1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains a pass (at IR level) to replace atomic instructions with
11 // __atomic_* library calls, or target specific instruction which implement the
12 // same semantics in a way which better fits the target backend. This can
13 // include the use of (intrinsic-based) load-linked/store-conditional loops,
14 // AtomicCmpXchg, or type coercions.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/CodeGen/AtomicExpandUtils.h"
22 #include "llvm/CodeGen/RuntimeLibcalls.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/InstIterator.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/User.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetMachine.h"
55 #define DEBUG_TYPE "atomic-expand"
59 class AtomicExpand
: public FunctionPass
{
60 const TargetLowering
*TLI
= nullptr;
63 static char ID
; // Pass identification, replacement for typeid
65 AtomicExpand() : FunctionPass(ID
) {
66 initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
69 bool runOnFunction(Function
&F
) override
;
72 bool bracketInstWithFences(Instruction
*I
, AtomicOrdering Order
);
73 IntegerType
*getCorrespondingIntegerType(Type
*T
, const DataLayout
&DL
);
74 LoadInst
*convertAtomicLoadToIntegerType(LoadInst
*LI
);
75 bool tryExpandAtomicLoad(LoadInst
*LI
);
76 bool expandAtomicLoadToLL(LoadInst
*LI
);
77 bool expandAtomicLoadToCmpXchg(LoadInst
*LI
);
78 StoreInst
*convertAtomicStoreToIntegerType(StoreInst
*SI
);
79 bool expandAtomicStore(StoreInst
*SI
);
80 bool tryExpandAtomicRMW(AtomicRMWInst
*AI
);
82 insertRMWLLSCLoop(IRBuilder
<> &Builder
, Type
*ResultTy
, Value
*Addr
,
83 AtomicOrdering MemOpOrder
,
84 function_ref
<Value
*(IRBuilder
<> &, Value
*)> PerformOp
);
85 void expandAtomicOpToLLSC(
86 Instruction
*I
, Type
*ResultTy
, Value
*Addr
, AtomicOrdering MemOpOrder
,
87 function_ref
<Value
*(IRBuilder
<> &, Value
*)> PerformOp
);
88 void expandPartwordAtomicRMW(
90 TargetLoweringBase::AtomicExpansionKind ExpansionKind
);
91 AtomicRMWInst
*widenPartwordAtomicRMW(AtomicRMWInst
*AI
);
92 void expandPartwordCmpXchg(AtomicCmpXchgInst
*I
);
94 AtomicCmpXchgInst
*convertCmpXchgToIntegerType(AtomicCmpXchgInst
*CI
);
95 static Value
*insertRMWCmpXchgLoop(
96 IRBuilder
<> &Builder
, Type
*ResultType
, Value
*Addr
,
97 AtomicOrdering MemOpOrder
,
98 function_ref
<Value
*(IRBuilder
<> &, Value
*)> PerformOp
,
99 CreateCmpXchgInstFun CreateCmpXchg
);
101 bool expandAtomicCmpXchg(AtomicCmpXchgInst
*CI
);
102 bool isIdempotentRMW(AtomicRMWInst
*RMWI
);
103 bool simplifyIdempotentRMW(AtomicRMWInst
*RMWI
);
105 bool expandAtomicOpToLibcall(Instruction
*I
, unsigned Size
, unsigned Align
,
106 Value
*PointerOperand
, Value
*ValueOperand
,
107 Value
*CASExpected
, AtomicOrdering Ordering
,
108 AtomicOrdering Ordering2
,
109 ArrayRef
<RTLIB::Libcall
> Libcalls
);
110 void expandAtomicLoadToLibcall(LoadInst
*LI
);
111 void expandAtomicStoreToLibcall(StoreInst
*LI
);
112 void expandAtomicRMWToLibcall(AtomicRMWInst
*I
);
113 void expandAtomicCASToLibcall(AtomicCmpXchgInst
*I
);
116 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst
*AI
,
117 CreateCmpXchgInstFun CreateCmpXchg
);
120 } // end anonymous namespace
122 char AtomicExpand::ID
= 0;
124 char &llvm::AtomicExpandID
= AtomicExpand::ID
;
126 INITIALIZE_PASS(AtomicExpand
, DEBUG_TYPE
, "Expand Atomic instructions",
129 FunctionPass
*llvm::createAtomicExpandPass() { return new AtomicExpand(); }
131 // Helper functions to retrieve the size of atomic instructions.
132 static unsigned getAtomicOpSize(LoadInst
*LI
) {
133 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
134 return DL
.getTypeStoreSize(LI
->getType());
137 static unsigned getAtomicOpSize(StoreInst
*SI
) {
138 const DataLayout
&DL
= SI
->getModule()->getDataLayout();
139 return DL
.getTypeStoreSize(SI
->getValueOperand()->getType());
142 static unsigned getAtomicOpSize(AtomicRMWInst
*RMWI
) {
143 const DataLayout
&DL
= RMWI
->getModule()->getDataLayout();
144 return DL
.getTypeStoreSize(RMWI
->getValOperand()->getType());
147 static unsigned getAtomicOpSize(AtomicCmpXchgInst
*CASI
) {
148 const DataLayout
&DL
= CASI
->getModule()->getDataLayout();
149 return DL
.getTypeStoreSize(CASI
->getCompareOperand()->getType());
152 // Helper functions to retrieve the alignment of atomic instructions.
153 static unsigned getAtomicOpAlign(LoadInst
*LI
) {
154 unsigned Align
= LI
->getAlignment();
155 // In the future, if this IR restriction is relaxed, we should
156 // return DataLayout::getABITypeAlignment when there's no align
158 assert(Align
!= 0 && "An atomic LoadInst always has an explicit alignment");
162 static unsigned getAtomicOpAlign(StoreInst
*SI
) {
163 unsigned Align
= SI
->getAlignment();
164 // In the future, if this IR restriction is relaxed, we should
165 // return DataLayout::getABITypeAlignment when there's no align
167 assert(Align
!= 0 && "An atomic StoreInst always has an explicit alignment");
171 static unsigned getAtomicOpAlign(AtomicRMWInst
*RMWI
) {
172 // TODO(PR27168): This instruction has no alignment attribute, but unlike the
173 // default alignment for load/store, the default here is to assume
174 // it has NATURAL alignment, not DataLayout-specified alignment.
175 const DataLayout
&DL
= RMWI
->getModule()->getDataLayout();
176 return DL
.getTypeStoreSize(RMWI
->getValOperand()->getType());
179 static unsigned getAtomicOpAlign(AtomicCmpXchgInst
*CASI
) {
180 // TODO(PR27168): same comment as above.
181 const DataLayout
&DL
= CASI
->getModule()->getDataLayout();
182 return DL
.getTypeStoreSize(CASI
->getCompareOperand()->getType());
185 // Determine if a particular atomic operation has a supported size,
186 // and is of appropriate alignment, to be passed through for target
187 // lowering. (Versus turning into a __atomic libcall)
188 template <typename Inst
>
189 static bool atomicSizeSupported(const TargetLowering
*TLI
, Inst
*I
) {
190 unsigned Size
= getAtomicOpSize(I
);
191 unsigned Align
= getAtomicOpAlign(I
);
192 return Align
>= Size
&& Size
<= TLI
->getMaxAtomicSizeInBitsSupported() / 8;
195 bool AtomicExpand::runOnFunction(Function
&F
) {
196 auto *TPC
= getAnalysisIfAvailable
<TargetPassConfig
>();
200 auto &TM
= TPC
->getTM
<TargetMachine
>();
201 if (!TM
.getSubtargetImpl(F
)->enableAtomicExpand())
203 TLI
= TM
.getSubtargetImpl(F
)->getTargetLowering();
205 SmallVector
<Instruction
*, 1> AtomicInsts
;
207 // Changing control-flow while iterating through it is a bad idea, so gather a
208 // list of all atomic instructions before we start.
209 for (inst_iterator II
= inst_begin(F
), E
= inst_end(F
); II
!= E
; ++II
) {
210 Instruction
*I
= &*II
;
211 if (I
->isAtomic() && !isa
<FenceInst
>(I
))
212 AtomicInsts
.push_back(I
);
215 bool MadeChange
= false;
216 for (auto I
: AtomicInsts
) {
217 auto LI
= dyn_cast
<LoadInst
>(I
);
218 auto SI
= dyn_cast
<StoreInst
>(I
);
219 auto RMWI
= dyn_cast
<AtomicRMWInst
>(I
);
220 auto CASI
= dyn_cast
<AtomicCmpXchgInst
>(I
);
221 assert((LI
|| SI
|| RMWI
|| CASI
) && "Unknown atomic instruction");
223 // If the Size/Alignment is not supported, replace with a libcall.
225 if (!atomicSizeSupported(TLI
, LI
)) {
226 expandAtomicLoadToLibcall(LI
);
231 if (!atomicSizeSupported(TLI
, SI
)) {
232 expandAtomicStoreToLibcall(SI
);
237 if (!atomicSizeSupported(TLI
, RMWI
)) {
238 expandAtomicRMWToLibcall(RMWI
);
243 if (!atomicSizeSupported(TLI
, CASI
)) {
244 expandAtomicCASToLibcall(CASI
);
250 if (TLI
->shouldInsertFencesForAtomic(I
)) {
251 auto FenceOrdering
= AtomicOrdering::Monotonic
;
252 if (LI
&& isAcquireOrStronger(LI
->getOrdering())) {
253 FenceOrdering
= LI
->getOrdering();
254 LI
->setOrdering(AtomicOrdering::Monotonic
);
255 } else if (SI
&& isReleaseOrStronger(SI
->getOrdering())) {
256 FenceOrdering
= SI
->getOrdering();
257 SI
->setOrdering(AtomicOrdering::Monotonic
);
258 } else if (RMWI
&& (isReleaseOrStronger(RMWI
->getOrdering()) ||
259 isAcquireOrStronger(RMWI
->getOrdering()))) {
260 FenceOrdering
= RMWI
->getOrdering();
261 RMWI
->setOrdering(AtomicOrdering::Monotonic
);
262 } else if (CASI
&& !TLI
->shouldExpandAtomicCmpXchgInIR(CASI
) &&
263 (isReleaseOrStronger(CASI
->getSuccessOrdering()) ||
264 isAcquireOrStronger(CASI
->getSuccessOrdering()))) {
265 // If a compare and swap is lowered to LL/SC, we can do smarter fence
266 // insertion, with a stronger one on the success path than on the
267 // failure path. As a result, fence insertion is directly done by
268 // expandAtomicCmpXchg in that case.
269 FenceOrdering
= CASI
->getSuccessOrdering();
270 CASI
->setSuccessOrdering(AtomicOrdering::Monotonic
);
271 CASI
->setFailureOrdering(AtomicOrdering::Monotonic
);
274 if (FenceOrdering
!= AtomicOrdering::Monotonic
) {
275 MadeChange
|= bracketInstWithFences(I
, FenceOrdering
);
280 if (LI
->getType()->isFloatingPointTy()) {
281 // TODO: add a TLI hook to control this so that each target can
282 // convert to lowering the original type one at a time.
283 LI
= convertAtomicLoadToIntegerType(LI
);
284 assert(LI
->getType()->isIntegerTy() && "invariant broken");
288 MadeChange
|= tryExpandAtomicLoad(LI
);
290 if (SI
->getValueOperand()->getType()->isFloatingPointTy()) {
291 // TODO: add a TLI hook to control this so that each target can
292 // convert to lowering the original type one at a time.
293 SI
= convertAtomicStoreToIntegerType(SI
);
294 assert(SI
->getValueOperand()->getType()->isIntegerTy() &&
299 if (TLI
->shouldExpandAtomicStoreInIR(SI
))
300 MadeChange
|= expandAtomicStore(SI
);
302 // There are two different ways of expanding RMW instructions:
303 // - into a load if it is idempotent
304 // - into a Cmpxchg/LL-SC loop otherwise
305 // we try them in that order.
307 if (isIdempotentRMW(RMWI
) && simplifyIdempotentRMW(RMWI
)) {
310 unsigned MinCASSize
= TLI
->getMinCmpXchgSizeInBits() / 8;
311 unsigned ValueSize
= getAtomicOpSize(RMWI
);
312 AtomicRMWInst::BinOp Op
= RMWI
->getOperation();
313 if (ValueSize
< MinCASSize
&&
314 (Op
== AtomicRMWInst::Or
|| Op
== AtomicRMWInst::Xor
||
315 Op
== AtomicRMWInst::And
)) {
316 RMWI
= widenPartwordAtomicRMW(RMWI
);
320 MadeChange
|= tryExpandAtomicRMW(RMWI
);
323 // TODO: when we're ready to make the change at the IR level, we can
324 // extend convertCmpXchgToInteger for floating point too.
325 assert(!CASI
->getCompareOperand()->getType()->isFloatingPointTy() &&
326 "unimplemented - floating point not legal at IR level");
327 if (CASI
->getCompareOperand()->getType()->isPointerTy() ) {
328 // TODO: add a TLI hook to control this so that each target can
329 // convert to lowering the original type one at a time.
330 CASI
= convertCmpXchgToIntegerType(CASI
);
331 assert(CASI
->getCompareOperand()->getType()->isIntegerTy() &&
336 unsigned MinCASSize
= TLI
->getMinCmpXchgSizeInBits() / 8;
337 unsigned ValueSize
= getAtomicOpSize(CASI
);
338 if (ValueSize
< MinCASSize
) {
339 assert(!TLI
->shouldExpandAtomicCmpXchgInIR(CASI
) &&
340 "MinCmpXchgSizeInBits not yet supported for LL/SC expansions.");
341 expandPartwordCmpXchg(CASI
);
343 if (TLI
->shouldExpandAtomicCmpXchgInIR(CASI
))
344 MadeChange
|= expandAtomicCmpXchg(CASI
);
351 bool AtomicExpand::bracketInstWithFences(Instruction
*I
, AtomicOrdering Order
) {
352 IRBuilder
<> Builder(I
);
354 auto LeadingFence
= TLI
->emitLeadingFence(Builder
, I
, Order
);
356 auto TrailingFence
= TLI
->emitTrailingFence(Builder
, I
, Order
);
357 // We have a guard here because not every atomic operation generates a
360 TrailingFence
->moveAfter(I
);
362 return (LeadingFence
|| TrailingFence
);
365 /// Get the iX type with the same bitwidth as T.
366 IntegerType
*AtomicExpand::getCorrespondingIntegerType(Type
*T
,
367 const DataLayout
&DL
) {
368 EVT VT
= TLI
->getValueType(DL
, T
);
369 unsigned BitWidth
= VT
.getStoreSizeInBits();
370 assert(BitWidth
== VT
.getSizeInBits() && "must be a power of two");
371 return IntegerType::get(T
->getContext(), BitWidth
);
374 /// Convert an atomic load of a non-integral type to an integer load of the
375 /// equivalent bitwidth. See the function comment on
376 /// convertAtomicStoreToIntegerType for background.
377 LoadInst
*AtomicExpand::convertAtomicLoadToIntegerType(LoadInst
*LI
) {
378 auto *M
= LI
->getModule();
379 Type
*NewTy
= getCorrespondingIntegerType(LI
->getType(),
382 IRBuilder
<> Builder(LI
);
384 Value
*Addr
= LI
->getPointerOperand();
385 Type
*PT
= PointerType::get(NewTy
,
386 Addr
->getType()->getPointerAddressSpace());
387 Value
*NewAddr
= Builder
.CreateBitCast(Addr
, PT
);
389 auto *NewLI
= Builder
.CreateLoad(NewAddr
);
390 NewLI
->setAlignment(LI
->getAlignment());
391 NewLI
->setVolatile(LI
->isVolatile());
392 NewLI
->setAtomic(LI
->getOrdering(), LI
->getSyncScopeID());
393 LLVM_DEBUG(dbgs() << "Replaced " << *LI
<< " with " << *NewLI
<< "\n");
395 Value
*NewVal
= Builder
.CreateBitCast(NewLI
, LI
->getType());
396 LI
->replaceAllUsesWith(NewVal
);
397 LI
->eraseFromParent();
401 bool AtomicExpand::tryExpandAtomicLoad(LoadInst
*LI
) {
402 switch (TLI
->shouldExpandAtomicLoadInIR(LI
)) {
403 case TargetLoweringBase::AtomicExpansionKind::None
:
405 case TargetLoweringBase::AtomicExpansionKind::LLSC
:
406 expandAtomicOpToLLSC(
407 LI
, LI
->getType(), LI
->getPointerOperand(), LI
->getOrdering(),
408 [](IRBuilder
<> &Builder
, Value
*Loaded
) { return Loaded
; });
410 case TargetLoweringBase::AtomicExpansionKind::LLOnly
:
411 return expandAtomicLoadToLL(LI
);
412 case TargetLoweringBase::AtomicExpansionKind::CmpXChg
:
413 return expandAtomicLoadToCmpXchg(LI
);
415 llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
418 bool AtomicExpand::expandAtomicLoadToLL(LoadInst
*LI
) {
419 IRBuilder
<> Builder(LI
);
421 // On some architectures, load-linked instructions are atomic for larger
422 // sizes than normal loads. For example, the only 64-bit load guaranteed
423 // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
425 TLI
->emitLoadLinked(Builder
, LI
->getPointerOperand(), LI
->getOrdering());
426 TLI
->emitAtomicCmpXchgNoStoreLLBalance(Builder
);
428 LI
->replaceAllUsesWith(Val
);
429 LI
->eraseFromParent();
434 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst
*LI
) {
435 IRBuilder
<> Builder(LI
);
436 AtomicOrdering Order
= LI
->getOrdering();
437 Value
*Addr
= LI
->getPointerOperand();
438 Type
*Ty
= cast
<PointerType
>(Addr
->getType())->getElementType();
439 Constant
*DummyVal
= Constant::getNullValue(Ty
);
441 Value
*Pair
= Builder
.CreateAtomicCmpXchg(
442 Addr
, DummyVal
, DummyVal
, Order
,
443 AtomicCmpXchgInst::getStrongestFailureOrdering(Order
));
444 Value
*Loaded
= Builder
.CreateExtractValue(Pair
, 0, "loaded");
446 LI
->replaceAllUsesWith(Loaded
);
447 LI
->eraseFromParent();
452 /// Convert an atomic store of a non-integral type to an integer store of the
453 /// equivalent bitwidth. We used to not support floating point or vector
454 /// atomics in the IR at all. The backends learned to deal with the bitcast
455 /// idiom because that was the only way of expressing the notion of a atomic
456 /// float or vector store. The long term plan is to teach each backend to
457 /// instruction select from the original atomic store, but as a migration
458 /// mechanism, we convert back to the old format which the backends understand.
459 /// Each backend will need individual work to recognize the new format.
460 StoreInst
*AtomicExpand::convertAtomicStoreToIntegerType(StoreInst
*SI
) {
461 IRBuilder
<> Builder(SI
);
462 auto *M
= SI
->getModule();
463 Type
*NewTy
= getCorrespondingIntegerType(SI
->getValueOperand()->getType(),
465 Value
*NewVal
= Builder
.CreateBitCast(SI
->getValueOperand(), NewTy
);
467 Value
*Addr
= SI
->getPointerOperand();
468 Type
*PT
= PointerType::get(NewTy
,
469 Addr
->getType()->getPointerAddressSpace());
470 Value
*NewAddr
= Builder
.CreateBitCast(Addr
, PT
);
472 StoreInst
*NewSI
= Builder
.CreateStore(NewVal
, NewAddr
);
473 NewSI
->setAlignment(SI
->getAlignment());
474 NewSI
->setVolatile(SI
->isVolatile());
475 NewSI
->setAtomic(SI
->getOrdering(), SI
->getSyncScopeID());
476 LLVM_DEBUG(dbgs() << "Replaced " << *SI
<< " with " << *NewSI
<< "\n");
477 SI
->eraseFromParent();
481 bool AtomicExpand::expandAtomicStore(StoreInst
*SI
) {
482 // This function is only called on atomic stores that are too large to be
483 // atomic if implemented as a native store. So we replace them by an
484 // atomic swap, that can be implemented for example as a ldrex/strex on ARM
485 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
486 // It is the responsibility of the target to only signal expansion via
487 // shouldExpandAtomicRMW in cases where this is required and possible.
488 IRBuilder
<> Builder(SI
);
490 Builder
.CreateAtomicRMW(AtomicRMWInst::Xchg
, SI
->getPointerOperand(),
491 SI
->getValueOperand(), SI
->getOrdering());
492 SI
->eraseFromParent();
494 // Now we have an appropriate swap instruction, lower it as usual.
495 return tryExpandAtomicRMW(AI
);
498 static void createCmpXchgInstFun(IRBuilder
<> &Builder
, Value
*Addr
,
499 Value
*Loaded
, Value
*NewVal
,
500 AtomicOrdering MemOpOrder
,
501 Value
*&Success
, Value
*&NewLoaded
) {
502 Value
* Pair
= Builder
.CreateAtomicCmpXchg(
503 Addr
, Loaded
, NewVal
, MemOpOrder
,
504 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder
));
505 Success
= Builder
.CreateExtractValue(Pair
, 1, "success");
506 NewLoaded
= Builder
.CreateExtractValue(Pair
, 0, "newloaded");
509 /// Emit IR to implement the given atomicrmw operation on values in registers,
510 /// returning the new value.
511 static Value
*performAtomicOp(AtomicRMWInst::BinOp Op
, IRBuilder
<> &Builder
,
512 Value
*Loaded
, Value
*Inc
) {
515 case AtomicRMWInst::Xchg
:
517 case AtomicRMWInst::Add
:
518 return Builder
.CreateAdd(Loaded
, Inc
, "new");
519 case AtomicRMWInst::Sub
:
520 return Builder
.CreateSub(Loaded
, Inc
, "new");
521 case AtomicRMWInst::And
:
522 return Builder
.CreateAnd(Loaded
, Inc
, "new");
523 case AtomicRMWInst::Nand
:
524 return Builder
.CreateNot(Builder
.CreateAnd(Loaded
, Inc
), "new");
525 case AtomicRMWInst::Or
:
526 return Builder
.CreateOr(Loaded
, Inc
, "new");
527 case AtomicRMWInst::Xor
:
528 return Builder
.CreateXor(Loaded
, Inc
, "new");
529 case AtomicRMWInst::Max
:
530 NewVal
= Builder
.CreateICmpSGT(Loaded
, Inc
);
531 return Builder
.CreateSelect(NewVal
, Loaded
, Inc
, "new");
532 case AtomicRMWInst::Min
:
533 NewVal
= Builder
.CreateICmpSLE(Loaded
, Inc
);
534 return Builder
.CreateSelect(NewVal
, Loaded
, Inc
, "new");
535 case AtomicRMWInst::UMax
:
536 NewVal
= Builder
.CreateICmpUGT(Loaded
, Inc
);
537 return Builder
.CreateSelect(NewVal
, Loaded
, Inc
, "new");
538 case AtomicRMWInst::UMin
:
539 NewVal
= Builder
.CreateICmpULE(Loaded
, Inc
);
540 return Builder
.CreateSelect(NewVal
, Loaded
, Inc
, "new");
542 llvm_unreachable("Unknown atomic op");
546 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst
*AI
) {
547 switch (TLI
->shouldExpandAtomicRMWInIR(AI
)) {
548 case TargetLoweringBase::AtomicExpansionKind::None
:
550 case TargetLoweringBase::AtomicExpansionKind::LLSC
: {
551 unsigned MinCASSize
= TLI
->getMinCmpXchgSizeInBits() / 8;
552 unsigned ValueSize
= getAtomicOpSize(AI
);
553 if (ValueSize
< MinCASSize
) {
555 "MinCmpXchgSizeInBits not yet supported for LL/SC architectures.");
557 auto PerformOp
= [&](IRBuilder
<> &Builder
, Value
*Loaded
) {
558 return performAtomicOp(AI
->getOperation(), Builder
, Loaded
,
559 AI
->getValOperand());
561 expandAtomicOpToLLSC(AI
, AI
->getType(), AI
->getPointerOperand(),
562 AI
->getOrdering(), PerformOp
);
566 case TargetLoweringBase::AtomicExpansionKind::CmpXChg
: {
567 unsigned MinCASSize
= TLI
->getMinCmpXchgSizeInBits() / 8;
568 unsigned ValueSize
= getAtomicOpSize(AI
);
569 if (ValueSize
< MinCASSize
) {
570 expandPartwordAtomicRMW(AI
,
571 TargetLoweringBase::AtomicExpansionKind::CmpXChg
);
573 expandAtomicRMWToCmpXchg(AI
, createCmpXchgInstFun
);
578 llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
584 /// Result values from createMaskInstrs helper.
585 struct PartwordMaskValues
{
594 } // end anonymous namespace
596 /// This is a helper function which builds instructions to provide
597 /// values necessary for partword atomic operations. It takes an
598 /// incoming address, Addr, and ValueType, and constructs the address,
599 /// shift-amounts and masks needed to work with a larger value of size
602 /// AlignedAddr: Addr rounded down to a multiple of WordSize
604 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded
605 /// from AlignAddr for it to have the same value as if
606 /// ValueType was loaded from Addr.
608 /// Mask: Value to mask with the value loaded from AlignAddr to
609 /// include only the part that would've been loaded from Addr.
611 /// Inv_Mask: The inverse of Mask.
612 static PartwordMaskValues
createMaskInstrs(IRBuilder
<> &Builder
, Instruction
*I
,
613 Type
*ValueType
, Value
*Addr
,
615 PartwordMaskValues Ret
;
617 BasicBlock
*BB
= I
->getParent();
618 Function
*F
= BB
->getParent();
619 Module
*M
= I
->getModule();
621 LLVMContext
&Ctx
= F
->getContext();
622 const DataLayout
&DL
= M
->getDataLayout();
624 unsigned ValueSize
= DL
.getTypeStoreSize(ValueType
);
626 assert(ValueSize
< WordSize
);
628 Ret
.ValueType
= ValueType
;
629 Ret
.WordType
= Type::getIntNTy(Ctx
, WordSize
* 8);
632 Ret
.WordType
->getPointerTo(Addr
->getType()->getPointerAddressSpace());
634 Value
*AddrInt
= Builder
.CreatePtrToInt(Addr
, DL
.getIntPtrType(Ctx
));
635 Ret
.AlignedAddr
= Builder
.CreateIntToPtr(
636 Builder
.CreateAnd(AddrInt
, ~(uint64_t)(WordSize
- 1)), WordPtrType
,
639 Value
*PtrLSB
= Builder
.CreateAnd(AddrInt
, WordSize
- 1, "PtrLSB");
640 if (DL
.isLittleEndian()) {
641 // turn bytes into bits
642 Ret
.ShiftAmt
= Builder
.CreateShl(PtrLSB
, 3);
644 // turn bytes into bits, and count from the other side.
646 Builder
.CreateShl(Builder
.CreateXor(PtrLSB
, WordSize
- ValueSize
), 3);
649 Ret
.ShiftAmt
= Builder
.CreateTrunc(Ret
.ShiftAmt
, Ret
.WordType
, "ShiftAmt");
650 Ret
.Mask
= Builder
.CreateShl(
651 ConstantInt::get(Ret
.WordType
, (1 << ValueSize
* 8) - 1), Ret
.ShiftAmt
,
653 Ret
.Inv_Mask
= Builder
.CreateNot(Ret
.Mask
, "Inv_Mask");
658 /// Emit IR to implement a masked version of a given atomicrmw
659 /// operation. (That is, only the bits under the Mask should be
660 /// affected by the operation)
661 static Value
*performMaskedAtomicOp(AtomicRMWInst::BinOp Op
,
662 IRBuilder
<> &Builder
, Value
*Loaded
,
663 Value
*Shifted_Inc
, Value
*Inc
,
664 const PartwordMaskValues
&PMV
) {
666 case AtomicRMWInst::Xchg
: {
667 Value
*Loaded_MaskOut
= Builder
.CreateAnd(Loaded
, PMV
.Inv_Mask
);
668 Value
*FinalVal
= Builder
.CreateOr(Loaded_MaskOut
, Shifted_Inc
);
671 case AtomicRMWInst::Or
:
672 case AtomicRMWInst::Xor
:
673 case AtomicRMWInst::And
:
674 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
675 case AtomicRMWInst::Add
:
676 case AtomicRMWInst::Sub
:
677 case AtomicRMWInst::Nand
: {
678 // The other arithmetic ops need to be masked into place.
679 Value
*NewVal
= performAtomicOp(Op
, Builder
, Loaded
, Shifted_Inc
);
680 Value
*NewVal_Masked
= Builder
.CreateAnd(NewVal
, PMV
.Mask
);
681 Value
*Loaded_MaskOut
= Builder
.CreateAnd(Loaded
, PMV
.Inv_Mask
);
682 Value
*FinalVal
= Builder
.CreateOr(Loaded_MaskOut
, NewVal_Masked
);
685 case AtomicRMWInst::Max
:
686 case AtomicRMWInst::Min
:
687 case AtomicRMWInst::UMax
:
688 case AtomicRMWInst::UMin
: {
689 // Finally, comparison ops will operate on the full value, so
690 // truncate down to the original size, and expand out again after
691 // doing the operation.
692 Value
*Loaded_Shiftdown
= Builder
.CreateTrunc(
693 Builder
.CreateLShr(Loaded
, PMV
.ShiftAmt
), PMV
.ValueType
);
694 Value
*NewVal
= performAtomicOp(Op
, Builder
, Loaded_Shiftdown
, Inc
);
695 Value
*NewVal_Shiftup
= Builder
.CreateShl(
696 Builder
.CreateZExt(NewVal
, PMV
.WordType
), PMV
.ShiftAmt
);
697 Value
*Loaded_MaskOut
= Builder
.CreateAnd(Loaded
, PMV
.Inv_Mask
);
698 Value
*FinalVal
= Builder
.CreateOr(Loaded_MaskOut
, NewVal_Shiftup
);
702 llvm_unreachable("Unknown atomic op");
706 /// Expand a sub-word atomicrmw operation into an appropriate
707 /// word-sized operation.
709 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same
710 /// way as a typical atomicrmw expansion. The only difference here is
711 /// that the operation inside of the loop must operate only upon a
712 /// part of the value.
713 void AtomicExpand::expandPartwordAtomicRMW(
714 AtomicRMWInst
*AI
, TargetLoweringBase::AtomicExpansionKind ExpansionKind
) {
715 assert(ExpansionKind
== TargetLoweringBase::AtomicExpansionKind::CmpXChg
);
717 AtomicOrdering MemOpOrder
= AI
->getOrdering();
719 IRBuilder
<> Builder(AI
);
721 PartwordMaskValues PMV
=
722 createMaskInstrs(Builder
, AI
, AI
->getType(), AI
->getPointerOperand(),
723 TLI
->getMinCmpXchgSizeInBits() / 8);
725 Value
*ValOperand_Shifted
=
726 Builder
.CreateShl(Builder
.CreateZExt(AI
->getValOperand(), PMV
.WordType
),
727 PMV
.ShiftAmt
, "ValOperand_Shifted");
729 auto PerformPartwordOp
= [&](IRBuilder
<> &Builder
, Value
*Loaded
) {
730 return performMaskedAtomicOp(AI
->getOperation(), Builder
, Loaded
,
731 ValOperand_Shifted
, AI
->getValOperand(), PMV
);
734 // TODO: When we're ready to support LLSC conversions too, use
735 // insertRMWLLSCLoop here for ExpansionKind==LLSC.
737 insertRMWCmpXchgLoop(Builder
, PMV
.WordType
, PMV
.AlignedAddr
, MemOpOrder
,
738 PerformPartwordOp
, createCmpXchgInstFun
);
739 Value
*FinalOldResult
= Builder
.CreateTrunc(
740 Builder
.CreateLShr(OldResult
, PMV
.ShiftAmt
), PMV
.ValueType
);
741 AI
->replaceAllUsesWith(FinalOldResult
);
742 AI
->eraseFromParent();
745 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
746 AtomicRMWInst
*AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst
*AI
) {
747 IRBuilder
<> Builder(AI
);
748 AtomicRMWInst::BinOp Op
= AI
->getOperation();
750 assert((Op
== AtomicRMWInst::Or
|| Op
== AtomicRMWInst::Xor
||
751 Op
== AtomicRMWInst::And
) &&
752 "Unable to widen operation");
754 PartwordMaskValues PMV
=
755 createMaskInstrs(Builder
, AI
, AI
->getType(), AI
->getPointerOperand(),
756 TLI
->getMinCmpXchgSizeInBits() / 8);
758 Value
*ValOperand_Shifted
=
759 Builder
.CreateShl(Builder
.CreateZExt(AI
->getValOperand(), PMV
.WordType
),
760 PMV
.ShiftAmt
, "ValOperand_Shifted");
764 if (Op
== AtomicRMWInst::And
)
766 Builder
.CreateOr(PMV
.Inv_Mask
, ValOperand_Shifted
, "AndOperand");
768 NewOperand
= ValOperand_Shifted
;
770 AtomicRMWInst
*NewAI
= Builder
.CreateAtomicRMW(Op
, PMV
.AlignedAddr
,
771 NewOperand
, AI
->getOrdering());
773 Value
*FinalOldResult
= Builder
.CreateTrunc(
774 Builder
.CreateLShr(NewAI
, PMV
.ShiftAmt
), PMV
.ValueType
);
775 AI
->replaceAllUsesWith(FinalOldResult
);
776 AI
->eraseFromParent();
780 void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst
*CI
) {
781 // The basic idea here is that we're expanding a cmpxchg of a
782 // smaller memory size up to a word-sized cmpxchg. To do this, we
783 // need to add a retry-loop for strong cmpxchg, so that
784 // modifications to other parts of the word don't cause a spurious
787 // This generates code like the following:
788 // [[Setup mask values PMV.*]]
789 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
790 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
791 // %InitLoaded = load i32* %addr
792 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
793 // br partword.cmpxchg.loop
794 // partword.cmpxchg.loop:
795 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
796 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
797 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
798 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
799 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
800 // i32 %FullWord_NewVal success_ordering failure_ordering
801 // %OldVal = extractvalue { i32, i1 } %NewCI, 0
802 // %Success = extractvalue { i32, i1 } %NewCI, 1
803 // br i1 %Success, label %partword.cmpxchg.end,
804 // label %partword.cmpxchg.failure
805 // partword.cmpxchg.failure:
806 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
807 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
808 // br i1 %ShouldContinue, label %partword.cmpxchg.loop,
809 // label %partword.cmpxchg.end
810 // partword.cmpxchg.end:
811 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
812 // %FinalOldVal = trunc i32 %tmp1 to i8
813 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
814 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
816 Value
*Addr
= CI
->getPointerOperand();
817 Value
*Cmp
= CI
->getCompareOperand();
818 Value
*NewVal
= CI
->getNewValOperand();
820 BasicBlock
*BB
= CI
->getParent();
821 Function
*F
= BB
->getParent();
822 IRBuilder
<> Builder(CI
);
823 LLVMContext
&Ctx
= Builder
.getContext();
825 const int WordSize
= TLI
->getMinCmpXchgSizeInBits() / 8;
828 BB
->splitBasicBlock(CI
->getIterator(), "partword.cmpxchg.end");
830 BasicBlock::Create(Ctx
, "partword.cmpxchg.failure", F
, EndBB
);
831 auto LoopBB
= BasicBlock::Create(Ctx
, "partword.cmpxchg.loop", F
, FailureBB
);
833 // The split call above "helpfully" added a branch at the end of BB
834 // (to the wrong place).
835 std::prev(BB
->end())->eraseFromParent();
836 Builder
.SetInsertPoint(BB
);
838 PartwordMaskValues PMV
= createMaskInstrs(
839 Builder
, CI
, CI
->getCompareOperand()->getType(), Addr
, WordSize
);
841 // Shift the incoming values over, into the right location in the word.
842 Value
*NewVal_Shifted
=
843 Builder
.CreateShl(Builder
.CreateZExt(NewVal
, PMV
.WordType
), PMV
.ShiftAmt
);
845 Builder
.CreateShl(Builder
.CreateZExt(Cmp
, PMV
.WordType
), PMV
.ShiftAmt
);
847 // Load the entire current word, and mask into place the expected and new
849 LoadInst
*InitLoaded
= Builder
.CreateLoad(PMV
.WordType
, PMV
.AlignedAddr
);
850 InitLoaded
->setVolatile(CI
->isVolatile());
851 Value
*InitLoaded_MaskOut
= Builder
.CreateAnd(InitLoaded
, PMV
.Inv_Mask
);
852 Builder
.CreateBr(LoopBB
);
854 // partword.cmpxchg.loop:
855 Builder
.SetInsertPoint(LoopBB
);
856 PHINode
*Loaded_MaskOut
= Builder
.CreatePHI(PMV
.WordType
, 2);
857 Loaded_MaskOut
->addIncoming(InitLoaded_MaskOut
, BB
);
859 // Mask/Or the expected and new values into place in the loaded word.
860 Value
*FullWord_NewVal
= Builder
.CreateOr(Loaded_MaskOut
, NewVal_Shifted
);
861 Value
*FullWord_Cmp
= Builder
.CreateOr(Loaded_MaskOut
, Cmp_Shifted
);
862 AtomicCmpXchgInst
*NewCI
= Builder
.CreateAtomicCmpXchg(
863 PMV
.AlignedAddr
, FullWord_Cmp
, FullWord_NewVal
, CI
->getSuccessOrdering(),
864 CI
->getFailureOrdering(), CI
->getSyncScopeID());
865 NewCI
->setVolatile(CI
->isVolatile());
866 // When we're building a strong cmpxchg, we need a loop, so you
867 // might think we could use a weak cmpxchg inside. But, using strong
868 // allows the below comparison for ShouldContinue, and we're
869 // expecting the underlying cmpxchg to be a machine instruction,
870 // which is strong anyways.
871 NewCI
->setWeak(CI
->isWeak());
873 Value
*OldVal
= Builder
.CreateExtractValue(NewCI
, 0);
874 Value
*Success
= Builder
.CreateExtractValue(NewCI
, 1);
877 Builder
.CreateBr(EndBB
);
879 Builder
.CreateCondBr(Success
, EndBB
, FailureBB
);
881 // partword.cmpxchg.failure:
882 Builder
.SetInsertPoint(FailureBB
);
883 // Upon failure, verify that the masked-out part of the loaded value
884 // has been modified. If it didn't, abort the cmpxchg, since the
885 // masked-in part must've.
886 Value
*OldVal_MaskOut
= Builder
.CreateAnd(OldVal
, PMV
.Inv_Mask
);
887 Value
*ShouldContinue
= Builder
.CreateICmpNE(Loaded_MaskOut
, OldVal_MaskOut
);
888 Builder
.CreateCondBr(ShouldContinue
, LoopBB
, EndBB
);
890 // Add the second value to the phi from above
891 Loaded_MaskOut
->addIncoming(OldVal_MaskOut
, FailureBB
);
893 // partword.cmpxchg.end:
894 Builder
.SetInsertPoint(CI
);
896 Value
*FinalOldVal
= Builder
.CreateTrunc(
897 Builder
.CreateLShr(OldVal
, PMV
.ShiftAmt
), PMV
.ValueType
);
898 Value
*Res
= UndefValue::get(CI
->getType());
899 Res
= Builder
.CreateInsertValue(Res
, FinalOldVal
, 0);
900 Res
= Builder
.CreateInsertValue(Res
, Success
, 1);
902 CI
->replaceAllUsesWith(Res
);
903 CI
->eraseFromParent();
906 void AtomicExpand::expandAtomicOpToLLSC(
907 Instruction
*I
, Type
*ResultType
, Value
*Addr
, AtomicOrdering MemOpOrder
,
908 function_ref
<Value
*(IRBuilder
<> &, Value
*)> PerformOp
) {
909 IRBuilder
<> Builder(I
);
911 insertRMWLLSCLoop(Builder
, ResultType
, Addr
, MemOpOrder
, PerformOp
);
913 I
->replaceAllUsesWith(Loaded
);
914 I
->eraseFromParent();
917 Value
*AtomicExpand::insertRMWLLSCLoop(
918 IRBuilder
<> &Builder
, Type
*ResultTy
, Value
*Addr
,
919 AtomicOrdering MemOpOrder
,
920 function_ref
<Value
*(IRBuilder
<> &, Value
*)> PerformOp
) {
921 LLVMContext
&Ctx
= Builder
.getContext();
922 BasicBlock
*BB
= Builder
.GetInsertBlock();
923 Function
*F
= BB
->getParent();
925 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
927 // The standard expansion we produce is:
930 // %loaded = @load.linked(%addr)
931 // %new = some_op iN %loaded, %incr
932 // %stored = @store_conditional(%new, %addr)
933 // %try_again = icmp i32 ne %stored, 0
934 // br i1 %try_again, label %loop, label %atomicrmw.end
938 BB
->splitBasicBlock(Builder
.GetInsertPoint(), "atomicrmw.end");
939 BasicBlock
*LoopBB
= BasicBlock::Create(Ctx
, "atomicrmw.start", F
, ExitBB
);
941 // The split call above "helpfully" added a branch at the end of BB (to the
943 std::prev(BB
->end())->eraseFromParent();
944 Builder
.SetInsertPoint(BB
);
945 Builder
.CreateBr(LoopBB
);
947 // Start the main loop block now that we've taken care of the preliminaries.
948 Builder
.SetInsertPoint(LoopBB
);
949 Value
*Loaded
= TLI
->emitLoadLinked(Builder
, Addr
, MemOpOrder
);
951 Value
*NewVal
= PerformOp(Builder
, Loaded
);
953 Value
*StoreSuccess
=
954 TLI
->emitStoreConditional(Builder
, NewVal
, Addr
, MemOpOrder
);
955 Value
*TryAgain
= Builder
.CreateICmpNE(
956 StoreSuccess
, ConstantInt::get(IntegerType::get(Ctx
, 32), 0), "tryagain");
957 Builder
.CreateCondBr(TryAgain
, LoopBB
, ExitBB
);
959 Builder
.SetInsertPoint(ExitBB
, ExitBB
->begin());
963 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
964 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the
965 /// IR. As a migration step, we convert back to what use to be the standard
966 /// way to represent a pointer cmpxchg so that we can update backends one by
968 AtomicCmpXchgInst
*AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst
*CI
) {
969 auto *M
= CI
->getModule();
970 Type
*NewTy
= getCorrespondingIntegerType(CI
->getCompareOperand()->getType(),
973 IRBuilder
<> Builder(CI
);
975 Value
*Addr
= CI
->getPointerOperand();
976 Type
*PT
= PointerType::get(NewTy
,
977 Addr
->getType()->getPointerAddressSpace());
978 Value
*NewAddr
= Builder
.CreateBitCast(Addr
, PT
);
980 Value
*NewCmp
= Builder
.CreatePtrToInt(CI
->getCompareOperand(), NewTy
);
981 Value
*NewNewVal
= Builder
.CreatePtrToInt(CI
->getNewValOperand(), NewTy
);
984 auto *NewCI
= Builder
.CreateAtomicCmpXchg(NewAddr
, NewCmp
, NewNewVal
,
985 CI
->getSuccessOrdering(),
986 CI
->getFailureOrdering(),
987 CI
->getSyncScopeID());
988 NewCI
->setVolatile(CI
->isVolatile());
989 NewCI
->setWeak(CI
->isWeak());
990 LLVM_DEBUG(dbgs() << "Replaced " << *CI
<< " with " << *NewCI
<< "\n");
992 Value
*OldVal
= Builder
.CreateExtractValue(NewCI
, 0);
993 Value
*Succ
= Builder
.CreateExtractValue(NewCI
, 1);
995 OldVal
= Builder
.CreateIntToPtr(OldVal
, CI
->getCompareOperand()->getType());
997 Value
*Res
= UndefValue::get(CI
->getType());
998 Res
= Builder
.CreateInsertValue(Res
, OldVal
, 0);
999 Res
= Builder
.CreateInsertValue(Res
, Succ
, 1);
1001 CI
->replaceAllUsesWith(Res
);
1002 CI
->eraseFromParent();
1006 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst
*CI
) {
1007 AtomicOrdering SuccessOrder
= CI
->getSuccessOrdering();
1008 AtomicOrdering FailureOrder
= CI
->getFailureOrdering();
1009 Value
*Addr
= CI
->getPointerOperand();
1010 BasicBlock
*BB
= CI
->getParent();
1011 Function
*F
= BB
->getParent();
1012 LLVMContext
&Ctx
= F
->getContext();
1013 // If shouldInsertFencesForAtomic() returns true, then the target does not
1014 // want to deal with memory orders, and emitLeading/TrailingFence should take
1015 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1016 // should preserve the ordering.
1017 bool ShouldInsertFencesForAtomic
= TLI
->shouldInsertFencesForAtomic(CI
);
1018 AtomicOrdering MemOpOrder
=
1019 ShouldInsertFencesForAtomic
? AtomicOrdering::Monotonic
: SuccessOrder
;
1021 // In implementations which use a barrier to achieve release semantics, we can
1022 // delay emitting this barrier until we know a store is actually going to be
1023 // attempted. The cost of this delay is that we need 2 copies of the block
1024 // emitting the load-linked, affecting code size.
1026 // Ideally, this logic would be unconditional except for the minsize check
1027 // since in other cases the extra blocks naturally collapse down to the
1028 // minimal loop. Unfortunately, this puts too much stress on later
1029 // optimisations so we avoid emitting the extra logic in those cases too.
1030 bool HasReleasedLoadBB
= !CI
->isWeak() && ShouldInsertFencesForAtomic
&&
1031 SuccessOrder
!= AtomicOrdering::Monotonic
&&
1032 SuccessOrder
!= AtomicOrdering::Acquire
&&
1033 !F
->optForMinSize();
1035 // There's no overhead for sinking the release barrier in a weak cmpxchg, so
1036 // do it even on minsize.
1037 bool UseUnconditionalReleaseBarrier
= F
->optForMinSize() && !CI
->isWeak();
1039 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1041 // The full expansion we produce is:
1044 // %unreleasedload = @load.linked(%addr)
1045 // %should_store = icmp eq %unreleasedload, %desired
1046 // br i1 %should_store, label %cmpxchg.fencedstore,
1047 // label %cmpxchg.nostore
1048 // cmpxchg.releasingstore:
1050 // br label cmpxchg.trystore
1051 // cmpxchg.trystore:
1052 // %loaded.trystore = phi [%unreleasedload, %releasingstore],
1053 // [%releasedload, %cmpxchg.releasedload]
1054 // %stored = @store_conditional(%new, %addr)
1055 // %success = icmp eq i32 %stored, 0
1056 // br i1 %success, label %cmpxchg.success,
1057 // label %cmpxchg.releasedload/%cmpxchg.failure
1058 // cmpxchg.releasedload:
1059 // %releasedload = @load.linked(%addr)
1060 // %should_store = icmp eq %releasedload, %desired
1061 // br i1 %should_store, label %cmpxchg.trystore,
1062 // label %cmpxchg.failure
1065 // br label %cmpxchg.end
1067 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1069 // %cmpxchg.releasedload/%cmpxchg.trystore]
1070 // @load_linked_fail_balance()?
1071 // br label %cmpxchg.failure
1074 // br label %cmpxchg.end
1076 // %loaded = phi [%loaded.nostore, %cmpxchg.failure],
1077 // [%loaded.trystore, %cmpxchg.trystore]
1078 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1079 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1080 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1082 BasicBlock
*ExitBB
= BB
->splitBasicBlock(CI
->getIterator(), "cmpxchg.end");
1083 auto FailureBB
= BasicBlock::Create(Ctx
, "cmpxchg.failure", F
, ExitBB
);
1084 auto NoStoreBB
= BasicBlock::Create(Ctx
, "cmpxchg.nostore", F
, FailureBB
);
1085 auto SuccessBB
= BasicBlock::Create(Ctx
, "cmpxchg.success", F
, NoStoreBB
);
1086 auto ReleasedLoadBB
=
1087 BasicBlock::Create(Ctx
, "cmpxchg.releasedload", F
, SuccessBB
);
1089 BasicBlock::Create(Ctx
, "cmpxchg.trystore", F
, ReleasedLoadBB
);
1090 auto ReleasingStoreBB
=
1091 BasicBlock::Create(Ctx
, "cmpxchg.fencedstore", F
, TryStoreBB
);
1092 auto StartBB
= BasicBlock::Create(Ctx
, "cmpxchg.start", F
, ReleasingStoreBB
);
1094 // This grabs the DebugLoc from CI
1095 IRBuilder
<> Builder(CI
);
1097 // The split call above "helpfully" added a branch at the end of BB (to the
1098 // wrong place), but we might want a fence too. It's easiest to just remove
1099 // the branch entirely.
1100 std::prev(BB
->end())->eraseFromParent();
1101 Builder
.SetInsertPoint(BB
);
1102 if (ShouldInsertFencesForAtomic
&& UseUnconditionalReleaseBarrier
)
1103 TLI
->emitLeadingFence(Builder
, CI
, SuccessOrder
);
1104 Builder
.CreateBr(StartBB
);
1106 // Start the main loop block now that we've taken care of the preliminaries.
1107 Builder
.SetInsertPoint(StartBB
);
1108 Value
*UnreleasedLoad
= TLI
->emitLoadLinked(Builder
, Addr
, MemOpOrder
);
1109 Value
*ShouldStore
= Builder
.CreateICmpEQ(
1110 UnreleasedLoad
, CI
->getCompareOperand(), "should_store");
1112 // If the cmpxchg doesn't actually need any ordering when it fails, we can
1113 // jump straight past that fence instruction (if it exists).
1114 Builder
.CreateCondBr(ShouldStore
, ReleasingStoreBB
, NoStoreBB
);
1116 Builder
.SetInsertPoint(ReleasingStoreBB
);
1117 if (ShouldInsertFencesForAtomic
&& !UseUnconditionalReleaseBarrier
)
1118 TLI
->emitLeadingFence(Builder
, CI
, SuccessOrder
);
1119 Builder
.CreateBr(TryStoreBB
);
1121 Builder
.SetInsertPoint(TryStoreBB
);
1122 Value
*StoreSuccess
= TLI
->emitStoreConditional(
1123 Builder
, CI
->getNewValOperand(), Addr
, MemOpOrder
);
1124 StoreSuccess
= Builder
.CreateICmpEQ(
1125 StoreSuccess
, ConstantInt::get(Type::getInt32Ty(Ctx
), 0), "success");
1126 BasicBlock
*RetryBB
= HasReleasedLoadBB
? ReleasedLoadBB
: StartBB
;
1127 Builder
.CreateCondBr(StoreSuccess
, SuccessBB
,
1128 CI
->isWeak() ? FailureBB
: RetryBB
);
1130 Builder
.SetInsertPoint(ReleasedLoadBB
);
1132 if (HasReleasedLoadBB
) {
1133 SecondLoad
= TLI
->emitLoadLinked(Builder
, Addr
, MemOpOrder
);
1134 ShouldStore
= Builder
.CreateICmpEQ(SecondLoad
, CI
->getCompareOperand(),
1137 // If the cmpxchg doesn't actually need any ordering when it fails, we can
1138 // jump straight past that fence instruction (if it exists).
1139 Builder
.CreateCondBr(ShouldStore
, TryStoreBB
, NoStoreBB
);
1141 Builder
.CreateUnreachable();
1143 // Make sure later instructions don't get reordered with a fence if
1145 Builder
.SetInsertPoint(SuccessBB
);
1146 if (ShouldInsertFencesForAtomic
)
1147 TLI
->emitTrailingFence(Builder
, CI
, SuccessOrder
);
1148 Builder
.CreateBr(ExitBB
);
1150 Builder
.SetInsertPoint(NoStoreBB
);
1151 // In the failing case, where we don't execute the store-conditional, the
1152 // target might want to balance out the load-linked with a dedicated
1153 // instruction (e.g., on ARM, clearing the exclusive monitor).
1154 TLI
->emitAtomicCmpXchgNoStoreLLBalance(Builder
);
1155 Builder
.CreateBr(FailureBB
);
1157 Builder
.SetInsertPoint(FailureBB
);
1158 if (ShouldInsertFencesForAtomic
)
1159 TLI
->emitTrailingFence(Builder
, CI
, FailureOrder
);
1160 Builder
.CreateBr(ExitBB
);
1162 // Finally, we have control-flow based knowledge of whether the cmpxchg
1163 // succeeded or not. We expose this to later passes by converting any
1164 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1166 Builder
.SetInsertPoint(ExitBB
, ExitBB
->begin());
1167 PHINode
*Success
= Builder
.CreatePHI(Type::getInt1Ty(Ctx
), 2);
1168 Success
->addIncoming(ConstantInt::getTrue(Ctx
), SuccessBB
);
1169 Success
->addIncoming(ConstantInt::getFalse(Ctx
), FailureBB
);
1171 // Setup the builder so we can create any PHIs we need.
1173 if (!HasReleasedLoadBB
)
1174 Loaded
= UnreleasedLoad
;
1176 Builder
.SetInsertPoint(TryStoreBB
, TryStoreBB
->begin());
1177 PHINode
*TryStoreLoaded
= Builder
.CreatePHI(UnreleasedLoad
->getType(), 2);
1178 TryStoreLoaded
->addIncoming(UnreleasedLoad
, ReleasingStoreBB
);
1179 TryStoreLoaded
->addIncoming(SecondLoad
, ReleasedLoadBB
);
1181 Builder
.SetInsertPoint(NoStoreBB
, NoStoreBB
->begin());
1182 PHINode
*NoStoreLoaded
= Builder
.CreatePHI(UnreleasedLoad
->getType(), 2);
1183 NoStoreLoaded
->addIncoming(UnreleasedLoad
, StartBB
);
1184 NoStoreLoaded
->addIncoming(SecondLoad
, ReleasedLoadBB
);
1186 Builder
.SetInsertPoint(ExitBB
, ++ExitBB
->begin());
1187 PHINode
*ExitLoaded
= Builder
.CreatePHI(UnreleasedLoad
->getType(), 2);
1188 ExitLoaded
->addIncoming(TryStoreLoaded
, SuccessBB
);
1189 ExitLoaded
->addIncoming(NoStoreLoaded
, FailureBB
);
1191 Loaded
= ExitLoaded
;
1194 // Look for any users of the cmpxchg that are just comparing the loaded value
1195 // against the desired one, and replace them with the CFG-derived version.
1196 SmallVector
<ExtractValueInst
*, 2> PrunedInsts
;
1197 for (auto User
: CI
->users()) {
1198 ExtractValueInst
*EV
= dyn_cast
<ExtractValueInst
>(User
);
1202 assert(EV
->getNumIndices() == 1 && EV
->getIndices()[0] <= 1 &&
1203 "weird extraction from { iN, i1 }");
1205 if (EV
->getIndices()[0] == 0)
1206 EV
->replaceAllUsesWith(Loaded
);
1208 EV
->replaceAllUsesWith(Success
);
1210 PrunedInsts
.push_back(EV
);
1213 // We can remove the instructions now we're no longer iterating through them.
1214 for (auto EV
: PrunedInsts
)
1215 EV
->eraseFromParent();
1217 if (!CI
->use_empty()) {
1218 // Some use of the full struct return that we don't understand has happened,
1219 // so we've got to reconstruct it properly.
1221 Res
= Builder
.CreateInsertValue(UndefValue::get(CI
->getType()), Loaded
, 0);
1222 Res
= Builder
.CreateInsertValue(Res
, Success
, 1);
1224 CI
->replaceAllUsesWith(Res
);
1227 CI
->eraseFromParent();
1231 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst
* RMWI
) {
1232 auto C
= dyn_cast
<ConstantInt
>(RMWI
->getValOperand());
1236 AtomicRMWInst::BinOp Op
= RMWI
->getOperation();
1238 case AtomicRMWInst::Add
:
1239 case AtomicRMWInst::Sub
:
1240 case AtomicRMWInst::Or
:
1241 case AtomicRMWInst::Xor
:
1243 case AtomicRMWInst::And
:
1244 return C
->isMinusOne();
1245 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1251 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst
* RMWI
) {
1252 if (auto ResultingLoad
= TLI
->lowerIdempotentRMWIntoFencedLoad(RMWI
)) {
1253 tryExpandAtomicLoad(ResultingLoad
);
1259 Value
*AtomicExpand::insertRMWCmpXchgLoop(
1260 IRBuilder
<> &Builder
, Type
*ResultTy
, Value
*Addr
,
1261 AtomicOrdering MemOpOrder
,
1262 function_ref
<Value
*(IRBuilder
<> &, Value
*)> PerformOp
,
1263 CreateCmpXchgInstFun CreateCmpXchg
) {
1264 LLVMContext
&Ctx
= Builder
.getContext();
1265 BasicBlock
*BB
= Builder
.GetInsertBlock();
1266 Function
*F
= BB
->getParent();
1268 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1270 // The standard expansion we produce is:
1272 // %init_loaded = load atomic iN* %addr
1275 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1276 // %new = some_op iN %loaded, %incr
1277 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1278 // %new_loaded = extractvalue { iN, i1 } %pair, 0
1279 // %success = extractvalue { iN, i1 } %pair, 1
1280 // br i1 %success, label %atomicrmw.end, label %loop
1283 BasicBlock
*ExitBB
=
1284 BB
->splitBasicBlock(Builder
.GetInsertPoint(), "atomicrmw.end");
1285 BasicBlock
*LoopBB
= BasicBlock::Create(Ctx
, "atomicrmw.start", F
, ExitBB
);
1287 // The split call above "helpfully" added a branch at the end of BB (to the
1288 // wrong place), but we want a load. It's easiest to just remove
1289 // the branch entirely.
1290 std::prev(BB
->end())->eraseFromParent();
1291 Builder
.SetInsertPoint(BB
);
1292 LoadInst
*InitLoaded
= Builder
.CreateLoad(ResultTy
, Addr
);
1293 // Atomics require at least natural alignment.
1294 InitLoaded
->setAlignment(ResultTy
->getPrimitiveSizeInBits() / 8);
1295 Builder
.CreateBr(LoopBB
);
1297 // Start the main loop block now that we've taken care of the preliminaries.
1298 Builder
.SetInsertPoint(LoopBB
);
1299 PHINode
*Loaded
= Builder
.CreatePHI(ResultTy
, 2, "loaded");
1300 Loaded
->addIncoming(InitLoaded
, BB
);
1302 Value
*NewVal
= PerformOp(Builder
, Loaded
);
1304 Value
*NewLoaded
= nullptr;
1305 Value
*Success
= nullptr;
1307 CreateCmpXchg(Builder
, Addr
, Loaded
, NewVal
,
1308 MemOpOrder
== AtomicOrdering::Unordered
1309 ? AtomicOrdering::Monotonic
1311 Success
, NewLoaded
);
1312 assert(Success
&& NewLoaded
);
1314 Loaded
->addIncoming(NewLoaded
, LoopBB
);
1316 Builder
.CreateCondBr(Success
, ExitBB
, LoopBB
);
1318 Builder
.SetInsertPoint(ExitBB
, ExitBB
->begin());
1322 // Note: This function is exposed externally by AtomicExpandUtils.h
1323 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst
*AI
,
1324 CreateCmpXchgInstFun CreateCmpXchg
) {
1325 IRBuilder
<> Builder(AI
);
1326 Value
*Loaded
= AtomicExpand::insertRMWCmpXchgLoop(
1327 Builder
, AI
->getType(), AI
->getPointerOperand(), AI
->getOrdering(),
1328 [&](IRBuilder
<> &Builder
, Value
*Loaded
) {
1329 return performAtomicOp(AI
->getOperation(), Builder
, Loaded
,
1330 AI
->getValOperand());
1334 AI
->replaceAllUsesWith(Loaded
);
1335 AI
->eraseFromParent();
1339 // In order to use one of the sized library calls such as
1340 // __atomic_fetch_add_4, the alignment must be sufficient, the size
1341 // must be one of the potentially-specialized sizes, and the value
1342 // type must actually exist in C on the target (otherwise, the
1343 // function wouldn't actually be defined.)
1344 static bool canUseSizedAtomicCall(unsigned Size
, unsigned Align
,
1345 const DataLayout
&DL
) {
1346 // TODO: "LargestSize" is an approximation for "largest type that
1347 // you can express in C". It seems to be the case that int128 is
1348 // supported on all 64-bit platforms, otherwise only up to 64-bit
1349 // integers are supported. If we get this wrong, then we'll try to
1350 // call a sized libcall that doesn't actually exist. There should
1351 // really be some more reliable way in LLVM of determining integer
1352 // sizes which are valid in the target's C ABI...
1353 unsigned LargestSize
= DL
.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1354 return Align
>= Size
&&
1355 (Size
== 1 || Size
== 2 || Size
== 4 || Size
== 8 || Size
== 16) &&
1356 Size
<= LargestSize
;
1359 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst
*I
) {
1360 static const RTLIB::Libcall Libcalls
[6] = {
1361 RTLIB::ATOMIC_LOAD
, RTLIB::ATOMIC_LOAD_1
, RTLIB::ATOMIC_LOAD_2
,
1362 RTLIB::ATOMIC_LOAD_4
, RTLIB::ATOMIC_LOAD_8
, RTLIB::ATOMIC_LOAD_16
};
1363 unsigned Size
= getAtomicOpSize(I
);
1364 unsigned Align
= getAtomicOpAlign(I
);
1366 bool expanded
= expandAtomicOpToLibcall(
1367 I
, Size
, Align
, I
->getPointerOperand(), nullptr, nullptr,
1368 I
->getOrdering(), AtomicOrdering::NotAtomic
, Libcalls
);
1370 assert(expanded
&& "expandAtomicOpToLibcall shouldn't fail tor Load");
1373 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst
*I
) {
1374 static const RTLIB::Libcall Libcalls
[6] = {
1375 RTLIB::ATOMIC_STORE
, RTLIB::ATOMIC_STORE_1
, RTLIB::ATOMIC_STORE_2
,
1376 RTLIB::ATOMIC_STORE_4
, RTLIB::ATOMIC_STORE_8
, RTLIB::ATOMIC_STORE_16
};
1377 unsigned Size
= getAtomicOpSize(I
);
1378 unsigned Align
= getAtomicOpAlign(I
);
1380 bool expanded
= expandAtomicOpToLibcall(
1381 I
, Size
, Align
, I
->getPointerOperand(), I
->getValueOperand(), nullptr,
1382 I
->getOrdering(), AtomicOrdering::NotAtomic
, Libcalls
);
1384 assert(expanded
&& "expandAtomicOpToLibcall shouldn't fail tor Store");
1387 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst
*I
) {
1388 static const RTLIB::Libcall Libcalls
[6] = {
1389 RTLIB::ATOMIC_COMPARE_EXCHANGE
, RTLIB::ATOMIC_COMPARE_EXCHANGE_1
,
1390 RTLIB::ATOMIC_COMPARE_EXCHANGE_2
, RTLIB::ATOMIC_COMPARE_EXCHANGE_4
,
1391 RTLIB::ATOMIC_COMPARE_EXCHANGE_8
, RTLIB::ATOMIC_COMPARE_EXCHANGE_16
};
1392 unsigned Size
= getAtomicOpSize(I
);
1393 unsigned Align
= getAtomicOpAlign(I
);
1395 bool expanded
= expandAtomicOpToLibcall(
1396 I
, Size
, Align
, I
->getPointerOperand(), I
->getNewValOperand(),
1397 I
->getCompareOperand(), I
->getSuccessOrdering(), I
->getFailureOrdering(),
1400 assert(expanded
&& "expandAtomicOpToLibcall shouldn't fail tor CAS");
1403 static ArrayRef
<RTLIB::Libcall
> GetRMWLibcall(AtomicRMWInst::BinOp Op
) {
1404 static const RTLIB::Libcall LibcallsXchg
[6] = {
1405 RTLIB::ATOMIC_EXCHANGE
, RTLIB::ATOMIC_EXCHANGE_1
,
1406 RTLIB::ATOMIC_EXCHANGE_2
, RTLIB::ATOMIC_EXCHANGE_4
,
1407 RTLIB::ATOMIC_EXCHANGE_8
, RTLIB::ATOMIC_EXCHANGE_16
};
1408 static const RTLIB::Libcall LibcallsAdd
[6] = {
1409 RTLIB::UNKNOWN_LIBCALL
, RTLIB::ATOMIC_FETCH_ADD_1
,
1410 RTLIB::ATOMIC_FETCH_ADD_2
, RTLIB::ATOMIC_FETCH_ADD_4
,
1411 RTLIB::ATOMIC_FETCH_ADD_8
, RTLIB::ATOMIC_FETCH_ADD_16
};
1412 static const RTLIB::Libcall LibcallsSub
[6] = {
1413 RTLIB::UNKNOWN_LIBCALL
, RTLIB::ATOMIC_FETCH_SUB_1
,
1414 RTLIB::ATOMIC_FETCH_SUB_2
, RTLIB::ATOMIC_FETCH_SUB_4
,
1415 RTLIB::ATOMIC_FETCH_SUB_8
, RTLIB::ATOMIC_FETCH_SUB_16
};
1416 static const RTLIB::Libcall LibcallsAnd
[6] = {
1417 RTLIB::UNKNOWN_LIBCALL
, RTLIB::ATOMIC_FETCH_AND_1
,
1418 RTLIB::ATOMIC_FETCH_AND_2
, RTLIB::ATOMIC_FETCH_AND_4
,
1419 RTLIB::ATOMIC_FETCH_AND_8
, RTLIB::ATOMIC_FETCH_AND_16
};
1420 static const RTLIB::Libcall LibcallsOr
[6] = {
1421 RTLIB::UNKNOWN_LIBCALL
, RTLIB::ATOMIC_FETCH_OR_1
,
1422 RTLIB::ATOMIC_FETCH_OR_2
, RTLIB::ATOMIC_FETCH_OR_4
,
1423 RTLIB::ATOMIC_FETCH_OR_8
, RTLIB::ATOMIC_FETCH_OR_16
};
1424 static const RTLIB::Libcall LibcallsXor
[6] = {
1425 RTLIB::UNKNOWN_LIBCALL
, RTLIB::ATOMIC_FETCH_XOR_1
,
1426 RTLIB::ATOMIC_FETCH_XOR_2
, RTLIB::ATOMIC_FETCH_XOR_4
,
1427 RTLIB::ATOMIC_FETCH_XOR_8
, RTLIB::ATOMIC_FETCH_XOR_16
};
1428 static const RTLIB::Libcall LibcallsNand
[6] = {
1429 RTLIB::UNKNOWN_LIBCALL
, RTLIB::ATOMIC_FETCH_NAND_1
,
1430 RTLIB::ATOMIC_FETCH_NAND_2
, RTLIB::ATOMIC_FETCH_NAND_4
,
1431 RTLIB::ATOMIC_FETCH_NAND_8
, RTLIB::ATOMIC_FETCH_NAND_16
};
1434 case AtomicRMWInst::BAD_BINOP
:
1435 llvm_unreachable("Should not have BAD_BINOP.");
1436 case AtomicRMWInst::Xchg
:
1437 return makeArrayRef(LibcallsXchg
);
1438 case AtomicRMWInst::Add
:
1439 return makeArrayRef(LibcallsAdd
);
1440 case AtomicRMWInst::Sub
:
1441 return makeArrayRef(LibcallsSub
);
1442 case AtomicRMWInst::And
:
1443 return makeArrayRef(LibcallsAnd
);
1444 case AtomicRMWInst::Or
:
1445 return makeArrayRef(LibcallsOr
);
1446 case AtomicRMWInst::Xor
:
1447 return makeArrayRef(LibcallsXor
);
1448 case AtomicRMWInst::Nand
:
1449 return makeArrayRef(LibcallsNand
);
1450 case AtomicRMWInst::Max
:
1451 case AtomicRMWInst::Min
:
1452 case AtomicRMWInst::UMax
:
1453 case AtomicRMWInst::UMin
:
1454 // No atomic libcalls are available for max/min/umax/umin.
1457 llvm_unreachable("Unexpected AtomicRMW operation.");
1460 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst
*I
) {
1461 ArrayRef
<RTLIB::Libcall
> Libcalls
= GetRMWLibcall(I
->getOperation());
1463 unsigned Size
= getAtomicOpSize(I
);
1464 unsigned Align
= getAtomicOpAlign(I
);
1466 bool Success
= false;
1467 if (!Libcalls
.empty())
1468 Success
= expandAtomicOpToLibcall(
1469 I
, Size
, Align
, I
->getPointerOperand(), I
->getValOperand(), nullptr,
1470 I
->getOrdering(), AtomicOrdering::NotAtomic
, Libcalls
);
1472 // The expansion failed: either there were no libcalls at all for
1473 // the operation (min/max), or there were only size-specialized
1474 // libcalls (add/sub/etc) and we needed a generic. So, expand to a
1475 // CAS libcall, via a CAS loop, instead.
1477 expandAtomicRMWToCmpXchg(I
, [this](IRBuilder
<> &Builder
, Value
*Addr
,
1478 Value
*Loaded
, Value
*NewVal
,
1479 AtomicOrdering MemOpOrder
,
1480 Value
*&Success
, Value
*&NewLoaded
) {
1481 // Create the CAS instruction normally...
1482 AtomicCmpXchgInst
*Pair
= Builder
.CreateAtomicCmpXchg(
1483 Addr
, Loaded
, NewVal
, MemOpOrder
,
1484 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder
));
1485 Success
= Builder
.CreateExtractValue(Pair
, 1, "success");
1486 NewLoaded
= Builder
.CreateExtractValue(Pair
, 0, "newloaded");
1488 // ...and then expand the CAS into a libcall.
1489 expandAtomicCASToLibcall(Pair
);
1494 // A helper routine for the above expandAtomic*ToLibcall functions.
1496 // 'Libcalls' contains an array of enum values for the particular
1497 // ATOMIC libcalls to be emitted. All of the other arguments besides
1498 // 'I' are extracted from the Instruction subclass by the
1499 // caller. Depending on the particular call, some will be null.
1500 bool AtomicExpand::expandAtomicOpToLibcall(
1501 Instruction
*I
, unsigned Size
, unsigned Align
, Value
*PointerOperand
,
1502 Value
*ValueOperand
, Value
*CASExpected
, AtomicOrdering Ordering
,
1503 AtomicOrdering Ordering2
, ArrayRef
<RTLIB::Libcall
> Libcalls
) {
1504 assert(Libcalls
.size() == 6);
1506 LLVMContext
&Ctx
= I
->getContext();
1507 Module
*M
= I
->getModule();
1508 const DataLayout
&DL
= M
->getDataLayout();
1509 IRBuilder
<> Builder(I
);
1510 IRBuilder
<> AllocaBuilder(&I
->getFunction()->getEntryBlock().front());
1512 bool UseSizedLibcall
= canUseSizedAtomicCall(Size
, Align
, DL
);
1513 Type
*SizedIntTy
= Type::getIntNTy(Ctx
, Size
* 8);
1515 unsigned AllocaAlignment
= DL
.getPrefTypeAlignment(SizedIntTy
);
1517 // TODO: the "order" argument type is "int", not int32. So
1518 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1519 ConstantInt
*SizeVal64
= ConstantInt::get(Type::getInt64Ty(Ctx
), Size
);
1520 assert(Ordering
!= AtomicOrdering::NotAtomic
&& "expect atomic MO");
1521 Constant
*OrderingVal
=
1522 ConstantInt::get(Type::getInt32Ty(Ctx
), (int)toCABI(Ordering
));
1523 Constant
*Ordering2Val
= nullptr;
1525 assert(Ordering2
!= AtomicOrdering::NotAtomic
&& "expect atomic MO");
1527 ConstantInt::get(Type::getInt32Ty(Ctx
), (int)toCABI(Ordering2
));
1529 bool HasResult
= I
->getType() != Type::getVoidTy(Ctx
);
1531 RTLIB::Libcall RTLibType
;
1532 if (UseSizedLibcall
) {
1534 case 1: RTLibType
= Libcalls
[1]; break;
1535 case 2: RTLibType
= Libcalls
[2]; break;
1536 case 4: RTLibType
= Libcalls
[3]; break;
1537 case 8: RTLibType
= Libcalls
[4]; break;
1538 case 16: RTLibType
= Libcalls
[5]; break;
1540 } else if (Libcalls
[0] != RTLIB::UNKNOWN_LIBCALL
) {
1541 RTLibType
= Libcalls
[0];
1543 // Can't use sized function, and there's no generic for this
1544 // operation, so give up.
1548 // Build up the function call. There's two kinds. First, the sized
1549 // variants. These calls are going to be one of the following (with
1551 // iN __atomic_load_N(iN *ptr, int ordering)
1552 // void __atomic_store_N(iN *ptr, iN val, int ordering)
1553 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1554 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1555 // int success_order, int failure_order)
1557 // Note that these functions can be used for non-integer atomic
1558 // operations, the values just need to be bitcast to integers on the
1561 // And, then, the generic variants. They look like the following:
1562 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1563 // void __atomic_store(size_t size, void *ptr, void *val, int ordering)
1564 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1566 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1567 // void *desired, int success_order,
1568 // int failure_order)
1570 // The different signatures are built up depending on the
1571 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1574 AllocaInst
*AllocaCASExpected
= nullptr;
1575 Value
*AllocaCASExpected_i8
= nullptr;
1576 AllocaInst
*AllocaValue
= nullptr;
1577 Value
*AllocaValue_i8
= nullptr;
1578 AllocaInst
*AllocaResult
= nullptr;
1579 Value
*AllocaResult_i8
= nullptr;
1582 SmallVector
<Value
*, 6> Args
;
1586 if (!UseSizedLibcall
) {
1587 // Note, getIntPtrType is assumed equivalent to size_t.
1588 Args
.push_back(ConstantInt::get(DL
.getIntPtrType(Ctx
), Size
));
1593 Builder
.CreateBitCast(PointerOperand
, Type::getInt8PtrTy(Ctx
));
1594 Args
.push_back(PtrVal
);
1596 // 'expected' argument, if present.
1598 AllocaCASExpected
= AllocaBuilder
.CreateAlloca(CASExpected
->getType());
1599 AllocaCASExpected
->setAlignment(AllocaAlignment
);
1600 AllocaCASExpected_i8
=
1601 Builder
.CreateBitCast(AllocaCASExpected
, Type::getInt8PtrTy(Ctx
));
1602 Builder
.CreateLifetimeStart(AllocaCASExpected_i8
, SizeVal64
);
1603 Builder
.CreateAlignedStore(CASExpected
, AllocaCASExpected
, AllocaAlignment
);
1604 Args
.push_back(AllocaCASExpected_i8
);
1607 // 'val' argument ('desired' for cas), if present.
1609 if (UseSizedLibcall
) {
1611 Builder
.CreateBitOrPointerCast(ValueOperand
, SizedIntTy
);
1612 Args
.push_back(IntValue
);
1614 AllocaValue
= AllocaBuilder
.CreateAlloca(ValueOperand
->getType());
1615 AllocaValue
->setAlignment(AllocaAlignment
);
1617 Builder
.CreateBitCast(AllocaValue
, Type::getInt8PtrTy(Ctx
));
1618 Builder
.CreateLifetimeStart(AllocaValue_i8
, SizeVal64
);
1619 Builder
.CreateAlignedStore(ValueOperand
, AllocaValue
, AllocaAlignment
);
1620 Args
.push_back(AllocaValue_i8
);
1625 if (!CASExpected
&& HasResult
&& !UseSizedLibcall
) {
1626 AllocaResult
= AllocaBuilder
.CreateAlloca(I
->getType());
1627 AllocaResult
->setAlignment(AllocaAlignment
);
1629 Builder
.CreateBitCast(AllocaResult
, Type::getInt8PtrTy(Ctx
));
1630 Builder
.CreateLifetimeStart(AllocaResult_i8
, SizeVal64
);
1631 Args
.push_back(AllocaResult_i8
);
1634 // 'ordering' ('success_order' for cas) argument.
1635 Args
.push_back(OrderingVal
);
1637 // 'failure_order' argument, if present.
1639 Args
.push_back(Ordering2Val
);
1641 // Now, the return type.
1643 ResultTy
= Type::getInt1Ty(Ctx
);
1644 Attr
= Attr
.addAttribute(Ctx
, AttributeList::ReturnIndex
, Attribute::ZExt
);
1645 } else if (HasResult
&& UseSizedLibcall
)
1646 ResultTy
= SizedIntTy
;
1648 ResultTy
= Type::getVoidTy(Ctx
);
1650 // Done with setting up arguments and return types, create the call:
1651 SmallVector
<Type
*, 6> ArgTys
;
1652 for (Value
*Arg
: Args
)
1653 ArgTys
.push_back(Arg
->getType());
1654 FunctionType
*FnType
= FunctionType::get(ResultTy
, ArgTys
, false);
1655 Constant
*LibcallFn
=
1656 M
->getOrInsertFunction(TLI
->getLibcallName(RTLibType
), FnType
, Attr
);
1657 CallInst
*Call
= Builder
.CreateCall(LibcallFn
, Args
);
1658 Call
->setAttributes(Attr
);
1659 Value
*Result
= Call
;
1661 // And then, extract the results...
1662 if (ValueOperand
&& !UseSizedLibcall
)
1663 Builder
.CreateLifetimeEnd(AllocaValue_i8
, SizeVal64
);
1666 // The final result from the CAS is {load of 'expected' alloca, bool result
1668 Type
*FinalResultTy
= I
->getType();
1669 Value
*V
= UndefValue::get(FinalResultTy
);
1670 Value
*ExpectedOut
=
1671 Builder
.CreateAlignedLoad(AllocaCASExpected
, AllocaAlignment
);
1672 Builder
.CreateLifetimeEnd(AllocaCASExpected_i8
, SizeVal64
);
1673 V
= Builder
.CreateInsertValue(V
, ExpectedOut
, 0);
1674 V
= Builder
.CreateInsertValue(V
, Result
, 1);
1675 I
->replaceAllUsesWith(V
);
1676 } else if (HasResult
) {
1678 if (UseSizedLibcall
)
1679 V
= Builder
.CreateBitOrPointerCast(Result
, I
->getType());
1681 V
= Builder
.CreateAlignedLoad(AllocaResult
, AllocaAlignment
);
1682 Builder
.CreateLifetimeEnd(AllocaResult_i8
, SizeVal64
);
1684 I
->replaceAllUsesWith(V
);
1686 I
->eraseFromParent();