCtpop(IntrinsicInst
&II
, InstCombiner
&IC
) {
1258 assert(II
.getIntrinsicID() == Intrinsic::ctpop
&&
1259 "Expected ctpop intrinsic");
1260 Value
*Op0
= II
.getArgOperand(0);
1262 // ctpop(bitreverse(x)) -> ctpop(x)
1263 // ctpop(bswap(x)) -> ctpop(x)
1264 if (match(Op0
, m_BitReverse(m_Value(X
))) || match(Op0
, m_BSwap(m_Value(X
)))) {
1265 II
.setOperand(0, X
);
1269 // FIXME: Try to simplify vectors of integers.
1270 auto *IT
= dyn_cast
<IntegerType
>(Op0
->getType());
1274 unsigned BitWidth
= IT
->getBitWidth();
1275 KnownBits
Known(BitWidth
);
1276 IC
.computeKnownBits(Op0
, Known
, 0, &II
);
1278 unsigned MinCount
= Known
.countMinPopulation();
1279 unsigned MaxCount
= Known
.countMaxPopulation();
1281 // Add range metadata since known bits can't completely reflect what we know.
1282 if (IT
->getBitWidth() != 1 && !II
.getMetadata(LLVMContext::MD_range
)) {
1283 Metadata
*LowAndHigh
[] = {
1284 ConstantAsMetadata::get(ConstantInt::get(IT
, MinCount
)),
1285 ConstantAsMetadata::get(ConstantInt::get(IT
, MaxCount
+ 1))};
1286 II
.setMetadata(LLVMContext::MD_range
,
1287 MDNode::get(II
.getContext(), LowAndHigh
));
1294 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
1295 // XMM register mask efficiently, we could transform all x86 masked intrinsics
1296 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
1297 static Instruction
*simplifyX86MaskedLoad(IntrinsicInst
&II
, InstCombiner
&IC
) {
1298 Value
*Ptr
= II
.getOperand(0);
1299 Value
*Mask
= II
.getOperand(1);
1300 Constant
*ZeroVec
= Constant::getNullValue(II
.getType());
1302 // Special case a zero mask since that's not a ConstantDataVector.
1303 // This masked load instruction creates a zero vector.
1304 if (isa
<ConstantAggregateZero
>(Mask
))
1305 return IC
.replaceInstUsesWith(II
, ZeroVec
);
1307 auto *ConstMask
= dyn_cast
<ConstantDataVector
>(Mask
);
1311 // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1312 // to allow target-independent optimizations.
1314 // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1315 // the LLVM intrinsic definition for the pointer argument.
1316 unsigned AddrSpace
= cast
<PointerType
>(Ptr
->getType())->getAddressSpace();
1317 PointerType
*VecPtrTy
= PointerType::get(II
.getType(), AddrSpace
);
1318 Value
*PtrCast
= IC
.Builder
.CreateBitCast(Ptr
, VecPtrTy
, "castvec");
1320 // Second, convert the x86 XMM integer vector mask to a vector of bools based
1321 // on each element's most significant bit (the sign bit).
1322 Constant
*BoolMask
= getNegativeIsTrueBoolVec(ConstMask
);
1324 // The pass-through vector for an x86 masked load is a zero vector.
1325 CallInst
*NewMaskedLoad
=
1326 IC
.Builder
.CreateMaskedLoad(PtrCast
, 1, BoolMask
, ZeroVec
);
1327 return IC
.replaceInstUsesWith(II
, NewMaskedLoad
);
1330 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
1331 // XMM register mask efficiently, we could transform all x86 masked intrinsics
1332 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
1333 static bool simplifyX86MaskedStore(IntrinsicInst
&II
, InstCombiner
&IC
) {
1334 Value
*Ptr
= II
.getOperand(0);
1335 Value
*Mask
= II
.getOperand(1);
1336 Value
*Vec
= II
.getOperand(2);
1338 // Special case a zero mask since that's not a ConstantDataVector:
1339 // this masked store instruction does nothing.
1340 if (isa
<ConstantAggregateZero
>(Mask
)) {
1341 IC
.eraseInstFromFunction(II
);
1345 // The SSE2 version is too weird (eg, unaligned but non-temporal) to do
1346 // anything else at this level.
1347 if (II
.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu
)
1350 auto *ConstMask
= dyn_cast
<ConstantDataVector
>(Mask
);
1354 // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1355 // to allow target-independent optimizations.
1357 // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1358 // the LLVM intrinsic definition for the pointer argument.
1359 unsigned AddrSpace
= cast
<PointerType
>(Ptr
->getType())->getAddressSpace();
1360 PointerType
*VecPtrTy
= PointerType::get(Vec
->getType(), AddrSpace
);
1361 Value
*PtrCast
= IC
.Builder
.CreateBitCast(Ptr
, VecPtrTy
, "castvec");
1363 // Second, convert the x86 XMM integer vector mask to a vector of bools based
1364 // on each element's most significant bit (the sign bit).
1365 Constant
*BoolMask
= getNegativeIsTrueBoolVec(ConstMask
);
1367 IC
.Builder
.CreateMaskedStore(Vec
, PtrCast
, 1, BoolMask
);
1369 // 'Replace uses' doesn't work for stores. Erase the original masked store.
1370 IC
.eraseInstFromFunction(II
);
1374 // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs.
1376 // A single NaN input is folded to minnum, so we rely on that folding for
1378 static APFloat
fmed3AMDGCN(const APFloat
&Src0
, const APFloat
&Src1
,
1379 const APFloat
&Src2
) {
1380 APFloat Max3
= maxnum(maxnum(Src0
, Src1
), Src2
);
1382 APFloat::cmpResult Cmp0
= Max3
.compare(Src0
);
1383 assert(Cmp0
!= APFloat::cmpUnordered
&& "nans handled separately");
1384 if (Cmp0
== APFloat::cmpEqual
)
1385 return maxnum(Src1
, Src2
);
1387 APFloat::cmpResult Cmp1
= Max3
.compare(Src1
);
1388 assert(Cmp1
!= APFloat::cmpUnordered
&& "nans handled separately");
1389 if (Cmp1
== APFloat::cmpEqual
)
1390 return maxnum(Src0
, Src2
);
1392 return maxnum(Src0
, Src1
);
1395 /// Convert a table lookup to shufflevector if the mask is constant.
1396 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
1397 /// which case we could lower the shufflevector with rev64 instructions
1398 /// as it's actually a byte reverse.
1399 static Value
*simplifyNeonTbl1(const IntrinsicInst
&II
,
1400 InstCombiner::BuilderTy
&Builder
) {
1401 // Bail out if the mask is not a constant.
1402 auto *C
= dyn_cast
<Constant
>(II
.getArgOperand(1));
1406 auto *VecTy
= cast
<VectorType
>(II
.getType());
1407 unsigned NumElts
= VecTy
->getNumElements();
1409 // Only perform this transformation for <8 x i8> vector types.
1410 if (!VecTy
->getElementType()->isIntegerTy(8) || NumElts
!= 8)
1413 uint32_t Indexes
[8];
1415 for (unsigned I
= 0; I
< NumElts
; ++I
) {
1416 Constant
*COp
= C
->getAggregateElement(I
);
1418 if (!COp
|| !isa
<ConstantInt
>(COp
))
1421 Indexes
[I
] = cast
<ConstantInt
>(COp
)->getLimitedValue();
1423 // Make sure the mask indices are in range.
1424 if (Indexes
[I
] >= NumElts
)
1428 auto *ShuffleMask
= ConstantDataVector::get(II
.getContext(),
1429 makeArrayRef(Indexes
));
1430 auto *V1
= II
.getArgOperand(0);
1431 auto *V2
= Constant::getNullValue(V1
->getType());
1432 return Builder
.CreateShuffleVector(V1
, V2
, ShuffleMask
);
1435 /// Convert a vector load intrinsic into a simple llvm load instruction.
1436 /// This is beneficial when the underlying object being addressed comes
1437 /// from a constant, since we get constant-folding for free.
1438 static Value
*simplifyNeonVld1(const IntrinsicInst
&II
,
1440 InstCombiner::BuilderTy
&Builder
) {
1441 auto *IntrAlign
= dyn_cast
<ConstantInt
>(II
.getArgOperand(1));
1446 unsigned Alignment
= IntrAlign
->getLimitedValue() < MemAlign
?
1447 MemAlign
: IntrAlign
->getLimitedValue();
1449 if (!isPowerOf2_32(Alignment
))
1452 auto *BCastInst
= Builder
.CreateBitCast(II
.getArgOperand(0),
1453 PointerType::get(II
.getType(), 0));
1454 return Builder
.CreateAlignedLoad(II
.getType(), BCastInst
, Alignment
);
1457 // Returns true iff the 2 intrinsics have the same operands, limiting the
1458 // comparison to the first NumOperands.
1459 static bool haveSameOperands(const IntrinsicInst
&I
, const IntrinsicInst
&E
,
1460 unsigned NumOperands
) {
1461 assert(I
.getNumArgOperands() >= NumOperands
&& "Not enough operands");
1462 assert(E
.getNumArgOperands() >= NumOperands
&& "Not enough operands");
1463 for (unsigned i
= 0; i
< NumOperands
; i
++)
1464 if (I
.getArgOperand(i
) != E
.getArgOperand(i
))
1469 // Remove trivially empty start/end intrinsic ranges, i.e. a start
1470 // immediately followed by an end (ignoring debuginfo or other
1471 // start/end intrinsics in between). As this handles only the most trivial
1472 // cases, tracking the nesting level is not needed:
1474 // call @llvm.foo.start(i1 0) ; &I
1475 // call @llvm.foo.start(i1 0)
1476 // call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed
1477 // call @llvm.foo.end(i1 0)
1478 static bool removeTriviallyEmptyRange(IntrinsicInst
&I
, unsigned StartID
,
1479 unsigned EndID
, InstCombiner
&IC
) {
1480 assert(I
.getIntrinsicID() == StartID
&&
1481 "Start intrinsic does not have expected ID");
1482 BasicBlock::iterator
BI(I
), BE(I
.getParent()->end());
1483 for (++BI
; BI
!= BE
; ++BI
) {
1484 if (auto *E
= dyn_cast
<IntrinsicInst
>(BI
)) {
1485 if (isa
<DbgInfoIntrinsic
>(E
) || E
->getIntrinsicID() == StartID
)
1487 if (E
->getIntrinsicID() == EndID
&&
1488 haveSameOperands(I
, *E
, E
->getNumArgOperands())) {
1489 IC
.eraseInstFromFunction(*E
);
1490 IC
.eraseInstFromFunction(I
);
1500 // Convert NVVM intrinsics to target-generic LLVM code where possible.
1501 static Instruction
*SimplifyNVVMIntrinsic(IntrinsicInst
*II
, InstCombiner
&IC
) {
1502 // Each NVVM intrinsic we can simplify can be replaced with one of:
1504 // * an LLVM intrinsic,
1505 // * an LLVM cast operation,
1506 // * an LLVM binary operation, or
1507 // * ad-hoc LLVM IR for the particular operation.
1509 // Some transformations are only valid when the module's
1510 // flush-denormals-to-zero (ftz) setting is true/false, whereas other
1511 // transformations are valid regardless of the module's ftz setting.
1512 enum FtzRequirementTy
{
1513 FTZ_Any
, // Any ftz setting is ok.
1514 FTZ_MustBeOn
, // Transformation is valid only if ftz is on.
1515 FTZ_MustBeOff
, // Transformation is valid only if ftz is off.
1517 // Classes of NVVM intrinsics that can't be replaced one-to-one with a
1518 // target-generic intrinsic, cast op, or binary op but that we can nonetheless
1524 // SimplifyAction is a poor-man's variant (plus an additional flag) that
1525 // represents how to replace an NVVM intrinsic with target-generic LLVM IR.
1526 struct SimplifyAction
{
1527 // Invariant: At most one of these Optionals has a value.
1528 Optional
<Intrinsic::ID
> IID
;
1529 Optional
<Instruction::CastOps
> CastOp
;
1530 Optional
<Instruction::BinaryOps
> BinaryOp
;
1531 Optional
<SpecialCase
> Special
;
1533 FtzRequirementTy FtzRequirement
= FTZ_Any
;
1535 SimplifyAction() = default;
1537 SimplifyAction(Intrinsic::ID IID
, FtzRequirementTy FtzReq
)
1538 : IID(IID
), FtzRequirement(FtzReq
) {}
1540 // Cast operations don't have anything to do with FTZ, so we skip that
1542 SimplifyAction(Instruction::CastOps CastOp
) : CastOp(CastOp
) {}
1544 SimplifyAction(Instruction::BinaryOps BinaryOp
, FtzRequirementTy FtzReq
)
1545 : BinaryOp(BinaryOp
), FtzRequirement(FtzReq
) {}
1547 SimplifyAction(SpecialCase Special
, FtzRequirementTy FtzReq
)
1548 : Special(Special
), FtzRequirement(FtzReq
) {}
1551 // Try to generate a SimplifyAction describing how to replace our
1552 // IntrinsicInstr with target-generic LLVM IR.
1553 const SimplifyAction Action
= [II
]() -> SimplifyAction
{
1554 switch (II
->getIntrinsicID()) {
1555 // NVVM intrinsics that map directly to LLVM intrinsics.
1556 case Intrinsic::nvvm_ceil_d
:
1557 return {Intrinsic::ceil
, FTZ_Any
};
1558 case Intrinsic::nvvm_ceil_f
:
1559 return {Intrinsic::ceil
, FTZ_MustBeOff
};
1560 case Intrinsic::nvvm_ceil_ftz_f
:
1561 return {Intrinsic::ceil
, FTZ_MustBeOn
};
1562 case Intrinsic::nvvm_fabs_d
:
1563 return {Intrinsic::fabs
, FTZ_Any
};
1564 case Intrinsic::nvvm_fabs_f
:
1565 return {Intrinsic::fabs
, FTZ_MustBeOff
};
1566 case Intrinsic::nvvm_fabs_ftz_f
:
1567 return {Intrinsic::fabs
, FTZ_MustBeOn
};
1568 case Intrinsic::nvvm_floor_d
:
1569 return {Intrinsic::floor
, FTZ_Any
};
1570 case Intrinsic::nvvm_floor_f
:
1571 return {Intrinsic::floor
, FTZ_MustBeOff
};
1572 case Intrinsic::nvvm_floor_ftz_f
:
1573 return {Intrinsic::floor
, FTZ_MustBeOn
};
1574 case Intrinsic::nvvm_fma_rn_d
:
1575 return {Intrinsic::fma
, FTZ_Any
};
1576 case Intrinsic::nvvm_fma_rn_f
:
1577 return {Intrinsic::fma
, FTZ_MustBeOff
};
1578 case Intrinsic::nvvm_fma_rn_ftz_f
:
1579 return {Intrinsic::fma
, FTZ_MustBeOn
};
1580 case Intrinsic::nvvm_fmax_d
:
1581 return {Intrinsic::maxnum
, FTZ_Any
};
1582 case Intrinsic::nvvm_fmax_f
:
1583 return {Intrinsic::maxnum
, FTZ_MustBeOff
};
1584 case Intrinsic::nvvm_fmax_ftz_f
:
1585 return {Intrinsic::maxnum
, FTZ_MustBeOn
};
1586 case Intrinsic::nvvm_fmin_d
:
1587 return {Intrinsic::minnum
, FTZ_Any
};
1588 case Intrinsic::nvvm_fmin_f
:
1589 return {Intrinsic::minnum
, FTZ_MustBeOff
};
1590 case Intrinsic::nvvm_fmin_ftz_f
:
1591 return {Intrinsic::minnum
, FTZ_MustBeOn
};
1592 case Intrinsic::nvvm_round_d
:
1593 return {Intrinsic::round
, FTZ_Any
};
1594 case Intrinsic::nvvm_round_f
:
1595 return {Intrinsic::round
, FTZ_MustBeOff
};
1596 case Intrinsic::nvvm_round_ftz_f
:
1597 return {Intrinsic::round
, FTZ_MustBeOn
};
1598 case Intrinsic::nvvm_sqrt_rn_d
:
1599 return {Intrinsic::sqrt
, FTZ_Any
};
1600 case Intrinsic::nvvm_sqrt_f
:
1601 // nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the
1602 // ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts
1603 // the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are
1604 // the versions with explicit ftz-ness.
1605 return {Intrinsic::sqrt
, FTZ_Any
};
1606 case Intrinsic::nvvm_sqrt_rn_f
:
1607 return {Intrinsic::sqrt
, FTZ_MustBeOff
};
1608 case Intrinsic::nvvm_sqrt_rn_ftz_f
:
1609 return {Intrinsic::sqrt
, FTZ_MustBeOn
};
1610 case Intrinsic::nvvm_trunc_d
:
1611 return {Intrinsic::trunc
, FTZ_Any
};
1612 case Intrinsic::nvvm_trunc_f
:
1613 return {Intrinsic::trunc
, FTZ_MustBeOff
};
1614 case Intrinsic::nvvm_trunc_ftz_f
:
1615 return {Intrinsic::trunc
, FTZ_MustBeOn
};
1617 // NVVM intrinsics that map to LLVM cast operations.
1619 // Note that llvm's target-generic conversion operators correspond to the rz
1620 // (round to zero) versions of the nvvm conversion intrinsics, even though
1621 // most everything else here uses the rn (round to nearest even) nvvm ops.
1622 case Intrinsic::nvvm_d2i_rz
:
1623 case Intrinsic::nvvm_f2i_rz
:
1624 case Intrinsic::nvvm_d2ll_rz
:
1625 case Intrinsic::nvvm_f2ll_rz
:
1626 return {Instruction::FPToSI
};
1627 case Intrinsic::nvvm_d2ui_rz
:
1628 case Intrinsic::nvvm_f2ui_rz
:
1629 case Intrinsic::nvvm_d2ull_rz
:
1630 case Intrinsic::nvvm_f2ull_rz
:
1631 return {Instruction::FPToUI
};
1632 case Intrinsic::nvvm_i2d_rz
:
1633 case Intrinsic::nvvm_i2f_rz
:
1634 case Intrinsic::nvvm_ll2d_rz
:
1635 case Intrinsic::nvvm_ll2f_rz
:
1636 return {Instruction::SIToFP
};
1637 case Intrinsic::nvvm_ui2d_rz
:
1638 case Intrinsic::nvvm_ui2f_rz
:
1639 case Intrinsic::nvvm_ull2d_rz
:
1640 case Intrinsic::nvvm_ull2f_rz
:
1641 return {Instruction::UIToFP
};
1643 // NVVM intrinsics that map to LLVM binary ops.
1644 case Intrinsic::nvvm_add_rn_d
:
1645 return {Instruction::FAdd
, FTZ_Any
};
1646 case Intrinsic::nvvm_add_rn_f
:
1647 return {Instruction::FAdd
, FTZ_MustBeOff
};
1648 case Intrinsic::nvvm_add_rn_ftz_f
:
1649 return {Instruction::FAdd
, FTZ_MustBeOn
};
1650 case Intrinsic::nvvm_mul_rn_d
:
1651 return {Instruction::FMul
, FTZ_Any
};
1652 case Intrinsic::nvvm_mul_rn_f
:
1653 return {Instruction::FMul
, FTZ_MustBeOff
};
1654 case Intrinsic::nvvm_mul_rn_ftz_f
:
1655 return {Instruction::FMul
, FTZ_MustBeOn
};
1656 case Intrinsic::nvvm_div_rn_d
:
1657 return {Instruction::FDiv
, FTZ_Any
};
1658 case Intrinsic::nvvm_div_rn_f
:
1659 return {Instruction::FDiv
, FTZ_MustBeOff
};
1660 case Intrinsic::nvvm_div_rn_ftz_f
:
1661 return {Instruction::FDiv
, FTZ_MustBeOn
};
1663 // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but
1664 // need special handling.
1666 // We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just
1668 case Intrinsic::nvvm_rcp_rn_d
:
1669 return {SPC_Reciprocal
, FTZ_Any
};
1670 case Intrinsic::nvvm_rcp_rn_f
:
1671 return {SPC_Reciprocal
, FTZ_MustBeOff
};
1672 case Intrinsic::nvvm_rcp_rn_ftz_f
:
1673 return {SPC_Reciprocal
, FTZ_MustBeOn
};
1675 // We do not currently simplify intrinsics that give an approximate answer.
1678 // - nvvm_cos_approx_{f,ftz_f}
1679 // - nvvm_ex2_approx_{d,f,ftz_f}
1680 // - nvvm_lg2_approx_{d,f,ftz_f}
1681 // - nvvm_sin_approx_{f,ftz_f}
1682 // - nvvm_sqrt_approx_{f,ftz_f}
1683 // - nvvm_rsqrt_approx_{d,f,ftz_f}
1684 // - nvvm_div_approx_{ftz_d,ftz_f,f}
1685 // - nvvm_rcp_approx_ftz_d
1687 // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast"
1688 // means that fastmath is enabled in the intrinsic. Unfortunately only
1689 // binary operators (currently) have a fastmath bit in SelectionDAG, so this
1690 // information gets lost and we can't select on it.
1692 // TODO: div and rcp are lowered to a binary op, so these we could in theory
1693 // lower them to "fast fdiv".
1700 // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we
1701 // can bail out now. (Notice that in the case that IID is not an NVVM
1702 // intrinsic, we don't have to look up any module metadata, as
1703 // FtzRequirementTy will be FTZ_Any.)
1704 if (Action
.FtzRequirement
!= FTZ_Any
) {
1706 II
->getFunction()->getFnAttribute("nvptx-f32ftz").getValueAsString() ==
1709 if (FtzEnabled
!= (Action
.FtzRequirement
== FTZ_MustBeOn
))
1713 // Simplify to target-generic intrinsic.
1715 SmallVector
<Value
*, 4> Args(II
->arg_operands());
1716 // All the target-generic intrinsics currently of interest to us have one
1717 // type argument, equal to that of the nvvm intrinsic's argument.
1718 Type
*Tys
[] = {II
->getArgOperand(0)->getType()};
1719 return CallInst::Create(
1720 Intrinsic::getDeclaration(II
->getModule(), *Action
.IID
, Tys
), Args
);
1723 // Simplify to target-generic binary op.
1724 if (Action
.BinaryOp
)
1725 return BinaryOperator::Create(*Action
.BinaryOp
, II
->getArgOperand(0),
1726 II
->getArgOperand(1), II
->getName());
1728 // Simplify to target-generic cast op.
1730 return CastInst::Create(*Action
.CastOp
, II
->getArgOperand(0), II
->getType(),
1733 // All that's left are the special cases.
1734 if (!Action
.Special
)
1737 switch (*Action
.Special
) {
1738 case SPC_Reciprocal
:
1739 // Simplify reciprocal.
1740 return BinaryOperator::Create(
1741 Instruction::FDiv
, ConstantFP::get(II
->getArgOperand(0)->getType(), 1),
1742 II
->getArgOperand(0), II
->getName());
1744 llvm_unreachable("All SpecialCase enumerators should be handled in switch.");
1747 Instruction
*InstCombiner::visitVAStartInst(VAStartInst
&I
) {
1748 removeTriviallyEmptyRange(I
, Intrinsic::vastart
, Intrinsic::vaend
, *this);
1752 Instruction
*InstCombiner::visitVACopyInst(VACopyInst
&I
) {
1753 removeTriviallyEmptyRange(I
, Intrinsic::vacopy
, Intrinsic::vaend
, *this);
1757 static Instruction
*canonicalizeConstantArg0ToArg1(CallInst
&Call
) {
1758 assert(Call
.getNumArgOperands() > 1 && "Need at least 2 args to swap");
1759 Value
*Arg0
= Call
.getArgOperand(0), *Arg1
= Call
.getArgOperand(1);
1760 if (isa
<Constant
>(Arg0
) && !isa
<Constant
>(Arg1
)) {
1761 Call
.setArgOperand(0, Arg1
);
1762 Call
.setArgOperand(1, Arg0
);
1768 Instruction
*InstCombiner::foldIntrinsicWithOverflowCommon(IntrinsicInst
*II
) {
1769 WithOverflowInst
*WO
= cast
<WithOverflowInst
>(II
);
1770 Value
*OperationResult
= nullptr;
1771 Constant
*OverflowResult
= nullptr;
1772 if (OptimizeOverflowCheck(WO
->getBinaryOp(), WO
->isSigned(), WO
->getLHS(),
1773 WO
->getRHS(), *WO
, OperationResult
, OverflowResult
))
1774 return CreateOverflowTuple(WO
, OperationResult
, OverflowResult
);
1778 /// CallInst simplification. This mostly only handles folding of intrinsic
1779 /// instructions. For normal calls, it allows visitCallBase to do the heavy
1781 Instruction
*InstCombiner::visitCallInst(CallInst
&CI
) {
1782 if (Value
*V
= SimplifyCall(&CI
, SQ
.getWithInstruction(&CI
)))
1783 return replaceInstUsesWith(CI
, V
);
1785 if (isFreeCall(&CI
, &TLI
))
1786 return visitFree(CI
);
1788 // If the caller function is nounwind, mark the call as nounwind, even if the
1790 if (CI
.getFunction()->doesNotThrow() && !CI
.doesNotThrow()) {
1791 CI
.setDoesNotThrow();
1795 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(&CI
);
1796 if (!II
) return visitCallBase(CI
);
1798 // Intrinsics cannot occur in an invoke or a callbr, so handle them here
1799 // instead of in visitCallBase.
1800 if (auto *MI
= dyn_cast
<AnyMemIntrinsic
>(II
)) {
1801 bool Changed
= false;
1803 // memmove/cpy/set of zero bytes is a noop.
1804 if (Constant
*NumBytes
= dyn_cast
<Constant
>(MI
->getLength())) {
1805 if (NumBytes
->isNullValue())
1806 return eraseInstFromFunction(CI
);
1808 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(NumBytes
))
1809 if (CI
->getZExtValue() == 1) {
1810 // Replace the instruction with just byte operations. We would
1811 // transform other cases to loads/stores, but we don't know if
1812 // alignment is sufficient.
1816 // No other transformations apply to volatile transfers.
1817 if (auto *M
= dyn_cast
<MemIntrinsic
>(MI
))
1818 if (M
->isVolatile())
1821 // If we have a memmove and the source operation is a constant global,
1822 // then the source and dest pointers can't alias, so we can change this
1823 // into a call to memcpy.
1824 if (auto *MMI
= dyn_cast
<AnyMemMoveInst
>(MI
)) {
1825 if (GlobalVariable
*GVSrc
= dyn_cast
<GlobalVariable
>(MMI
->getSource()))
1826 if (GVSrc
->isConstant()) {
1827 Module
*M
= CI
.getModule();
1828 Intrinsic::ID MemCpyID
=
1829 isa
<AtomicMemMoveInst
>(MMI
)
1830 ? Intrinsic::memcpy_element_unordered_atomic
1831 : Intrinsic::memcpy
;
1832 Type
*Tys
[3] = { CI
.getArgOperand(0)->getType(),
1833 CI
.getArgOperand(1)->getType(),
1834 CI
.getArgOperand(2)->getType() };
1835 CI
.setCalledFunction(Intrinsic::getDeclaration(M
, MemCpyID
, Tys
));
1840 if (AnyMemTransferInst
*MTI
= dyn_cast
<AnyMemTransferInst
>(MI
)) {
1841 // memmove(x,x,size) -> noop.
1842 if (MTI
->getSource() == MTI
->getDest())
1843 return eraseInstFromFunction(CI
);
1846 // If we can determine a pointer alignment that is bigger than currently
1847 // set, update the alignment.
1848 if (auto *MTI
= dyn_cast
<AnyMemTransferInst
>(MI
)) {
1849 if (Instruction
*I
= SimplifyAnyMemTransfer(MTI
))
1851 } else if (auto *MSI
= dyn_cast
<AnyMemSetInst
>(MI
)) {
1852 if (Instruction
*I
= SimplifyAnyMemSet(MSI
))
1856 if (Changed
) return II
;
1859 // For vector result intrinsics, use the generic demanded vector support.
1860 if (II
->getType()->isVectorTy()) {
1861 auto VWidth
= II
->getType()->getVectorNumElements();
1862 APInt
UndefElts(VWidth
, 0);
1863 APInt
AllOnesEltMask(APInt::getAllOnesValue(VWidth
));
1864 if (Value
*V
= SimplifyDemandedVectorElts(II
, AllOnesEltMask
, UndefElts
)) {
1866 return replaceInstUsesWith(*II
, V
);
1871 if (Instruction
*I
= SimplifyNVVMIntrinsic(II
, *this))
1874 auto SimplifyDemandedVectorEltsLow
= [this](Value
*Op
, unsigned Width
,
1875 unsigned DemandedWidth
) {
1876 APInt
UndefElts(Width
, 0);
1877 APInt DemandedElts
= APInt::getLowBitsSet(Width
, DemandedWidth
);
1878 return SimplifyDemandedVectorElts(Op
, DemandedElts
, UndefElts
);
1881 Intrinsic::ID IID
= II
->getIntrinsicID();
1884 case Intrinsic::objectsize
:
1885 if (Value
*V
= lowerObjectSizeCall(II
, DL
, &TLI
, /*MustSucceed=*/false))
1886 return replaceInstUsesWith(CI
, V
);
1888 case Intrinsic::bswap
: {
1889 Value
*IIOperand
= II
->getArgOperand(0);
1892 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
1893 if (match(IIOperand
, m_Trunc(m_BSwap(m_Value(X
))))) {
1894 unsigned C
= X
->getType()->getPrimitiveSizeInBits() -
1895 IIOperand
->getType()->getPrimitiveSizeInBits();
1896 Value
*CV
= ConstantInt::get(X
->getType(), C
);
1897 Value
*V
= Builder
.CreateLShr(X
, CV
);
1898 return new TruncInst(V
, IIOperand
->getType());
1902 case Intrinsic::masked_load
:
1903 if (Value
*SimplifiedMaskedOp
= simplifyMaskedLoad(*II
))
1904 return replaceInstUsesWith(CI
, SimplifiedMaskedOp
);
1906 case Intrinsic::masked_store
:
1907 return simplifyMaskedStore(*II
);
1908 case Intrinsic::masked_gather
:
1909 return simplifyMaskedGather(*II
);
1910 case Intrinsic::masked_scatter
:
1911 return simplifyMaskedScatter(*II
);
1912 case Intrinsic::launder_invariant_group
:
1913 case Intrinsic::strip_invariant_group
:
1914 if (auto *SkippedBarrier
= simplifyInvariantGroupIntrinsic(*II
, *this))
1915 return replaceInstUsesWith(*II
, SkippedBarrier
);
1917 case Intrinsic::powi
:
1918 if (ConstantInt
*Power
= dyn_cast
<ConstantInt
>(II
->getArgOperand(1))) {
1919 // 0 and 1 are handled in instsimplify
1921 // powi(x, -1) -> 1/x
1922 if (Power
->isMinusOne())
1923 return BinaryOperator::CreateFDiv(ConstantFP::get(CI
.getType(), 1.0),
1924 II
->getArgOperand(0));
1925 // powi(x, 2) -> x*x
1926 if (Power
->equalsInt(2))
1927 return BinaryOperator::CreateFMul(II
->getArgOperand(0),
1928 II
->getArgOperand(0));
1932 case Intrinsic::cttz
:
1933 case Intrinsic::ctlz
:
1934 if (auto *I
= foldCttzCtlz(*II
, *this))
1938 case Intrinsic::ctpop
:
1939 if (auto *I
= foldCtpop(*II
, *this))
1943 case Intrinsic::fshl
:
1944 case Intrinsic::fshr
: {
1945 Value
*Op0
= II
->getArgOperand(0), *Op1
= II
->getArgOperand(1);
1946 Type
*Ty
= II
->getType();
1947 unsigned BitWidth
= Ty
->getScalarSizeInBits();
1949 if (match(II
->getArgOperand(2), m_Constant(ShAmtC
)) &&
1950 !isa
<ConstantExpr
>(ShAmtC
) && !ShAmtC
->containsConstantExpression()) {
1951 // Canonicalize a shift amount constant operand to modulo the bit-width.
1952 Constant
*WidthC
= ConstantInt::get(Ty
, BitWidth
);
1953 Constant
*ModuloC
= ConstantExpr::getURem(ShAmtC
, WidthC
);
1954 if (ModuloC
!= ShAmtC
) {
1955 II
->setArgOperand(2, ModuloC
);
1958 assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT
, WidthC
, ShAmtC
) ==
1959 ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty
)) &&
1960 "Shift amount expected to be modulo bitwidth");
1962 // Canonicalize funnel shift right by constant to funnel shift left. This
1963 // is not entirely arbitrary. For historical reasons, the backend may
1964 // recognize rotate left patterns but miss rotate right patterns.
1965 if (IID
== Intrinsic::fshr
) {
1966 // fshr X, Y, C --> fshl X, Y, (BitWidth - C)
1967 Constant
*LeftShiftC
= ConstantExpr::getSub(WidthC
, ShAmtC
);
1968 Module
*Mod
= II
->getModule();
1969 Function
*Fshl
= Intrinsic::getDeclaration(Mod
, Intrinsic::fshl
, Ty
);
1970 return CallInst::Create(Fshl
, { Op0
, Op1
, LeftShiftC
});
1972 assert(IID
== Intrinsic::fshl
&&
1973 "All funnel shifts by simple constants should go left");
1975 // fshl(X, 0, C) --> shl X, C
1976 // fshl(X, undef, C) --> shl X, C
1977 if (match(Op1
, m_ZeroInt()) || match(Op1
, m_Undef()))
1978 return BinaryOperator::CreateShl(Op0
, ShAmtC
);
1980 // fshl(0, X, C) --> lshr X, (BW-C)
1981 // fshl(undef, X, C) --> lshr X, (BW-C)
1982 if (match(Op0
, m_ZeroInt()) || match(Op0
, m_Undef()))
1983 return BinaryOperator::CreateLShr(Op1
,
1984 ConstantExpr::getSub(WidthC
, ShAmtC
));
1986 // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
1987 if (Op0
== Op1
&& BitWidth
== 16 && match(ShAmtC
, m_SpecificInt(8))) {
1988 Module
*Mod
= II
->getModule();
1989 Function
*Bswap
= Intrinsic::getDeclaration(Mod
, Intrinsic::bswap
, Ty
);
1990 return CallInst::Create(Bswap
, { Op0
});
1994 // Left or right might be masked.
1995 if (SimplifyDemandedInstructionBits(*II
))
1998 // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
1999 // so only the low bits of the shift amount are demanded if the bitwidth is
2001 if (!isPowerOf2_32(BitWidth
))
2003 APInt Op2Demanded
= APInt::getLowBitsSet(BitWidth
, Log2_32_Ceil(BitWidth
));
2004 KnownBits
Op2Known(BitWidth
);
2005 if (SimplifyDemandedBits(II
, 2, Op2Demanded
, Op2Known
))
2009 case Intrinsic::uadd_with_overflow
:
2010 case Intrinsic::sadd_with_overflow
: {
2011 if (Instruction
*I
= canonicalizeConstantArg0ToArg1(CI
))
2013 if (Instruction
*I
= foldIntrinsicWithOverflowCommon(II
))
2016 // Given 2 constant operands whose sum does not overflow:
2017 // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
2018 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
2020 const APInt
*C0
, *C1
;
2021 Value
*Arg0
= II
->getArgOperand(0);
2022 Value
*Arg1
= II
->getArgOperand(1);
2023 bool IsSigned
= IID
== Intrinsic::sadd_with_overflow
;
2024 bool HasNWAdd
= IsSigned
? match(Arg0
, m_NSWAdd(m_Value(X
), m_APInt(C0
)))
2025 : match(Arg0
, m_NUWAdd(m_Value(X
), m_APInt(C0
)));
2026 if (HasNWAdd
&& match(Arg1
, m_APInt(C1
))) {
2029 IsSigned
? C1
->sadd_ov(*C0
, Overflow
) : C1
->uadd_ov(*C0
, Overflow
);
2031 return replaceInstUsesWith(
2032 *II
, Builder
.CreateBinaryIntrinsic(
2033 IID
, X
, ConstantInt::get(Arg1
->getType(), NewC
)));
2038 case Intrinsic::umul_with_overflow
:
2039 case Intrinsic::smul_with_overflow
:
2040 if (Instruction
*I
= canonicalizeConstantArg0ToArg1(CI
))
2044 case Intrinsic::usub_with_overflow
:
2045 if (Instruction
*I
= foldIntrinsicWithOverflowCommon(II
))
2049 case Intrinsic::ssub_with_overflow
: {
2050 if (Instruction
*I
= foldIntrinsicWithOverflowCommon(II
))
2054 Value
*Arg0
= II
->getArgOperand(0);
2055 Value
*Arg1
= II
->getArgOperand(1);
2056 // Given a constant C that is not the minimum signed value
2057 // for an integer of a given bit width:
2059 // ssubo X, C -> saddo X, -C
2060 if (match(Arg1
, m_Constant(C
)) && C
->isNotMinSignedValue()) {
2061 Value
*NegVal
= ConstantExpr::getNeg(C
);
2062 // Build a saddo call that is equivalent to the discovered
2064 return replaceInstUsesWith(
2065 *II
, Builder
.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow
,
2072 case Intrinsic::uadd_sat
:
2073 case Intrinsic::sadd_sat
:
2074 if (Instruction
*I
= canonicalizeConstantArg0ToArg1(CI
))
2077 case Intrinsic::usub_sat
:
2078 case Intrinsic::ssub_sat
: {
2079 SaturatingInst
*SI
= cast
<SaturatingInst
>(II
);
2080 Type
*Ty
= SI
->getType();
2081 Value
*Arg0
= SI
->getLHS();
2082 Value
*Arg1
= SI
->getRHS();
2084 // Make use of known overflow information.
2085 OverflowResult OR
= computeOverflow(SI
->getBinaryOp(), SI
->isSigned(),
2088 case OverflowResult::MayOverflow
:
2090 case OverflowResult::NeverOverflows
:
2092 return BinaryOperator::CreateNSW(SI
->getBinaryOp(), Arg0
, Arg1
);
2094 return BinaryOperator::CreateNUW(SI
->getBinaryOp(), Arg0
, Arg1
);
2095 case OverflowResult::AlwaysOverflowsLow
: {
2096 unsigned BitWidth
= Ty
->getScalarSizeInBits();
2097 APInt Min
= APSInt::getMinValue(BitWidth
, !SI
->isSigned());
2098 return replaceInstUsesWith(*SI
, ConstantInt::get(Ty
, Min
));
2100 case OverflowResult::AlwaysOverflowsHigh
: {
2101 unsigned BitWidth
= Ty
->getScalarSizeInBits();
2102 APInt Max
= APSInt::getMaxValue(BitWidth
, !SI
->isSigned());
2103 return replaceInstUsesWith(*SI
, ConstantInt::get(Ty
, Max
));
2107 // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
2109 if (IID
== Intrinsic::ssub_sat
&& match(Arg1
, m_Constant(C
)) &&
2110 C
->isNotMinSignedValue()) {
2111 Value
*NegVal
= ConstantExpr::getNeg(C
);
2112 return replaceInstUsesWith(
2113 *II
, Builder
.CreateBinaryIntrinsic(
2114 Intrinsic::sadd_sat
, Arg0
, NegVal
));
2117 // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
2118 // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
2119 // if Val and Val2 have the same sign
2120 if (auto *Other
= dyn_cast
<IntrinsicInst
>(Arg0
)) {
2122 const APInt
*Val
, *Val2
;
2125 IID
== Intrinsic::uadd_sat
|| IID
== Intrinsic::usub_sat
;
2126 if (Other
->getIntrinsicID() == IID
&&
2127 match(Arg1
, m_APInt(Val
)) &&
2128 match(Other
->getArgOperand(0), m_Value(X
)) &&
2129 match(Other
->getArgOperand(1), m_APInt(Val2
))) {
2131 NewVal
= Val
->uadd_sat(*Val2
);
2132 else if (Val
->isNonNegative() == Val2
->isNonNegative()) {
2134 NewVal
= Val
->sadd_ov(*Val2
, Overflow
);
2136 // Both adds together may add more than SignedMaxValue
2137 // without saturating the final result.
2141 // Cannot fold saturated addition with different signs.
2145 return replaceInstUsesWith(
2146 *II
, Builder
.CreateBinaryIntrinsic(
2147 IID
, X
, ConstantInt::get(II
->getType(), NewVal
)));
2153 case Intrinsic::minnum
:
2154 case Intrinsic::maxnum
:
2155 case Intrinsic::minimum
:
2156 case Intrinsic::maximum
: {
2157 if (Instruction
*I
= canonicalizeConstantArg0ToArg1(CI
))
2159 Value
*Arg0
= II
->getArgOperand(0);
2160 Value
*Arg1
= II
->getArgOperand(1);
2162 if (match(Arg0
, m_FNeg(m_Value(X
))) && match(Arg1
, m_FNeg(m_Value(Y
))) &&
2163 (Arg0
->hasOneUse() || Arg1
->hasOneUse())) {
2164 // If both operands are negated, invert the call and negate the result:
2165 // min(-X, -Y) --> -(max(X, Y))
2166 // max(-X, -Y) --> -(min(X, Y))
2167 Intrinsic::ID NewIID
;
2169 case Intrinsic::maxnum
:
2170 NewIID
= Intrinsic::minnum
;
2172 case Intrinsic::minnum
:
2173 NewIID
= Intrinsic::maxnum
;
2175 case Intrinsic::maximum
:
2176 NewIID
= Intrinsic::minimum
;
2178 case Intrinsic::minimum
:
2179 NewIID
= Intrinsic::maximum
;
2182 llvm_unreachable("unexpected intrinsic ID");
2184 Value
*NewCall
= Builder
.CreateBinaryIntrinsic(NewIID
, X
, Y
, II
);
2185 Instruction
*FNeg
= BinaryOperator::CreateFNeg(NewCall
);
2186 FNeg
->copyIRFlags(II
);
2190 // m(m(X, C2), C1) -> m(X, C)
2191 const APFloat
*C1
, *C2
;
2192 if (auto *M
= dyn_cast
<IntrinsicInst
>(Arg0
)) {
2193 if (M
->getIntrinsicID() == IID
&& match(Arg1
, m_APFloat(C1
)) &&
2194 ((match(M
->getArgOperand(0), m_Value(X
)) &&
2195 match(M
->getArgOperand(1), m_APFloat(C2
))) ||
2196 (match(M
->getArgOperand(1), m_Value(X
)) &&
2197 match(M
->getArgOperand(0), m_APFloat(C2
))))) {
2200 case Intrinsic::maxnum
:
2201 Res
= maxnum(*C1
, *C2
);
2203 case Intrinsic::minnum
:
2204 Res
= minnum(*C1
, *C2
);
2206 case Intrinsic::maximum
:
2207 Res
= maximum(*C1
, *C2
);
2209 case Intrinsic::minimum
:
2210 Res
= minimum(*C1
, *C2
);
2213 llvm_unreachable("unexpected intrinsic ID");
2215 Instruction
*NewCall
= Builder
.CreateBinaryIntrinsic(
2216 IID
, X
, ConstantFP::get(Arg0
->getType(), Res
));
2217 NewCall
->copyIRFlags(II
);
2218 return replaceInstUsesWith(*II
, NewCall
);
2224 case Intrinsic::fmuladd
: {
2225 // Canonicalize fast fmuladd to the separate fmul + fadd.
2227 BuilderTy::FastMathFlagGuard
Guard(Builder
);
2228 Builder
.setFastMathFlags(II
->getFastMathFlags());
2229 Value
*Mul
= Builder
.CreateFMul(II
->getArgOperand(0),
2230 II
->getArgOperand(1));
2231 Value
*Add
= Builder
.CreateFAdd(Mul
, II
->getArgOperand(2));
2233 return replaceInstUsesWith(*II
, Add
);
2236 // Try to simplify the underlying FMul.
2237 if (Value
*V
= SimplifyFMulInst(II
->getArgOperand(0), II
->getArgOperand(1),
2238 II
->getFastMathFlags(),
2239 SQ
.getWithInstruction(II
))) {
2240 auto *FAdd
= BinaryOperator::CreateFAdd(V
, II
->getArgOperand(2));
2241 FAdd
->copyFastMathFlags(II
);
2247 case Intrinsic::fma
: {
2248 if (Instruction
*I
= canonicalizeConstantArg0ToArg1(CI
))
2251 // fma fneg(x), fneg(y), z -> fma x, y, z
2252 Value
*Src0
= II
->getArgOperand(0);
2253 Value
*Src1
= II
->getArgOperand(1);
2255 if (match(Src0
, m_FNeg(m_Value(X
))) && match(Src1
, m_FNeg(m_Value(Y
)))) {
2256 II
->setArgOperand(0, X
);
2257 II
->setArgOperand(1, Y
);
2261 // fma fabs(x), fabs(x), z -> fma x, x, z
2262 if (match(Src0
, m_FAbs(m_Value(X
))) &&
2263 match(Src1
, m_FAbs(m_Specific(X
)))) {
2264 II
->setArgOperand(0, X
);
2265 II
->setArgOperand(1, X
);
2269 // Try to simplify the underlying FMul. We can only apply simplifications
2270 // that do not require rounding.
2271 if (Value
*V
= SimplifyFMAFMul(II
->getArgOperand(0), II
->getArgOperand(1),
2272 II
->getFastMathFlags(),
2273 SQ
.getWithInstruction(II
))) {
2274 auto *FAdd
= BinaryOperator::CreateFAdd(V
, II
->getArgOperand(2));
2275 FAdd
->copyFastMathFlags(II
);
2281 case Intrinsic::fabs
: {
2283 Constant
*LHS
, *RHS
;
2284 if (match(II
->getArgOperand(0),
2285 m_Select(m_Value(Cond
), m_Constant(LHS
), m_Constant(RHS
)))) {
2286 CallInst
*Call0
= Builder
.CreateCall(II
->getCalledFunction(), {LHS
});
2287 CallInst
*Call1
= Builder
.CreateCall(II
->getCalledFunction(), {RHS
});
2288 return SelectInst::Create(Cond
, Call0
, Call1
);
2293 case Intrinsic::ceil
:
2294 case Intrinsic::floor
:
2295 case Intrinsic::round
:
2296 case Intrinsic::nearbyint
:
2297 case Intrinsic::rint
:
2298 case Intrinsic::trunc
: {
2300 if (match(II
->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc
))))) {
2301 // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
2302 Value
*NarrowII
= Builder
.CreateUnaryIntrinsic(IID
, ExtSrc
, II
);
2303 return new FPExtInst(NarrowII
, II
->getType());
2307 case Intrinsic::cos
:
2308 case Intrinsic::amdgcn_cos
: {
2310 Value
*Src
= II
->getArgOperand(0);
2311 if (match(Src
, m_FNeg(m_Value(X
))) || match(Src
, m_FAbs(m_Value(X
)))) {
2312 // cos(-x) -> cos(x)
2313 // cos(fabs(x)) -> cos(x)
2314 II
->setArgOperand(0, X
);
2319 case Intrinsic::sin
: {
2321 if (match(II
->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X
))))) {
2322 // sin(-x) --> -sin(x)
2323 Value
*NewSin
= Builder
.CreateUnaryIntrinsic(Intrinsic::sin
, X
, II
);
2324 Instruction
*FNeg
= BinaryOperator::CreateFNeg(NewSin
);
2325 FNeg
->copyFastMathFlags(II
);
2330 case Intrinsic::ppc_altivec_lvx
:
2331 case Intrinsic::ppc_altivec_lvxl
:
2332 // Turn PPC lvx -> load if the pointer is known aligned.
2333 if (getOrEnforceKnownAlignment(II
->getArgOperand(0), 16, DL
, II
, &AC
,
2335 Value
*Ptr
= Builder
.CreateBitCast(II
->getArgOperand(0),
2336 PointerType::getUnqual(II
->getType()));
2337 return new LoadInst(II
->getType(), Ptr
);
2340 case Intrinsic::ppc_vsx_lxvw4x
:
2341 case Intrinsic::ppc_vsx_lxvd2x
: {
2342 // Turn PPC VSX loads into normal loads.
2343 Value
*Ptr
= Builder
.CreateBitCast(II
->getArgOperand(0),
2344 PointerType::getUnqual(II
->getType()));
2345 return new LoadInst(II
->getType(), Ptr
, Twine(""), false, Align::None());
2347 case Intrinsic::ppc_altivec_stvx
:
2348 case Intrinsic::ppc_altivec_stvxl
:
2349 // Turn stvx -> store if the pointer is known aligned.
2350 if (getOrEnforceKnownAlignment(II
->getArgOperand(1), 16, DL
, II
, &AC
,
2353 PointerType::getUnqual(II
->getArgOperand(0)->getType());
2354 Value
*Ptr
= Builder
.CreateBitCast(II
->getArgOperand(1), OpPtrTy
);
2355 return new StoreInst(II
->getArgOperand(0), Ptr
);
2358 case Intrinsic::ppc_vsx_stxvw4x
:
2359 case Intrinsic::ppc_vsx_stxvd2x
: {
2360 // Turn PPC VSX stores into normal stores.
2361 Type
*OpPtrTy
= PointerType::getUnqual(II
->getArgOperand(0)->getType());
2362 Value
*Ptr
= Builder
.CreateBitCast(II
->getArgOperand(1), OpPtrTy
);
2363 return new StoreInst(II
->getArgOperand(0), Ptr
, false, 1);
2365 case Intrinsic::ppc_qpx_qvlfs
:
2366 // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
2367 if (getOrEnforceKnownAlignment(II
->getArgOperand(0), 16, DL
, II
, &AC
,
2369 Type
*VTy
= VectorType::get(Builder
.getFloatTy(),
2370 II
->getType()->getVectorNumElements());
2371 Value
*Ptr
= Builder
.CreateBitCast(II
->getArgOperand(0),
2372 PointerType::getUnqual(VTy
));
2373 Value
*Load
= Builder
.CreateLoad(VTy
, Ptr
);
2374 return new FPExtInst(Load
, II
->getType());
2377 case Intrinsic::ppc_qpx_qvlfd
:
2378 // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
2379 if (getOrEnforceKnownAlignment(II
->getArgOperand(0), 32, DL
, II
, &AC
,
2381 Value
*Ptr
= Builder
.CreateBitCast(II
->getArgOperand(0),
2382 PointerType::getUnqual(II
->getType()));
2383 return new LoadInst(II
->getType(), Ptr
);
2386 case Intrinsic::ppc_qpx_qvstfs
:
2387 // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
2388 if (getOrEnforceKnownAlignment(II
->getArgOperand(1), 16, DL
, II
, &AC
,
2390 Type
*VTy
= VectorType::get(Builder
.getFloatTy(),
2391 II
->getArgOperand(0)->getType()->getVectorNumElements());
2392 Value
*TOp
= Builder
.CreateFPTrunc(II
->getArgOperand(0), VTy
);
2393 Type
*OpPtrTy
= PointerType::getUnqual(VTy
);
2394 Value
*Ptr
= Builder
.CreateBitCast(II
->getArgOperand(1), OpPtrTy
);
2395 return new StoreInst(TOp
, Ptr
);
2398 case Intrinsic::ppc_qpx_qvstfd
:
2399 // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
2400 if (getOrEnforceKnownAlignment(II
->getArgOperand(1), 32, DL
, II
, &AC
,
2403 PointerType::getUnqual(II
->getArgOperand(0)->getType());
2404 Value
*Ptr
= Builder
.CreateBitCast(II
->getArgOperand(1), OpPtrTy
);
2405 return new StoreInst(II
->getArgOperand(0), Ptr
);
2409 case Intrinsic::x86_bmi_bextr_32
:
2410 case Intrinsic::x86_bmi_bextr_64
:
2411 case Intrinsic::x86_tbm_bextri_u32
:
2412 case Intrinsic::x86_tbm_bextri_u64
:
2413 // If the RHS is a constant we can try some simplifications.
2414 if (auto *C
= dyn_cast
<ConstantInt
>(II
->getArgOperand(1))) {
2415 uint64_t Shift
= C
->getZExtValue();
2416 uint64_t Length
= (Shift
>> 8) & 0xff;
2418 unsigned BitWidth
= II
->getType()->getIntegerBitWidth();
2419 // If the length is 0 or the shift is out of range, replace with zero.
2420 if (Length
== 0 || Shift
>= BitWidth
)
2421 return replaceInstUsesWith(CI
, ConstantInt::get(II
->getType(), 0));
2422 // If the LHS is also a constant, we can completely constant fold this.
2423 if (auto *InC
= dyn_cast
<ConstantInt
>(II
->getArgOperand(0))) {
2424 uint64_t Result
= InC
->getZExtValue() >> Shift
;
2425 if (Length
> BitWidth
)
2427 Result
&= maskTrailingOnes
<uint64_t>(Length
);
2428 return replaceInstUsesWith(CI
, ConstantInt::get(II
->getType(), Result
));
2430 // TODO should we turn this into 'and' if shift is 0? Or 'shl' if we
2431 // are only masking bits that a shift already cleared?
2435 case Intrinsic::x86_bmi_bzhi_32
:
2436 case Intrinsic::x86_bmi_bzhi_64
:
2437 // If the RHS is a constant we can try some simplifications.
2438 if (auto *C
= dyn_cast
<ConstantInt
>(II
->getArgOperand(1))) {
2439 uint64_t Index
= C
->getZExtValue() & 0xff;
2440 unsigned BitWidth
= II
->getType()->getIntegerBitWidth();
2441 if (Index
>= BitWidth
)
2442 return replaceInstUsesWith(CI
, II
->getArgOperand(0));
2444 return replaceInstUsesWith(CI
, ConstantInt::get(II
->getType(), 0));
2445 // If the LHS is also a constant, we can completely constant fold this.
2446 if (auto *InC
= dyn_cast
<ConstantInt
>(II
->getArgOperand(0))) {
2447 uint64_t Result
= InC
->getZExtValue();
2448 Result
&= maskTrailingOnes
<uint64_t>(Index
);
2449 return replaceInstUsesWith(CI
, ConstantInt::get(II
->getType(), Result
));
2451 // TODO should we convert this to an AND if the RHS is constant?
2455 case Intrinsic::x86_vcvtph2ps_128
:
2456 case Intrinsic::x86_vcvtph2ps_256
: {
2457 auto Arg
= II
->getArgOperand(0);
2458 auto ArgType
= cast
<VectorType
>(Arg
->getType());
2459 auto RetType
= cast
<VectorType
>(II
->getType());
2460 unsigned ArgWidth
= ArgType
->getNumElements();
2461 unsigned RetWidth
= RetType
->getNumElements();
2462 assert(RetWidth
<= ArgWidth
&& "Unexpected input/return vector widths");
2463 assert(ArgType
->isIntOrIntVectorTy() &&
2464 ArgType
->getScalarSizeInBits() == 16 &&
2465 "CVTPH2PS input type should be 16-bit integer vector");
2466 assert(RetType
->getScalarType()->isFloatTy() &&
2467 "CVTPH2PS output type should be 32-bit float vector");
2469 // Constant folding: Convert to generic half to single conversion.
2470 if (isa
<ConstantAggregateZero
>(Arg
))
2471 return replaceInstUsesWith(*II
, ConstantAggregateZero::get(RetType
));
2473 if (isa
<ConstantDataVector
>(Arg
)) {
2474 auto VectorHalfAsShorts
= Arg
;
2475 if (RetWidth
< ArgWidth
) {
2476 SmallVector
<uint32_t, 8> SubVecMask
;
2477 for (unsigned i
= 0; i
!= RetWidth
; ++i
)
2478 SubVecMask
.push_back((int)i
);
2479 VectorHalfAsShorts
= Builder
.CreateShuffleVector(
2480 Arg
, UndefValue::get(ArgType
), SubVecMask
);
2483 auto VectorHalfType
=
2484 VectorType::get(Type::getHalfTy(II
->getContext()), RetWidth
);
2486 Builder
.CreateBitCast(VectorHalfAsShorts
, VectorHalfType
);
2487 auto VectorFloats
= Builder
.CreateFPExt(VectorHalfs
, RetType
);
2488 return replaceInstUsesWith(*II
, VectorFloats
);
2491 // We only use the lowest lanes of the argument.
2492 if (Value
*V
= SimplifyDemandedVectorEltsLow(Arg
, ArgWidth
, RetWidth
)) {
2493 II
->setArgOperand(0, V
);
2499 case Intrinsic::x86_sse_cvtss2si
:
2500 case Intrinsic::x86_sse_cvtss2si64
:
2501 case Intrinsic::x86_sse_cvttss2si
:
2502 case Intrinsic::x86_sse_cvttss2si64
:
2503 case Intrinsic::x86_sse2_cvtsd2si
:
2504 case Intrinsic::x86_sse2_cvtsd2si64
:
2505 case Intrinsic::x86_sse2_cvttsd2si
:
2506 case Intrinsic::x86_sse2_cvttsd2si64
:
2507 case Intrinsic::x86_avx512_vcvtss2si32
:
2508 case Intrinsic::x86_avx512_vcvtss2si64
:
2509 case Intrinsic::x86_avx512_vcvtss2usi32
:
2510 case Intrinsic::x86_avx512_vcvtss2usi64
:
2511 case Intrinsic::x86_avx512_vcvtsd2si32
:
2512 case Intrinsic::x86_avx512_vcvtsd2si64
:
2513 case Intrinsic::x86_avx512_vcvtsd2usi32
:
2514 case Intrinsic::x86_avx512_vcvtsd2usi64
:
2515 case Intrinsic::x86_avx512_cvttss2si
:
2516 case Intrinsic::x86_avx512_cvttss2si64
:
2517 case Intrinsic::x86_avx512_cvttss2usi
:
2518 case Intrinsic::x86_avx512_cvttss2usi64
:
2519 case Intrinsic::x86_avx512_cvttsd2si
:
2520 case Intrinsic::x86_avx512_cvttsd2si64
:
2521 case Intrinsic::x86_avx512_cvttsd2usi
:
2522 case Intrinsic::x86_avx512_cvttsd2usi64
: {
2523 // These intrinsics only demand the 0th element of their input vectors. If
2524 // we can simplify the input based on that, do so now.
2525 Value
*Arg
= II
->getArgOperand(0);
2526 unsigned VWidth
= Arg
->getType()->getVectorNumElements();
2527 if (Value
*V
= SimplifyDemandedVectorEltsLow(Arg
, VWidth
, 1)) {
2528 II
->setArgOperand(0, V
);
2534 case Intrinsic::x86_mmx_pmovmskb
:
2535 case Intrinsic::x86_sse_movmsk_ps
:
2536 case Intrinsic::x86_sse2_movmsk_pd
:
2537 case Intrinsic::x86_sse2_pmovmskb_128
:
2538 case Intrinsic::x86_avx_movmsk_pd_256
:
2539 case Intrinsic::x86_avx_movmsk_ps_256
:
2540 case Intrinsic::x86_avx2_pmovmskb
:
2541 if (Value
*V
= simplifyX86movmsk(*II
, Builder
))
2542 return replaceInstUsesWith(*II
, V
);
2545 case Intrinsic::x86_sse_comieq_ss
:
2546 case Intrinsic::x86_sse_comige_ss
:
2547 case Intrinsic::x86_sse_comigt_ss
:
2548 case Intrinsic::x86_sse_comile_ss
:
2549 case Intrinsic::x86_sse_comilt_ss
:
2550 case Intrinsic::x86_sse_comineq_ss
:
2551 case Intrinsic::x86_sse_ucomieq_ss
:
2552 case Intrinsic::x86_sse_ucomige_ss
:
2553 case Intrinsic::x86_sse_ucomigt_ss
:
2554 case Intrinsic::x86_sse_ucomile_ss
:
2555 case Intrinsic::x86_sse_ucomilt_ss
:
2556 case Intrinsic::x86_sse_ucomineq_ss
:
2557 case Intrinsic::x86_sse2_comieq_sd
:
2558 case Intrinsic::x86_sse2_comige_sd
:
2559 case Intrinsic::x86_sse2_comigt_sd
:
2560 case Intrinsic::x86_sse2_comile_sd
:
2561 case Intrinsic::x86_sse2_comilt_sd
:
2562 case Intrinsic::x86_sse2_comineq_sd
:
2563 case Intrinsic::x86_sse2_ucomieq_sd
:
2564 case Intrinsic::x86_sse2_ucomige_sd
:
2565 case Intrinsic::x86_sse2_ucomigt_sd
:
2566 case Intrinsic::x86_sse2_ucomile_sd
:
2567 case Intrinsic::x86_sse2_ucomilt_sd
:
2568 case Intrinsic::x86_sse2_ucomineq_sd
:
2569 case Intrinsic::x86_avx512_vcomi_ss
:
2570 case Intrinsic::x86_avx512_vcomi_sd
:
2571 case Intrinsic::x86_avx512_mask_cmp_ss
:
2572 case Intrinsic::x86_avx512_mask_cmp_sd
: {
2573 // These intrinsics only demand the 0th element of their input vectors. If
2574 // we can simplify the input based on that, do so now.
2575 bool MadeChange
= false;
2576 Value
*Arg0
= II
->getArgOperand(0);
2577 Value
*Arg1
= II
->getArgOperand(1);
2578 unsigned VWidth
= Arg0
->getType()->getVectorNumElements();
2579 if (Value
*V
= SimplifyDemandedVectorEltsLow(Arg0
, VWidth
, 1)) {
2580 II
->setArgOperand(0, V
);
2583 if (Value
*V
= SimplifyDemandedVectorEltsLow(Arg1
, VWidth
, 1)) {
2584 II
->setArgOperand(1, V
);
2591 case Intrinsic::x86_avx512_cmp_pd_128
:
2592 case Intrinsic::x86_avx512_cmp_pd_256
:
2593 case Intrinsic::x86_avx512_cmp_pd_512
:
2594 case Intrinsic::x86_avx512_cmp_ps_128
:
2595 case Intrinsic::x86_avx512_cmp_ps_256
:
2596 case Intrinsic::x86_avx512_cmp_ps_512
: {
2597 // Folding cmp(sub(a,b),0) -> cmp(a,b) and cmp(0,sub(a,b)) -> cmp(b,a)
2598 Value
*Arg0
= II
->getArgOperand(0);
2599 Value
*Arg1
= II
->getArgOperand(1);
2600 bool Arg0IsZero
= match(Arg0
, m_PosZeroFP());
2602 std::swap(Arg0
, Arg1
);
2604 // This fold requires only the NINF(not +/- inf) since inf minus
2606 // NSZ(No Signed Zeros) is not needed because zeros of any sign are
2607 // equal for both compares.
2608 // NNAN is not needed because nans compare the same for both compares.
2609 // The compare intrinsic uses the above assumptions and therefore
2610 // doesn't require additional flags.
2611 if ((match(Arg0
, m_OneUse(m_FSub(m_Value(A
), m_Value(B
)))) &&
2612 match(Arg1
, m_PosZeroFP()) && isa
<Instruction
>(Arg0
) &&
2613 cast
<Instruction
>(Arg0
)->getFastMathFlags().noInfs())) {
2616 II
->setArgOperand(0, A
);
2617 II
->setArgOperand(1, B
);
2623 case Intrinsic::x86_avx512_add_ps_512
:
2624 case Intrinsic::x86_avx512_div_ps_512
:
2625 case Intrinsic::x86_avx512_mul_ps_512
:
2626 case Intrinsic::x86_avx512_sub_ps_512
:
2627 case Intrinsic::x86_avx512_add_pd_512
:
2628 case Intrinsic::x86_avx512_div_pd_512
:
2629 case Intrinsic::x86_avx512_mul_pd_512
:
2630 case Intrinsic::x86_avx512_sub_pd_512
:
2631 // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2633 if (auto *R
= dyn_cast
<ConstantInt
>(II
->getArgOperand(2))) {
2634 if (R
->getValue() == 4) {
2635 Value
*Arg0
= II
->getArgOperand(0);
2636 Value
*Arg1
= II
->getArgOperand(1);
2640 default: llvm_unreachable("Case stmts out of sync!");
2641 case Intrinsic::x86_avx512_add_ps_512
:
2642 case Intrinsic::x86_avx512_add_pd_512
:
2643 V
= Builder
.CreateFAdd(Arg0
, Arg1
);
2645 case Intrinsic::x86_avx512_sub_ps_512
:
2646 case Intrinsic::x86_avx512_sub_pd_512
:
2647 V
= Builder
.CreateFSub(Arg0
, Arg1
);
2649 case Intrinsic::x86_avx512_mul_ps_512
:
2650 case Intrinsic::x86_avx512_mul_pd_512
:
2651 V
= Builder
.CreateFMul(Arg0
, Arg1
);
2653 case Intrinsic::x86_avx512_div_ps_512
:
2654 case Intrinsic::x86_avx512_div_pd_512
:
2655 V
= Builder
.CreateFDiv(Arg0
, Arg1
);
2659 return replaceInstUsesWith(*II
, V
);
2664 case Intrinsic::x86_avx512_mask_add_ss_round
:
2665 case Intrinsic::x86_avx512_mask_div_ss_round
:
2666 case Intrinsic::x86_avx512_mask_mul_ss_round
:
2667 case Intrinsic::x86_avx512_mask_sub_ss_round
:
2668 case Intrinsic::x86_avx512_mask_add_sd_round
:
2669 case Intrinsic::x86_avx512_mask_div_sd_round
:
2670 case Intrinsic::x86_avx512_mask_mul_sd_round
:
2671 case Intrinsic::x86_avx512_mask_sub_sd_round
:
2672 // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2674 if (auto *R
= dyn_cast
<ConstantInt
>(II
->getArgOperand(4))) {
2675 if (R
->getValue() == 4) {
2676 // Extract the element as scalars.
2677 Value
*Arg0
= II
->getArgOperand(0);
2678 Value
*Arg1
= II
->getArgOperand(1);
2679 Value
*LHS
= Builder
.CreateExtractElement(Arg0
, (uint64_t)0);
2680 Value
*RHS
= Builder
.CreateExtractElement(Arg1
, (uint64_t)0);
2684 default: llvm_unreachable("Case stmts out of sync!");
2685 case Intrinsic::x86_avx512_mask_add_ss_round
:
2686 case Intrinsic::x86_avx512_mask_add_sd_round
:
2687 V
= Builder
.CreateFAdd(LHS
, RHS
);
2689 case Intrinsic::x86_avx512_mask_sub_ss_round
:
2690 case Intrinsic::x86_avx512_mask_sub_sd_round
:
2691 V
= Builder
.CreateFSub(LHS
, RHS
);
2693 case Intrinsic::x86_avx512_mask_mul_ss_round
:
2694 case Intrinsic::x86_avx512_mask_mul_sd_round
:
2695 V
= Builder
.CreateFMul(LHS
, RHS
);
2697 case Intrinsic::x86_avx512_mask_div_ss_round
:
2698 case Intrinsic::x86_avx512_mask_div_sd_round
:
2699 V
= Builder
.CreateFDiv(LHS
, RHS
);
2703 // Handle the masking aspect of the intrinsic.
2704 Value
*Mask
= II
->getArgOperand(3);
2705 auto *C
= dyn_cast
<ConstantInt
>(Mask
);
2706 // We don't need a select if we know the mask bit is a 1.
2707 if (!C
|| !C
->getValue()[0]) {
2708 // Cast the mask to an i1 vector and then extract the lowest element.
2709 auto *MaskTy
= VectorType::get(Builder
.getInt1Ty(),
2710 cast
<IntegerType
>(Mask
->getType())->getBitWidth());
2711 Mask
= Builder
.CreateBitCast(Mask
, MaskTy
);
2712 Mask
= Builder
.CreateExtractElement(Mask
, (uint64_t)0);
2713 // Extract the lowest element from the passthru operand.
2714 Value
*Passthru
= Builder
.CreateExtractElement(II
->getArgOperand(2),
2716 V
= Builder
.CreateSelect(Mask
, V
, Passthru
);
2719 // Insert the result back into the original argument 0.
2720 V
= Builder
.CreateInsertElement(Arg0
, V
, (uint64_t)0);
2722 return replaceInstUsesWith(*II
, V
);
2727 // Constant fold ashr( <A x Bi>, Ci ).
2728 // Constant fold lshr( <A x Bi>, Ci ).
2729 // Constant fold shl( <A x Bi>, Ci ).
2730 case Intrinsic::x86_sse2_psrai_d
:
2731 case Intrinsic::x86_sse2_psrai_w
:
2732 case Intrinsic::x86_avx2_psrai_d
:
2733 case Intrinsic::x86_avx2_psrai_w
:
2734 case Intrinsic::x86_avx512_psrai_q_128
:
2735 case Intrinsic::x86_avx512_psrai_q_256
:
2736 case Intrinsic::x86_avx512_psrai_d_512
:
2737 case Intrinsic::x86_avx512_psrai_q_512
:
2738 case Intrinsic::x86_avx512_psrai_w_512
:
2739 case Intrinsic::x86_sse2_psrli_d
:
2740 case Intrinsic::x86_sse2_psrli_q
:
2741 case Intrinsic::x86_sse2_psrli_w
:
2742 case Intrinsic::x86_avx2_psrli_d
:
2743 case Intrinsic::x86_avx2_psrli_q
:
2744 case Intrinsic::x86_avx2_psrli_w
:
2745 case Intrinsic::x86_avx512_psrli_d_512
:
2746 case Intrinsic::x86_avx512_psrli_q_512
:
2747 case Intrinsic::x86_avx512_psrli_w_512
:
2748 case Intrinsic::x86_sse2_pslli_d
:
2749 case Intrinsic::x86_sse2_pslli_q
:
2750 case Intrinsic::x86_sse2_pslli_w
:
2751 case Intrinsic::x86_avx2_pslli_d
:
2752 case Intrinsic::x86_avx2_pslli_q
:
2753 case Intrinsic::x86_avx2_pslli_w
:
2754 case Intrinsic::x86_avx512_pslli_d_512
:
2755 case Intrinsic::x86_avx512_pslli_q_512
:
2756 case Intrinsic::x86_avx512_pslli_w_512
:
2757 if (Value
*V
= simplifyX86immShift(*II
, Builder
))
2758 return replaceInstUsesWith(*II
, V
);
2761 case Intrinsic::x86_sse2_psra_d
:
2762 case Intrinsic::x86_sse2_psra_w
:
2763 case Intrinsic::x86_avx2_psra_d
:
2764 case Intrinsic::x86_avx2_psra_w
:
2765 case Intrinsic::x86_avx512_psra_q_128
:
2766 case Intrinsic::x86_avx512_psra_q_256
:
2767 case Intrinsic::x86_avx512_psra_d_512
:
2768 case Intrinsic::x86_avx512_psra_q_512
:
2769 case Intrinsic::x86_avx512_psra_w_512
:
2770 case Intrinsic::x86_sse2_psrl_d
:
2771 case Intrinsic::x86_sse2_psrl_q
:
2772 case Intrinsic::x86_sse2_psrl_w
:
2773 case Intrinsic::x86_avx2_psrl_d
:
2774 case Intrinsic::x86_avx2_psrl_q
:
2775 case Intrinsic::x86_avx2_psrl_w
:
2776 case Intrinsic::x86_avx512_psrl_d_512
:
2777 case Intrinsic::x86_avx512_psrl_q_512
:
2778 case Intrinsic::x86_avx512_psrl_w_512
:
2779 case Intrinsic::x86_sse2_psll_d
:
2780 case Intrinsic::x86_sse2_psll_q
:
2781 case Intrinsic::x86_sse2_psll_w
:
2782 case Intrinsic::x86_avx2_psll_d
:
2783 case Intrinsic::x86_avx2_psll_q
:
2784 case Intrinsic::x86_avx2_psll_w
:
2785 case Intrinsic::x86_avx512_psll_d_512
:
2786 case Intrinsic::x86_avx512_psll_q_512
:
2787 case Intrinsic::x86_avx512_psll_w_512
: {
2788 if (Value
*V
= simplifyX86immShift(*II
, Builder
))
2789 return replaceInstUsesWith(*II
, V
);
2791 // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
2792 // operand to compute the shift amount.
2793 Value
*Arg1
= II
->getArgOperand(1);
2794 assert(Arg1
->getType()->getPrimitiveSizeInBits() == 128 &&
2795 "Unexpected packed shift size");
2796 unsigned VWidth
= Arg1
->getType()->getVectorNumElements();
2798 if (Value
*V
= SimplifyDemandedVectorEltsLow(Arg1
, VWidth
, VWidth
/ 2)) {
2799 II
->setArgOperand(1, V
);
2805 case Intrinsic::x86_avx2_psllv_d
:
2806 case Intrinsic::x86_avx2_psllv_d_256
:
2807 case Intrinsic::x86_avx2_psllv_q
:
2808 case Intrinsic::x86_avx2_psllv_q_256
:
2809 case Intrinsic::x86_avx512_psllv_d_512
:
2810 case Intrinsic::x86_avx512_psllv_q_512
:
2811 case Intrinsic::x86_avx512_psllv_w_128
:
2812 case Intrinsic::x86_avx512_psllv_w_256
:
2813 case Intrinsic::x86_avx512_psllv_w_512
:
2814 case Intrinsic::x86_avx2_psrav_d
:
2815 case Intrinsic::x86_avx2_psrav_d_256
:
2816 case Intrinsic::x86_avx512_psrav_q_128
:
2817 case Intrinsic::x86_avx512_psrav_q_256
:
2818 case Intrinsic::x86_avx512_psrav_d_512
:
2819 case Intrinsic::x86_avx512_psrav_q_512
:
2820 case Intrinsic::x86_avx512_psrav_w_128
:
2821 case Intrinsic::x86_avx512_psrav_w_256
:
2822 case Intrinsic::x86_avx512_psrav_w_512
:
2823 case Intrinsic::x86_avx2_psrlv_d
:
2824 case Intrinsic::x86_avx2_psrlv_d_256
:
2825 case Intrinsic::x86_avx2_psrlv_q
:
2826 case Intrinsic::x86_avx2_psrlv_q_256
:
2827 case Intrinsic::x86_avx512_psrlv_d_512
:
2828 case Intrinsic::x86_avx512_psrlv_q_512
:
2829 case Intrinsic::x86_avx512_psrlv_w_128
:
2830 case Intrinsic::x86_avx512_psrlv_w_256
:
2831 case Intrinsic::x86_avx512_psrlv_w_512
:
2832 if (Value
*V
= simplifyX86varShift(*II
, Builder
))
2833 return replaceInstUsesWith(*II
, V
);
2836 case Intrinsic::x86_sse2_packssdw_128
:
2837 case Intrinsic::x86_sse2_packsswb_128
:
2838 case Intrinsic::x86_avx2_packssdw
:
2839 case Intrinsic::x86_avx2_packsswb
:
2840 case Intrinsic::x86_avx512_packssdw_512
:
2841 case Intrinsic::x86_avx512_packsswb_512
:
2842 if (Value
*V
= simplifyX86pack(*II
, Builder
, true))
2843 return replaceInstUsesWith(*II
, V
);
2846 case Intrinsic::x86_sse2_packuswb_128
:
2847 case Intrinsic::x86_sse41_packusdw
:
2848 case Intrinsic::x86_avx2_packusdw
:
2849 case Intrinsic::x86_avx2_packuswb
:
2850 case Intrinsic::x86_avx512_packusdw_512
:
2851 case Intrinsic::x86_avx512_packuswb_512
:
2852 if (Value
*V
= simplifyX86pack(*II
, Builder
, false))
2853 return replaceInstUsesWith(*II
, V
);
2856 case Intrinsic::x86_pclmulqdq
:
2857 case Intrinsic::x86_pclmulqdq_256
:
2858 case Intrinsic::x86_pclmulqdq_512
: {
2859 if (auto *C
= dyn_cast
<ConstantInt
>(II
->getArgOperand(2))) {
2860 unsigned Imm
= C
->getZExtValue();
2862 bool MadeChange
= false;
2863 Value
*Arg0
= II
->getArgOperand(0);
2864 Value
*Arg1
= II
->getArgOperand(1);
2865 unsigned VWidth
= Arg0
->getType()->getVectorNumElements();
2867 APInt
UndefElts1(VWidth
, 0);
2868 APInt DemandedElts1
= APInt::getSplat(VWidth
,
2869 APInt(2, (Imm
& 0x01) ? 2 : 1));
2870 if (Value
*V
= SimplifyDemandedVectorElts(Arg0
, DemandedElts1
,
2872 II
->setArgOperand(0, V
);
2876 APInt
UndefElts2(VWidth
, 0);
2877 APInt DemandedElts2
= APInt::getSplat(VWidth
,
2878 APInt(2, (Imm
& 0x10) ? 2 : 1));
2879 if (Value
*V
= SimplifyDemandedVectorElts(Arg1
, DemandedElts2
,
2881 II
->setArgOperand(1, V
);
2885 // If either input elements are undef, the result is zero.
2886 if (DemandedElts1
.isSubsetOf(UndefElts1
) ||
2887 DemandedElts2
.isSubsetOf(UndefElts2
))
2888 return replaceInstUsesWith(*II
,
2889 ConstantAggregateZero::get(II
->getType()));
2897 case Intrinsic::x86_sse41_insertps
:
2898 if (Value
*V
= simplifyX86insertps(*II
, Builder
))
2899 return replaceInstUsesWith(*II
, V
);
2902 case Intrinsic::x86_sse4a_extrq
: {
2903 Value
*Op0
= II
->getArgOperand(0);
2904 Value
*Op1
= II
->getArgOperand(1);
2905 unsigned VWidth0
= Op0
->getType()->getVectorNumElements();
2906 unsigned VWidth1
= Op1
->getType()->getVectorNumElements();
2907 assert(Op0
->getType()->getPrimitiveSizeInBits() == 128 &&
2908 Op1
->getType()->getPrimitiveSizeInBits() == 128 && VWidth0
== 2 &&
2909 VWidth1
== 16 && "Unexpected operand sizes");
2911 // See if we're dealing with constant values.
2912 Constant
*C1
= dyn_cast
<Constant
>(Op1
);
2913 ConstantInt
*CILength
=
2914 C1
? dyn_cast_or_null
<ConstantInt
>(C1
->getAggregateElement((unsigned)0))
2916 ConstantInt
*CIIndex
=
2917 C1
? dyn_cast_or_null
<ConstantInt
>(C1
->getAggregateElement((unsigned)1))
2920 // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
2921 if (Value
*V
= simplifyX86extrq(*II
, Op0
, CILength
, CIIndex
, Builder
))
2922 return replaceInstUsesWith(*II
, V
);
2924 // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
2925 // operands and the lowest 16-bits of the second.
2926 bool MadeChange
= false;
2927 if (Value
*V
= SimplifyDemandedVectorEltsLow(Op0
, VWidth0
, 1)) {
2928 II
->setArgOperand(0, V
);
2931 if (Value
*V
= SimplifyDemandedVectorEltsLow(Op1
, VWidth1
, 2)) {
2932 II
->setArgOperand(1, V
);
2940 case Intrinsic::x86_sse4a_extrqi
: {
2941 // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
2942 // bits of the lower 64-bits. The upper 64-bits are undefined.
2943 Value
*Op0
= II
->getArgOperand(0);
2944 unsigned VWidth
= Op0
->getType()->getVectorNumElements();
2945 assert(Op0
->getType()->getPrimitiveSizeInBits() == 128 && VWidth
== 2 &&
2946 "Unexpected operand size");
2948 // See if we're dealing with constant values.
2949 ConstantInt
*CILength
= dyn_cast
<ConstantInt
>(II
->getArgOperand(1));
2950 ConstantInt
*CIIndex
= dyn_cast
<ConstantInt
>(II
->getArgOperand(2));
2952 // Attempt to simplify to a constant or shuffle vector.
2953 if (Value
*V
= simplifyX86extrq(*II
, Op0
, CILength
, CIIndex
, Builder
))
2954 return replaceInstUsesWith(*II
, V
);
2956 // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
2958 if (Value
*V
= SimplifyDemandedVectorEltsLow(Op0
, VWidth
, 1)) {
2959 II
->setArgOperand(0, V
);
2965 case Intrinsic::x86_sse4a_insertq
: {
2966 Value
*Op0
= II
->getArgOperand(0);
2967 Value
*Op1
= II
->getArgOperand(1);
2968 unsigned VWidth
= Op0
->getType()->getVectorNumElements();
2969 assert(Op0
->getType()->getPrimitiveSizeInBits() == 128 &&
2970 Op1
->getType()->getPrimitiveSizeInBits() == 128 && VWidth
== 2 &&
2971 Op1
->getType()->getVectorNumElements() == 2 &&
2972 "Unexpected operand size");
2974 // See if we're dealing with constant values.
2975 Constant
*C1
= dyn_cast
<Constant
>(Op1
);
2977 C1
? dyn_cast_or_null
<ConstantInt
>(C1
->getAggregateElement((unsigned)1))
2980 // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
2982 const APInt
&V11
= CI11
->getValue();
2983 APInt Len
= V11
.zextOrTrunc(6);
2984 APInt Idx
= V11
.lshr(8).zextOrTrunc(6);
2985 if (Value
*V
= simplifyX86insertq(*II
, Op0
, Op1
, Len
, Idx
, Builder
))
2986 return replaceInstUsesWith(*II
, V
);
2989 // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
2991 if (Value
*V
= SimplifyDemandedVectorEltsLow(Op0
, VWidth
, 1)) {
2992 II
->setArgOperand(0, V
);
2998 case Intrinsic::x86_sse4a_insertqi
: {
2999 // INSERTQI: Extract lowest Length bits from lower half of second source and
3000 // insert over first source starting at Index bit. The upper 64-bits are
3002 Value
*Op0
= II
->getArgOperand(0);
3003 Value
*Op1
= II
->getArgOperand(1);
3004 unsigned VWidth0
= Op0
->getType()->getVectorNumElements();
3005 unsigned VWidth1
= Op1
->getType()->getVectorNumElements();
3006 assert(Op0
->getType()->getPrimitiveSizeInBits() == 128 &&
3007 Op1
->getType()->getPrimitiveSizeInBits() == 128 && VWidth0
== 2 &&
3008 VWidth1
== 2 && "Unexpected operand sizes");
3010 // See if we're dealing with constant values.
3011 ConstantInt
*CILength
= dyn_cast
<ConstantInt
>(II
->getArgOperand(2));
3012 ConstantInt
*CIIndex
= dyn_cast
<ConstantInt
>(II
->getArgOperand(3));
3014 // Attempt to simplify to a constant or shuffle vector.
3015 if (CILength
&& CIIndex
) {
3016 APInt Len
= CILength
->getValue().zextOrTrunc(6);
3017 APInt Idx
= CIIndex
->getValue().zextOrTrunc(6);
3018 if (Value
*V
= simplifyX86insertq(*II
, Op0
, Op1
, Len
, Idx
, Builder
))
3019 return replaceInstUsesWith(*II
, V
);
3022 // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
3024 bool MadeChange
= false;
3025 if (Value
*V
= SimplifyDemandedVectorEltsLow(Op0
, VWidth0
, 1)) {
3026 II
->setArgOperand(0, V
);
3029 if (Value
*V
= SimplifyDemandedVectorEltsLow(Op1
, VWidth1
, 1)) {
3030 II
->setArgOperand(1, V
);
3038 case Intrinsic::x86_sse41_pblendvb
:
3039 case Intrinsic::x86_sse41_blendvps
:
3040 case Intrinsic::x86_sse41_blendvpd
:
3041 case Intrinsic::x86_avx_blendv_ps_256
:
3042 case Intrinsic::x86_avx_blendv_pd_256
:
3043 case Intrinsic::x86_avx2_pblendvb
: {
3044 // fold (blend A, A, Mask) -> A
3045 Value
*Op0
= II
->getArgOperand(0);
3046 Value
*Op1
= II
->getArgOperand(1);
3047 Value
*Mask
= II
->getArgOperand(2);
3049 return replaceInstUsesWith(CI
, Op0
);
3051 // Zero Mask - select 1st argument.
3052 if (isa
<ConstantAggregateZero
>(Mask
))
3053 return replaceInstUsesWith(CI
, Op0
);
3055 // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
3056 if (auto *ConstantMask
= dyn_cast
<ConstantDataVector
>(Mask
)) {
3057 Constant
*NewSelector
= getNegativeIsTrueBoolVec(ConstantMask
);
3058 return SelectInst::Create(NewSelector
, Op1
, Op0
, "blendv");
3061 // Convert to a vector select if we can bypass casts and find a boolean
3062 // vector condition value.
3064 Mask
= peekThroughBitcast(Mask
);
3065 if (match(Mask
, m_SExt(m_Value(BoolVec
))) &&
3066 BoolVec
->getType()->isVectorTy() &&
3067 BoolVec
->getType()->getScalarSizeInBits() == 1) {
3068 assert(Mask
->getType()->getPrimitiveSizeInBits() ==
3069 II
->getType()->getPrimitiveSizeInBits() &&
3070 "Not expecting mask and operands with different sizes");
3072 unsigned NumMaskElts
= Mask
->getType()->getVectorNumElements();
3073 unsigned NumOperandElts
= II
->getType()->getVectorNumElements();
3074 if (NumMaskElts
== NumOperandElts
)
3075 return SelectInst::Create(BoolVec
, Op1
, Op0
);
3077 // If the mask has less elements than the operands, each mask bit maps to
3078 // multiple elements of the operands. Bitcast back and forth.
3079 if (NumMaskElts
< NumOperandElts
) {
3080 Value
*CastOp0
= Builder
.CreateBitCast(Op0
, Mask
->getType());
3081 Value
*CastOp1
= Builder
.CreateBitCast(Op1
, Mask
->getType());
3082 Value
*Sel
= Builder
.CreateSelect(BoolVec
, CastOp1
, CastOp0
);
3083 return new BitCastInst(Sel
, II
->getType());
3090 case Intrinsic::x86_ssse3_pshuf_b_128
:
3091 case Intrinsic::x86_avx2_pshuf_b
:
3092 case Intrinsic::x86_avx512_pshuf_b_512
:
3093 if (Value
*V
= simplifyX86pshufb(*II
, Builder
))
3094 return replaceInstUsesWith(*II
, V
);
3097 case Intrinsic::x86_avx_vpermilvar_ps
:
3098 case Intrinsic::x86_avx_vpermilvar_ps_256
:
3099 case Intrinsic::x86_avx512_vpermilvar_ps_512
:
3100 case Intrinsic::x86_avx_vpermilvar_pd
:
3101 case Intrinsic::x86_avx_vpermilvar_pd_256
:
3102 case Intrinsic::x86_avx512_vpermilvar_pd_512
:
3103 if (Value
*V
= simplifyX86vpermilvar(*II
, Builder
))
3104 return replaceInstUsesWith(*II
, V
);
3107 case Intrinsic::x86_avx2_permd
:
3108 case Intrinsic::x86_avx2_permps
:
3109 case Intrinsic::x86_avx512_permvar_df_256
:
3110 case Intrinsic::x86_avx512_permvar_df_512
:
3111 case Intrinsic::x86_avx512_permvar_di_256
:
3112 case Intrinsic::x86_avx512_permvar_di_512
:
3113 case Intrinsic::x86_avx512_permvar_hi_128
:
3114 case Intrinsic::x86_avx512_permvar_hi_256
:
3115 case Intrinsic::x86_avx512_permvar_hi_512
:
3116 case Intrinsic::x86_avx512_permvar_qi_128
:
3117 case Intrinsic::x86_avx512_permvar_qi_256
:
3118 case Intrinsic::x86_avx512_permvar_qi_512
:
3119 case Intrinsic::x86_avx512_permvar_sf_512
:
3120 case Intrinsic::x86_avx512_permvar_si_512
:
3121 if (Value
*V
= simplifyX86vpermv(*II
, Builder
))
3122 return replaceInstUsesWith(*II
, V
);
3125 case Intrinsic::x86_avx_maskload_ps
:
3126 case Intrinsic::x86_avx_maskload_pd
:
3127 case Intrinsic::x86_avx_maskload_ps_256
:
3128 case Intrinsic::x86_avx_maskload_pd_256
:
3129 case Intrinsic::x86_avx2_maskload_d
:
3130 case Intrinsic::x86_avx2_maskload_q
:
3131 case Intrinsic::x86_avx2_maskload_d_256
:
3132 case Intrinsic::x86_avx2_maskload_q_256
:
3133 if (Instruction
*I
= simplifyX86MaskedLoad(*II
, *this))
3137 case Intrinsic::x86_sse2_maskmov_dqu
:
3138 case Intrinsic::x86_avx_maskstore_ps
:
3139 case Intrinsic::x86_avx_maskstore_pd
:
3140 case Intrinsic::x86_avx_maskstore_ps_256
:
3141 case Intrinsic::x86_avx_maskstore_pd_256
:
3142 case Intrinsic::x86_avx2_maskstore_d
:
3143 case Intrinsic::x86_avx2_maskstore_q
:
3144 case Intrinsic::x86_avx2_maskstore_d_256
:
3145 case Intrinsic::x86_avx2_maskstore_q_256
:
3146 if (simplifyX86MaskedStore(*II
, *this))
3150 case Intrinsic::x86_addcarry_32
:
3151 case Intrinsic::x86_addcarry_64
:
3152 if (Value
*V
= simplifyX86addcarry(*II
, Builder
))
3153 return replaceInstUsesWith(*II
, V
);
3156 case Intrinsic::ppc_altivec_vperm
:
3157 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
3158 // Note that ppc_altivec_vperm has a big-endian bias, so when creating
3159 // a vectorshuffle for little endian, we must undo the transformation
3160 // performed on vec_perm in altivec.h. That is, we must complement
3161 // the permutation mask with respect to 31 and reverse the order of
3163 if (Constant
*Mask
= dyn_cast
<Constant
>(II
->getArgOperand(2))) {
3164 assert(Mask
->getType()->getVectorNumElements() == 16 &&
3165 "Bad type for intrinsic!");
3167 // Check that all of the elements are integer constants or undefs.
3168 bool AllEltsOk
= true;
3169 for (unsigned i
= 0; i
!= 16; ++i
) {
3170 Constant
*Elt
= Mask
->getAggregateElement(i
);
3171 if (!Elt
|| !(isa
<ConstantInt
>(Elt
) || isa
<UndefValue
>(Elt
))) {
3178 // Cast the input vectors to byte vectors.
3179 Value
*Op0
= Builder
.CreateBitCast(II
->getArgOperand(0),
3181 Value
*Op1
= Builder
.CreateBitCast(II
->getArgOperand(1),
3183 Value
*Result
= UndefValue::get(Op0
->getType());
3185 // Only extract each element once.
3186 Value
*ExtractedElts
[32];
3187 memset(ExtractedElts
, 0, sizeof(ExtractedElts
));
3189 for (unsigned i
= 0; i
!= 16; ++i
) {
3190 if (isa
<UndefValue
>(Mask
->getAggregateElement(i
)))
3193 cast
<ConstantInt
>(Mask
->getAggregateElement(i
))->getZExtValue();
3194 Idx
&= 31; // Match the hardware behavior.
3195 if (DL
.isLittleEndian())
3198 if (!ExtractedElts
[Idx
]) {
3199 Value
*Op0ToUse
= (DL
.isLittleEndian()) ? Op1
: Op0
;
3200 Value
*Op1ToUse
= (DL
.isLittleEndian()) ? Op0
: Op1
;
3201 ExtractedElts
[Idx
] =
3202 Builder
.CreateExtractElement(Idx
< 16 ? Op0ToUse
: Op1ToUse
,
3203 Builder
.getInt32(Idx
&15));
3206 // Insert this value into the result vector.
3207 Result
= Builder
.CreateInsertElement(Result
, ExtractedElts
[Idx
],
3208 Builder
.getInt32(i
));
3210 return CastInst::Create(Instruction::BitCast
, Result
, CI
.getType());
3215 case Intrinsic::arm_neon_vld1
: {
3216 unsigned MemAlign
= getKnownAlignment(II
->getArgOperand(0),
3218 if (Value
*V
= simplifyNeonVld1(*II
, MemAlign
, Builder
))
3219 return replaceInstUsesWith(*II
, V
);
3223 case Intrinsic::arm_neon_vld2
:
3224 case Intrinsic::arm_neon_vld3
:
3225 case Intrinsic::arm_neon_vld4
:
3226 case Intrinsic::arm_neon_vld2lane
:
3227 case Intrinsic::arm_neon_vld3lane
:
3228 case Intrinsic::arm_neon_vld4lane
:
3229 case Intrinsic::arm_neon_vst1
:
3230 case Intrinsic::arm_neon_vst2
:
3231 case Intrinsic::arm_neon_vst3
:
3232 case Intrinsic::arm_neon_vst4
:
3233 case Intrinsic::arm_neon_vst2lane
:
3234 case Intrinsic::arm_neon_vst3lane
:
3235 case Intrinsic::arm_neon_vst4lane
: {
3237 getKnownAlignment(II
->getArgOperand(0), DL
, II
, &AC
, &DT
);
3238 unsigned AlignArg
= II
->getNumArgOperands() - 1;
3239 ConstantInt
*IntrAlign
= dyn_cast
<ConstantInt
>(II
->getArgOperand(AlignArg
));
3240 if (IntrAlign
&& IntrAlign
->getZExtValue() < MemAlign
) {
3241 II
->setArgOperand(AlignArg
,
3242 ConstantInt::get(Type::getInt32Ty(II
->getContext()),
3249 case Intrinsic::arm_neon_vtbl1
:
3250 case Intrinsic::aarch64_neon_tbl1
:
3251 if (Value
*V
= simplifyNeonTbl1(*II
, Builder
))
3252 return replaceInstUsesWith(*II
, V
);
3255 case Intrinsic::arm_neon_vmulls
:
3256 case Intrinsic::arm_neon_vmullu
:
3257 case Intrinsic::aarch64_neon_smull
:
3258 case Intrinsic::aarch64_neon_umull
: {
3259 Value
*Arg0
= II
->getArgOperand(0);
3260 Value
*Arg1
= II
->getArgOperand(1);
3262 // Handle mul by zero first:
3263 if (isa
<ConstantAggregateZero
>(Arg0
) || isa
<ConstantAggregateZero
>(Arg1
)) {
3264 return replaceInstUsesWith(CI
, ConstantAggregateZero::get(II
->getType()));
3267 // Check for constant LHS & RHS - in this case we just simplify.
3268 bool Zext
= (IID
== Intrinsic::arm_neon_vmullu
||
3269 IID
== Intrinsic::aarch64_neon_umull
);
3270 VectorType
*NewVT
= cast
<VectorType
>(II
->getType());
3271 if (Constant
*CV0
= dyn_cast
<Constant
>(Arg0
)) {
3272 if (Constant
*CV1
= dyn_cast
<Constant
>(Arg1
)) {
3273 CV0
= ConstantExpr::getIntegerCast(CV0
, NewVT
, /*isSigned=*/!Zext
);
3274 CV1
= ConstantExpr::getIntegerCast(CV1
, NewVT
, /*isSigned=*/!Zext
);
3276 return replaceInstUsesWith(CI
, ConstantExpr::getMul(CV0
, CV1
));
3279 // Couldn't simplify - canonicalize constant to the RHS.
3280 std::swap(Arg0
, Arg1
);
3283 // Handle mul by one:
3284 if (Constant
*CV1
= dyn_cast
<Constant
>(Arg1
))
3285 if (ConstantInt
*Splat
=
3286 dyn_cast_or_null
<ConstantInt
>(CV1
->getSplatValue()))
3288 return CastInst::CreateIntegerCast(Arg0
, II
->getType(),
3289 /*isSigned=*/!Zext
);
3293 case Intrinsic::arm_neon_aesd
:
3294 case Intrinsic::arm_neon_aese
:
3295 case Intrinsic::aarch64_crypto_aesd
:
3296 case Intrinsic::aarch64_crypto_aese
: {
3297 Value
*DataArg
= II
->getArgOperand(0);
3298 Value
*KeyArg
= II
->getArgOperand(1);
3300 // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
3302 if (match(KeyArg
, m_ZeroInt()) &&
3303 match(DataArg
, m_Xor(m_Value(Data
), m_Value(Key
)))) {
3304 II
->setArgOperand(0, Data
);
3305 II
->setArgOperand(1, Key
);
3310 case Intrinsic::amdgcn_rcp
: {
3311 Value
*Src
= II
->getArgOperand(0);
3313 // TODO: Move to ConstantFolding/InstSimplify?
3314 if (isa
<UndefValue
>(Src
))
3315 return replaceInstUsesWith(CI
, Src
);
3317 if (const ConstantFP
*C
= dyn_cast
<ConstantFP
>(Src
)) {
3318 const APFloat
&ArgVal
= C
->getValueAPF();
3319 APFloat
Val(ArgVal
.getSemantics(), 1.0);
3320 APFloat::opStatus Status
= Val
.divide(ArgVal
,
3321 APFloat::rmNearestTiesToEven
);
3322 // Only do this if it was exact and therefore not dependent on the
3324 if (Status
== APFloat::opOK
)
3325 return replaceInstUsesWith(CI
, ConstantFP::get(II
->getContext(), Val
));
3330 case Intrinsic::amdgcn_rsq
: {
3331 Value
*Src
= II
->getArgOperand(0);
3333 // TODO: Move to ConstantFolding/InstSimplify?
3334 if (isa
<UndefValue
>(Src
))
3335 return replaceInstUsesWith(CI
, Src
);
3338 case Intrinsic::amdgcn_frexp_mant
:
3339 case Intrinsic::amdgcn_frexp_exp
: {
3340 Value
*Src
= II
->getArgOperand(0);
3341 if (const ConstantFP
*C
= dyn_cast
<ConstantFP
>(Src
)) {
3343 APFloat Significand
= frexp(C
->getValueAPF(), Exp
,
3344 APFloat::rmNearestTiesToEven
);
3346 if (IID
== Intrinsic::amdgcn_frexp_mant
) {
3347 return replaceInstUsesWith(CI
, ConstantFP::get(II
->getContext(),
3351 // Match instruction special case behavior.
3352 if (Exp
== APFloat::IEK_NaN
|| Exp
== APFloat::IEK_Inf
)
3355 return replaceInstUsesWith(CI
, ConstantInt::get(II
->getType(), Exp
));
3358 if (isa
<UndefValue
>(Src
))
3359 return replaceInstUsesWith(CI
, UndefValue::get(II
->getType()));
3363 case Intrinsic::amdgcn_class
: {
3365 S_NAN
= 1 << 0, // Signaling NaN
3366 Q_NAN
= 1 << 1, // Quiet NaN
3367 N_INFINITY
= 1 << 2, // Negative infinity
3368 N_NORMAL
= 1 << 3, // Negative normal
3369 N_SUBNORMAL
= 1 << 4, // Negative subnormal
3370 N_ZERO
= 1 << 5, // Negative zero
3371 P_ZERO
= 1 << 6, // Positive zero
3372 P_SUBNORMAL
= 1 << 7, // Positive subnormal
3373 P_NORMAL
= 1 << 8, // Positive normal
3374 P_INFINITY
= 1 << 9 // Positive infinity
3377 const uint32_t FullMask
= S_NAN
| Q_NAN
| N_INFINITY
| N_NORMAL
|
3378 N_SUBNORMAL
| N_ZERO
| P_ZERO
| P_SUBNORMAL
| P_NORMAL
| P_INFINITY
;
3380 Value
*Src0
= II
->getArgOperand(0);
3381 Value
*Src1
= II
->getArgOperand(1);
3382 const ConstantInt
*CMask
= dyn_cast
<ConstantInt
>(Src1
);
3384 if (isa
<UndefValue
>(Src0
))
3385 return replaceInstUsesWith(*II
, UndefValue::get(II
->getType()));
3387 if (isa
<UndefValue
>(Src1
))
3388 return replaceInstUsesWith(*II
, ConstantInt::get(II
->getType(), false));
3392 uint32_t Mask
= CMask
->getZExtValue();
3394 // If all tests are made, it doesn't matter what the value is.
3395 if ((Mask
& FullMask
) == FullMask
)
3396 return replaceInstUsesWith(*II
, ConstantInt::get(II
->getType(), true));
3398 if ((Mask
& FullMask
) == 0)
3399 return replaceInstUsesWith(*II
, ConstantInt::get(II
->getType(), false));
3401 if (Mask
== (S_NAN
| Q_NAN
)) {
3402 // Equivalent of isnan. Replace with standard fcmp.
3403 Value
*FCmp
= Builder
.CreateFCmpUNO(Src0
, Src0
);
3405 return replaceInstUsesWith(*II
, FCmp
);
3408 if (Mask
== (N_ZERO
| P_ZERO
)) {
3409 // Equivalent of == 0.
3410 Value
*FCmp
= Builder
.CreateFCmpOEQ(
3411 Src0
, ConstantFP::get(Src0
->getType(), 0.0));
3414 return replaceInstUsesWith(*II
, FCmp
);
3417 // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other
3418 if (((Mask
& S_NAN
) || (Mask
& Q_NAN
)) && isKnownNeverNaN(Src0
, &TLI
)) {
3419 II
->setArgOperand(1, ConstantInt::get(Src1
->getType(),
3420 Mask
& ~(S_NAN
| Q_NAN
)));
3424 const ConstantFP
*CVal
= dyn_cast
<ConstantFP
>(Src0
);
3426 if (isa
<UndefValue
>(Src0
))
3427 return replaceInstUsesWith(*II
, UndefValue::get(II
->getType()));
3429 // Clamp mask to used bits
3430 if ((Mask
& FullMask
) != Mask
) {
3431 CallInst
*NewCall
= Builder
.CreateCall(II
->getCalledFunction(),
3432 { Src0
, ConstantInt::get(Src1
->getType(), Mask
& FullMask
) }
3435 NewCall
->takeName(II
);
3436 return replaceInstUsesWith(*II
, NewCall
);
3442 const APFloat
&Val
= CVal
->getValueAPF();
3445 ((Mask
& S_NAN
) && Val
.isNaN() && Val
.isSignaling()) ||
3446 ((Mask
& Q_NAN
) && Val
.isNaN() && !Val
.isSignaling()) ||
3447 ((Mask
& N_INFINITY
) && Val
.isInfinity() && Val
.isNegative()) ||
3448 ((Mask
& N_NORMAL
) && Val
.isNormal() && Val
.isNegative()) ||
3449 ((Mask
& N_SUBNORMAL
) && Val
.isDenormal() && Val
.isNegative()) ||
3450 ((Mask
& N_ZERO
) && Val
.isZero() && Val
.isNegative()) ||
3451 ((Mask
& P_ZERO
) && Val
.isZero() && !Val
.isNegative()) ||
3452 ((Mask
& P_SUBNORMAL
) && Val
.isDenormal() && !Val
.isNegative()) ||
3453 ((Mask
& P_NORMAL
) && Val
.isNormal() && !Val
.isNegative()) ||
3454 ((Mask
& P_INFINITY
) && Val
.isInfinity() && !Val
.isNegative());
3456 return replaceInstUsesWith(*II
, ConstantInt::get(II
->getType(), Result
));
3458 case Intrinsic::amdgcn_cvt_pkrtz
: {
3459 Value
*Src0
= II
->getArgOperand(0);
3460 Value
*Src1
= II
->getArgOperand(1);
3461 if (const ConstantFP
*C0
= dyn_cast
<ConstantFP
>(Src0
)) {
3462 if (const ConstantFP
*C1
= dyn_cast
<ConstantFP
>(Src1
)) {
3463 const fltSemantics
&HalfSem
3464 = II
->getType()->getScalarType()->getFltSemantics();
3466 APFloat Val0
= C0
->getValueAPF();
3467 APFloat Val1
= C1
->getValueAPF();
3468 Val0
.convert(HalfSem
, APFloat::rmTowardZero
, &LosesInfo
);
3469 Val1
.convert(HalfSem
, APFloat::rmTowardZero
, &LosesInfo
);
3471 Constant
*Folded
= ConstantVector::get({
3472 ConstantFP::get(II
->getContext(), Val0
),
3473 ConstantFP::get(II
->getContext(), Val1
) });
3474 return replaceInstUsesWith(*II
, Folded
);
3478 if (isa
<UndefValue
>(Src0
) && isa
<UndefValue
>(Src1
))
3479 return replaceInstUsesWith(*II
, UndefValue::get(II
->getType()));
3483 case Intrinsic::amdgcn_cvt_pknorm_i16
:
3484 case Intrinsic::amdgcn_cvt_pknorm_u16
:
3485 case Intrinsic::amdgcn_cvt_pk_i16
:
3486 case Intrinsic::amdgcn_cvt_pk_u16
: {
3487 Value
*Src0
= II
->getArgOperand(0);
3488 Value
*Src1
= II
->getArgOperand(1);
3490 if (isa
<UndefValue
>(Src0
) && isa
<UndefValue
>(Src1
))
3491 return replaceInstUsesWith(*II
, UndefValue::get(II
->getType()));
3495 case Intrinsic::amdgcn_ubfe
:
3496 case Intrinsic::amdgcn_sbfe
: {
3497 // Decompose simple cases into standard shifts.
3498 Value
*Src
= II
->getArgOperand(0);
3499 if (isa
<UndefValue
>(Src
))
3500 return replaceInstUsesWith(*II
, Src
);
3503 Type
*Ty
= II
->getType();
3504 unsigned IntSize
= Ty
->getIntegerBitWidth();
3506 ConstantInt
*CWidth
= dyn_cast
<ConstantInt
>(II
->getArgOperand(2));
3508 Width
= CWidth
->getZExtValue();
3509 if ((Width
& (IntSize
- 1)) == 0)
3510 return replaceInstUsesWith(*II
, ConstantInt::getNullValue(Ty
));
3512 if (Width
>= IntSize
) {
3513 // Hardware ignores high bits, so remove those.
3514 II
->setArgOperand(2, ConstantInt::get(CWidth
->getType(),
3515 Width
& (IntSize
- 1)));
3521 ConstantInt
*COffset
= dyn_cast
<ConstantInt
>(II
->getArgOperand(1));
3523 Offset
= COffset
->getZExtValue();
3524 if (Offset
>= IntSize
) {
3525 II
->setArgOperand(1, ConstantInt::get(COffset
->getType(),
3526 Offset
& (IntSize
- 1)));
3531 bool Signed
= IID
== Intrinsic::amdgcn_sbfe
;
3533 if (!CWidth
|| !COffset
)
3536 // The case of Width == 0 is handled above, which makes this tranformation
3537 // safe. If Width == 0, then the ashr and lshr instructions become poison
3538 // value since the shift amount would be equal to the bit size.
3541 // TODO: This allows folding to undef when the hardware has specific
3543 if (Offset
+ Width
< IntSize
) {
3544 Value
*Shl
= Builder
.CreateShl(Src
, IntSize
- Offset
- Width
);
3545 Value
*RightShift
= Signed
? Builder
.CreateAShr(Shl
, IntSize
- Width
)
3546 : Builder
.CreateLShr(Shl
, IntSize
- Width
);
3547 RightShift
->takeName(II
);
3548 return replaceInstUsesWith(*II
, RightShift
);
3551 Value
*RightShift
= Signed
? Builder
.CreateAShr(Src
, Offset
)
3552 : Builder
.CreateLShr(Src
, Offset
);
3554 RightShift
->takeName(II
);
3555 return replaceInstUsesWith(*II
, RightShift
);
3557 case Intrinsic::amdgcn_exp
:
3558 case Intrinsic::amdgcn_exp_compr
: {
3559 ConstantInt
*En
= cast
<ConstantInt
>(II
->getArgOperand(1));
3560 unsigned EnBits
= En
->getZExtValue();
3562 break; // All inputs enabled.
3564 bool IsCompr
= IID
== Intrinsic::amdgcn_exp_compr
;
3565 bool Changed
= false;
3566 for (int I
= 0; I
< (IsCompr
? 2 : 4); ++I
) {
3567 if ((!IsCompr
&& (EnBits
& (1 << I
)) == 0) ||
3568 (IsCompr
&& ((EnBits
& (0x3 << (2 * I
))) == 0))) {
3569 Value
*Src
= II
->getArgOperand(I
+ 2);
3570 if (!isa
<UndefValue
>(Src
)) {
3571 II
->setArgOperand(I
+ 2, UndefValue::get(Src
->getType()));
3582 case Intrinsic::amdgcn_fmed3
: {
3583 // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled
3586 Value
*Src0
= II
->getArgOperand(0);
3587 Value
*Src1
= II
->getArgOperand(1);
3588 Value
*Src2
= II
->getArgOperand(2);
3590 // Checking for NaN before canonicalization provides better fidelity when
3591 // mapping other operations onto fmed3 since the order of operands is
3593 CallInst
*NewCall
= nullptr;
3594 if (match(Src0
, m_NaN()) || isa
<UndefValue
>(Src0
)) {
3595 NewCall
= Builder
.CreateMinNum(Src1
, Src2
);
3596 } else if (match(Src1
, m_NaN()) || isa
<UndefValue
>(Src1
)) {
3597 NewCall
= Builder
.CreateMinNum(Src0
, Src2
);
3598 } else if (match(Src2
, m_NaN()) || isa
<UndefValue
>(Src2
)) {
3599 NewCall
= Builder
.CreateMaxNum(Src0
, Src1
);
3603 NewCall
->copyFastMathFlags(II
);
3604 NewCall
->takeName(II
);
3605 return replaceInstUsesWith(*II
, NewCall
);
3609 // Canonicalize constants to RHS operands.
3611 // fmed3(c0, x, c1) -> fmed3(x, c0, c1)
3612 if (isa
<Constant
>(Src0
) && !isa
<Constant
>(Src1
)) {
3613 std::swap(Src0
, Src1
);
3617 if (isa
<Constant
>(Src1
) && !isa
<Constant
>(Src2
)) {
3618 std::swap(Src1
, Src2
);
3622 if (isa
<Constant
>(Src0
) && !isa
<Constant
>(Src1
)) {
3623 std::swap(Src0
, Src1
);
3628 II
->setArgOperand(0, Src0
);
3629 II
->setArgOperand(1, Src1
);
3630 II
->setArgOperand(2, Src2
);
3634 if (const ConstantFP
*C0
= dyn_cast
<ConstantFP
>(Src0
)) {
3635 if (const ConstantFP
*C1
= dyn_cast
<ConstantFP
>(Src1
)) {
3636 if (const ConstantFP
*C2
= dyn_cast
<ConstantFP
>(Src2
)) {
3637 APFloat Result
= fmed3AMDGCN(C0
->getValueAPF(), C1
->getValueAPF(),
3639 return replaceInstUsesWith(*II
,
3640 ConstantFP::get(Builder
.getContext(), Result
));
3647 case Intrinsic::amdgcn_icmp
:
3648 case Intrinsic::amdgcn_fcmp
: {
3649 const ConstantInt
*CC
= cast
<ConstantInt
>(II
->getArgOperand(2));
3650 // Guard against invalid arguments.
3651 int64_t CCVal
= CC
->getZExtValue();
3652 bool IsInteger
= IID
== Intrinsic::amdgcn_icmp
;
3653 if ((IsInteger
&& (CCVal
< CmpInst::FIRST_ICMP_PREDICATE
||
3654 CCVal
> CmpInst::LAST_ICMP_PREDICATE
)) ||
3655 (!IsInteger
&& (CCVal
< CmpInst::FIRST_FCMP_PREDICATE
||
3656 CCVal
> CmpInst::LAST_FCMP_PREDICATE
)))
3659 Value
*Src0
= II
->getArgOperand(0);
3660 Value
*Src1
= II
->getArgOperand(1);
3662 if (auto *CSrc0
= dyn_cast
<Constant
>(Src0
)) {
3663 if (auto *CSrc1
= dyn_cast
<Constant
>(Src1
)) {
3664 Constant
*CCmp
= ConstantExpr::getCompare(CCVal
, CSrc0
, CSrc1
);
3665 if (CCmp
->isNullValue()) {
3666 return replaceInstUsesWith(
3667 *II
, ConstantExpr::getSExt(CCmp
, II
->getType()));
3670 // The result of V_ICMP/V_FCMP assembly instructions (which this
3671 // intrinsic exposes) is one bit per thread, masked with the EXEC
3672 // register (which contains the bitmask of live threads). So a
3673 // comparison that always returns true is the same as a read of the
3675 Function
*NewF
= Intrinsic::getDeclaration(
3676 II
->getModule(), Intrinsic::read_register
, II
->getType());
3677 Metadata
*MDArgs
[] = {MDString::get(II
->getContext(), "exec")};
3678 MDNode
*MD
= MDNode::get(II
->getContext(), MDArgs
);
3679 Value
*Args
[] = {MetadataAsValue::get(II
->getContext(), MD
)};
3680 CallInst
*NewCall
= Builder
.CreateCall(NewF
, Args
);
3681 NewCall
->addAttribute(AttributeList::FunctionIndex
,
3682 Attribute::Convergent
);
3683 NewCall
->takeName(II
);
3684 return replaceInstUsesWith(*II
, NewCall
);
3687 // Canonicalize constants to RHS.
3688 CmpInst::Predicate SwapPred
3689 = CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate
>(CCVal
));
3690 II
->setArgOperand(0, Src1
);
3691 II
->setArgOperand(1, Src0
);
3692 II
->setArgOperand(2, ConstantInt::get(CC
->getType(),
3693 static_cast<int>(SwapPred
)));
3697 if (CCVal
!= CmpInst::ICMP_EQ
&& CCVal
!= CmpInst::ICMP_NE
)
3700 // Canonicalize compare eq with true value to compare != 0
3701 // llvm.amdgcn.icmp(zext (i1 x), 1, eq)
3702 // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne)
3703 // llvm.amdgcn.icmp(sext (i1 x), -1, eq)
3704 // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne)
3706 if (CCVal
== CmpInst::ICMP_EQ
&&
3707 ((match(Src1
, m_One()) && match(Src0
, m_ZExt(m_Value(ExtSrc
)))) ||
3708 (match(Src1
, m_AllOnes()) && match(Src0
, m_SExt(m_Value(ExtSrc
))))) &&
3709 ExtSrc
->getType()->isIntegerTy(1)) {
3710 II
->setArgOperand(1, ConstantInt::getNullValue(Src1
->getType()));
3711 II
->setArgOperand(2, ConstantInt::get(CC
->getType(), CmpInst::ICMP_NE
));
3715 CmpInst::Predicate SrcPred
;
3719 // Fold compare eq/ne with 0 from a compare result as the predicate to the
3720 // intrinsic. The typical use is a wave vote function in the library, which
3721 // will be fed from a user code condition compared with 0. Fold in the
3722 // redundant compare.
3724 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne)
3725 // -> llvm.amdgcn.[if]cmp(a, b, pred)
3727 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq)
3728 // -> llvm.amdgcn.[if]cmp(a, b, inv pred)
3729 if (match(Src1
, m_Zero()) &&
3731 m_ZExtOrSExt(m_Cmp(SrcPred
, m_Value(SrcLHS
), m_Value(SrcRHS
))))) {
3732 if (CCVal
== CmpInst::ICMP_EQ
)
3733 SrcPred
= CmpInst::getInversePredicate(SrcPred
);
3735 Intrinsic::ID NewIID
= CmpInst::isFPPredicate(SrcPred
) ?
3736 Intrinsic::amdgcn_fcmp
: Intrinsic::amdgcn_icmp
;
3738 Type
*Ty
= SrcLHS
->getType();
3739 if (auto *CmpType
= dyn_cast
<IntegerType
>(Ty
)) {
3740 // Promote to next legal integer type.
3741 unsigned Width
= CmpType
->getBitWidth();
3742 unsigned NewWidth
= Width
;
3744 // Don't do anything for i1 comparisons.
3750 else if (Width
<= 32)
3752 else if (Width
<= 64)
3754 else if (Width
> 64)
3755 break; // Can't handle this.
3757 if (Width
!= NewWidth
) {
3758 IntegerType
*CmpTy
= Builder
.getIntNTy(NewWidth
);
3759 if (CmpInst::isSigned(SrcPred
)) {
3760 SrcLHS
= Builder
.CreateSExt(SrcLHS
, CmpTy
);
3761 SrcRHS
= Builder
.CreateSExt(SrcRHS
, CmpTy
);
3763 SrcLHS
= Builder
.CreateZExt(SrcLHS
, CmpTy
);
3764 SrcRHS
= Builder
.CreateZExt(SrcRHS
, CmpTy
);
3767 } else if (!Ty
->isFloatTy() && !Ty
->isDoubleTy() && !Ty
->isHalfTy())
3771 Intrinsic::getDeclaration(II
->getModule(), NewIID
,
3773 SrcLHS
->getType() });
3774 Value
*Args
[] = { SrcLHS
, SrcRHS
,
3775 ConstantInt::get(CC
->getType(), SrcPred
) };
3776 CallInst
*NewCall
= Builder
.CreateCall(NewF
, Args
);
3777 NewCall
->takeName(II
);
3778 return replaceInstUsesWith(*II
, NewCall
);
3783 case Intrinsic::amdgcn_wqm_vote
: {
3784 // wqm_vote is identity when the argument is constant.
3785 if (!isa
<Constant
>(II
->getArgOperand(0)))
3788 return replaceInstUsesWith(*II
, II
->getArgOperand(0));
3790 case Intrinsic::amdgcn_kill
: {
3791 const ConstantInt
*C
= dyn_cast
<ConstantInt
>(II
->getArgOperand(0));
3792 if (!C
|| !C
->getZExtValue())
3795 // amdgcn.kill(i1 1) is a no-op
3796 return eraseInstFromFunction(CI
);
3798 case Intrinsic::amdgcn_update_dpp
: {
3799 Value
*Old
= II
->getArgOperand(0);
3801 auto BC
= cast
<ConstantInt
>(II
->getArgOperand(5));
3802 auto RM
= cast
<ConstantInt
>(II
->getArgOperand(3));
3803 auto BM
= cast
<ConstantInt
>(II
->getArgOperand(4));
3804 if (BC
->isZeroValue() ||
3805 RM
->getZExtValue() != 0xF ||
3806 BM
->getZExtValue() != 0xF ||
3807 isa
<UndefValue
>(Old
))
3810 // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value.
3811 II
->setOperand(0, UndefValue::get(Old
->getType()));
3814 case Intrinsic::amdgcn_readfirstlane
:
3815 case Intrinsic::amdgcn_readlane
: {
3816 // A constant value is trivially uniform.
3817 if (Constant
*C
= dyn_cast
<Constant
>(II
->getArgOperand(0)))
3818 return replaceInstUsesWith(*II
, C
);
3820 // The rest of these may not be safe if the exec may not be the same between
3822 Value
*Src
= II
->getArgOperand(0);
3823 Instruction
*SrcInst
= dyn_cast
<Instruction
>(Src
);
3824 if (SrcInst
&& SrcInst
->getParent() != II
->getParent())
3827 // readfirstlane (readfirstlane x) -> readfirstlane x
3828 // readlane (readfirstlane x), y -> readfirstlane x
3829 if (match(Src
, m_Intrinsic
<Intrinsic::amdgcn_readfirstlane
>()))
3830 return replaceInstUsesWith(*II
, Src
);
3832 if (IID
== Intrinsic::amdgcn_readfirstlane
) {
3833 // readfirstlane (readlane x, y) -> readlane x, y
3834 if (match(Src
, m_Intrinsic
<Intrinsic::amdgcn_readlane
>()))
3835 return replaceInstUsesWith(*II
, Src
);
3837 // readlane (readlane x, y), y -> readlane x, y
3838 if (match(Src
, m_Intrinsic
<Intrinsic::amdgcn_readlane
>(
3839 m_Value(), m_Specific(II
->getArgOperand(1)))))
3840 return replaceInstUsesWith(*II
, Src
);
3845 case Intrinsic::stackrestore
: {
3846 // If the save is right next to the restore, remove the restore. This can
3847 // happen when variable allocas are DCE'd.
3848 if (IntrinsicInst
*SS
= dyn_cast
<IntrinsicInst
>(II
->getArgOperand(0))) {
3849 if (SS
->getIntrinsicID() == Intrinsic::stacksave
) {
3850 // Skip over debug info.
3851 if (SS
->getNextNonDebugInstruction() == II
) {
3852 return eraseInstFromFunction(CI
);
3857 // Scan down this block to see if there is another stack restore in the
3858 // same block without an intervening call/alloca.
3859 BasicBlock::iterator
BI(II
);
3860 Instruction
*TI
= II
->getParent()->getTerminator();
3861 bool CannotRemove
= false;
3862 for (++BI
; &*BI
!= TI
; ++BI
) {
3863 if (isa
<AllocaInst
>(BI
)) {
3864 CannotRemove
= true;
3867 if (CallInst
*BCI
= dyn_cast
<CallInst
>(BI
)) {
3868 if (auto *II2
= dyn_cast
<IntrinsicInst
>(BCI
)) {
3869 // If there is a stackrestore below this one, remove this one.
3870 if (II2
->getIntrinsicID() == Intrinsic::stackrestore
)
3871 return eraseInstFromFunction(CI
);
3873 // Bail if we cross over an intrinsic with side effects, such as
3874 // llvm.stacksave, llvm.read_register, or llvm.setjmp.
3875 if (II2
->mayHaveSideEffects()) {
3876 CannotRemove
= true;
3880 // If we found a non-intrinsic call, we can't remove the stack
3882 CannotRemove
= true;
3888 // If the stack restore is in a return, resume, or unwind block and if there
3889 // are no allocas or calls between the restore and the return, nuke the
3891 if (!CannotRemove
&& (isa
<ReturnInst
>(TI
) || isa
<ResumeInst
>(TI
)))
3892 return eraseInstFromFunction(CI
);
3895 case Intrinsic::lifetime_start
:
3896 // Asan needs to poison memory to detect invalid access which is possible
3897 // even for empty lifetime range.
3898 if (II
->getFunction()->hasFnAttribute(Attribute::SanitizeAddress
) ||
3899 II
->getFunction()->hasFnAttribute(Attribute::SanitizeMemory
) ||
3900 II
->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress
))
3903 if (removeTriviallyEmptyRange(*II
, Intrinsic::lifetime_start
,
3904 Intrinsic::lifetime_end
, *this))
3907 case Intrinsic::assume
: {
3908 Value
*IIOperand
= II
->getArgOperand(0);
3909 // Remove an assume if it is followed by an identical assume.
3910 // TODO: Do we need this? Unless there are conflicting assumptions, the
3911 // computeKnownBits(IIOperand) below here eliminates redundant assumes.
3912 Instruction
*Next
= II
->getNextNonDebugInstruction();
3913 if (match(Next
, m_Intrinsic
<Intrinsic::assume
>(m_Specific(IIOperand
))))
3914 return eraseInstFromFunction(CI
);
3916 // Canonicalize assume(a && b) -> assume(a); assume(b);
3917 // Note: New assumption intrinsics created here are registered by
3918 // the InstCombineIRInserter object.
3919 FunctionType
*AssumeIntrinsicTy
= II
->getFunctionType();
3920 Value
*AssumeIntrinsic
= II
->getCalledValue();
3922 if (match(IIOperand
, m_And(m_Value(A
), m_Value(B
)))) {
3923 Builder
.CreateCall(AssumeIntrinsicTy
, AssumeIntrinsic
, A
, II
->getName());
3924 Builder
.CreateCall(AssumeIntrinsicTy
, AssumeIntrinsic
, B
, II
->getName());
3925 return eraseInstFromFunction(*II
);
3927 // assume(!(a || b)) -> assume(!a); assume(!b);
3928 if (match(IIOperand
, m_Not(m_Or(m_Value(A
), m_Value(B
))))) {
3929 Builder
.CreateCall(AssumeIntrinsicTy
, AssumeIntrinsic
,
3930 Builder
.CreateNot(A
), II
->getName());
3931 Builder
.CreateCall(AssumeIntrinsicTy
, AssumeIntrinsic
,
3932 Builder
.CreateNot(B
), II
->getName());
3933 return eraseInstFromFunction(*II
);
3936 // assume( (load addr) != null ) -> add 'nonnull' metadata to load
3937 // (if assume is valid at the load)
3938 CmpInst::Predicate Pred
;
3940 if (match(IIOperand
, m_ICmp(Pred
, m_Instruction(LHS
), m_Zero())) &&
3941 Pred
== ICmpInst::ICMP_NE
&& LHS
->getOpcode() == Instruction::Load
&&
3942 LHS
->getType()->isPointerTy() &&
3943 isValidAssumeForContext(II
, LHS
, &DT
)) {
3944 MDNode
*MD
= MDNode::get(II
->getContext(), None
);
3945 LHS
->setMetadata(LLVMContext::MD_nonnull
, MD
);
3946 return eraseInstFromFunction(*II
);
3948 // TODO: apply nonnull return attributes to calls and invokes
3949 // TODO: apply range metadata for range check patterns?
3952 // If there is a dominating assume with the same condition as this one,
3953 // then this one is redundant, and should be removed.
3955 computeKnownBits(IIOperand
, Known
, 0, II
);
3956 if (Known
.isAllOnes())
3957 return eraseInstFromFunction(*II
);
3959 // Update the cache of affected values for this assumption (we might be
3960 // here because we just simplified the condition).
3961 AC
.updateAffectedValues(II
);
3964 case Intrinsic::experimental_gc_relocate
: {
3965 auto &GCR
= *cast
<GCRelocateInst
>(II
);
3967 // If we have two copies of the same pointer in the statepoint argument
3968 // list, canonicalize to one. This may let us common gc.relocates.
3969 if (GCR
.getBasePtr() == GCR
.getDerivedPtr() &&
3970 GCR
.getBasePtrIndex() != GCR
.getDerivedPtrIndex()) {
3971 auto *OpIntTy
= GCR
.getOperand(2)->getType();
3972 II
->setOperand(2, ConstantInt::get(OpIntTy
, GCR
.getBasePtrIndex()));
3976 // Translate facts known about a pointer before relocating into
3977 // facts about the relocate value, while being careful to
3978 // preserve relocation semantics.
3979 Value
*DerivedPtr
= GCR
.getDerivedPtr();
3981 // Remove the relocation if unused, note that this check is required
3982 // to prevent the cases below from looping forever.
3983 if (II
->use_empty())
3984 return eraseInstFromFunction(*II
);
3986 // Undef is undef, even after relocation.
3987 // TODO: provide a hook for this in GCStrategy. This is clearly legal for
3988 // most practical collectors, but there was discussion in the review thread
3989 // about whether it was legal for all possible collectors.
3990 if (isa
<UndefValue
>(DerivedPtr
))
3991 // Use undef of gc_relocate's type to replace it.
3992 return replaceInstUsesWith(*II
, UndefValue::get(II
->getType()));
3994 if (auto *PT
= dyn_cast
<PointerType
>(II
->getType())) {
3995 // The relocation of null will be null for most any collector.
3996 // TODO: provide a hook for this in GCStrategy. There might be some
3997 // weird collector this property does not hold for.
3998 if (isa
<ConstantPointerNull
>(DerivedPtr
))
3999 // Use null-pointer of gc_relocate's type to replace it.
4000 return replaceInstUsesWith(*II
, ConstantPointerNull::get(PT
));
4002 // isKnownNonNull -> nonnull attribute
4003 if (!II
->hasRetAttr(Attribute::NonNull
) &&
4004 isKnownNonZero(DerivedPtr
, DL
, 0, &AC
, II
, &DT
)) {
4005 II
->addAttribute(AttributeList::ReturnIndex
, Attribute::NonNull
);
4010 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
4011 // Canonicalize on the type from the uses to the defs
4013 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
4017 case Intrinsic::experimental_guard
: {
4018 // Is this guard followed by another guard? We scan forward over a small
4019 // fixed window of instructions to handle common cases with conditions
4020 // computed between guards.
4021 Instruction
*NextInst
= II
->getNextNode();
4022 for (unsigned i
= 0; i
< GuardWideningWindow
; i
++) {
4023 // Note: Using context-free form to avoid compile time blow up
4024 if (!isSafeToSpeculativelyExecute(NextInst
))
4026 NextInst
= NextInst
->getNextNode();
4028 Value
*NextCond
= nullptr;
4030 m_Intrinsic
<Intrinsic::experimental_guard
>(m_Value(NextCond
)))) {
4031 Value
*CurrCond
= II
->getArgOperand(0);
4033 // Remove a guard that it is immediately preceded by an identical guard.
4034 if (CurrCond
== NextCond
)
4035 return eraseInstFromFunction(*NextInst
);
4037 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
4038 Instruction
* MoveI
= II
->getNextNode();
4039 while (MoveI
!= NextInst
) {
4041 MoveI
= MoveI
->getNextNode();
4042 Temp
->moveBefore(II
);
4044 II
->setArgOperand(0, Builder
.CreateAnd(CurrCond
, NextCond
));
4045 return eraseInstFromFunction(*NextInst
);
4050 return visitCallBase(*II
);
4053 // Fence instruction simplification
4054 Instruction
*InstCombiner::visitFenceInst(FenceInst
&FI
) {
4055 // Remove identical consecutive fences.
4056 Instruction
*Next
= FI
.getNextNonDebugInstruction();
4057 if (auto *NFI
= dyn_cast
<FenceInst
>(Next
))
4058 if (FI
.isIdenticalTo(NFI
))
4059 return eraseInstFromFunction(FI
);
4063 // InvokeInst simplification
4064 Instruction
*InstCombiner::visitInvokeInst(InvokeInst
&II
) {
4065 return visitCallBase(II
);
4068 // CallBrInst simplification
4069 Instruction
*InstCombiner::visitCallBrInst(CallBrInst
&CBI
) {
4070 return visitCallBase(CBI
);
4073 /// If this cast does not affect the value passed through the varargs area, we
4074 /// can eliminate the use of the cast.
4075 static bool isSafeToEliminateVarargsCast(const CallBase
&Call
,
4076 const DataLayout
&DL
,
4077 const CastInst
*const CI
,
4079 if (!CI
->isLosslessCast())
4082 // If this is a GC intrinsic, avoid munging types. We need types for
4083 // statepoint reconstruction in SelectionDAG.
4084 // TODO: This is probably something which should be expanded to all
4085 // intrinsics since the entire point of intrinsics is that
4086 // they are understandable by the optimizer.
4087 if (isStatepoint(&Call
) || isGCRelocate(&Call
) || isGCResult(&Call
))
4090 // The size of ByVal or InAlloca arguments is derived from the type, so we
4091 // can't change to a type with a different size. If the size were
4092 // passed explicitly we could avoid this check.
4093 if (!Call
.isByValOrInAllocaArgument(ix
))
4097 cast
<PointerType
>(CI
->getOperand(0)->getType())->getElementType();
4098 Type
*DstTy
= Call
.isByValArgument(ix
)
4099 ? Call
.getParamByValType(ix
)
4100 : cast
<PointerType
>(CI
->getType())->getElementType();
4101 if (!SrcTy
->isSized() || !DstTy
->isSized())
4103 if (DL
.getTypeAllocSize(SrcTy
) != DL
.getTypeAllocSize(DstTy
))
4108 Instruction
*InstCombiner::tryOptimizeCall(CallInst
*CI
) {
4109 if (!CI
->getCalledFunction()) return nullptr;
4111 auto InstCombineRAUW
= [this](Instruction
*From
, Value
*With
) {
4112 replaceInstUsesWith(*From
, With
);
4114 auto InstCombineErase
= [this](Instruction
*I
) {
4115 eraseInstFromFunction(*I
);
4117 LibCallSimplifier
Simplifier(DL
, &TLI
, ORE
, BFI
, PSI
, InstCombineRAUW
,
4119 if (Value
*With
= Simplifier
.optimizeCall(CI
)) {
4121 return CI
->use_empty() ? CI
: replaceInstUsesWith(*CI
, With
);
4127 static IntrinsicInst
*findInitTrampolineFromAlloca(Value
*TrampMem
) {
4128 // Strip off at most one level of pointer casts, looking for an alloca. This
4129 // is good enough in practice and simpler than handling any number of casts.
4130 Value
*Underlying
= TrampMem
->stripPointerCasts();
4131 if (Underlying
!= TrampMem
&&
4132 (!Underlying
->hasOneUse() || Underlying
->user_back() != TrampMem
))
4134 if (!isa
<AllocaInst
>(Underlying
))
4137 IntrinsicInst
*InitTrampoline
= nullptr;
4138 for (User
*U
: TrampMem
->users()) {
4139 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(U
);
4142 if (II
->getIntrinsicID() == Intrinsic::init_trampoline
) {
4144 // More than one init_trampoline writes to this value. Give up.
4146 InitTrampoline
= II
;
4149 if (II
->getIntrinsicID() == Intrinsic::adjust_trampoline
)
4150 // Allow any number of calls to adjust.trampoline.
4155 // No call to init.trampoline found.
4156 if (!InitTrampoline
)
4159 // Check that the alloca is being used in the expected way.
4160 if (InitTrampoline
->getOperand(0) != TrampMem
)
4163 return InitTrampoline
;
4166 static IntrinsicInst
*findInitTrampolineFromBB(IntrinsicInst
*AdjustTramp
,
4168 // Visit all the previous instructions in the basic block, and try to find a
4169 // init.trampoline which has a direct path to the adjust.trampoline.
4170 for (BasicBlock::iterator I
= AdjustTramp
->getIterator(),
4171 E
= AdjustTramp
->getParent()->begin();
4173 Instruction
*Inst
= &*--I
;
4174 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
))
4175 if (II
->getIntrinsicID() == Intrinsic::init_trampoline
&&
4176 II
->getOperand(0) == TrampMem
)
4178 if (Inst
->mayWriteToMemory())
4184 // Given a call to llvm.adjust.trampoline, find and return the corresponding
4185 // call to llvm.init.trampoline if the call to the trampoline can be optimized
4186 // to a direct call to a function. Otherwise return NULL.
4187 static IntrinsicInst
*findInitTrampoline(Value
*Callee
) {
4188 Callee
= Callee
->stripPointerCasts();
4189 IntrinsicInst
*AdjustTramp
= dyn_cast
<IntrinsicInst
>(Callee
);
4191 AdjustTramp
->getIntrinsicID() != Intrinsic::adjust_trampoline
)
4194 Value
*TrampMem
= AdjustTramp
->getOperand(0);
4196 if (IntrinsicInst
*IT
= findInitTrampolineFromAlloca(TrampMem
))
4198 if (IntrinsicInst
*IT
= findInitTrampolineFromBB(AdjustTramp
, TrampMem
))
4203 static void annotateAnyAllocSite(CallBase
&Call
, const TargetLibraryInfo
*TLI
) {
4204 unsigned NumArgs
= Call
.getNumArgOperands();
4205 ConstantInt
*Op0C
= dyn_cast
<ConstantInt
>(Call
.getOperand(0));
4207 (NumArgs
== 1) ? nullptr : dyn_cast
<ConstantInt
>(Call
.getOperand(1));
4208 // Bail out if the allocation size is zero.
4209 if ((Op0C
&& Op0C
->isNullValue()) || (Op1C
&& Op1C
->isNullValue()))
4212 if (isMallocLikeFn(&Call
, TLI
) && Op0C
) {
4213 if (isOpNewLikeFn(&Call
, TLI
))
4214 Call
.addAttribute(AttributeList::ReturnIndex
,
4215 Attribute::getWithDereferenceableBytes(
4216 Call
.getContext(), Op0C
->getZExtValue()));
4218 Call
.addAttribute(AttributeList::ReturnIndex
,
4219 Attribute::getWithDereferenceableOrNullBytes(
4220 Call
.getContext(), Op0C
->getZExtValue()));
4221 } else if (isReallocLikeFn(&Call
, TLI
) && Op1C
) {
4222 Call
.addAttribute(AttributeList::ReturnIndex
,
4223 Attribute::getWithDereferenceableOrNullBytes(
4224 Call
.getContext(), Op1C
->getZExtValue()));
4225 } else if (isCallocLikeFn(&Call
, TLI
) && Op0C
&& Op1C
) {
4227 const APInt
&N
= Op0C
->getValue();
4228 APInt Size
= N
.umul_ov(Op1C
->getValue(), Overflow
);
4230 Call
.addAttribute(AttributeList::ReturnIndex
,
4231 Attribute::getWithDereferenceableOrNullBytes(
4232 Call
.getContext(), Size
.getZExtValue()));
4233 } else if (isStrdupLikeFn(&Call
, TLI
)) {
4234 uint64_t Len
= GetStringLength(Call
.getOperand(0));
4238 Call
.addAttribute(AttributeList::ReturnIndex
,
4239 Attribute::getWithDereferenceableOrNullBytes(
4240 Call
.getContext(), Len
));
4242 else if (NumArgs
== 2 && Op1C
)
4244 AttributeList::ReturnIndex
,
4245 Attribute::getWithDereferenceableOrNullBytes(
4246 Call
.getContext(), std::min(Len
, Op1C
->getZExtValue() + 1)));
4251 /// Improvements for call, callbr and invoke instructions.
4252 Instruction
*InstCombiner::visitCallBase(CallBase
&Call
) {
4253 if (isAllocationFn(&Call
, &TLI
))
4254 annotateAnyAllocSite(Call
, &TLI
);
4256 bool Changed
= false;
4258 // Mark any parameters that are known to be non-null with the nonnull
4259 // attribute. This is helpful for inlining calls to functions with null
4260 // checks on their arguments.
4261 SmallVector
<unsigned, 4> ArgNos
;
4264 for (Value
*V
: Call
.args()) {
4265 if (V
->getType()->isPointerTy() &&
4266 !Call
.paramHasAttr(ArgNo
, Attribute::NonNull
) &&
4267 isKnownNonZero(V
, DL
, 0, &AC
, &Call
, &DT
))
4268 ArgNos
.push_back(ArgNo
);
4272 assert(ArgNo
== Call
.arg_size() && "sanity check");
4274 if (!ArgNos
.empty()) {
4275 AttributeList AS
= Call
.getAttributes();
4276 LLVMContext
&Ctx
= Call
.getContext();
4277 AS
= AS
.addParamAttribute(Ctx
, ArgNos
,
4278 Attribute::get(Ctx
, Attribute::NonNull
));
4279 Call
.setAttributes(AS
);
4283 // If the callee is a pointer to a function, attempt to move any casts to the
4284 // arguments of the call/callbr/invoke.
4285 Value
*Callee
= Call
.getCalledValue();
4286 if (!isa
<Function
>(Callee
) && transformConstExprCastCall(Call
))
4289 if (Function
*CalleeF
= dyn_cast
<Function
>(Callee
)) {
4290 // Remove the convergent attr on calls when the callee is not convergent.
4291 if (Call
.isConvergent() && !CalleeF
->isConvergent() &&
4292 !CalleeF
->isIntrinsic()) {
4293 LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
4295 Call
.setNotConvergent();
4299 // If the call and callee calling conventions don't match, this call must
4300 // be unreachable, as the call is undefined.
4301 if (CalleeF
->getCallingConv() != Call
.getCallingConv() &&
4302 // Only do this for calls to a function with a body. A prototype may
4303 // not actually end up matching the implementation's calling conv for a
4304 // variety of reasons (e.g. it may be written in assembly).
4305 !CalleeF
->isDeclaration()) {
4306 Instruction
*OldCall
= &Call
;
4307 CreateNonTerminatorUnreachable(OldCall
);
4308 // If OldCall does not return void then replaceAllUsesWith undef.
4309 // This allows ValueHandlers and custom metadata to adjust itself.
4310 if (!OldCall
->getType()->isVoidTy())
4311 replaceInstUsesWith(*OldCall
, UndefValue::get(OldCall
->getType()));
4312 if (isa
<CallInst
>(OldCall
))
4313 return eraseInstFromFunction(*OldCall
);
4315 // We cannot remove an invoke or a callbr, because it would change thexi
4316 // CFG, just change the callee to a null pointer.
4317 cast
<CallBase
>(OldCall
)->setCalledFunction(
4318 CalleeF
->getFunctionType(),
4319 Constant::getNullValue(CalleeF
->getType()));
4324 if ((isa
<ConstantPointerNull
>(Callee
) &&
4325 !NullPointerIsDefined(Call
.getFunction())) ||
4326 isa
<UndefValue
>(Callee
)) {
4327 // If Call does not return void then replaceAllUsesWith undef.
4328 // This allows ValueHandlers and custom metadata to adjust itself.
4329 if (!Call
.getType()->isVoidTy())
4330 replaceInstUsesWith(Call
, UndefValue::get(Call
.getType()));
4332 if (Call
.isTerminator()) {
4333 // Can't remove an invoke or callbr because we cannot change the CFG.
4337 // This instruction is not reachable, just remove it.
4338 CreateNonTerminatorUnreachable(&Call
);
4339 return eraseInstFromFunction(Call
);
4342 if (IntrinsicInst
*II
= findInitTrampoline(Callee
))
4343 return transformCallThroughTrampoline(Call
, *II
);
4345 PointerType
*PTy
= cast
<PointerType
>(Callee
->getType());
4346 FunctionType
*FTy
= cast
<FunctionType
>(PTy
->getElementType());
4347 if (FTy
->isVarArg()) {
4348 int ix
= FTy
->getNumParams();
4349 // See if we can optimize any arguments passed through the varargs area of
4351 for (auto I
= Call
.arg_begin() + FTy
->getNumParams(), E
= Call
.arg_end();
4352 I
!= E
; ++I
, ++ix
) {
4353 CastInst
*CI
= dyn_cast
<CastInst
>(*I
);
4354 if (CI
&& isSafeToEliminateVarargsCast(Call
, DL
, CI
, ix
)) {
4355 *I
= CI
->getOperand(0);
4357 // Update the byval type to match the argument type.
4358 if (Call
.isByValArgument(ix
)) {
4359 Call
.removeParamAttr(ix
, Attribute::ByVal
);
4361 ix
, Attribute::getWithByValType(
4363 CI
->getOperand(0)->getType()->getPointerElementType()));
4370 if (isa
<InlineAsm
>(Callee
) && !Call
.doesNotThrow()) {
4371 // Inline asm calls cannot throw - mark them 'nounwind'.
4372 Call
.setDoesNotThrow();
4376 // Try to optimize the call if possible, we require DataLayout for most of
4377 // this. None of these calls are seen as possibly dead so go ahead and
4378 // delete the instruction now.
4379 if (CallInst
*CI
= dyn_cast
<CallInst
>(&Call
)) {
4380 Instruction
*I
= tryOptimizeCall(CI
);
4381 // If we changed something return the result, etc. Otherwise let
4382 // the fallthrough check.
4383 if (I
) return eraseInstFromFunction(*I
);
4386 if (isAllocLikeFn(&Call
, &TLI
))
4387 return visitAllocSite(Call
);
4389 return Changed
? &Call
: nullptr;
4392 /// If the callee is a constexpr cast of a function, attempt to move the cast to
4393 /// the arguments of the call/callbr/invoke.
4394 bool InstCombiner::transformConstExprCastCall(CallBase
&Call
) {
4395 auto *Callee
= dyn_cast
<Function
>(Call
.getCalledValue()->stripPointerCasts());
4399 // If this is a call to a thunk function, don't remove the cast. Thunks are
4400 // used to transparently forward all incoming parameters and outgoing return
4401 // values, so it's important to leave the cast in place.
4402 if (Callee
->hasFnAttribute("thunk"))
4405 // If this is a musttail call, the callee's prototype must match the caller's
4406 // prototype with the exception of pointee types. The code below doesn't
4407 // implement that, so we can't do this transform.
4408 // TODO: Do the transform if it only requires adding pointer casts.
4409 if (Call
.isMustTailCall())
4412 Instruction
*Caller
= &Call
;
4413 const AttributeList
&CallerPAL
= Call
.getAttributes();
4415 // Okay, this is a cast from a function to a different type. Unless doing so
4416 // would cause a type conversion of one of our arguments, change this call to
4417 // be a direct call with arguments casted to the appropriate types.
4418 FunctionType
*FT
= Callee
->getFunctionType();
4419 Type
*OldRetTy
= Caller
->getType();
4420 Type
*NewRetTy
= FT
->getReturnType();
4422 // Check to see if we are changing the return type...
4423 if (OldRetTy
!= NewRetTy
) {
4425 if (NewRetTy
->isStructTy())
4426 return false; // TODO: Handle multiple return values.
4428 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy
, OldRetTy
, DL
)) {
4429 if (Callee
->isDeclaration())
4430 return false; // Cannot transform this return value.
4432 if (!Caller
->use_empty() &&
4433 // void -> non-void is handled specially
4434 !NewRetTy
->isVoidTy())
4435 return false; // Cannot transform this return value.
4438 if (!CallerPAL
.isEmpty() && !Caller
->use_empty()) {
4439 AttrBuilder
RAttrs(CallerPAL
, AttributeList::ReturnIndex
);
4440 if (RAttrs
.overlaps(AttributeFuncs::typeIncompatible(NewRetTy
)))
4441 return false; // Attribute not compatible with transformed value.
4444 // If the callbase is an invoke/callbr instruction, and the return value is
4445 // used by a PHI node in a successor, we cannot change the return type of
4446 // the call because there is no place to put the cast instruction (without
4447 // breaking the critical edge). Bail out in this case.
4448 if (!Caller
->use_empty()) {
4449 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Caller
))
4450 for (User
*U
: II
->users())
4451 if (PHINode
*PN
= dyn_cast
<PHINode
>(U
))
4452 if (PN
->getParent() == II
->getNormalDest() ||
4453 PN
->getParent() == II
->getUnwindDest())
4455 // FIXME: Be conservative for callbr to avoid a quadratic search.
4456 if (isa
<CallBrInst
>(Caller
))
4461 unsigned NumActualArgs
= Call
.arg_size();
4462 unsigned NumCommonArgs
= std::min(FT
->getNumParams(), NumActualArgs
);
4464 // Prevent us turning:
4465 // declare void @takes_i32_inalloca(i32* inalloca)
4466 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
4469 // call void @takes_i32_inalloca(i32* null)
4471 // Similarly, avoid folding away bitcasts of byval calls.
4472 if (Callee
->getAttributes().hasAttrSomewhere(Attribute::InAlloca
) ||
4473 Callee
->getAttributes().hasAttrSomewhere(Attribute::ByVal
))
4476 auto AI
= Call
.arg_begin();
4477 for (unsigned i
= 0, e
= NumCommonArgs
; i
!= e
; ++i
, ++AI
) {
4478 Type
*ParamTy
= FT
->getParamType(i
);
4479 Type
*ActTy
= (*AI
)->getType();
4481 if (!CastInst::isBitOrNoopPointerCastable(ActTy
, ParamTy
, DL
))
4482 return false; // Cannot transform this parameter value.
4484 if (AttrBuilder(CallerPAL
.getParamAttributes(i
))
4485 .overlaps(AttributeFuncs::typeIncompatible(ParamTy
)))
4486 return false; // Attribute not compatible with transformed value.
4488 if (Call
.isInAllocaArgument(i
))
4489 return false; // Cannot transform to and from inalloca.
4491 // If the parameter is passed as a byval argument, then we have to have a
4492 // sized type and the sized type has to have the same size as the old type.
4493 if (ParamTy
!= ActTy
&& CallerPAL
.hasParamAttribute(i
, Attribute::ByVal
)) {
4494 PointerType
*ParamPTy
= dyn_cast
<PointerType
>(ParamTy
);
4495 if (!ParamPTy
|| !ParamPTy
->getElementType()->isSized())
4498 Type
*CurElTy
= Call
.getParamByValType(i
);
4499 if (DL
.getTypeAllocSize(CurElTy
) !=
4500 DL
.getTypeAllocSize(ParamPTy
->getElementType()))
4505 if (Callee
->isDeclaration()) {
4506 // Do not delete arguments unless we have a function body.
4507 if (FT
->getNumParams() < NumActualArgs
&& !FT
->isVarArg())
4510 // If the callee is just a declaration, don't change the varargsness of the
4511 // call. We don't want to introduce a varargs call where one doesn't
4513 PointerType
*APTy
= cast
<PointerType
>(Call
.getCalledValue()->getType());
4514 if (FT
->isVarArg()!=cast
<FunctionType
>(APTy
->getElementType())->isVarArg())
4517 // If both the callee and the cast type are varargs, we still have to make
4518 // sure the number of fixed parameters are the same or we have the same
4519 // ABI issues as if we introduce a varargs call.
4520 if (FT
->isVarArg() &&
4521 cast
<FunctionType
>(APTy
->getElementType())->isVarArg() &&
4522 FT
->getNumParams() !=
4523 cast
<FunctionType
>(APTy
->getElementType())->getNumParams())
4527 if (FT
->getNumParams() < NumActualArgs
&& FT
->isVarArg() &&
4528 !CallerPAL
.isEmpty()) {
4529 // In this case we have more arguments than the new function type, but we
4530 // won't be dropping them. Check that these extra arguments have attributes
4531 // that are compatible with being a vararg call argument.
4533 if (CallerPAL
.hasAttrSomewhere(Attribute::StructRet
, &SRetIdx
) &&
4534 SRetIdx
> FT
->getNumParams())
4538 // Okay, we decided that this is a safe thing to do: go ahead and start
4539 // inserting cast instructions as necessary.
4540 SmallVector
<Value
*, 8> Args
;
4541 SmallVector
<AttributeSet
, 8> ArgAttrs
;
4542 Args
.reserve(NumActualArgs
);
4543 ArgAttrs
.reserve(NumActualArgs
);
4545 // Get any return attributes.
4546 AttrBuilder
RAttrs(CallerPAL
, AttributeList::ReturnIndex
);
4548 // If the return value is not being used, the type may not be compatible
4549 // with the existing attributes. Wipe out any problematic attributes.
4550 RAttrs
.remove(AttributeFuncs::typeIncompatible(NewRetTy
));
4552 LLVMContext
&Ctx
= Call
.getContext();
4553 AI
= Call
.arg_begin();
4554 for (unsigned i
= 0; i
!= NumCommonArgs
; ++i
, ++AI
) {
4555 Type
*ParamTy
= FT
->getParamType(i
);
4557 Value
*NewArg
= *AI
;
4558 if ((*AI
)->getType() != ParamTy
)
4559 NewArg
= Builder
.CreateBitOrPointerCast(*AI
, ParamTy
);
4560 Args
.push_back(NewArg
);
4562 // Add any parameter attributes.
4563 if (CallerPAL
.hasParamAttribute(i
, Attribute::ByVal
)) {
4564 AttrBuilder
AB(CallerPAL
.getParamAttributes(i
));
4565 AB
.addByValAttr(NewArg
->getType()->getPointerElementType());
4566 ArgAttrs
.push_back(AttributeSet::get(Ctx
, AB
));
4568 ArgAttrs
.push_back(CallerPAL
.getParamAttributes(i
));
4571 // If the function takes more arguments than the call was taking, add them
4573 for (unsigned i
= NumCommonArgs
; i
!= FT
->getNumParams(); ++i
) {
4574 Args
.push_back(Constant::getNullValue(FT
->getParamType(i
)));
4575 ArgAttrs
.push_back(AttributeSet());
4578 // If we are removing arguments to the function, emit an obnoxious warning.
4579 if (FT
->getNumParams() < NumActualArgs
) {
4580 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
4581 if (FT
->isVarArg()) {
4582 // Add all of the arguments in their promoted form to the arg list.
4583 for (unsigned i
= FT
->getNumParams(); i
!= NumActualArgs
; ++i
, ++AI
) {
4584 Type
*PTy
= getPromotedType((*AI
)->getType());
4585 Value
*NewArg
= *AI
;
4586 if (PTy
!= (*AI
)->getType()) {
4587 // Must promote to pass through va_arg area!
4588 Instruction::CastOps opcode
=
4589 CastInst::getCastOpcode(*AI
, false, PTy
, false);
4590 NewArg
= Builder
.CreateCast(opcode
, *AI
, PTy
);
4592 Args
.push_back(NewArg
);
4594 // Add any parameter attributes.
4595 ArgAttrs
.push_back(CallerPAL
.getParamAttributes(i
));
4600 AttributeSet FnAttrs
= CallerPAL
.getFnAttributes();
4602 if (NewRetTy
->isVoidTy())
4603 Caller
->setName(""); // Void type should not have a name.
4605 assert((ArgAttrs
.size() == FT
->getNumParams() || FT
->isVarArg()) &&
4606 "missing argument attributes");
4607 AttributeList NewCallerPAL
= AttributeList::get(
4608 Ctx
, FnAttrs
, AttributeSet::get(Ctx
, RAttrs
), ArgAttrs
);
4610 SmallVector
<OperandBundleDef
, 1> OpBundles
;
4611 Call
.getOperandBundlesAsDefs(OpBundles
);
4614 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Caller
)) {
4615 NewCall
= Builder
.CreateInvoke(Callee
, II
->getNormalDest(),
4616 II
->getUnwindDest(), Args
, OpBundles
);
4617 } else if (CallBrInst
*CBI
= dyn_cast
<CallBrInst
>(Caller
)) {
4618 NewCall
= Builder
.CreateCallBr(Callee
, CBI
->getDefaultDest(),
4619 CBI
->getIndirectDests(), Args
, OpBundles
);
4621 NewCall
= Builder
.CreateCall(Callee
, Args
, OpBundles
);
4622 cast
<CallInst
>(NewCall
)->setTailCallKind(
4623 cast
<CallInst
>(Caller
)->getTailCallKind());
4625 NewCall
->takeName(Caller
);
4626 NewCall
->setCallingConv(Call
.getCallingConv());
4627 NewCall
->setAttributes(NewCallerPAL
);
4629 // Preserve the weight metadata for the new call instruction. The metadata
4630 // is used by SamplePGO to check callsite's hotness.
4632 if (Caller
->extractProfTotalWeight(W
))
4633 NewCall
->setProfWeight(W
);
4635 // Insert a cast of the return type as necessary.
4636 Instruction
*NC
= NewCall
;
4638 if (OldRetTy
!= NV
->getType() && !Caller
->use_empty()) {
4639 if (!NV
->getType()->isVoidTy()) {
4640 NV
= NC
= CastInst::CreateBitOrPointerCast(NC
, OldRetTy
);
4641 NC
->setDebugLoc(Caller
->getDebugLoc());
4643 // If this is an invoke/callbr instruction, we should insert it after the
4644 // first non-phi instruction in the normal successor block.
4645 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Caller
)) {
4646 BasicBlock::iterator I
= II
->getNormalDest()->getFirstInsertionPt();
4647 InsertNewInstBefore(NC
, *I
);
4648 } else if (CallBrInst
*CBI
= dyn_cast
<CallBrInst
>(Caller
)) {
4649 BasicBlock::iterator I
= CBI
->getDefaultDest()->getFirstInsertionPt();
4650 InsertNewInstBefore(NC
, *I
);
4652 // Otherwise, it's a call, just insert cast right after the call.
4653 InsertNewInstBefore(NC
, *Caller
);
4655 Worklist
.AddUsersToWorkList(*Caller
);
4657 NV
= UndefValue::get(Caller
->getType());
4661 if (!Caller
->use_empty())
4662 replaceInstUsesWith(*Caller
, NV
);
4663 else if (Caller
->hasValueHandle()) {
4664 if (OldRetTy
== NV
->getType())
4665 ValueHandleBase::ValueIsRAUWd(Caller
, NV
);
4667 // We cannot call ValueIsRAUWd with a different type, and the
4668 // actual tracked value will disappear.
4669 ValueHandleBase::ValueIsDeleted(Caller
);
4672 eraseInstFromFunction(*Caller
);
4676 /// Turn a call to a function created by init_trampoline / adjust_trampoline
4677 /// intrinsic pair into a direct call to the underlying function.
4679 InstCombiner::transformCallThroughTrampoline(CallBase
&Call
,
4680 IntrinsicInst
&Tramp
) {
4681 Value
*Callee
= Call
.getCalledValue();
4682 Type
*CalleeTy
= Callee
->getType();
4683 FunctionType
*FTy
= Call
.getFunctionType();
4684 AttributeList Attrs
= Call
.getAttributes();
4686 // If the call already has the 'nest' attribute somewhere then give up -
4687 // otherwise 'nest' would occur twice after splicing in the chain.
4688 if (Attrs
.hasAttrSomewhere(Attribute::Nest
))
4691 Function
*NestF
= cast
<Function
>(Tramp
.getArgOperand(1)->stripPointerCasts());
4692 FunctionType
*NestFTy
= NestF
->getFunctionType();
4694 AttributeList NestAttrs
= NestF
->getAttributes();
4695 if (!NestAttrs
.isEmpty()) {
4696 unsigned NestArgNo
= 0;
4697 Type
*NestTy
= nullptr;
4698 AttributeSet NestAttr
;
4700 // Look for a parameter marked with the 'nest' attribute.
4701 for (FunctionType::param_iterator I
= NestFTy
->param_begin(),
4702 E
= NestFTy
->param_end();
4703 I
!= E
; ++NestArgNo
, ++I
) {
4704 AttributeSet AS
= NestAttrs
.getParamAttributes(NestArgNo
);
4705 if (AS
.hasAttribute(Attribute::Nest
)) {
4706 // Record the parameter type and any other attributes.
4714 std::vector
<Value
*> NewArgs
;
4715 std::vector
<AttributeSet
> NewArgAttrs
;
4716 NewArgs
.reserve(Call
.arg_size() + 1);
4717 NewArgAttrs
.reserve(Call
.arg_size());
4719 // Insert the nest argument into the call argument list, which may
4720 // mean appending it. Likewise for attributes.
4724 auto I
= Call
.arg_begin(), E
= Call
.arg_end();
4726 if (ArgNo
== NestArgNo
) {
4727 // Add the chain argument and attributes.
4728 Value
*NestVal
= Tramp
.getArgOperand(2);
4729 if (NestVal
->getType() != NestTy
)
4730 NestVal
= Builder
.CreateBitCast(NestVal
, NestTy
, "nest");
4731 NewArgs
.push_back(NestVal
);
4732 NewArgAttrs
.push_back(NestAttr
);
4738 // Add the original argument and attributes.
4739 NewArgs
.push_back(*I
);
4740 NewArgAttrs
.push_back(Attrs
.getParamAttributes(ArgNo
));
4747 // The trampoline may have been bitcast to a bogus type (FTy).
4748 // Handle this by synthesizing a new function type, equal to FTy
4749 // with the chain parameter inserted.
4751 std::vector
<Type
*> NewTypes
;
4752 NewTypes
.reserve(FTy
->getNumParams()+1);
4754 // Insert the chain's type into the list of parameter types, which may
4755 // mean appending it.
4758 FunctionType::param_iterator I
= FTy
->param_begin(),
4759 E
= FTy
->param_end();
4762 if (ArgNo
== NestArgNo
)
4763 // Add the chain's type.
4764 NewTypes
.push_back(NestTy
);
4769 // Add the original type.
4770 NewTypes
.push_back(*I
);
4777 // Replace the trampoline call with a direct call. Let the generic
4778 // code sort out any function type mismatches.
4779 FunctionType
*NewFTy
= FunctionType::get(FTy
->getReturnType(), NewTypes
,
4781 Constant
*NewCallee
=
4782 NestF
->getType() == PointerType::getUnqual(NewFTy
) ?
4783 NestF
: ConstantExpr::getBitCast(NestF
,
4784 PointerType::getUnqual(NewFTy
));
4785 AttributeList NewPAL
=
4786 AttributeList::get(FTy
->getContext(), Attrs
.getFnAttributes(),
4787 Attrs
.getRetAttributes(), NewArgAttrs
);
4789 SmallVector
<OperandBundleDef
, 1> OpBundles
;
4790 Call
.getOperandBundlesAsDefs(OpBundles
);
4792 Instruction
*NewCaller
;
4793 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(&Call
)) {
4794 NewCaller
= InvokeInst::Create(NewFTy
, NewCallee
,
4795 II
->getNormalDest(), II
->getUnwindDest(),
4796 NewArgs
, OpBundles
);
4797 cast
<InvokeInst
>(NewCaller
)->setCallingConv(II
->getCallingConv());
4798 cast
<InvokeInst
>(NewCaller
)->setAttributes(NewPAL
);
4799 } else if (CallBrInst
*CBI
= dyn_cast
<CallBrInst
>(&Call
)) {
4801 CallBrInst::Create(NewFTy
, NewCallee
, CBI
->getDefaultDest(),
4802 CBI
->getIndirectDests(), NewArgs
, OpBundles
);
4803 cast
<CallBrInst
>(NewCaller
)->setCallingConv(CBI
->getCallingConv());
4804 cast
<CallBrInst
>(NewCaller
)->setAttributes(NewPAL
);
4806 NewCaller
= CallInst::Create(NewFTy
, NewCallee
, NewArgs
, OpBundles
);
4807 cast
<CallInst
>(NewCaller
)->setTailCallKind(
4808 cast
<CallInst
>(Call
).getTailCallKind());
4809 cast
<CallInst
>(NewCaller
)->setCallingConv(
4810 cast
<CallInst
>(Call
).getCallingConv());
4811 cast
<CallInst
>(NewCaller
)->setAttributes(NewPAL
);
4813 NewCaller
->setDebugLoc(Call
.getDebugLoc());
4819 // Replace the trampoline call with a direct call. Since there is no 'nest'
4820 // parameter, there is no need to adjust the argument list. Let the generic
4821 // code sort out any function type mismatches.
4822 Constant
*NewCallee
= ConstantExpr::getBitCast(NestF
, CalleeTy
);
4823 Call
.setCalledFunction(FTy
, NewCallee
);