[Alignment][NFC] Convert LoadInst to MaybeAlign
[llvm-core.git] / lib / Transforms / Scalar / GVN.cpp
blob743353eaea2251b2da0130ab537baa80f3234270
1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs global value numbering to eliminate fully redundant
10 // instructions. It also performs simple dead load elimination.
12 // Note that this pass does the value numbering itself; it does not use the
13 // ValueNumbering analysis passes.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Transforms/Scalar/GVN.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DepthFirstIterator.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/MapVector.h"
22 #include "llvm/ADT/PointerIntPair.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/CFG.h"
32 #include "llvm/Analysis/DomTreeUpdater.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/InstructionSimplify.h"
35 #include "llvm/Analysis/LoopInfo.h"
36 #include "llvm/Analysis/MemoryBuiltins.h"
37 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
38 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
39 #include "llvm/Analysis/PHITransAddr.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/ValueTracking.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/Intrinsics.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Metadata.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/PassManager.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Utils.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/SSAUpdater.h"
77 #include "llvm/Transforms/Utils/VNCoercion.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstdint>
81 #include <utility>
82 #include <vector>
84 using namespace llvm;
85 using namespace llvm::gvn;
86 using namespace llvm::VNCoercion;
87 using namespace PatternMatch;
89 #define DEBUG_TYPE "gvn"
91 STATISTIC(NumGVNInstr, "Number of instructions deleted");
92 STATISTIC(NumGVNLoad, "Number of loads deleted");
93 STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
94 STATISTIC(NumGVNBlocks, "Number of blocks merged");
95 STATISTIC(NumGVNSimpl, "Number of instructions simplified");
96 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
97 STATISTIC(NumPRELoad, "Number of loads PRE'd");
99 static cl::opt<bool> EnablePRE("enable-pre",
100 cl::init(true), cl::Hidden);
101 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
102 static cl::opt<bool> EnableMemDep("enable-gvn-memdep", cl::init(true));
104 // Maximum allowed recursion depth.
105 static cl::opt<uint32_t>
106 MaxRecurseDepth("gvn-max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
107 cl::desc("Max recurse depth in GVN (default = 1000)"));
109 static cl::opt<uint32_t> MaxNumDeps(
110 "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore,
111 cl::desc("Max number of dependences to attempt Load PRE (default = 100)"));
113 struct llvm::GVN::Expression {
114 uint32_t opcode;
115 Type *type;
116 bool commutative = false;
117 SmallVector<uint32_t, 4> varargs;
119 Expression(uint32_t o = ~2U) : opcode(o) {}
121 bool operator==(const Expression &other) const {
122 if (opcode != other.opcode)
123 return false;
124 if (opcode == ~0U || opcode == ~1U)
125 return true;
126 if (type != other.type)
127 return false;
128 if (varargs != other.varargs)
129 return false;
130 return true;
133 friend hash_code hash_value(const Expression &Value) {
134 return hash_combine(
135 Value.opcode, Value.type,
136 hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
140 namespace llvm {
142 template <> struct DenseMapInfo<GVN::Expression> {
143 static inline GVN::Expression getEmptyKey() { return ~0U; }
144 static inline GVN::Expression getTombstoneKey() { return ~1U; }
146 static unsigned getHashValue(const GVN::Expression &e) {
147 using llvm::hash_value;
149 return static_cast<unsigned>(hash_value(e));
152 static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) {
153 return LHS == RHS;
157 } // end namespace llvm
159 /// Represents a particular available value that we know how to materialize.
160 /// Materialization of an AvailableValue never fails. An AvailableValue is
161 /// implicitly associated with a rematerialization point which is the
162 /// location of the instruction from which it was formed.
163 struct llvm::gvn::AvailableValue {
164 enum ValType {
165 SimpleVal, // A simple offsetted value that is accessed.
166 LoadVal, // A value produced by a load.
167 MemIntrin, // A memory intrinsic which is loaded from.
168 UndefVal // A UndefValue representing a value from dead block (which
169 // is not yet physically removed from the CFG).
172 /// V - The value that is live out of the block.
173 PointerIntPair<Value *, 2, ValType> Val;
175 /// Offset - The byte offset in Val that is interesting for the load query.
176 unsigned Offset;
178 static AvailableValue get(Value *V, unsigned Offset = 0) {
179 AvailableValue Res;
180 Res.Val.setPointer(V);
181 Res.Val.setInt(SimpleVal);
182 Res.Offset = Offset;
183 return Res;
186 static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
187 AvailableValue Res;
188 Res.Val.setPointer(MI);
189 Res.Val.setInt(MemIntrin);
190 Res.Offset = Offset;
191 return Res;
194 static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) {
195 AvailableValue Res;
196 Res.Val.setPointer(LI);
197 Res.Val.setInt(LoadVal);
198 Res.Offset = Offset;
199 return Res;
202 static AvailableValue getUndef() {
203 AvailableValue Res;
204 Res.Val.setPointer(nullptr);
205 Res.Val.setInt(UndefVal);
206 Res.Offset = 0;
207 return Res;
210 bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
211 bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
212 bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
213 bool isUndefValue() const { return Val.getInt() == UndefVal; }
215 Value *getSimpleValue() const {
216 assert(isSimpleValue() && "Wrong accessor");
217 return Val.getPointer();
220 LoadInst *getCoercedLoadValue() const {
221 assert(isCoercedLoadValue() && "Wrong accessor");
222 return cast<LoadInst>(Val.getPointer());
225 MemIntrinsic *getMemIntrinValue() const {
226 assert(isMemIntrinValue() && "Wrong accessor");
227 return cast<MemIntrinsic>(Val.getPointer());
230 /// Emit code at the specified insertion point to adjust the value defined
231 /// here to the specified type. This handles various coercion cases.
232 Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt,
233 GVN &gvn) const;
236 /// Represents an AvailableValue which can be rematerialized at the end of
237 /// the associated BasicBlock.
238 struct llvm::gvn::AvailableValueInBlock {
239 /// BB - The basic block in question.
240 BasicBlock *BB;
242 /// AV - The actual available value
243 AvailableValue AV;
245 static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
246 AvailableValueInBlock Res;
247 Res.BB = BB;
248 Res.AV = std::move(AV);
249 return Res;
252 static AvailableValueInBlock get(BasicBlock *BB, Value *V,
253 unsigned Offset = 0) {
254 return get(BB, AvailableValue::get(V, Offset));
257 static AvailableValueInBlock getUndef(BasicBlock *BB) {
258 return get(BB, AvailableValue::getUndef());
261 /// Emit code at the end of this block to adjust the value defined here to
262 /// the specified type. This handles various coercion cases.
263 Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const {
264 return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn);
268 //===----------------------------------------------------------------------===//
269 // ValueTable Internal Functions
270 //===----------------------------------------------------------------------===//
272 GVN::Expression GVN::ValueTable::createExpr(Instruction *I) {
273 Expression e;
274 e.type = I->getType();
275 e.opcode = I->getOpcode();
276 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
277 OI != OE; ++OI)
278 e.varargs.push_back(lookupOrAdd(*OI));
279 if (I->isCommutative()) {
280 // Ensure that commutative instructions that only differ by a permutation
281 // of their operands get the same value number by sorting the operand value
282 // numbers. Since all commutative instructions have two operands it is more
283 // efficient to sort by hand rather than using, say, std::sort.
284 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
285 if (e.varargs[0] > e.varargs[1])
286 std::swap(e.varargs[0], e.varargs[1]);
287 e.commutative = true;
290 if (CmpInst *C = dyn_cast<CmpInst>(I)) {
291 // Sort the operand value numbers so x<y and y>x get the same value number.
292 CmpInst::Predicate Predicate = C->getPredicate();
293 if (e.varargs[0] > e.varargs[1]) {
294 std::swap(e.varargs[0], e.varargs[1]);
295 Predicate = CmpInst::getSwappedPredicate(Predicate);
297 e.opcode = (C->getOpcode() << 8) | Predicate;
298 e.commutative = true;
299 } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
300 for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
301 II != IE; ++II)
302 e.varargs.push_back(*II);
305 return e;
308 GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode,
309 CmpInst::Predicate Predicate,
310 Value *LHS, Value *RHS) {
311 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
312 "Not a comparison!");
313 Expression e;
314 e.type = CmpInst::makeCmpResultType(LHS->getType());
315 e.varargs.push_back(lookupOrAdd(LHS));
316 e.varargs.push_back(lookupOrAdd(RHS));
318 // Sort the operand value numbers so x<y and y>x get the same value number.
319 if (e.varargs[0] > e.varargs[1]) {
320 std::swap(e.varargs[0], e.varargs[1]);
321 Predicate = CmpInst::getSwappedPredicate(Predicate);
323 e.opcode = (Opcode << 8) | Predicate;
324 e.commutative = true;
325 return e;
328 GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
329 assert(EI && "Not an ExtractValueInst?");
330 Expression e;
331 e.type = EI->getType();
332 e.opcode = 0;
334 WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
335 if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
336 // EI is an extract from one of our with.overflow intrinsics. Synthesize
337 // a semantically equivalent expression instead of an extract value
338 // expression.
339 e.opcode = WO->getBinaryOp();
340 e.varargs.push_back(lookupOrAdd(WO->getLHS()));
341 e.varargs.push_back(lookupOrAdd(WO->getRHS()));
342 return e;
345 // Not a recognised intrinsic. Fall back to producing an extract value
346 // expression.
347 e.opcode = EI->getOpcode();
348 for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
349 OI != OE; ++OI)
350 e.varargs.push_back(lookupOrAdd(*OI));
352 for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
353 II != IE; ++II)
354 e.varargs.push_back(*II);
356 return e;
359 //===----------------------------------------------------------------------===//
360 // ValueTable External Functions
361 //===----------------------------------------------------------------------===//
363 GVN::ValueTable::ValueTable() = default;
364 GVN::ValueTable::ValueTable(const ValueTable &) = default;
365 GVN::ValueTable::ValueTable(ValueTable &&) = default;
366 GVN::ValueTable::~ValueTable() = default;
368 /// add - Insert a value into the table with a specified value number.
369 void GVN::ValueTable::add(Value *V, uint32_t num) {
370 valueNumbering.insert(std::make_pair(V, num));
371 if (PHINode *PN = dyn_cast<PHINode>(V))
372 NumberingPhi[num] = PN;
375 uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) {
376 if (AA->doesNotAccessMemory(C)) {
377 Expression exp = createExpr(C);
378 uint32_t e = assignExpNewValueNum(exp).first;
379 valueNumbering[C] = e;
380 return e;
381 } else if (MD && AA->onlyReadsMemory(C)) {
382 Expression exp = createExpr(C);
383 auto ValNum = assignExpNewValueNum(exp);
384 if (ValNum.second) {
385 valueNumbering[C] = ValNum.first;
386 return ValNum.first;
389 MemDepResult local_dep = MD->getDependency(C);
391 if (!local_dep.isDef() && !local_dep.isNonLocal()) {
392 valueNumbering[C] = nextValueNumber;
393 return nextValueNumber++;
396 if (local_dep.isDef()) {
397 CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
399 if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
400 valueNumbering[C] = nextValueNumber;
401 return nextValueNumber++;
404 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
405 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
406 uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
407 if (c_vn != cd_vn) {
408 valueNumbering[C] = nextValueNumber;
409 return nextValueNumber++;
413 uint32_t v = lookupOrAdd(local_cdep);
414 valueNumbering[C] = v;
415 return v;
418 // Non-local case.
419 const MemoryDependenceResults::NonLocalDepInfo &deps =
420 MD->getNonLocalCallDependency(C);
421 // FIXME: Move the checking logic to MemDep!
422 CallInst* cdep = nullptr;
424 // Check to see if we have a single dominating call instruction that is
425 // identical to C.
426 for (unsigned i = 0, e = deps.size(); i != e; ++i) {
427 const NonLocalDepEntry *I = &deps[i];
428 if (I->getResult().isNonLocal())
429 continue;
431 // We don't handle non-definitions. If we already have a call, reject
432 // instruction dependencies.
433 if (!I->getResult().isDef() || cdep != nullptr) {
434 cdep = nullptr;
435 break;
438 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
439 // FIXME: All duplicated with non-local case.
440 if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
441 cdep = NonLocalDepCall;
442 continue;
445 cdep = nullptr;
446 break;
449 if (!cdep) {
450 valueNumbering[C] = nextValueNumber;
451 return nextValueNumber++;
454 if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
455 valueNumbering[C] = nextValueNumber;
456 return nextValueNumber++;
458 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
459 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
460 uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
461 if (c_vn != cd_vn) {
462 valueNumbering[C] = nextValueNumber;
463 return nextValueNumber++;
467 uint32_t v = lookupOrAdd(cdep);
468 valueNumbering[C] = v;
469 return v;
470 } else {
471 valueNumbering[C] = nextValueNumber;
472 return nextValueNumber++;
476 /// Returns true if a value number exists for the specified value.
477 bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; }
479 /// lookup_or_add - Returns the value number for the specified value, assigning
480 /// it a new number if it did not have one before.
481 uint32_t GVN::ValueTable::lookupOrAdd(Value *V) {
482 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
483 if (VI != valueNumbering.end())
484 return VI->second;
486 if (!isa<Instruction>(V)) {
487 valueNumbering[V] = nextValueNumber;
488 return nextValueNumber++;
491 Instruction* I = cast<Instruction>(V);
492 Expression exp;
493 switch (I->getOpcode()) {
494 case Instruction::Call:
495 return lookupOrAddCall(cast<CallInst>(I));
496 case Instruction::FNeg:
497 case Instruction::Add:
498 case Instruction::FAdd:
499 case Instruction::Sub:
500 case Instruction::FSub:
501 case Instruction::Mul:
502 case Instruction::FMul:
503 case Instruction::UDiv:
504 case Instruction::SDiv:
505 case Instruction::FDiv:
506 case Instruction::URem:
507 case Instruction::SRem:
508 case Instruction::FRem:
509 case Instruction::Shl:
510 case Instruction::LShr:
511 case Instruction::AShr:
512 case Instruction::And:
513 case Instruction::Or:
514 case Instruction::Xor:
515 case Instruction::ICmp:
516 case Instruction::FCmp:
517 case Instruction::Trunc:
518 case Instruction::ZExt:
519 case Instruction::SExt:
520 case Instruction::FPToUI:
521 case Instruction::FPToSI:
522 case Instruction::UIToFP:
523 case Instruction::SIToFP:
524 case Instruction::FPTrunc:
525 case Instruction::FPExt:
526 case Instruction::PtrToInt:
527 case Instruction::IntToPtr:
528 case Instruction::AddrSpaceCast:
529 case Instruction::BitCast:
530 case Instruction::Select:
531 case Instruction::ExtractElement:
532 case Instruction::InsertElement:
533 case Instruction::ShuffleVector:
534 case Instruction::InsertValue:
535 case Instruction::GetElementPtr:
536 exp = createExpr(I);
537 break;
538 case Instruction::ExtractValue:
539 exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
540 break;
541 case Instruction::PHI:
542 valueNumbering[V] = nextValueNumber;
543 NumberingPhi[nextValueNumber] = cast<PHINode>(V);
544 return nextValueNumber++;
545 default:
546 valueNumbering[V] = nextValueNumber;
547 return nextValueNumber++;
550 uint32_t e = assignExpNewValueNum(exp).first;
551 valueNumbering[V] = e;
552 return e;
555 /// Returns the value number of the specified value. Fails if
556 /// the value has not yet been numbered.
557 uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const {
558 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
559 if (Verify) {
560 assert(VI != valueNumbering.end() && "Value not numbered?");
561 return VI->second;
563 return (VI != valueNumbering.end()) ? VI->second : 0;
566 /// Returns the value number of the given comparison,
567 /// assigning it a new number if it did not have one before. Useful when
568 /// we deduced the result of a comparison, but don't immediately have an
569 /// instruction realizing that comparison to hand.
570 uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode,
571 CmpInst::Predicate Predicate,
572 Value *LHS, Value *RHS) {
573 Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
574 return assignExpNewValueNum(exp).first;
577 /// Remove all entries from the ValueTable.
578 void GVN::ValueTable::clear() {
579 valueNumbering.clear();
580 expressionNumbering.clear();
581 NumberingPhi.clear();
582 PhiTranslateTable.clear();
583 nextValueNumber = 1;
584 Expressions.clear();
585 ExprIdx.clear();
586 nextExprNumber = 0;
589 /// Remove a value from the value numbering.
590 void GVN::ValueTable::erase(Value *V) {
591 uint32_t Num = valueNumbering.lookup(V);
592 valueNumbering.erase(V);
593 // If V is PHINode, V <--> value number is an one-to-one mapping.
594 if (isa<PHINode>(V))
595 NumberingPhi.erase(Num);
598 /// verifyRemoved - Verify that the value is removed from all internal data
599 /// structures.
600 void GVN::ValueTable::verifyRemoved(const Value *V) const {
601 for (DenseMap<Value*, uint32_t>::const_iterator
602 I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
603 assert(I->first != V && "Inst still occurs in value numbering map!");
607 //===----------------------------------------------------------------------===//
608 // GVN Pass
609 //===----------------------------------------------------------------------===//
611 PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) {
612 // FIXME: The order of evaluation of these 'getResult' calls is very
613 // significant! Re-ordering these variables will cause GVN when run alone to
614 // be less effective! We should fix memdep and basic-aa to not exhibit this
615 // behavior, but until then don't change the order here.
616 auto &AC = AM.getResult<AssumptionAnalysis>(F);
617 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
618 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
619 auto &AA = AM.getResult<AAManager>(F);
620 auto &MemDep = AM.getResult<MemoryDependenceAnalysis>(F);
621 auto *LI = AM.getCachedResult<LoopAnalysis>(F);
622 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
623 bool Changed = runImpl(F, AC, DT, TLI, AA, &MemDep, LI, &ORE);
624 if (!Changed)
625 return PreservedAnalyses::all();
626 PreservedAnalyses PA;
627 PA.preserve<DominatorTreeAnalysis>();
628 PA.preserve<GlobalsAA>();
629 PA.preserve<TargetLibraryAnalysis>();
630 if (LI)
631 PA.preserve<LoopAnalysis>();
632 return PA;
635 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
636 LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const {
637 errs() << "{\n";
638 for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
639 E = d.end(); I != E; ++I) {
640 errs() << I->first << "\n";
641 I->second->dump();
643 errs() << "}\n";
645 #endif
647 /// Return true if we can prove that the value
648 /// we're analyzing is fully available in the specified block. As we go, keep
649 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This
650 /// map is actually a tri-state map with the following values:
651 /// 0) we know the block *is not* fully available.
652 /// 1) we know the block *is* fully available.
653 /// 2) we do not know whether the block is fully available or not, but we are
654 /// currently speculating that it will be.
655 /// 3) we are speculating for this block and have used that to speculate for
656 /// other blocks.
657 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
658 DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
659 uint32_t RecurseDepth) {
660 if (RecurseDepth > MaxRecurseDepth)
661 return false;
663 // Optimistically assume that the block is fully available and check to see
664 // if we already know about this block in one lookup.
665 std::pair<DenseMap<BasicBlock*, char>::iterator, bool> IV =
666 FullyAvailableBlocks.insert(std::make_pair(BB, 2));
668 // If the entry already existed for this block, return the precomputed value.
669 if (!IV.second) {
670 // If this is a speculative "available" value, mark it as being used for
671 // speculation of other blocks.
672 if (IV.first->second == 2)
673 IV.first->second = 3;
674 return IV.first->second != 0;
677 // Otherwise, see if it is fully available in all predecessors.
678 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
680 // If this block has no predecessors, it isn't live-in here.
681 if (PI == PE)
682 goto SpeculationFailure;
684 for (; PI != PE; ++PI)
685 // If the value isn't fully available in one of our predecessors, then it
686 // isn't fully available in this block either. Undo our previous
687 // optimistic assumption and bail out.
688 if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
689 goto SpeculationFailure;
691 return true;
693 // If we get here, we found out that this is not, after
694 // all, a fully-available block. We have a problem if we speculated on this and
695 // used the speculation to mark other blocks as available.
696 SpeculationFailure:
697 char &BBVal = FullyAvailableBlocks[BB];
699 // If we didn't speculate on this, just return with it set to false.
700 if (BBVal == 2) {
701 BBVal = 0;
702 return false;
705 // If we did speculate on this value, we could have blocks set to 1 that are
706 // incorrect. Walk the (transitive) successors of this block and mark them as
707 // 0 if set to one.
708 SmallVector<BasicBlock*, 32> BBWorklist;
709 BBWorklist.push_back(BB);
711 do {
712 BasicBlock *Entry = BBWorklist.pop_back_val();
713 // Note that this sets blocks to 0 (unavailable) if they happen to not
714 // already be in FullyAvailableBlocks. This is safe.
715 char &EntryVal = FullyAvailableBlocks[Entry];
716 if (EntryVal == 0) continue; // Already unavailable.
718 // Mark as unavailable.
719 EntryVal = 0;
721 BBWorklist.append(succ_begin(Entry), succ_end(Entry));
722 } while (!BBWorklist.empty());
724 return false;
727 /// Given a set of loads specified by ValuesPerBlock,
728 /// construct SSA form, allowing us to eliminate LI. This returns the value
729 /// that should be used at LI's definition site.
730 static Value *ConstructSSAForLoadSet(LoadInst *LI,
731 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
732 GVN &gvn) {
733 // Check for the fully redundant, dominating load case. In this case, we can
734 // just use the dominating value directly.
735 if (ValuesPerBlock.size() == 1 &&
736 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
737 LI->getParent())) {
738 assert(!ValuesPerBlock[0].AV.isUndefValue() &&
739 "Dead BB dominate this block");
740 return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn);
743 // Otherwise, we have to construct SSA form.
744 SmallVector<PHINode*, 8> NewPHIs;
745 SSAUpdater SSAUpdate(&NewPHIs);
746 SSAUpdate.Initialize(LI->getType(), LI->getName());
748 for (const AvailableValueInBlock &AV : ValuesPerBlock) {
749 BasicBlock *BB = AV.BB;
751 if (SSAUpdate.HasValueForBlock(BB))
752 continue;
754 // If the value is the load that we will be eliminating, and the block it's
755 // available in is the block that the load is in, then don't add it as
756 // SSAUpdater will resolve the value to the relevant phi which may let it
757 // avoid phi construction entirely if there's actually only one value.
758 if (BB == LI->getParent() &&
759 ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == LI) ||
760 (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == LI)))
761 continue;
763 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn));
766 // Perform PHI construction.
767 return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
770 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI,
771 Instruction *InsertPt,
772 GVN &gvn) const {
773 Value *Res;
774 Type *LoadTy = LI->getType();
775 const DataLayout &DL = LI->getModule()->getDataLayout();
776 if (isSimpleValue()) {
777 Res = getSimpleValue();
778 if (Res->getType() != LoadTy) {
779 Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
781 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset
782 << " " << *getSimpleValue() << '\n'
783 << *Res << '\n'
784 << "\n\n\n");
786 } else if (isCoercedLoadValue()) {
787 LoadInst *Load = getCoercedLoadValue();
788 if (Load->getType() == LoadTy && Offset == 0) {
789 Res = Load;
790 } else {
791 Res = getLoadValueForLoad(Load, Offset, LoadTy, InsertPt, DL);
792 // We would like to use gvn.markInstructionForDeletion here, but we can't
793 // because the load is already memoized into the leader map table that GVN
794 // tracks. It is potentially possible to remove the load from the table,
795 // but then there all of the operations based on it would need to be
796 // rehashed. Just leave the dead load around.
797 gvn.getMemDep().removeInstruction(Load);
798 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset
799 << " " << *getCoercedLoadValue() << '\n'
800 << *Res << '\n'
801 << "\n\n\n");
803 } else if (isMemIntrinValue()) {
804 Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
805 InsertPt, DL);
806 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
807 << " " << *getMemIntrinValue() << '\n'
808 << *Res << '\n'
809 << "\n\n\n");
810 } else {
811 assert(isUndefValue() && "Should be UndefVal");
812 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
813 return UndefValue::get(LoadTy);
815 assert(Res && "failed to materialize?");
816 return Res;
819 static bool isLifetimeStart(const Instruction *Inst) {
820 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
821 return II->getIntrinsicID() == Intrinsic::lifetime_start;
822 return false;
825 /// Try to locate the three instruction involved in a missed
826 /// load-elimination case that is due to an intervening store.
827 static void reportMayClobberedLoad(LoadInst *LI, MemDepResult DepInfo,
828 DominatorTree *DT,
829 OptimizationRemarkEmitter *ORE) {
830 using namespace ore;
832 User *OtherAccess = nullptr;
834 OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", LI);
835 R << "load of type " << NV("Type", LI->getType()) << " not eliminated"
836 << setExtraArgs();
838 for (auto *U : LI->getPointerOperand()->users())
839 if (U != LI && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
840 DT->dominates(cast<Instruction>(U), LI)) {
841 // FIXME: for now give up if there are multiple memory accesses that
842 // dominate the load. We need further analysis to decide which one is
843 // that we're forwarding from.
844 if (OtherAccess)
845 OtherAccess = nullptr;
846 else
847 OtherAccess = U;
850 if (OtherAccess)
851 R << " in favor of " << NV("OtherAccess", OtherAccess);
853 R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst());
855 ORE->emit(R);
858 bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo,
859 Value *Address, AvailableValue &Res) {
860 assert((DepInfo.isDef() || DepInfo.isClobber()) &&
861 "expected a local dependence");
862 assert(LI->isUnordered() && "rules below are incorrect for ordered access");
864 const DataLayout &DL = LI->getModule()->getDataLayout();
866 Instruction *DepInst = DepInfo.getInst();
867 if (DepInfo.isClobber()) {
868 // If the dependence is to a store that writes to a superset of the bits
869 // read by the load, we can extract the bits we need for the load from the
870 // stored value.
871 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
872 // Can't forward from non-atomic to atomic without violating memory model.
873 if (Address && LI->isAtomic() <= DepSI->isAtomic()) {
874 int Offset =
875 analyzeLoadFromClobberingStore(LI->getType(), Address, DepSI, DL);
876 if (Offset != -1) {
877 Res = AvailableValue::get(DepSI->getValueOperand(), Offset);
878 return true;
883 // Check to see if we have something like this:
884 // load i32* P
885 // load i8* (P+1)
886 // if we have this, replace the later with an extraction from the former.
887 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
888 // If this is a clobber and L is the first instruction in its block, then
889 // we have the first instruction in the entry block.
890 // Can't forward from non-atomic to atomic without violating memory model.
891 if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) {
892 int Offset =
893 analyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);
895 if (Offset != -1) {
896 Res = AvailableValue::getLoad(DepLI, Offset);
897 return true;
902 // If the clobbering value is a memset/memcpy/memmove, see if we can
903 // forward a value on from it.
904 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
905 if (Address && !LI->isAtomic()) {
906 int Offset = analyzeLoadFromClobberingMemInst(LI->getType(), Address,
907 DepMI, DL);
908 if (Offset != -1) {
909 Res = AvailableValue::getMI(DepMI, Offset);
910 return true;
914 // Nothing known about this clobber, have to be conservative
915 LLVM_DEBUG(
916 // fast print dep, using operator<< on instruction is too slow.
917 dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
918 dbgs() << " is clobbered by " << *DepInst << '\n';);
919 if (ORE->allowExtraAnalysis(DEBUG_TYPE))
920 reportMayClobberedLoad(LI, DepInfo, DT, ORE);
922 return false;
924 assert(DepInfo.isDef() && "follows from above");
926 // Loading the allocation -> undef.
927 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
928 // Loading immediately after lifetime begin -> undef.
929 isLifetimeStart(DepInst)) {
930 Res = AvailableValue::get(UndefValue::get(LI->getType()));
931 return true;
934 // Loading from calloc (which zero initializes memory) -> zero
935 if (isCallocLikeFn(DepInst, TLI)) {
936 Res = AvailableValue::get(Constant::getNullValue(LI->getType()));
937 return true;
940 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
941 // Reject loads and stores that are to the same address but are of
942 // different types if we have to. If the stored value is larger or equal to
943 // the loaded value, we can reuse it.
944 if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), LI->getType(),
945 DL))
946 return false;
948 // Can't forward from non-atomic to atomic without violating memory model.
949 if (S->isAtomic() < LI->isAtomic())
950 return false;
952 Res = AvailableValue::get(S->getValueOperand());
953 return true;
956 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
957 // If the types mismatch and we can't handle it, reject reuse of the load.
958 // If the stored value is larger or equal to the loaded value, we can reuse
959 // it.
960 if (!canCoerceMustAliasedValueToLoad(LD, LI->getType(), DL))
961 return false;
963 // Can't forward from non-atomic to atomic without violating memory model.
964 if (LD->isAtomic() < LI->isAtomic())
965 return false;
967 Res = AvailableValue::getLoad(LD);
968 return true;
971 // Unknown def - must be conservative
972 LLVM_DEBUG(
973 // fast print dep, using operator<< on instruction is too slow.
974 dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
975 dbgs() << " has unknown def " << *DepInst << '\n';);
976 return false;
979 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
980 AvailValInBlkVect &ValuesPerBlock,
981 UnavailBlkVect &UnavailableBlocks) {
982 // Filter out useless results (non-locals, etc). Keep track of the blocks
983 // where we have a value available in repl, also keep track of whether we see
984 // dependencies that produce an unknown value for the load (such as a call
985 // that could potentially clobber the load).
986 unsigned NumDeps = Deps.size();
987 for (unsigned i = 0, e = NumDeps; i != e; ++i) {
988 BasicBlock *DepBB = Deps[i].getBB();
989 MemDepResult DepInfo = Deps[i].getResult();
991 if (DeadBlocks.count(DepBB)) {
992 // Dead dependent mem-op disguise as a load evaluating the same value
993 // as the load in question.
994 ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
995 continue;
998 if (!DepInfo.isDef() && !DepInfo.isClobber()) {
999 UnavailableBlocks.push_back(DepBB);
1000 continue;
1003 // The address being loaded in this non-local block may not be the same as
1004 // the pointer operand of the load if PHI translation occurs. Make sure
1005 // to consider the right address.
1006 Value *Address = Deps[i].getAddress();
1008 AvailableValue AV;
1009 if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) {
1010 // subtlety: because we know this was a non-local dependency, we know
1011 // it's safe to materialize anywhere between the instruction within
1012 // DepInfo and the end of it's block.
1013 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1014 std::move(AV)));
1015 } else {
1016 UnavailableBlocks.push_back(DepBB);
1020 assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() &&
1021 "post condition violation");
1024 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
1025 UnavailBlkVect &UnavailableBlocks) {
1026 // Okay, we have *some* definitions of the value. This means that the value
1027 // is available in some of our (transitive) predecessors. Lets think about
1028 // doing PRE of this load. This will involve inserting a new load into the
1029 // predecessor when it's not available. We could do this in general, but
1030 // prefer to not increase code size. As such, we only do this when we know
1031 // that we only have to insert *one* load (which means we're basically moving
1032 // the load, not inserting a new one).
1034 SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
1035 UnavailableBlocks.end());
1037 // Let's find the first basic block with more than one predecessor. Walk
1038 // backwards through predecessors if needed.
1039 BasicBlock *LoadBB = LI->getParent();
1040 BasicBlock *TmpBB = LoadBB;
1041 bool IsSafeToSpeculativelyExecute = isSafeToSpeculativelyExecute(LI);
1043 // Check that there is no implicit control flow instructions above our load in
1044 // its block. If there is an instruction that doesn't always pass the
1045 // execution to the following instruction, then moving through it may become
1046 // invalid. For example:
1048 // int arr[LEN];
1049 // int index = ???;
1050 // ...
1051 // guard(0 <= index && index < LEN);
1052 // use(arr[index]);
1054 // It is illegal to move the array access to any point above the guard,
1055 // because if the index is out of bounds we should deoptimize rather than
1056 // access the array.
1057 // Check that there is no guard in this block above our instruction.
1058 if (!IsSafeToSpeculativelyExecute && ICF->isDominatedByICFIFromSameBlock(LI))
1059 return false;
1060 while (TmpBB->getSinglePredecessor()) {
1061 TmpBB = TmpBB->getSinglePredecessor();
1062 if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1063 return false;
1064 if (Blockers.count(TmpBB))
1065 return false;
1067 // If any of these blocks has more than one successor (i.e. if the edge we
1068 // just traversed was critical), then there are other paths through this
1069 // block along which the load may not be anticipated. Hoisting the load
1070 // above this block would be adding the load to execution paths along
1071 // which it was not previously executed.
1072 if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1073 return false;
1075 // Check that there is no implicit control flow in a block above.
1076 if (!IsSafeToSpeculativelyExecute && ICF->hasICF(TmpBB))
1077 return false;
1080 assert(TmpBB);
1081 LoadBB = TmpBB;
1083 // Check to see how many predecessors have the loaded value fully
1084 // available.
1085 MapVector<BasicBlock *, Value *> PredLoads;
1086 DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1087 for (const AvailableValueInBlock &AV : ValuesPerBlock)
1088 FullyAvailableBlocks[AV.BB] = true;
1089 for (BasicBlock *UnavailableBB : UnavailableBlocks)
1090 FullyAvailableBlocks[UnavailableBB] = false;
1092 SmallVector<BasicBlock *, 4> CriticalEdgePred;
1093 for (BasicBlock *Pred : predecessors(LoadBB)) {
1094 // If any predecessor block is an EH pad that does not allow non-PHI
1095 // instructions before the terminator, we can't PRE the load.
1096 if (Pred->getTerminator()->isEHPad()) {
1097 LLVM_DEBUG(
1098 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
1099 << Pred->getName() << "': " << *LI << '\n');
1100 return false;
1103 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
1104 continue;
1107 if (Pred->getTerminator()->getNumSuccessors() != 1) {
1108 if (isa<IndirectBrInst>(Pred->getTerminator())) {
1109 LLVM_DEBUG(
1110 dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1111 << Pred->getName() << "': " << *LI << '\n');
1112 return false;
1115 // FIXME: Can we support the fallthrough edge?
1116 if (isa<CallBrInst>(Pred->getTerminator())) {
1117 LLVM_DEBUG(
1118 dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '"
1119 << Pred->getName() << "': " << *LI << '\n');
1120 return false;
1123 if (LoadBB->isEHPad()) {
1124 LLVM_DEBUG(
1125 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
1126 << Pred->getName() << "': " << *LI << '\n');
1127 return false;
1130 CriticalEdgePred.push_back(Pred);
1131 } else {
1132 // Only add the predecessors that will not be split for now.
1133 PredLoads[Pred] = nullptr;
1137 // Decide whether PRE is profitable for this load.
1138 unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
1139 assert(NumUnavailablePreds != 0 &&
1140 "Fully available value should already be eliminated!");
1142 // If this load is unavailable in multiple predecessors, reject it.
1143 // FIXME: If we could restructure the CFG, we could make a common pred with
1144 // all the preds that don't have an available LI and insert a new load into
1145 // that one block.
1146 if (NumUnavailablePreds != 1)
1147 return false;
1149 // Split critical edges, and update the unavailable predecessors accordingly.
1150 for (BasicBlock *OrigPred : CriticalEdgePred) {
1151 BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1152 assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
1153 PredLoads[NewPred] = nullptr;
1154 LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1155 << LoadBB->getName() << '\n');
1158 // Check if the load can safely be moved to all the unavailable predecessors.
1159 bool CanDoPRE = true;
1160 const DataLayout &DL = LI->getModule()->getDataLayout();
1161 SmallVector<Instruction*, 8> NewInsts;
1162 for (auto &PredLoad : PredLoads) {
1163 BasicBlock *UnavailablePred = PredLoad.first;
1165 // Do PHI translation to get its value in the predecessor if necessary. The
1166 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1167 // We do the translation for each edge we skipped by going from LI's block
1168 // to LoadBB, otherwise we might miss pieces needing translation.
1170 // If all preds have a single successor, then we know it is safe to insert
1171 // the load on the pred (?!?), so we can insert code to materialize the
1172 // pointer if it is not available.
1173 Value *LoadPtr = LI->getPointerOperand();
1174 BasicBlock *Cur = LI->getParent();
1175 while (Cur != LoadBB) {
1176 PHITransAddr Address(LoadPtr, DL, AC);
1177 LoadPtr = Address.PHITranslateWithInsertion(
1178 Cur, Cur->getSinglePredecessor(), *DT, NewInsts);
1179 if (!LoadPtr) {
1180 CanDoPRE = false;
1181 break;
1183 Cur = Cur->getSinglePredecessor();
1186 if (LoadPtr) {
1187 PHITransAddr Address(LoadPtr, DL, AC);
1188 LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, *DT,
1189 NewInsts);
1191 // If we couldn't find or insert a computation of this phi translated value,
1192 // we fail PRE.
1193 if (!LoadPtr) {
1194 LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1195 << *LI->getPointerOperand() << "\n");
1196 CanDoPRE = false;
1197 break;
1200 PredLoad.second = LoadPtr;
1203 if (!CanDoPRE) {
1204 while (!NewInsts.empty()) {
1205 // Erase instructions generated by the failed PHI translation before
1206 // trying to number them. PHI translation might insert instructions
1207 // in basic blocks other than the current one, and we delete them
1208 // directly, as markInstructionForDeletion only allows removing from the
1209 // current basic block.
1210 NewInsts.pop_back_val()->eraseFromParent();
1212 // HINT: Don't revert the edge-splitting as following transformation may
1213 // also need to split these critical edges.
1214 return !CriticalEdgePred.empty();
1217 // Okay, we can eliminate this load by inserting a reload in the predecessor
1218 // and using PHI construction to get the value in the other predecessors, do
1219 // it.
1220 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1221 LLVM_DEBUG(if (!NewInsts.empty()) dbgs()
1222 << "INSERTED " << NewInsts.size() << " INSTS: " << *NewInsts.back()
1223 << '\n');
1225 // Assign value numbers to the new instructions.
1226 for (Instruction *I : NewInsts) {
1227 // Instructions that have been inserted in predecessor(s) to materialize
1228 // the load address do not retain their original debug locations. Doing
1229 // so could lead to confusing (but correct) source attributions.
1230 if (const DebugLoc &DL = I->getDebugLoc())
1231 I->setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
1233 // FIXME: We really _ought_ to insert these value numbers into their
1234 // parent's availability map. However, in doing so, we risk getting into
1235 // ordering issues. If a block hasn't been processed yet, we would be
1236 // marking a value as AVAIL-IN, which isn't what we intend.
1237 VN.lookupOrAdd(I);
1240 for (const auto &PredLoad : PredLoads) {
1241 BasicBlock *UnavailablePred = PredLoad.first;
1242 Value *LoadPtr = PredLoad.second;
1244 auto *NewLoad = new LoadInst(
1245 LI->getType(), LoadPtr, LI->getName() + ".pre", LI->isVolatile(),
1246 MaybeAlign(LI->getAlignment()), LI->getOrdering(), LI->getSyncScopeID(),
1247 UnavailablePred->getTerminator());
1248 NewLoad->setDebugLoc(LI->getDebugLoc());
1250 // Transfer the old load's AA tags to the new load.
1251 AAMDNodes Tags;
1252 LI->getAAMetadata(Tags);
1253 if (Tags)
1254 NewLoad->setAAMetadata(Tags);
1256 if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load))
1257 NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
1258 if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group))
1259 NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
1260 if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range))
1261 NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
1263 // We do not propagate the old load's debug location, because the new
1264 // load now lives in a different BB, and we want to avoid a jumpy line
1265 // table.
1266 // FIXME: How do we retain source locations without causing poor debugging
1267 // behavior?
1269 // Add the newly created load.
1270 ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1271 NewLoad));
1272 MD->invalidateCachedPointerInfo(LoadPtr);
1273 LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1276 // Perform PHI construction.
1277 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1278 LI->replaceAllUsesWith(V);
1279 if (isa<PHINode>(V))
1280 V->takeName(LI);
1281 if (Instruction *I = dyn_cast<Instruction>(V))
1282 I->setDebugLoc(LI->getDebugLoc());
1283 if (V->getType()->isPtrOrPtrVectorTy())
1284 MD->invalidateCachedPointerInfo(V);
1285 markInstructionForDeletion(LI);
1286 ORE->emit([&]() {
1287 return OptimizationRemark(DEBUG_TYPE, "LoadPRE", LI)
1288 << "load eliminated by PRE";
1290 ++NumPRELoad;
1291 return true;
1294 static void reportLoadElim(LoadInst *LI, Value *AvailableValue,
1295 OptimizationRemarkEmitter *ORE) {
1296 using namespace ore;
1298 ORE->emit([&]() {
1299 return OptimizationRemark(DEBUG_TYPE, "LoadElim", LI)
1300 << "load of type " << NV("Type", LI->getType()) << " eliminated"
1301 << setExtraArgs() << " in favor of "
1302 << NV("InfavorOfValue", AvailableValue);
1306 /// Attempt to eliminate a load whose dependencies are
1307 /// non-local by performing PHI construction.
1308 bool GVN::processNonLocalLoad(LoadInst *LI) {
1309 // non-local speculations are not allowed under asan.
1310 if (LI->getParent()->getParent()->hasFnAttribute(
1311 Attribute::SanitizeAddress) ||
1312 LI->getParent()->getParent()->hasFnAttribute(
1313 Attribute::SanitizeHWAddress))
1314 return false;
1316 // Step 1: Find the non-local dependencies of the load.
1317 LoadDepVect Deps;
1318 MD->getNonLocalPointerDependency(LI, Deps);
1320 // If we had to process more than one hundred blocks to find the
1321 // dependencies, this load isn't worth worrying about. Optimizing
1322 // it will be too expensive.
1323 unsigned NumDeps = Deps.size();
1324 if (NumDeps > MaxNumDeps)
1325 return false;
1327 // If we had a phi translation failure, we'll have a single entry which is a
1328 // clobber in the current block. Reject this early.
1329 if (NumDeps == 1 &&
1330 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1331 LLVM_DEBUG(dbgs() << "GVN: non-local load "; LI->printAsOperand(dbgs());
1332 dbgs() << " has unknown dependencies\n";);
1333 return false;
1336 // If this load follows a GEP, see if we can PRE the indices before analyzing.
1337 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) {
1338 for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
1339 OE = GEP->idx_end();
1340 OI != OE; ++OI)
1341 if (Instruction *I = dyn_cast<Instruction>(OI->get()))
1342 performScalarPRE(I);
1345 // Step 2: Analyze the availability of the load
1346 AvailValInBlkVect ValuesPerBlock;
1347 UnavailBlkVect UnavailableBlocks;
1348 AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
1350 // If we have no predecessors that produce a known value for this load, exit
1351 // early.
1352 if (ValuesPerBlock.empty())
1353 return false;
1355 // Step 3: Eliminate fully redundancy.
1357 // If all of the instructions we depend on produce a known value for this
1358 // load, then it is fully redundant and we can use PHI insertion to compute
1359 // its value. Insert PHIs and remove the fully redundant value now.
1360 if (UnavailableBlocks.empty()) {
1361 LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1363 // Perform PHI construction.
1364 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1365 LI->replaceAllUsesWith(V);
1367 if (isa<PHINode>(V))
1368 V->takeName(LI);
1369 if (Instruction *I = dyn_cast<Instruction>(V))
1370 // If instruction I has debug info, then we should not update it.
1371 // Also, if I has a null DebugLoc, then it is still potentially incorrect
1372 // to propagate LI's DebugLoc because LI may not post-dominate I.
1373 if (LI->getDebugLoc() && LI->getParent() == I->getParent())
1374 I->setDebugLoc(LI->getDebugLoc());
1375 if (V->getType()->isPtrOrPtrVectorTy())
1376 MD->invalidateCachedPointerInfo(V);
1377 markInstructionForDeletion(LI);
1378 ++NumGVNLoad;
1379 reportLoadElim(LI, V, ORE);
1380 return true;
1383 // Step 4: Eliminate partial redundancy.
1384 if (!EnablePRE || !EnableLoadPRE)
1385 return false;
1387 return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
1390 static bool hasUsersIn(Value *V, BasicBlock *BB) {
1391 for (User *U : V->users())
1392 if (isa<Instruction>(U) &&
1393 cast<Instruction>(U)->getParent() == BB)
1394 return true;
1395 return false;
1398 bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) {
1399 assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume &&
1400 "This function can only be called with llvm.assume intrinsic");
1401 Value *V = IntrinsicI->getArgOperand(0);
1403 if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
1404 if (Cond->isZero()) {
1405 Type *Int8Ty = Type::getInt8Ty(V->getContext());
1406 // Insert a new store to null instruction before the load to indicate that
1407 // this code is not reachable. FIXME: We could insert unreachable
1408 // instruction directly because we can modify the CFG.
1409 new StoreInst(UndefValue::get(Int8Ty),
1410 Constant::getNullValue(Int8Ty->getPointerTo()),
1411 IntrinsicI);
1413 markInstructionForDeletion(IntrinsicI);
1414 return false;
1415 } else if (isa<Constant>(V)) {
1416 // If it's not false, and constant, it must evaluate to true. This means our
1417 // assume is assume(true), and thus, pointless, and we don't want to do
1418 // anything more here.
1419 return false;
1422 Constant *True = ConstantInt::getTrue(V->getContext());
1423 bool Changed = false;
1425 for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
1426 BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
1428 // This property is only true in dominated successors, propagateEquality
1429 // will check dominance for us.
1430 Changed |= propagateEquality(V, True, Edge, false);
1433 // We can replace assume value with true, which covers cases like this:
1434 // call void @llvm.assume(i1 %cmp)
1435 // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
1436 ReplaceOperandsWithMap[V] = True;
1438 // If we find an equality fact, canonicalize all dominated uses in this block
1439 // to one of the two values. We heuristically choice the "oldest" of the
1440 // two where age is determined by value number. (Note that propagateEquality
1441 // above handles the cross block case.)
1443 // Key case to cover are:
1444 // 1)
1445 // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
1446 // call void @llvm.assume(i1 %cmp)
1447 // ret float %0 ; will change it to ret float 3.000000e+00
1448 // 2)
1449 // %load = load float, float* %addr
1450 // %cmp = fcmp oeq float %load, %0
1451 // call void @llvm.assume(i1 %cmp)
1452 // ret float %load ; will change it to ret float %0
1453 if (auto *CmpI = dyn_cast<CmpInst>(V)) {
1454 if (CmpI->getPredicate() == CmpInst::Predicate::ICMP_EQ ||
1455 CmpI->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
1456 (CmpI->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
1457 CmpI->getFastMathFlags().noNaNs())) {
1458 Value *CmpLHS = CmpI->getOperand(0);
1459 Value *CmpRHS = CmpI->getOperand(1);
1460 // Heuristically pick the better replacement -- the choice of heuristic
1461 // isn't terribly important here, but the fact we canonicalize on some
1462 // replacement is for exposing other simplifications.
1463 // TODO: pull this out as a helper function and reuse w/existing
1464 // (slightly different) logic.
1465 if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS))
1466 std::swap(CmpLHS, CmpRHS);
1467 if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))
1468 std::swap(CmpLHS, CmpRHS);
1469 if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) ||
1470 (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) {
1471 // Move the 'oldest' value to the right-hand side, using the value
1472 // number as a proxy for age.
1473 uint32_t LVN = VN.lookupOrAdd(CmpLHS);
1474 uint32_t RVN = VN.lookupOrAdd(CmpRHS);
1475 if (LVN < RVN)
1476 std::swap(CmpLHS, CmpRHS);
1479 // Handle degenerate case where we either haven't pruned a dead path or a
1480 // removed a trivial assume yet.
1481 if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS))
1482 return Changed;
1484 // +0.0 and -0.0 compare equal, but do not imply equivalence. Unless we
1485 // can prove equivalence, bail.
1486 if (CmpRHS->getType()->isFloatTy() &&
1487 (!isa<ConstantFP>(CmpRHS) || cast<ConstantFP>(CmpRHS)->isZero()))
1488 return Changed;
1490 LLVM_DEBUG(dbgs() << "Replacing dominated uses of "
1491 << *CmpLHS << " with "
1492 << *CmpRHS << " in block "
1493 << IntrinsicI->getParent()->getName() << "\n");
1496 // Setup the replacement map - this handles uses within the same block
1497 if (hasUsersIn(CmpLHS, IntrinsicI->getParent()))
1498 ReplaceOperandsWithMap[CmpLHS] = CmpRHS;
1500 // NOTE: The non-block local cases are handled by the call to
1501 // propagateEquality above; this block is just about handling the block
1502 // local cases. TODO: There's a bunch of logic in propagateEqualiy which
1503 // isn't duplicated for the block local case, can we share it somehow?
1506 return Changed;
1509 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
1510 patchReplacementInstruction(I, Repl);
1511 I->replaceAllUsesWith(Repl);
1514 /// Attempt to eliminate a load, first by eliminating it
1515 /// locally, and then attempting non-local elimination if that fails.
1516 bool GVN::processLoad(LoadInst *L) {
1517 if (!MD)
1518 return false;
1520 // This code hasn't been audited for ordered or volatile memory access
1521 if (!L->isUnordered())
1522 return false;
1524 if (L->use_empty()) {
1525 markInstructionForDeletion(L);
1526 return true;
1529 // ... to a pointer that has been loaded from before...
1530 MemDepResult Dep = MD->getDependency(L);
1532 // If it is defined in another block, try harder.
1533 if (Dep.isNonLocal())
1534 return processNonLocalLoad(L);
1536 // Only handle the local case below
1537 if (!Dep.isDef() && !Dep.isClobber()) {
1538 // This might be a NonFuncLocal or an Unknown
1539 LLVM_DEBUG(
1540 // fast print dep, using operator<< on instruction is too slow.
1541 dbgs() << "GVN: load "; L->printAsOperand(dbgs());
1542 dbgs() << " has unknown dependence\n";);
1543 return false;
1546 AvailableValue AV;
1547 if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) {
1548 Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this);
1550 // Replace the load!
1551 patchAndReplaceAllUsesWith(L, AvailableValue);
1552 markInstructionForDeletion(L);
1553 ++NumGVNLoad;
1554 reportLoadElim(L, AvailableValue, ORE);
1555 // Tell MDA to rexamine the reused pointer since we might have more
1556 // information after forwarding it.
1557 if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy())
1558 MD->invalidateCachedPointerInfo(AvailableValue);
1559 return true;
1562 return false;
1565 /// Return a pair the first field showing the value number of \p Exp and the
1566 /// second field showing whether it is a value number newly created.
1567 std::pair<uint32_t, bool>
1568 GVN::ValueTable::assignExpNewValueNum(Expression &Exp) {
1569 uint32_t &e = expressionNumbering[Exp];
1570 bool CreateNewValNum = !e;
1571 if (CreateNewValNum) {
1572 Expressions.push_back(Exp);
1573 if (ExprIdx.size() < nextValueNumber + 1)
1574 ExprIdx.resize(nextValueNumber * 2);
1575 e = nextValueNumber;
1576 ExprIdx[nextValueNumber++] = nextExprNumber++;
1578 return {e, CreateNewValNum};
1581 /// Return whether all the values related with the same \p num are
1582 /// defined in \p BB.
1583 bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB,
1584 GVN &Gvn) {
1585 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
1586 while (Vals && Vals->BB == BB)
1587 Vals = Vals->Next;
1588 return !Vals;
1591 /// Wrap phiTranslateImpl to provide caching functionality.
1592 uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred,
1593 const BasicBlock *PhiBlock, uint32_t Num,
1594 GVN &Gvn) {
1595 auto FindRes = PhiTranslateTable.find({Num, Pred});
1596 if (FindRes != PhiTranslateTable.end())
1597 return FindRes->second;
1598 uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
1599 PhiTranslateTable.insert({{Num, Pred}, NewNum});
1600 return NewNum;
1603 // Return true if the value number \p Num and NewNum have equal value.
1604 // Return false if the result is unknown.
1605 bool GVN::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum,
1606 const BasicBlock *Pred,
1607 const BasicBlock *PhiBlock, GVN &Gvn) {
1608 CallInst *Call = nullptr;
1609 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
1610 while (Vals) {
1611 Call = dyn_cast<CallInst>(Vals->Val);
1612 if (Call && Call->getParent() == PhiBlock)
1613 break;
1614 Vals = Vals->Next;
1617 if (AA->doesNotAccessMemory(Call))
1618 return true;
1620 if (!MD || !AA->onlyReadsMemory(Call))
1621 return false;
1623 MemDepResult local_dep = MD->getDependency(Call);
1624 if (!local_dep.isNonLocal())
1625 return false;
1627 const MemoryDependenceResults::NonLocalDepInfo &deps =
1628 MD->getNonLocalCallDependency(Call);
1630 // Check to see if the Call has no function local clobber.
1631 for (unsigned i = 0; i < deps.size(); i++) {
1632 if (deps[i].getResult().isNonFuncLocal())
1633 return true;
1635 return false;
1638 /// Translate value number \p Num using phis, so that it has the values of
1639 /// the phis in BB.
1640 uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred,
1641 const BasicBlock *PhiBlock,
1642 uint32_t Num, GVN &Gvn) {
1643 if (PHINode *PN = NumberingPhi[Num]) {
1644 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
1645 if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
1646 if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false))
1647 return TransVal;
1649 return Num;
1652 // If there is any value related with Num is defined in a BB other than
1653 // PhiBlock, it cannot depend on a phi in PhiBlock without going through
1654 // a backedge. We can do an early exit in that case to save compile time.
1655 if (!areAllValsInBB(Num, PhiBlock, Gvn))
1656 return Num;
1658 if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
1659 return Num;
1660 Expression Exp = Expressions[ExprIdx[Num]];
1662 for (unsigned i = 0; i < Exp.varargs.size(); i++) {
1663 // For InsertValue and ExtractValue, some varargs are index numbers
1664 // instead of value numbers. Those index numbers should not be
1665 // translated.
1666 if ((i > 1 && Exp.opcode == Instruction::InsertValue) ||
1667 (i > 0 && Exp.opcode == Instruction::ExtractValue))
1668 continue;
1669 Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn);
1672 if (Exp.commutative) {
1673 assert(Exp.varargs.size() == 2 && "Unsupported commutative expression!");
1674 if (Exp.varargs[0] > Exp.varargs[1]) {
1675 std::swap(Exp.varargs[0], Exp.varargs[1]);
1676 uint32_t Opcode = Exp.opcode >> 8;
1677 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)
1678 Exp.opcode = (Opcode << 8) |
1679 CmpInst::getSwappedPredicate(
1680 static_cast<CmpInst::Predicate>(Exp.opcode & 255));
1684 if (uint32_t NewNum = expressionNumbering[Exp]) {
1685 if (Exp.opcode == Instruction::Call && NewNum != Num)
1686 return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num;
1687 return NewNum;
1689 return Num;
1692 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed
1693 /// again.
1694 void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num,
1695 const BasicBlock &CurrBlock) {
1696 for (const BasicBlock *Pred : predecessors(&CurrBlock)) {
1697 auto FindRes = PhiTranslateTable.find({Num, Pred});
1698 if (FindRes != PhiTranslateTable.end())
1699 PhiTranslateTable.erase(FindRes);
1703 // In order to find a leader for a given value number at a
1704 // specific basic block, we first obtain the list of all Values for that number,
1705 // and then scan the list to find one whose block dominates the block in
1706 // question. This is fast because dominator tree queries consist of only
1707 // a few comparisons of DFS numbers.
1708 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
1709 LeaderTableEntry Vals = LeaderTable[num];
1710 if (!Vals.Val) return nullptr;
1712 Value *Val = nullptr;
1713 if (DT->dominates(Vals.BB, BB)) {
1714 Val = Vals.Val;
1715 if (isa<Constant>(Val)) return Val;
1718 LeaderTableEntry* Next = Vals.Next;
1719 while (Next) {
1720 if (DT->dominates(Next->BB, BB)) {
1721 if (isa<Constant>(Next->Val)) return Next->Val;
1722 if (!Val) Val = Next->Val;
1725 Next = Next->Next;
1728 return Val;
1731 /// There is an edge from 'Src' to 'Dst'. Return
1732 /// true if every path from the entry block to 'Dst' passes via this edge. In
1733 /// particular 'Dst' must not be reachable via another edge from 'Src'.
1734 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
1735 DominatorTree *DT) {
1736 // While in theory it is interesting to consider the case in which Dst has
1737 // more than one predecessor, because Dst might be part of a loop which is
1738 // only reachable from Src, in practice it is pointless since at the time
1739 // GVN runs all such loops have preheaders, which means that Dst will have
1740 // been changed to have only one predecessor, namely Src.
1741 const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
1742 assert((!Pred || Pred == E.getStart()) &&
1743 "No edge between these basic blocks!");
1744 return Pred != nullptr;
1747 void GVN::assignBlockRPONumber(Function &F) {
1748 BlockRPONumber.clear();
1749 uint32_t NextBlockNumber = 1;
1750 ReversePostOrderTraversal<Function *> RPOT(&F);
1751 for (BasicBlock *BB : RPOT)
1752 BlockRPONumber[BB] = NextBlockNumber++;
1753 InvalidBlockRPONumbers = false;
1756 bool GVN::replaceOperandsForInBlockEquality(Instruction *Instr) const {
1757 bool Changed = false;
1758 for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
1759 Value *Operand = Instr->getOperand(OpNum);
1760 auto it = ReplaceOperandsWithMap.find(Operand);
1761 if (it != ReplaceOperandsWithMap.end()) {
1762 LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with "
1763 << *it->second << " in instruction " << *Instr << '\n');
1764 Instr->setOperand(OpNum, it->second);
1765 Changed = true;
1768 return Changed;
1771 /// The given values are known to be equal in every block
1772 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with
1773 /// 'RHS' everywhere in the scope. Returns whether a change was made.
1774 /// If DominatesByEdge is false, then it means that we will propagate the RHS
1775 /// value starting from the end of Root.Start.
1776 bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
1777 bool DominatesByEdge) {
1778 SmallVector<std::pair<Value*, Value*>, 4> Worklist;
1779 Worklist.push_back(std::make_pair(LHS, RHS));
1780 bool Changed = false;
1781 // For speed, compute a conservative fast approximation to
1782 // DT->dominates(Root, Root.getEnd());
1783 const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
1785 while (!Worklist.empty()) {
1786 std::pair<Value*, Value*> Item = Worklist.pop_back_val();
1787 LHS = Item.first; RHS = Item.second;
1789 if (LHS == RHS)
1790 continue;
1791 assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
1793 // Don't try to propagate equalities between constants.
1794 if (isa<Constant>(LHS) && isa<Constant>(RHS))
1795 continue;
1797 // Prefer a constant on the right-hand side, or an Argument if no constants.
1798 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
1799 std::swap(LHS, RHS);
1800 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
1802 // If there is no obvious reason to prefer the left-hand side over the
1803 // right-hand side, ensure the longest lived term is on the right-hand side,
1804 // so the shortest lived term will be replaced by the longest lived.
1805 // This tends to expose more simplifications.
1806 uint32_t LVN = VN.lookupOrAdd(LHS);
1807 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
1808 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
1809 // Move the 'oldest' value to the right-hand side, using the value number
1810 // as a proxy for age.
1811 uint32_t RVN = VN.lookupOrAdd(RHS);
1812 if (LVN < RVN) {
1813 std::swap(LHS, RHS);
1814 LVN = RVN;
1818 // If value numbering later sees that an instruction in the scope is equal
1819 // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve
1820 // the invariant that instructions only occur in the leader table for their
1821 // own value number (this is used by removeFromLeaderTable), do not do this
1822 // if RHS is an instruction (if an instruction in the scope is morphed into
1823 // LHS then it will be turned into RHS by the next GVN iteration anyway, so
1824 // using the leader table is about compiling faster, not optimizing better).
1825 // The leader table only tracks basic blocks, not edges. Only add to if we
1826 // have the simple case where the edge dominates the end.
1827 if (RootDominatesEnd && !isa<Instruction>(RHS))
1828 addToLeaderTable(LVN, RHS, Root.getEnd());
1830 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As
1831 // LHS always has at least one use that is not dominated by Root, this will
1832 // never do anything if LHS has only one use.
1833 if (!LHS->hasOneUse()) {
1834 unsigned NumReplacements =
1835 DominatesByEdge
1836 ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
1837 : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());
1839 Changed |= NumReplacements > 0;
1840 NumGVNEqProp += NumReplacements;
1841 // Cached information for anything that uses LHS will be invalid.
1842 if (MD)
1843 MD->invalidateCachedPointerInfo(LHS);
1846 // Now try to deduce additional equalities from this one. For example, if
1847 // the known equality was "(A != B)" == "false" then it follows that A and B
1848 // are equal in the scope. Only boolean equalities with an explicit true or
1849 // false RHS are currently supported.
1850 if (!RHS->getType()->isIntegerTy(1))
1851 // Not a boolean equality - bail out.
1852 continue;
1853 ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
1854 if (!CI)
1855 // RHS neither 'true' nor 'false' - bail out.
1856 continue;
1857 // Whether RHS equals 'true'. Otherwise it equals 'false'.
1858 bool isKnownTrue = CI->isMinusOne();
1859 bool isKnownFalse = !isKnownTrue;
1861 // If "A && B" is known true then both A and B are known true. If "A || B"
1862 // is known false then both A and B are known false.
1863 Value *A, *B;
1864 if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
1865 (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
1866 Worklist.push_back(std::make_pair(A, RHS));
1867 Worklist.push_back(std::make_pair(B, RHS));
1868 continue;
1871 // If we are propagating an equality like "(A == B)" == "true" then also
1872 // propagate the equality A == B. When propagating a comparison such as
1873 // "(A >= B)" == "true", replace all instances of "A < B" with "false".
1874 if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
1875 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
1877 // If "A == B" is known true, or "A != B" is known false, then replace
1878 // A with B everywhere in the scope.
1879 if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
1880 (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
1881 Worklist.push_back(std::make_pair(Op0, Op1));
1883 // Handle the floating point versions of equality comparisons too.
1884 if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) ||
1885 (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) {
1887 // Floating point -0.0 and 0.0 compare equal, so we can only
1888 // propagate values if we know that we have a constant and that
1889 // its value is non-zero.
1891 // FIXME: We should do this optimization if 'no signed zeros' is
1892 // applicable via an instruction-level fast-math-flag or some other
1893 // indicator that relaxed FP semantics are being used.
1895 if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero())
1896 Worklist.push_back(std::make_pair(Op0, Op1));
1899 // If "A >= B" is known true, replace "A < B" with false everywhere.
1900 CmpInst::Predicate NotPred = Cmp->getInversePredicate();
1901 Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
1902 // Since we don't have the instruction "A < B" immediately to hand, work
1903 // out the value number that it would have and use that to find an
1904 // appropriate instruction (if any).
1905 uint32_t NextNum = VN.getNextUnusedValueNumber();
1906 uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
1907 // If the number we were assigned was brand new then there is no point in
1908 // looking for an instruction realizing it: there cannot be one!
1909 if (Num < NextNum) {
1910 Value *NotCmp = findLeader(Root.getEnd(), Num);
1911 if (NotCmp && isa<Instruction>(NotCmp)) {
1912 unsigned NumReplacements =
1913 DominatesByEdge
1914 ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
1915 : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
1916 Root.getStart());
1917 Changed |= NumReplacements > 0;
1918 NumGVNEqProp += NumReplacements;
1919 // Cached information for anything that uses NotCmp will be invalid.
1920 if (MD)
1921 MD->invalidateCachedPointerInfo(NotCmp);
1924 // Ensure that any instruction in scope that gets the "A < B" value number
1925 // is replaced with false.
1926 // The leader table only tracks basic blocks, not edges. Only add to if we
1927 // have the simple case where the edge dominates the end.
1928 if (RootDominatesEnd)
1929 addToLeaderTable(Num, NotVal, Root.getEnd());
1931 continue;
1935 return Changed;
1938 /// When calculating availability, handle an instruction
1939 /// by inserting it into the appropriate sets
1940 bool GVN::processInstruction(Instruction *I) {
1941 // Ignore dbg info intrinsics.
1942 if (isa<DbgInfoIntrinsic>(I))
1943 return false;
1945 // If the instruction can be easily simplified then do so now in preference
1946 // to value numbering it. Value numbering often exposes redundancies, for
1947 // example if it determines that %y is equal to %x then the instruction
1948 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
1949 const DataLayout &DL = I->getModule()->getDataLayout();
1950 if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) {
1951 bool Changed = false;
1952 if (!I->use_empty()) {
1953 I->replaceAllUsesWith(V);
1954 Changed = true;
1956 if (isInstructionTriviallyDead(I, TLI)) {
1957 markInstructionForDeletion(I);
1958 Changed = true;
1960 if (Changed) {
1961 if (MD && V->getType()->isPtrOrPtrVectorTy())
1962 MD->invalidateCachedPointerInfo(V);
1963 ++NumGVNSimpl;
1964 return true;
1968 if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I))
1969 if (IntrinsicI->getIntrinsicID() == Intrinsic::assume)
1970 return processAssumeIntrinsic(IntrinsicI);
1972 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1973 if (processLoad(LI))
1974 return true;
1976 unsigned Num = VN.lookupOrAdd(LI);
1977 addToLeaderTable(Num, LI, LI->getParent());
1978 return false;
1981 // For conditional branches, we can perform simple conditional propagation on
1982 // the condition value itself.
1983 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1984 if (!BI->isConditional())
1985 return false;
1987 if (isa<Constant>(BI->getCondition()))
1988 return processFoldableCondBr(BI);
1990 Value *BranchCond = BI->getCondition();
1991 BasicBlock *TrueSucc = BI->getSuccessor(0);
1992 BasicBlock *FalseSucc = BI->getSuccessor(1);
1993 // Avoid multiple edges early.
1994 if (TrueSucc == FalseSucc)
1995 return false;
1997 BasicBlock *Parent = BI->getParent();
1998 bool Changed = false;
2000 Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
2001 BasicBlockEdge TrueE(Parent, TrueSucc);
2002 Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
2004 Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
2005 BasicBlockEdge FalseE(Parent, FalseSucc);
2006 Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
2008 return Changed;
2011 // For switches, propagate the case values into the case destinations.
2012 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2013 Value *SwitchCond = SI->getCondition();
2014 BasicBlock *Parent = SI->getParent();
2015 bool Changed = false;
2017 // Remember how many outgoing edges there are to every successor.
2018 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2019 for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
2020 ++SwitchEdges[SI->getSuccessor(i)];
2022 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2023 i != e; ++i) {
2024 BasicBlock *Dst = i->getCaseSuccessor();
2025 // If there is only a single edge, propagate the case value into it.
2026 if (SwitchEdges.lookup(Dst) == 1) {
2027 BasicBlockEdge E(Parent, Dst);
2028 Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true);
2031 return Changed;
2034 // Instructions with void type don't return a value, so there's
2035 // no point in trying to find redundancies in them.
2036 if (I->getType()->isVoidTy())
2037 return false;
2039 uint32_t NextNum = VN.getNextUnusedValueNumber();
2040 unsigned Num = VN.lookupOrAdd(I);
2042 // Allocations are always uniquely numbered, so we can save time and memory
2043 // by fast failing them.
2044 if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) {
2045 addToLeaderTable(Num, I, I->getParent());
2046 return false;
2049 // If the number we were assigned was a brand new VN, then we don't
2050 // need to do a lookup to see if the number already exists
2051 // somewhere in the domtree: it can't!
2052 if (Num >= NextNum) {
2053 addToLeaderTable(Num, I, I->getParent());
2054 return false;
2057 // Perform fast-path value-number based elimination of values inherited from
2058 // dominators.
2059 Value *Repl = findLeader(I->getParent(), Num);
2060 if (!Repl) {
2061 // Failure, just remember this instance for future use.
2062 addToLeaderTable(Num, I, I->getParent());
2063 return false;
2064 } else if (Repl == I) {
2065 // If I was the result of a shortcut PRE, it might already be in the table
2066 // and the best replacement for itself. Nothing to do.
2067 return false;
2070 // Remove it!
2071 patchAndReplaceAllUsesWith(I, Repl);
2072 if (MD && Repl->getType()->isPtrOrPtrVectorTy())
2073 MD->invalidateCachedPointerInfo(Repl);
2074 markInstructionForDeletion(I);
2075 return true;
2078 /// runOnFunction - This is the main transformation entry point for a function.
2079 bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
2080 const TargetLibraryInfo &RunTLI, AAResults &RunAA,
2081 MemoryDependenceResults *RunMD, LoopInfo *LI,
2082 OptimizationRemarkEmitter *RunORE) {
2083 AC = &RunAC;
2084 DT = &RunDT;
2085 VN.setDomTree(DT);
2086 TLI = &RunTLI;
2087 VN.setAliasAnalysis(&RunAA);
2088 MD = RunMD;
2089 ImplicitControlFlowTracking ImplicitCFT(DT);
2090 ICF = &ImplicitCFT;
2091 this->LI = LI;
2092 VN.setMemDep(MD);
2093 ORE = RunORE;
2094 InvalidBlockRPONumbers = true;
2096 bool Changed = false;
2097 bool ShouldContinue = true;
2099 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
2100 // Merge unconditional branches, allowing PRE to catch more
2101 // optimization opportunities.
2102 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2103 BasicBlock *BB = &*FI++;
2105 bool removedBlock = MergeBlockIntoPredecessor(BB, &DTU, LI, nullptr, MD);
2106 if (removedBlock)
2107 ++NumGVNBlocks;
2109 Changed |= removedBlock;
2112 unsigned Iteration = 0;
2113 while (ShouldContinue) {
2114 LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2115 ShouldContinue = iterateOnFunction(F);
2116 Changed |= ShouldContinue;
2117 ++Iteration;
2120 if (EnablePRE) {
2121 // Fabricate val-num for dead-code in order to suppress assertion in
2122 // performPRE().
2123 assignValNumForDeadCode();
2124 bool PREChanged = true;
2125 while (PREChanged) {
2126 PREChanged = performPRE(F);
2127 Changed |= PREChanged;
2131 // FIXME: Should perform GVN again after PRE does something. PRE can move
2132 // computations into blocks where they become fully redundant. Note that
2133 // we can't do this until PRE's critical edge splitting updates memdep.
2134 // Actually, when this happens, we should just fully integrate PRE into GVN.
2136 cleanupGlobalSets();
2137 // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2138 // iteration.
2139 DeadBlocks.clear();
2141 return Changed;
2144 bool GVN::processBlock(BasicBlock *BB) {
2145 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2146 // (and incrementing BI before processing an instruction).
2147 assert(InstrsToErase.empty() &&
2148 "We expect InstrsToErase to be empty across iterations");
2149 if (DeadBlocks.count(BB))
2150 return false;
2152 // Clearing map before every BB because it can be used only for single BB.
2153 ReplaceOperandsWithMap.clear();
2154 bool ChangedFunction = false;
2156 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2157 BI != BE;) {
2158 if (!ReplaceOperandsWithMap.empty())
2159 ChangedFunction |= replaceOperandsForInBlockEquality(&*BI);
2160 ChangedFunction |= processInstruction(&*BI);
2162 if (InstrsToErase.empty()) {
2163 ++BI;
2164 continue;
2167 // If we need some instructions deleted, do it now.
2168 NumGVNInstr += InstrsToErase.size();
2170 // Avoid iterator invalidation.
2171 bool AtStart = BI == BB->begin();
2172 if (!AtStart)
2173 --BI;
2175 for (auto *I : InstrsToErase) {
2176 assert(I->getParent() == BB && "Removing instruction from wrong block?");
2177 LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n');
2178 salvageDebugInfo(*I);
2179 if (MD) MD->removeInstruction(I);
2180 LLVM_DEBUG(verifyRemoved(I));
2181 ICF->removeInstruction(I);
2182 I->eraseFromParent();
2184 InstrsToErase.clear();
2186 if (AtStart)
2187 BI = BB->begin();
2188 else
2189 ++BI;
2192 return ChangedFunction;
2195 // Instantiate an expression in a predecessor that lacked it.
2196 bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
2197 BasicBlock *Curr, unsigned int ValNo) {
2198 // Because we are going top-down through the block, all value numbers
2199 // will be available in the predecessor by the time we need them. Any
2200 // that weren't originally present will have been instantiated earlier
2201 // in this loop.
2202 bool success = true;
2203 for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
2204 Value *Op = Instr->getOperand(i);
2205 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2206 continue;
2207 // This could be a newly inserted instruction, in which case, we won't
2208 // find a value number, and should give up before we hurt ourselves.
2209 // FIXME: Rewrite the infrastructure to let it easier to value number
2210 // and process newly inserted instructions.
2211 if (!VN.exists(Op)) {
2212 success = false;
2213 break;
2215 uint32_t TValNo =
2216 VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this);
2217 if (Value *V = findLeader(Pred, TValNo)) {
2218 Instr->setOperand(i, V);
2219 } else {
2220 success = false;
2221 break;
2225 // Fail out if we encounter an operand that is not available in
2226 // the PRE predecessor. This is typically because of loads which
2227 // are not value numbered precisely.
2228 if (!success)
2229 return false;
2231 Instr->insertBefore(Pred->getTerminator());
2232 Instr->setName(Instr->getName() + ".pre");
2233 Instr->setDebugLoc(Instr->getDebugLoc());
2235 unsigned Num = VN.lookupOrAdd(Instr);
2236 VN.add(Instr, Num);
2238 // Update the availability map to include the new instruction.
2239 addToLeaderTable(Num, Instr, Pred);
2240 return true;
2243 bool GVN::performScalarPRE(Instruction *CurInst) {
2244 if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() ||
2245 isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
2246 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2247 isa<DbgInfoIntrinsic>(CurInst))
2248 return false;
2250 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2251 // sinking the compare again, and it would force the code generator to
2252 // move the i1 from processor flags or predicate registers into a general
2253 // purpose register.
2254 if (isa<CmpInst>(CurInst))
2255 return false;
2257 // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from
2258 // sinking the addressing mode computation back to its uses. Extending the
2259 // GEP's live range increases the register pressure, and therefore it can
2260 // introduce unnecessary spills.
2262 // This doesn't prevent Load PRE. PHI translation will make the GEP available
2263 // to the load by moving it to the predecessor block if necessary.
2264 if (isa<GetElementPtrInst>(CurInst))
2265 return false;
2267 // We don't currently value number ANY inline asm calls.
2268 if (auto *CallB = dyn_cast<CallBase>(CurInst))
2269 if (CallB->isInlineAsm())
2270 return false;
2272 uint32_t ValNo = VN.lookup(CurInst);
2274 // Look for the predecessors for PRE opportunities. We're
2275 // only trying to solve the basic diamond case, where
2276 // a value is computed in the successor and one predecessor,
2277 // but not the other. We also explicitly disallow cases
2278 // where the successor is its own predecessor, because they're
2279 // more complicated to get right.
2280 unsigned NumWith = 0;
2281 unsigned NumWithout = 0;
2282 BasicBlock *PREPred = nullptr;
2283 BasicBlock *CurrentBlock = CurInst->getParent();
2285 // Update the RPO numbers for this function.
2286 if (InvalidBlockRPONumbers)
2287 assignBlockRPONumber(*CurrentBlock->getParent());
2289 SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
2290 for (BasicBlock *P : predecessors(CurrentBlock)) {
2291 // We're not interested in PRE where blocks with predecessors that are
2292 // not reachable.
2293 if (!DT->isReachableFromEntry(P)) {
2294 NumWithout = 2;
2295 break;
2297 // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and
2298 // when CurInst has operand defined in CurrentBlock (so it may be defined
2299 // by phi in the loop header).
2300 assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) &&
2301 "Invalid BlockRPONumber map.");
2302 if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] &&
2303 llvm::any_of(CurInst->operands(), [&](const Use &U) {
2304 if (auto *Inst = dyn_cast<Instruction>(U.get()))
2305 return Inst->getParent() == CurrentBlock;
2306 return false;
2307 })) {
2308 NumWithout = 2;
2309 break;
2312 uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this);
2313 Value *predV = findLeader(P, TValNo);
2314 if (!predV) {
2315 predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
2316 PREPred = P;
2317 ++NumWithout;
2318 } else if (predV == CurInst) {
2319 /* CurInst dominates this predecessor. */
2320 NumWithout = 2;
2321 break;
2322 } else {
2323 predMap.push_back(std::make_pair(predV, P));
2324 ++NumWith;
2328 // Don't do PRE when it might increase code size, i.e. when
2329 // we would need to insert instructions in more than one pred.
2330 if (NumWithout > 1 || NumWith == 0)
2331 return false;
2333 // We may have a case where all predecessors have the instruction,
2334 // and we just need to insert a phi node. Otherwise, perform
2335 // insertion.
2336 Instruction *PREInstr = nullptr;
2338 if (NumWithout != 0) {
2339 if (!isSafeToSpeculativelyExecute(CurInst)) {
2340 // It is only valid to insert a new instruction if the current instruction
2341 // is always executed. An instruction with implicit control flow could
2342 // prevent us from doing it. If we cannot speculate the execution, then
2343 // PRE should be prohibited.
2344 if (ICF->isDominatedByICFIFromSameBlock(CurInst))
2345 return false;
2348 // Don't do PRE across indirect branch.
2349 if (isa<IndirectBrInst>(PREPred->getTerminator()))
2350 return false;
2352 // Don't do PRE across callbr.
2353 // FIXME: Can we do this across the fallthrough edge?
2354 if (isa<CallBrInst>(PREPred->getTerminator()))
2355 return false;
2357 // We can't do PRE safely on a critical edge, so instead we schedule
2358 // the edge to be split and perform the PRE the next time we iterate
2359 // on the function.
2360 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2361 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2362 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2363 return false;
2365 // We need to insert somewhere, so let's give it a shot
2366 PREInstr = CurInst->clone();
2367 if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
2368 // If we failed insertion, make sure we remove the instruction.
2369 LLVM_DEBUG(verifyRemoved(PREInstr));
2370 PREInstr->deleteValue();
2371 return false;
2375 // Either we should have filled in the PRE instruction, or we should
2376 // not have needed insertions.
2377 assert(PREInstr != nullptr || NumWithout == 0);
2379 ++NumGVNPRE;
2381 // Create a PHI to make the value available in this block.
2382 PHINode *Phi =
2383 PHINode::Create(CurInst->getType(), predMap.size(),
2384 CurInst->getName() + ".pre-phi", &CurrentBlock->front());
2385 for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2386 if (Value *V = predMap[i].first) {
2387 // If we use an existing value in this phi, we have to patch the original
2388 // value because the phi will be used to replace a later value.
2389 patchReplacementInstruction(CurInst, V);
2390 Phi->addIncoming(V, predMap[i].second);
2391 } else
2392 Phi->addIncoming(PREInstr, PREPred);
2395 VN.add(Phi, ValNo);
2396 // After creating a new PHI for ValNo, the phi translate result for ValNo will
2397 // be changed, so erase the related stale entries in phi translate cache.
2398 VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock);
2399 addToLeaderTable(ValNo, Phi, CurrentBlock);
2400 Phi->setDebugLoc(CurInst->getDebugLoc());
2401 CurInst->replaceAllUsesWith(Phi);
2402 if (MD && Phi->getType()->isPtrOrPtrVectorTy())
2403 MD->invalidateCachedPointerInfo(Phi);
2404 VN.erase(CurInst);
2405 removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2407 LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2408 if (MD)
2409 MD->removeInstruction(CurInst);
2410 LLVM_DEBUG(verifyRemoved(CurInst));
2411 // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes
2412 // some assertion failures.
2413 ICF->removeInstruction(CurInst);
2414 CurInst->eraseFromParent();
2415 ++NumGVNInstr;
2417 return true;
2420 /// Perform a purely local form of PRE that looks for diamond
2421 /// control flow patterns and attempts to perform simple PRE at the join point.
2422 bool GVN::performPRE(Function &F) {
2423 bool Changed = false;
2424 for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
2425 // Nothing to PRE in the entry block.
2426 if (CurrentBlock == &F.getEntryBlock())
2427 continue;
2429 // Don't perform PRE on an EH pad.
2430 if (CurrentBlock->isEHPad())
2431 continue;
2433 for (BasicBlock::iterator BI = CurrentBlock->begin(),
2434 BE = CurrentBlock->end();
2435 BI != BE;) {
2436 Instruction *CurInst = &*BI++;
2437 Changed |= performScalarPRE(CurInst);
2441 if (splitCriticalEdges())
2442 Changed = true;
2444 return Changed;
2447 /// Split the critical edge connecting the given two blocks, and return
2448 /// the block inserted to the critical edge.
2449 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
2450 BasicBlock *BB =
2451 SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT, LI));
2452 if (MD)
2453 MD->invalidateCachedPredecessors();
2454 InvalidBlockRPONumbers = true;
2455 return BB;
2458 /// Split critical edges found during the previous
2459 /// iteration that may enable further optimization.
2460 bool GVN::splitCriticalEdges() {
2461 if (toSplit.empty())
2462 return false;
2463 do {
2464 std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val();
2465 SplitCriticalEdge(Edge.first, Edge.second,
2466 CriticalEdgeSplittingOptions(DT, LI));
2467 } while (!toSplit.empty());
2468 if (MD) MD->invalidateCachedPredecessors();
2469 InvalidBlockRPONumbers = true;
2470 return true;
2473 /// Executes one iteration of GVN
2474 bool GVN::iterateOnFunction(Function &F) {
2475 cleanupGlobalSets();
2477 // Top-down walk of the dominator tree
2478 bool Changed = false;
2479 // Needed for value numbering with phi construction to work.
2480 // RPOT walks the graph in its constructor and will not be invalidated during
2481 // processBlock.
2482 ReversePostOrderTraversal<Function *> RPOT(&F);
2484 for (BasicBlock *BB : RPOT)
2485 Changed |= processBlock(BB);
2487 return Changed;
2490 void GVN::cleanupGlobalSets() {
2491 VN.clear();
2492 LeaderTable.clear();
2493 BlockRPONumber.clear();
2494 TableAllocator.Reset();
2495 ICF->clear();
2496 InvalidBlockRPONumbers = true;
2499 /// Verify that the specified instruction does not occur in our
2500 /// internal data structures.
2501 void GVN::verifyRemoved(const Instruction *Inst) const {
2502 VN.verifyRemoved(Inst);
2504 // Walk through the value number scope to make sure the instruction isn't
2505 // ferreted away in it.
2506 for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2507 I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2508 const LeaderTableEntry *Node = &I->second;
2509 assert(Node->Val != Inst && "Inst still in value numbering scope!");
2511 while (Node->Next) {
2512 Node = Node->Next;
2513 assert(Node->Val != Inst && "Inst still in value numbering scope!");
2518 /// BB is declared dead, which implied other blocks become dead as well. This
2519 /// function is to add all these blocks to "DeadBlocks". For the dead blocks'
2520 /// live successors, update their phi nodes by replacing the operands
2521 /// corresponding to dead blocks with UndefVal.
2522 void GVN::addDeadBlock(BasicBlock *BB) {
2523 SmallVector<BasicBlock *, 4> NewDead;
2524 SmallSetVector<BasicBlock *, 4> DF;
2526 NewDead.push_back(BB);
2527 while (!NewDead.empty()) {
2528 BasicBlock *D = NewDead.pop_back_val();
2529 if (DeadBlocks.count(D))
2530 continue;
2532 // All blocks dominated by D are dead.
2533 SmallVector<BasicBlock *, 8> Dom;
2534 DT->getDescendants(D, Dom);
2535 DeadBlocks.insert(Dom.begin(), Dom.end());
2537 // Figure out the dominance-frontier(D).
2538 for (BasicBlock *B : Dom) {
2539 for (BasicBlock *S : successors(B)) {
2540 if (DeadBlocks.count(S))
2541 continue;
2543 bool AllPredDead = true;
2544 for (BasicBlock *P : predecessors(S))
2545 if (!DeadBlocks.count(P)) {
2546 AllPredDead = false;
2547 break;
2550 if (!AllPredDead) {
2551 // S could be proved dead later on. That is why we don't update phi
2552 // operands at this moment.
2553 DF.insert(S);
2554 } else {
2555 // While S is not dominated by D, it is dead by now. This could take
2556 // place if S already have a dead predecessor before D is declared
2557 // dead.
2558 NewDead.push_back(S);
2564 // For the dead blocks' live successors, update their phi nodes by replacing
2565 // the operands corresponding to dead blocks with UndefVal.
2566 for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
2567 I != E; I++) {
2568 BasicBlock *B = *I;
2569 if (DeadBlocks.count(B))
2570 continue;
2572 // First, split the critical edges. This might also create additional blocks
2573 // to preserve LoopSimplify form and adjust edges accordingly.
2574 SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
2575 for (BasicBlock *P : Preds) {
2576 if (!DeadBlocks.count(P))
2577 continue;
2579 if (llvm::any_of(successors(P),
2580 [B](BasicBlock *Succ) { return Succ == B; }) &&
2581 isCriticalEdge(P->getTerminator(), B)) {
2582 if (BasicBlock *S = splitCriticalEdges(P, B))
2583 DeadBlocks.insert(P = S);
2587 // Now undef the incoming values from the dead predecessors.
2588 for (BasicBlock *P : predecessors(B)) {
2589 if (!DeadBlocks.count(P))
2590 continue;
2591 for (PHINode &Phi : B->phis()) {
2592 Phi.setIncomingValueForBlock(P, UndefValue::get(Phi.getType()));
2593 if (MD)
2594 MD->invalidateCachedPointerInfo(&Phi);
2600 // If the given branch is recognized as a foldable branch (i.e. conditional
2601 // branch with constant condition), it will perform following analyses and
2602 // transformation.
2603 // 1) If the dead out-coming edge is a critical-edge, split it. Let
2604 // R be the target of the dead out-coming edge.
2605 // 1) Identify the set of dead blocks implied by the branch's dead outcoming
2606 // edge. The result of this step will be {X| X is dominated by R}
2607 // 2) Identify those blocks which haves at least one dead predecessor. The
2608 // result of this step will be dominance-frontier(R).
2609 // 3) Update the PHIs in DF(R) by replacing the operands corresponding to
2610 // dead blocks with "UndefVal" in an hope these PHIs will optimized away.
2612 // Return true iff *NEW* dead code are found.
2613 bool GVN::processFoldableCondBr(BranchInst *BI) {
2614 if (!BI || BI->isUnconditional())
2615 return false;
2617 // If a branch has two identical successors, we cannot declare either dead.
2618 if (BI->getSuccessor(0) == BI->getSuccessor(1))
2619 return false;
2621 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
2622 if (!Cond)
2623 return false;
2625 BasicBlock *DeadRoot =
2626 Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
2627 if (DeadBlocks.count(DeadRoot))
2628 return false;
2630 if (!DeadRoot->getSinglePredecessor())
2631 DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
2633 addDeadBlock(DeadRoot);
2634 return true;
2637 // performPRE() will trigger assert if it comes across an instruction without
2638 // associated val-num. As it normally has far more live instructions than dead
2639 // instructions, it makes more sense just to "fabricate" a val-number for the
2640 // dead code than checking if instruction involved is dead or not.
2641 void GVN::assignValNumForDeadCode() {
2642 for (BasicBlock *BB : DeadBlocks) {
2643 for (Instruction &Inst : *BB) {
2644 unsigned ValNum = VN.lookupOrAdd(&Inst);
2645 addToLeaderTable(ValNum, &Inst, BB);
2650 class llvm::gvn::GVNLegacyPass : public FunctionPass {
2651 public:
2652 static char ID; // Pass identification, replacement for typeid
2654 explicit GVNLegacyPass(bool NoMemDepAnalysis = !EnableMemDep)
2655 : FunctionPass(ID), NoMemDepAnalysis(NoMemDepAnalysis) {
2656 initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
2659 bool runOnFunction(Function &F) override {
2660 if (skipFunction(F))
2661 return false;
2663 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
2665 return Impl.runImpl(
2666 F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
2667 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
2668 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
2669 getAnalysis<AAResultsWrapperPass>().getAAResults(),
2670 NoMemDepAnalysis
2671 ? nullptr
2672 : &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(),
2673 LIWP ? &LIWP->getLoopInfo() : nullptr,
2674 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE());
2677 void getAnalysisUsage(AnalysisUsage &AU) const override {
2678 AU.addRequired<AssumptionCacheTracker>();
2679 AU.addRequired<DominatorTreeWrapperPass>();
2680 AU.addRequired<TargetLibraryInfoWrapperPass>();
2681 AU.addRequired<LoopInfoWrapperPass>();
2682 if (!NoMemDepAnalysis)
2683 AU.addRequired<MemoryDependenceWrapperPass>();
2684 AU.addRequired<AAResultsWrapperPass>();
2686 AU.addPreserved<DominatorTreeWrapperPass>();
2687 AU.addPreserved<GlobalsAAWrapperPass>();
2688 AU.addPreserved<TargetLibraryInfoWrapperPass>();
2689 AU.addPreserved<LoopInfoWrapperPass>();
2690 AU.addPreservedID(LoopSimplifyID);
2691 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2694 private:
2695 bool NoMemDepAnalysis;
2696 GVN Impl;
2699 char GVNLegacyPass::ID = 0;
2701 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
2702 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2703 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
2704 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2705 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2706 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2707 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
2708 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
2709 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
2711 // The public interface to this file...
2712 FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) {
2713 return new GVNLegacyPass(NoMemDepAnalysis);