1 //===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the LatencyPriorityQueue class, which is a
11 // SchedulingPriorityQueue that schedules using latency information to
12 // reduce the length of the critical path through the basic block.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/CodeGen/LatencyPriorityQueue.h"
17 #include "llvm/Config/llvm-config.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/raw_ostream.h"
22 #define DEBUG_TYPE "scheduler"
24 bool latency_sort::operator()(const SUnit
*LHS
, const SUnit
*RHS
) const {
25 // The isScheduleHigh flag allows nodes with wraparound dependencies that
26 // cannot easily be modeled as edges with latencies to be scheduled as
27 // soon as possible in a top-down schedule.
28 if (LHS
->isScheduleHigh
&& !RHS
->isScheduleHigh
)
30 if (!LHS
->isScheduleHigh
&& RHS
->isScheduleHigh
)
33 unsigned LHSNum
= LHS
->NodeNum
;
34 unsigned RHSNum
= RHS
->NodeNum
;
36 // The most important heuristic is scheduling the critical path.
37 unsigned LHSLatency
= PQ
->getLatency(LHSNum
);
38 unsigned RHSLatency
= PQ
->getLatency(RHSNum
);
39 if (LHSLatency
< RHSLatency
) return true;
40 if (LHSLatency
> RHSLatency
) return false;
42 // After that, if two nodes have identical latencies, look to see if one will
43 // unblock more other nodes than the other.
44 unsigned LHSBlocked
= PQ
->getNumSolelyBlockNodes(LHSNum
);
45 unsigned RHSBlocked
= PQ
->getNumSolelyBlockNodes(RHSNum
);
46 if (LHSBlocked
< RHSBlocked
) return true;
47 if (LHSBlocked
> RHSBlocked
) return false;
49 // Finally, just to provide a stable ordering, use the node number as a
51 return RHSNum
< LHSNum
;
55 /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
56 /// of SU, return it, otherwise return null.
57 SUnit
*LatencyPriorityQueue::getSingleUnscheduledPred(SUnit
*SU
) {
58 SUnit
*OnlyAvailablePred
= nullptr;
59 for (SUnit::const_pred_iterator I
= SU
->Preds
.begin(), E
= SU
->Preds
.end();
61 SUnit
&Pred
= *I
->getSUnit();
62 if (!Pred
.isScheduled
) {
63 // We found an available, but not scheduled, predecessor. If it's the
64 // only one we have found, keep track of it... otherwise give up.
65 if (OnlyAvailablePred
&& OnlyAvailablePred
!= &Pred
)
67 OnlyAvailablePred
= &Pred
;
71 return OnlyAvailablePred
;
74 void LatencyPriorityQueue::push(SUnit
*SU
) {
75 // Look at all of the successors of this node. Count the number of nodes that
76 // this node is the sole unscheduled node for.
77 unsigned NumNodesBlocking
= 0;
78 for (SUnit::const_succ_iterator I
= SU
->Succs
.begin(), E
= SU
->Succs
.end();
80 if (getSingleUnscheduledPred(I
->getSUnit()) == SU
)
83 NumNodesSolelyBlocking
[SU
->NodeNum
] = NumNodesBlocking
;
89 // scheduledNode - As nodes are scheduled, we look to see if there are any
90 // successor nodes that have a single unscheduled predecessor. If so, that
91 // single predecessor has a higher priority, since scheduling it will make
92 // the node available.
93 void LatencyPriorityQueue::scheduledNode(SUnit
*SU
) {
94 for (SUnit::const_succ_iterator I
= SU
->Succs
.begin(), E
= SU
->Succs
.end();
96 AdjustPriorityOfUnscheduledPreds(I
->getSUnit());
100 /// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
101 /// scheduled. If SU is not itself available, then there is at least one
102 /// predecessor node that has not been scheduled yet. If SU has exactly ONE
103 /// unscheduled predecessor, we want to increase its priority: it getting
104 /// scheduled will make this node available, so it is better than some other
105 /// node of the same priority that will not make a node available.
106 void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit
*SU
) {
107 if (SU
->isAvailable
) return; // All preds scheduled.
109 SUnit
*OnlyAvailablePred
= getSingleUnscheduledPred(SU
);
110 if (!OnlyAvailablePred
|| !OnlyAvailablePred
->isAvailable
) return;
112 // Okay, we found a single predecessor that is available, but not scheduled.
113 // Since it is available, it must be in the priority queue. First remove it.
114 remove(OnlyAvailablePred
);
116 // Reinsert the node into the priority queue, which recomputes its
117 // NumNodesSolelyBlocking value.
118 push(OnlyAvailablePred
);
121 SUnit
*LatencyPriorityQueue::pop() {
122 if (empty()) return nullptr;
123 std::vector
<SUnit
*>::iterator Best
= Queue
.begin();
124 for (std::vector
<SUnit
*>::iterator I
= std::next(Queue
.begin()),
125 E
= Queue
.end(); I
!= E
; ++I
)
126 if (Picker(*Best
, *I
))
129 if (Best
!= std::prev(Queue
.end()))
130 std::swap(*Best
, Queue
.back());
135 void LatencyPriorityQueue::remove(SUnit
*SU
) {
136 assert(!Queue
.empty() && "Queue is empty!");
137 std::vector
<SUnit
*>::iterator I
= find(Queue
, SU
);
138 assert(I
!= Queue
.end() && "Queue doesn't contain the SU being removed!");
139 if (I
!= std::prev(Queue
.end()))
140 std::swap(*I
, Queue
.back());
144 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
145 LLVM_DUMP_METHOD
void LatencyPriorityQueue::dump(ScheduleDAG
*DAG
) const {
146 dbgs() << "Latency Priority Queue\n";
147 dbgs() << " Number of Queue Entries: " << Queue
.size() << "\n";
148 for (auto const &SU
: Queue
) {