[PowerPC] Do not emit record-form rotates when record-form andi/andis suffices
[llvm-core.git] / lib / CodeGen / MachineInstr.cpp
blob2f3235977416b786ed990f3deeec97ec8aaca2aa
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallBitVector.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/Loads.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/MC/MCInstrDesc.h"
56 #include "llvm/MC/MCRegisterInfo.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/LowLevelTypeImpl.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Target/TargetIntrinsicInfo.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <cstring>
73 #include <iterator>
74 #include <utility>
76 using namespace llvm;
78 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
79 if (const MachineBasicBlock *MBB = MI.getParent())
80 if (const MachineFunction *MF = MBB->getParent())
81 return MF;
82 return nullptr;
85 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
86 // it.
87 static void tryToGetTargetInfo(const MachineInstr &MI,
88 const TargetRegisterInfo *&TRI,
89 const MachineRegisterInfo *&MRI,
90 const TargetIntrinsicInfo *&IntrinsicInfo,
91 const TargetInstrInfo *&TII) {
93 if (const MachineFunction *MF = getMFIfAvailable(MI)) {
94 TRI = MF->getSubtarget().getRegisterInfo();
95 MRI = &MF->getRegInfo();
96 IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
97 TII = MF->getSubtarget().getInstrInfo();
101 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
102 if (MCID->ImplicitDefs)
103 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
104 ++ImpDefs)
105 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
106 if (MCID->ImplicitUses)
107 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
108 ++ImpUses)
109 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
112 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
113 /// implicit operands. It reserves space for the number of operands specified by
114 /// the MCInstrDesc.
115 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
116 DebugLoc dl, bool NoImp)
117 : MCID(&tid), debugLoc(std::move(dl)) {
118 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
120 // Reserve space for the expected number of operands.
121 if (unsigned NumOps = MCID->getNumOperands() +
122 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
123 CapOperands = OperandCapacity::get(NumOps);
124 Operands = MF.allocateOperandArray(CapOperands);
127 if (!NoImp)
128 addImplicitDefUseOperands(MF);
131 /// MachineInstr ctor - Copies MachineInstr arg exactly
133 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
134 : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) {
135 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
137 CapOperands = OperandCapacity::get(MI.getNumOperands());
138 Operands = MF.allocateOperandArray(CapOperands);
140 // Copy operands.
141 for (const MachineOperand &MO : MI.operands())
142 addOperand(MF, MO);
144 // Copy all the sensible flags.
145 setFlags(MI.Flags);
148 /// getRegInfo - If this instruction is embedded into a MachineFunction,
149 /// return the MachineRegisterInfo object for the current function, otherwise
150 /// return null.
151 MachineRegisterInfo *MachineInstr::getRegInfo() {
152 if (MachineBasicBlock *MBB = getParent())
153 return &MBB->getParent()->getRegInfo();
154 return nullptr;
157 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
158 /// this instruction from their respective use lists. This requires that the
159 /// operands already be on their use lists.
160 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
161 for (MachineOperand &MO : operands())
162 if (MO.isReg())
163 MRI.removeRegOperandFromUseList(&MO);
166 /// AddRegOperandsToUseLists - Add all of the register operands in
167 /// this instruction from their respective use lists. This requires that the
168 /// operands not be on their use lists yet.
169 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
170 for (MachineOperand &MO : operands())
171 if (MO.isReg())
172 MRI.addRegOperandToUseList(&MO);
175 void MachineInstr::addOperand(const MachineOperand &Op) {
176 MachineBasicBlock *MBB = getParent();
177 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
178 MachineFunction *MF = MBB->getParent();
179 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
180 addOperand(*MF, Op);
183 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
184 /// ranges. If MRI is non-null also update use-def chains.
185 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
186 unsigned NumOps, MachineRegisterInfo *MRI) {
187 if (MRI)
188 return MRI->moveOperands(Dst, Src, NumOps);
190 // MachineOperand is a trivially copyable type so we can just use memmove.
191 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
194 /// addOperand - Add the specified operand to the instruction. If it is an
195 /// implicit operand, it is added to the end of the operand list. If it is
196 /// an explicit operand it is added at the end of the explicit operand list
197 /// (before the first implicit operand).
198 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
199 assert(MCID && "Cannot add operands before providing an instr descriptor");
201 // Check if we're adding one of our existing operands.
202 if (&Op >= Operands && &Op < Operands + NumOperands) {
203 // This is unusual: MI->addOperand(MI->getOperand(i)).
204 // If adding Op requires reallocating or moving existing operands around,
205 // the Op reference could go stale. Support it by copying Op.
206 MachineOperand CopyOp(Op);
207 return addOperand(MF, CopyOp);
210 // Find the insert location for the new operand. Implicit registers go at
211 // the end, everything else goes before the implicit regs.
213 // FIXME: Allow mixed explicit and implicit operands on inline asm.
214 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
215 // implicit-defs, but they must not be moved around. See the FIXME in
216 // InstrEmitter.cpp.
217 unsigned OpNo = getNumOperands();
218 bool isImpReg = Op.isReg() && Op.isImplicit();
219 if (!isImpReg && !isInlineAsm()) {
220 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
221 --OpNo;
222 assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
226 #ifndef NDEBUG
227 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
228 // OpNo now points as the desired insertion point. Unless this is a variadic
229 // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
230 // RegMask operands go between the explicit and implicit operands.
231 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
232 OpNo < MCID->getNumOperands() || isMetaDataOp) &&
233 "Trying to add an operand to a machine instr that is already done!");
234 #endif
236 MachineRegisterInfo *MRI = getRegInfo();
238 // Determine if the Operands array needs to be reallocated.
239 // Save the old capacity and operand array.
240 OperandCapacity OldCap = CapOperands;
241 MachineOperand *OldOperands = Operands;
242 if (!OldOperands || OldCap.getSize() == getNumOperands()) {
243 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
244 Operands = MF.allocateOperandArray(CapOperands);
245 // Move the operands before the insertion point.
246 if (OpNo)
247 moveOperands(Operands, OldOperands, OpNo, MRI);
250 // Move the operands following the insertion point.
251 if (OpNo != NumOperands)
252 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
253 MRI);
254 ++NumOperands;
256 // Deallocate the old operand array.
257 if (OldOperands != Operands && OldOperands)
258 MF.deallocateOperandArray(OldCap, OldOperands);
260 // Copy Op into place. It still needs to be inserted into the MRI use lists.
261 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
262 NewMO->ParentMI = this;
264 // When adding a register operand, tell MRI about it.
265 if (NewMO->isReg()) {
266 // Ensure isOnRegUseList() returns false, regardless of Op's status.
267 NewMO->Contents.Reg.Prev = nullptr;
268 // Ignore existing ties. This is not a property that can be copied.
269 NewMO->TiedTo = 0;
270 // Add the new operand to MRI, but only for instructions in an MBB.
271 if (MRI)
272 MRI->addRegOperandToUseList(NewMO);
273 // The MCID operand information isn't accurate until we start adding
274 // explicit operands. The implicit operands are added first, then the
275 // explicits are inserted before them.
276 if (!isImpReg) {
277 // Tie uses to defs as indicated in MCInstrDesc.
278 if (NewMO->isUse()) {
279 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
280 if (DefIdx != -1)
281 tieOperands(DefIdx, OpNo);
283 // If the register operand is flagged as early, mark the operand as such.
284 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
285 NewMO->setIsEarlyClobber(true);
290 /// RemoveOperand - Erase an operand from an instruction, leaving it with one
291 /// fewer operand than it started with.
293 void MachineInstr::RemoveOperand(unsigned OpNo) {
294 assert(OpNo < getNumOperands() && "Invalid operand number");
295 untieRegOperand(OpNo);
297 #ifndef NDEBUG
298 // Moving tied operands would break the ties.
299 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
300 if (Operands[i].isReg())
301 assert(!Operands[i].isTied() && "Cannot move tied operands");
302 #endif
304 MachineRegisterInfo *MRI = getRegInfo();
305 if (MRI && Operands[OpNo].isReg())
306 MRI->removeRegOperandFromUseList(Operands + OpNo);
308 // Don't call the MachineOperand destructor. A lot of this code depends on
309 // MachineOperand having a trivial destructor anyway, and adding a call here
310 // wouldn't make it 'destructor-correct'.
312 if (unsigned N = NumOperands - 1 - OpNo)
313 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
314 --NumOperands;
317 void MachineInstr::dropMemRefs(MachineFunction &MF) {
318 if (memoperands_empty())
319 return;
321 // See if we can just drop all of our extra info.
322 if (!getPreInstrSymbol() && !getPostInstrSymbol()) {
323 Info.clear();
324 return;
326 if (!getPostInstrSymbol()) {
327 Info.set<EIIK_PreInstrSymbol>(getPreInstrSymbol());
328 return;
330 if (!getPreInstrSymbol()) {
331 Info.set<EIIK_PostInstrSymbol>(getPostInstrSymbol());
332 return;
335 // Otherwise allocate a fresh extra info with just these symbols.
336 Info.set<EIIK_OutOfLine>(
337 MF.createMIExtraInfo({}, getPreInstrSymbol(), getPostInstrSymbol()));
340 void MachineInstr::setMemRefs(MachineFunction &MF,
341 ArrayRef<MachineMemOperand *> MMOs) {
342 if (MMOs.empty()) {
343 dropMemRefs(MF);
344 return;
347 // Try to store a single MMO inline.
348 if (MMOs.size() == 1 && !getPreInstrSymbol() && !getPostInstrSymbol()) {
349 Info.set<EIIK_MMO>(MMOs[0]);
350 return;
353 // Otherwise create an extra info struct with all of our info.
354 Info.set<EIIK_OutOfLine>(
355 MF.createMIExtraInfo(MMOs, getPreInstrSymbol(), getPostInstrSymbol()));
358 void MachineInstr::addMemOperand(MachineFunction &MF,
359 MachineMemOperand *MO) {
360 SmallVector<MachineMemOperand *, 2> MMOs;
361 MMOs.append(memoperands_begin(), memoperands_end());
362 MMOs.push_back(MO);
363 setMemRefs(MF, MMOs);
366 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
367 if (this == &MI)
368 // Nothing to do for a self-clone!
369 return;
371 assert(&MF == MI.getMF() &&
372 "Invalid machine functions when cloning memory refrences!");
373 // See if we can just steal the extra info already allocated for the
374 // instruction. We can do this whenever the pre- and post-instruction symbols
375 // are the same (including null).
376 if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
377 getPostInstrSymbol() == MI.getPostInstrSymbol()) {
378 Info = MI.Info;
379 return;
382 // Otherwise, fall back on a copy-based clone.
383 setMemRefs(MF, MI.memoperands());
386 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
387 /// identical.
388 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
389 ArrayRef<MachineMemOperand *> RHS) {
390 if (LHS.size() != RHS.size())
391 return false;
393 auto LHSPointees = make_pointee_range(LHS);
394 auto RHSPointees = make_pointee_range(RHS);
395 return std::equal(LHSPointees.begin(), LHSPointees.end(),
396 RHSPointees.begin());
399 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
400 ArrayRef<const MachineInstr *> MIs) {
401 // Try handling easy numbers of MIs with simpler mechanisms.
402 if (MIs.empty()) {
403 dropMemRefs(MF);
404 return;
406 if (MIs.size() == 1) {
407 cloneMemRefs(MF, *MIs[0]);
408 return;
410 // Because an empty memoperands list provides *no* information and must be
411 // handled conservatively (assuming the instruction can do anything), the only
412 // way to merge with it is to drop all other memoperands.
413 if (MIs[0]->memoperands_empty()) {
414 dropMemRefs(MF);
415 return;
418 // Handle the general case.
419 SmallVector<MachineMemOperand *, 2> MergedMMOs;
420 // Start with the first instruction.
421 assert(&MF == MIs[0]->getMF() &&
422 "Invalid machine functions when cloning memory references!");
423 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
424 // Now walk all the other instructions and accumulate any different MMOs.
425 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
426 assert(&MF == MI.getMF() &&
427 "Invalid machine functions when cloning memory references!");
429 // Skip MIs with identical operands to the first. This is a somewhat
430 // arbitrary hack but will catch common cases without being quadratic.
431 // TODO: We could fully implement merge semantics here if needed.
432 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
433 continue;
435 // Because an empty memoperands list provides *no* information and must be
436 // handled conservatively (assuming the instruction can do anything), the
437 // only way to merge with it is to drop all other memoperands.
438 if (MI.memoperands_empty()) {
439 dropMemRefs(MF);
440 return;
443 // Otherwise accumulate these into our temporary buffer of the merged state.
444 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
447 setMemRefs(MF, MergedMMOs);
450 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
451 MCSymbol *OldSymbol = getPreInstrSymbol();
452 if (OldSymbol == Symbol)
453 return;
454 if (OldSymbol && !Symbol) {
455 // We're removing a symbol rather than adding one. Try to clean up any
456 // extra info carried around.
457 if (Info.is<EIIK_PreInstrSymbol>()) {
458 Info.clear();
459 return;
462 if (memoperands_empty()) {
463 assert(getPostInstrSymbol() &&
464 "Should never have only a single symbol allocated out-of-line!");
465 Info.set<EIIK_PostInstrSymbol>(getPostInstrSymbol());
466 return;
469 // Otherwise fallback on the generic update.
470 } else if (!Info || Info.is<EIIK_PreInstrSymbol>()) {
471 // If we don't have any other extra info, we can store this inline.
472 Info.set<EIIK_PreInstrSymbol>(Symbol);
473 return;
476 // Otherwise, allocate a full new set of extra info.
477 // FIXME: Maybe we should make the symbols in the extra info mutable?
478 Info.set<EIIK_OutOfLine>(
479 MF.createMIExtraInfo(memoperands(), Symbol, getPostInstrSymbol()));
482 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
483 MCSymbol *OldSymbol = getPostInstrSymbol();
484 if (OldSymbol == Symbol)
485 return;
486 if (OldSymbol && !Symbol) {
487 // We're removing a symbol rather than adding one. Try to clean up any
488 // extra info carried around.
489 if (Info.is<EIIK_PostInstrSymbol>()) {
490 Info.clear();
491 return;
494 if (memoperands_empty()) {
495 assert(getPreInstrSymbol() &&
496 "Should never have only a single symbol allocated out-of-line!");
497 Info.set<EIIK_PreInstrSymbol>(getPreInstrSymbol());
498 return;
501 // Otherwise fallback on the generic update.
502 } else if (!Info || Info.is<EIIK_PostInstrSymbol>()) {
503 // If we don't have any other extra info, we can store this inline.
504 Info.set<EIIK_PostInstrSymbol>(Symbol);
505 return;
508 // Otherwise, allocate a full new set of extra info.
509 // FIXME: Maybe we should make the symbols in the extra info mutable?
510 Info.set<EIIK_OutOfLine>(
511 MF.createMIExtraInfo(memoperands(), getPreInstrSymbol(), Symbol));
514 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
515 // For now, the just return the union of the flags. If the flags get more
516 // complicated over time, we might need more logic here.
517 return getFlags() | Other.getFlags();
520 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
521 assert(!isBundledWithPred() && "Must be called on bundle header");
522 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
523 if (MII->getDesc().getFlags() & Mask) {
524 if (Type == AnyInBundle)
525 return true;
526 } else {
527 if (Type == AllInBundle && !MII->isBundle())
528 return false;
530 // This was the last instruction in the bundle.
531 if (!MII->isBundledWithSucc())
532 return Type == AllInBundle;
536 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
537 MICheckType Check) const {
538 // If opcodes or number of operands are not the same then the two
539 // instructions are obviously not identical.
540 if (Other.getOpcode() != getOpcode() ||
541 Other.getNumOperands() != getNumOperands())
542 return false;
544 if (isBundle()) {
545 // We have passed the test above that both instructions have the same
546 // opcode, so we know that both instructions are bundles here. Let's compare
547 // MIs inside the bundle.
548 assert(Other.isBundle() && "Expected that both instructions are bundles.");
549 MachineBasicBlock::const_instr_iterator I1 = getIterator();
550 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
551 // Loop until we analysed the last intruction inside at least one of the
552 // bundles.
553 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
554 ++I1;
555 ++I2;
556 if (!I1->isIdenticalTo(*I2, Check))
557 return false;
559 // If we've reached the end of just one of the two bundles, but not both,
560 // the instructions are not identical.
561 if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
562 return false;
565 // Check operands to make sure they match.
566 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
567 const MachineOperand &MO = getOperand(i);
568 const MachineOperand &OMO = Other.getOperand(i);
569 if (!MO.isReg()) {
570 if (!MO.isIdenticalTo(OMO))
571 return false;
572 continue;
575 // Clients may or may not want to ignore defs when testing for equality.
576 // For example, machine CSE pass only cares about finding common
577 // subexpressions, so it's safe to ignore virtual register defs.
578 if (MO.isDef()) {
579 if (Check == IgnoreDefs)
580 continue;
581 else if (Check == IgnoreVRegDefs) {
582 if (!TargetRegisterInfo::isVirtualRegister(MO.getReg()) ||
583 !TargetRegisterInfo::isVirtualRegister(OMO.getReg()))
584 if (!MO.isIdenticalTo(OMO))
585 return false;
586 } else {
587 if (!MO.isIdenticalTo(OMO))
588 return false;
589 if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
590 return false;
592 } else {
593 if (!MO.isIdenticalTo(OMO))
594 return false;
595 if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
596 return false;
599 // If DebugLoc does not match then two debug instructions are not identical.
600 if (isDebugInstr())
601 if (getDebugLoc() && Other.getDebugLoc() &&
602 getDebugLoc() != Other.getDebugLoc())
603 return false;
604 return true;
607 const MachineFunction *MachineInstr::getMF() const {
608 return getParent()->getParent();
611 MachineInstr *MachineInstr::removeFromParent() {
612 assert(getParent() && "Not embedded in a basic block!");
613 return getParent()->remove(this);
616 MachineInstr *MachineInstr::removeFromBundle() {
617 assert(getParent() && "Not embedded in a basic block!");
618 return getParent()->remove_instr(this);
621 void MachineInstr::eraseFromParent() {
622 assert(getParent() && "Not embedded in a basic block!");
623 getParent()->erase(this);
626 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
627 assert(getParent() && "Not embedded in a basic block!");
628 MachineBasicBlock *MBB = getParent();
629 MachineFunction *MF = MBB->getParent();
630 assert(MF && "Not embedded in a function!");
632 MachineInstr *MI = (MachineInstr *)this;
633 MachineRegisterInfo &MRI = MF->getRegInfo();
635 for (const MachineOperand &MO : MI->operands()) {
636 if (!MO.isReg() || !MO.isDef())
637 continue;
638 unsigned Reg = MO.getReg();
639 if (!TargetRegisterInfo::isVirtualRegister(Reg))
640 continue;
641 MRI.markUsesInDebugValueAsUndef(Reg);
643 MI->eraseFromParent();
646 void MachineInstr::eraseFromBundle() {
647 assert(getParent() && "Not embedded in a basic block!");
648 getParent()->erase_instr(this);
651 unsigned MachineInstr::getNumExplicitOperands() const {
652 unsigned NumOperands = MCID->getNumOperands();
653 if (!MCID->isVariadic())
654 return NumOperands;
656 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
657 const MachineOperand &MO = getOperand(I);
658 // The operands must always be in the following order:
659 // - explicit reg defs,
660 // - other explicit operands (reg uses, immediates, etc.),
661 // - implicit reg defs
662 // - implicit reg uses
663 if (MO.isReg() && MO.isImplicit())
664 break;
665 ++NumOperands;
667 return NumOperands;
670 unsigned MachineInstr::getNumExplicitDefs() const {
671 unsigned NumDefs = MCID->getNumDefs();
672 if (!MCID->isVariadic())
673 return NumDefs;
675 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
676 const MachineOperand &MO = getOperand(I);
677 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
678 break;
679 ++NumDefs;
681 return NumDefs;
684 void MachineInstr::bundleWithPred() {
685 assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
686 setFlag(BundledPred);
687 MachineBasicBlock::instr_iterator Pred = getIterator();
688 --Pred;
689 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
690 Pred->setFlag(BundledSucc);
693 void MachineInstr::bundleWithSucc() {
694 assert(!isBundledWithSucc() && "MI is already bundled with its successor");
695 setFlag(BundledSucc);
696 MachineBasicBlock::instr_iterator Succ = getIterator();
697 ++Succ;
698 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
699 Succ->setFlag(BundledPred);
702 void MachineInstr::unbundleFromPred() {
703 assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
704 clearFlag(BundledPred);
705 MachineBasicBlock::instr_iterator Pred = getIterator();
706 --Pred;
707 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
708 Pred->clearFlag(BundledSucc);
711 void MachineInstr::unbundleFromSucc() {
712 assert(isBundledWithSucc() && "MI isn't bundled with its successor");
713 clearFlag(BundledSucc);
714 MachineBasicBlock::instr_iterator Succ = getIterator();
715 ++Succ;
716 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
717 Succ->clearFlag(BundledPred);
720 bool MachineInstr::isStackAligningInlineAsm() const {
721 if (isInlineAsm()) {
722 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
723 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
724 return true;
726 return false;
729 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
730 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
731 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
732 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
735 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
736 unsigned *GroupNo) const {
737 assert(isInlineAsm() && "Expected an inline asm instruction");
738 assert(OpIdx < getNumOperands() && "OpIdx out of range");
740 // Ignore queries about the initial operands.
741 if (OpIdx < InlineAsm::MIOp_FirstOperand)
742 return -1;
744 unsigned Group = 0;
745 unsigned NumOps;
746 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
747 i += NumOps) {
748 const MachineOperand &FlagMO = getOperand(i);
749 // If we reach the implicit register operands, stop looking.
750 if (!FlagMO.isImm())
751 return -1;
752 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
753 if (i + NumOps > OpIdx) {
754 if (GroupNo)
755 *GroupNo = Group;
756 return i;
758 ++Group;
760 return -1;
763 const DILabel *MachineInstr::getDebugLabel() const {
764 assert(isDebugLabel() && "not a DBG_LABEL");
765 return cast<DILabel>(getOperand(0).getMetadata());
768 const DILocalVariable *MachineInstr::getDebugVariable() const {
769 assert(isDebugValue() && "not a DBG_VALUE");
770 return cast<DILocalVariable>(getOperand(2).getMetadata());
773 const DIExpression *MachineInstr::getDebugExpression() const {
774 assert(isDebugValue() && "not a DBG_VALUE");
775 return cast<DIExpression>(getOperand(3).getMetadata());
778 const TargetRegisterClass*
779 MachineInstr::getRegClassConstraint(unsigned OpIdx,
780 const TargetInstrInfo *TII,
781 const TargetRegisterInfo *TRI) const {
782 assert(getParent() && "Can't have an MBB reference here!");
783 assert(getMF() && "Can't have an MF reference here!");
784 const MachineFunction &MF = *getMF();
786 // Most opcodes have fixed constraints in their MCInstrDesc.
787 if (!isInlineAsm())
788 return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
790 if (!getOperand(OpIdx).isReg())
791 return nullptr;
793 // For tied uses on inline asm, get the constraint from the def.
794 unsigned DefIdx;
795 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
796 OpIdx = DefIdx;
798 // Inline asm stores register class constraints in the flag word.
799 int FlagIdx = findInlineAsmFlagIdx(OpIdx);
800 if (FlagIdx < 0)
801 return nullptr;
803 unsigned Flag = getOperand(FlagIdx).getImm();
804 unsigned RCID;
805 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
806 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
807 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
808 InlineAsm::hasRegClassConstraint(Flag, RCID))
809 return TRI->getRegClass(RCID);
811 // Assume that all registers in a memory operand are pointers.
812 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
813 return TRI->getPointerRegClass(MF);
815 return nullptr;
818 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
819 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
820 const TargetRegisterInfo *TRI, bool ExploreBundle) const {
821 // Check every operands inside the bundle if we have
822 // been asked to.
823 if (ExploreBundle)
824 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
825 ++OpndIt)
826 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
827 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
828 else
829 // Otherwise, just check the current operands.
830 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
831 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
832 return CurRC;
835 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
836 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
837 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
838 assert(CurRC && "Invalid initial register class");
839 // Check if Reg is constrained by some of its use/def from MI.
840 const MachineOperand &MO = getOperand(OpIdx);
841 if (!MO.isReg() || MO.getReg() != Reg)
842 return CurRC;
843 // If yes, accumulate the constraints through the operand.
844 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
847 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
848 unsigned OpIdx, const TargetRegisterClass *CurRC,
849 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
850 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
851 const MachineOperand &MO = getOperand(OpIdx);
852 assert(MO.isReg() &&
853 "Cannot get register constraints for non-register operand");
854 assert(CurRC && "Invalid initial register class");
855 if (unsigned SubIdx = MO.getSubReg()) {
856 if (OpRC)
857 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
858 else
859 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
860 } else if (OpRC)
861 CurRC = TRI->getCommonSubClass(CurRC, OpRC);
862 return CurRC;
865 /// Return the number of instructions inside the MI bundle, not counting the
866 /// header instruction.
867 unsigned MachineInstr::getBundleSize() const {
868 MachineBasicBlock::const_instr_iterator I = getIterator();
869 unsigned Size = 0;
870 while (I->isBundledWithSucc()) {
871 ++Size;
872 ++I;
874 return Size;
877 /// Returns true if the MachineInstr has an implicit-use operand of exactly
878 /// the given register (not considering sub/super-registers).
879 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
880 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
881 const MachineOperand &MO = getOperand(i);
882 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
883 return true;
885 return false;
888 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
889 /// the specific register or -1 if it is not found. It further tightens
890 /// the search criteria to a use that kills the register if isKill is true.
891 int MachineInstr::findRegisterUseOperandIdx(
892 unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const {
893 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
894 const MachineOperand &MO = getOperand(i);
895 if (!MO.isReg() || !MO.isUse())
896 continue;
897 unsigned MOReg = MO.getReg();
898 if (!MOReg)
899 continue;
900 if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) &&
901 TargetRegisterInfo::isPhysicalRegister(Reg) &&
902 TRI->isSubRegister(MOReg, Reg)))
903 if (!isKill || MO.isKill())
904 return i;
906 return -1;
909 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
910 /// indicating if this instruction reads or writes Reg. This also considers
911 /// partial defines.
912 std::pair<bool,bool>
913 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
914 SmallVectorImpl<unsigned> *Ops) const {
915 bool PartDef = false; // Partial redefine.
916 bool FullDef = false; // Full define.
917 bool Use = false;
919 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
920 const MachineOperand &MO = getOperand(i);
921 if (!MO.isReg() || MO.getReg() != Reg)
922 continue;
923 if (Ops)
924 Ops->push_back(i);
925 if (MO.isUse())
926 Use |= !MO.isUndef();
927 else if (MO.getSubReg() && !MO.isUndef())
928 // A partial def undef doesn't count as reading the register.
929 PartDef = true;
930 else
931 FullDef = true;
933 // A partial redefine uses Reg unless there is also a full define.
934 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
937 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
938 /// the specified register or -1 if it is not found. If isDead is true, defs
939 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
940 /// also checks if there is a def of a super-register.
942 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
943 const TargetRegisterInfo *TRI) const {
944 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
945 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
946 const MachineOperand &MO = getOperand(i);
947 // Accept regmask operands when Overlap is set.
948 // Ignore them when looking for a specific def operand (Overlap == false).
949 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
950 return i;
951 if (!MO.isReg() || !MO.isDef())
952 continue;
953 unsigned MOReg = MO.getReg();
954 bool Found = (MOReg == Reg);
955 if (!Found && TRI && isPhys &&
956 TargetRegisterInfo::isPhysicalRegister(MOReg)) {
957 if (Overlap)
958 Found = TRI->regsOverlap(MOReg, Reg);
959 else
960 Found = TRI->isSubRegister(MOReg, Reg);
962 if (Found && (!isDead || MO.isDead()))
963 return i;
965 return -1;
968 /// findFirstPredOperandIdx() - Find the index of the first operand in the
969 /// operand list that is used to represent the predicate. It returns -1 if
970 /// none is found.
971 int MachineInstr::findFirstPredOperandIdx() const {
972 // Don't call MCID.findFirstPredOperandIdx() because this variant
973 // is sometimes called on an instruction that's not yet complete, and
974 // so the number of operands is less than the MCID indicates. In
975 // particular, the PTX target does this.
976 const MCInstrDesc &MCID = getDesc();
977 if (MCID.isPredicable()) {
978 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
979 if (MCID.OpInfo[i].isPredicate())
980 return i;
983 return -1;
986 // MachineOperand::TiedTo is 4 bits wide.
987 const unsigned TiedMax = 15;
989 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
991 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
992 /// field. TiedTo can have these values:
994 /// 0: Operand is not tied to anything.
995 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
996 /// TiedMax: Tied to an operand >= TiedMax-1.
998 /// The tied def must be one of the first TiedMax operands on a normal
999 /// instruction. INLINEASM instructions allow more tied defs.
1001 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1002 MachineOperand &DefMO = getOperand(DefIdx);
1003 MachineOperand &UseMO = getOperand(UseIdx);
1004 assert(DefMO.isDef() && "DefIdx must be a def operand");
1005 assert(UseMO.isUse() && "UseIdx must be a use operand");
1006 assert(!DefMO.isTied() && "Def is already tied to another use");
1007 assert(!UseMO.isTied() && "Use is already tied to another def");
1009 if (DefIdx < TiedMax)
1010 UseMO.TiedTo = DefIdx + 1;
1011 else {
1012 // Inline asm can use the group descriptors to find tied operands, but on
1013 // normal instruction, the tied def must be within the first TiedMax
1014 // operands.
1015 assert(isInlineAsm() && "DefIdx out of range");
1016 UseMO.TiedTo = TiedMax;
1019 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1020 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1023 /// Given the index of a tied register operand, find the operand it is tied to.
1024 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1025 /// which must exist.
1026 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1027 const MachineOperand &MO = getOperand(OpIdx);
1028 assert(MO.isTied() && "Operand isn't tied");
1030 // Normally TiedTo is in range.
1031 if (MO.TiedTo < TiedMax)
1032 return MO.TiedTo - 1;
1034 // Uses on normal instructions can be out of range.
1035 if (!isInlineAsm()) {
1036 // Normal tied defs must be in the 0..TiedMax-1 range.
1037 if (MO.isUse())
1038 return TiedMax - 1;
1039 // MO is a def. Search for the tied use.
1040 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1041 const MachineOperand &UseMO = getOperand(i);
1042 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1043 return i;
1045 llvm_unreachable("Can't find tied use");
1048 // Now deal with inline asm by parsing the operand group descriptor flags.
1049 // Find the beginning of each operand group.
1050 SmallVector<unsigned, 8> GroupIdx;
1051 unsigned OpIdxGroup = ~0u;
1052 unsigned NumOps;
1053 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1054 i += NumOps) {
1055 const MachineOperand &FlagMO = getOperand(i);
1056 assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1057 unsigned CurGroup = GroupIdx.size();
1058 GroupIdx.push_back(i);
1059 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1060 // OpIdx belongs to this operand group.
1061 if (OpIdx > i && OpIdx < i + NumOps)
1062 OpIdxGroup = CurGroup;
1063 unsigned TiedGroup;
1064 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1065 continue;
1066 // Operands in this group are tied to operands in TiedGroup which must be
1067 // earlier. Find the number of operands between the two groups.
1068 unsigned Delta = i - GroupIdx[TiedGroup];
1070 // OpIdx is a use tied to TiedGroup.
1071 if (OpIdxGroup == CurGroup)
1072 return OpIdx - Delta;
1074 // OpIdx is a def tied to this use group.
1075 if (OpIdxGroup == TiedGroup)
1076 return OpIdx + Delta;
1078 llvm_unreachable("Invalid tied operand on inline asm");
1081 /// clearKillInfo - Clears kill flags on all operands.
1083 void MachineInstr::clearKillInfo() {
1084 for (MachineOperand &MO : operands()) {
1085 if (MO.isReg() && MO.isUse())
1086 MO.setIsKill(false);
1090 void MachineInstr::substituteRegister(unsigned FromReg, unsigned ToReg,
1091 unsigned SubIdx,
1092 const TargetRegisterInfo &RegInfo) {
1093 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1094 if (SubIdx)
1095 ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1096 for (MachineOperand &MO : operands()) {
1097 if (!MO.isReg() || MO.getReg() != FromReg)
1098 continue;
1099 MO.substPhysReg(ToReg, RegInfo);
1101 } else {
1102 for (MachineOperand &MO : operands()) {
1103 if (!MO.isReg() || MO.getReg() != FromReg)
1104 continue;
1105 MO.substVirtReg(ToReg, SubIdx, RegInfo);
1110 /// isSafeToMove - Return true if it is safe to move this instruction. If
1111 /// SawStore is set to true, it means that there is a store (or call) between
1112 /// the instruction's location and its intended destination.
1113 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
1114 // Ignore stuff that we obviously can't move.
1116 // Treat volatile loads as stores. This is not strictly necessary for
1117 // volatiles, but it is required for atomic loads. It is not allowed to move
1118 // a load across an atomic load with Ordering > Monotonic.
1119 if (mayStore() || isCall() || isPHI() ||
1120 (mayLoad() && hasOrderedMemoryRef())) {
1121 SawStore = true;
1122 return false;
1125 if (isPosition() || isDebugInstr() || isTerminator() ||
1126 hasUnmodeledSideEffects())
1127 return false;
1129 // See if this instruction does a load. If so, we have to guarantee that the
1130 // loaded value doesn't change between the load and the its intended
1131 // destination. The check for isInvariantLoad gives the targe the chance to
1132 // classify the load as always returning a constant, e.g. a constant pool
1133 // load.
1134 if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1135 // Otherwise, this is a real load. If there is a store between the load and
1136 // end of block, we can't move it.
1137 return !SawStore;
1139 return true;
1142 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other,
1143 bool UseTBAA) {
1144 const MachineFunction *MF = getMF();
1145 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1146 const MachineFrameInfo &MFI = MF->getFrameInfo();
1148 // If neither instruction stores to memory, they can't alias in any
1149 // meaningful way, even if they read from the same address.
1150 if (!mayStore() && !Other.mayStore())
1151 return false;
1153 // Let the target decide if memory accesses cannot possibly overlap.
1154 if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA))
1155 return false;
1157 // FIXME: Need to handle multiple memory operands to support all targets.
1158 if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1159 return true;
1161 MachineMemOperand *MMOa = *memoperands_begin();
1162 MachineMemOperand *MMOb = *Other.memoperands_begin();
1164 // The following interface to AA is fashioned after DAGCombiner::isAlias
1165 // and operates with MachineMemOperand offset with some important
1166 // assumptions:
1167 // - LLVM fundamentally assumes flat address spaces.
1168 // - MachineOperand offset can *only* result from legalization and
1169 // cannot affect queries other than the trivial case of overlap
1170 // checking.
1171 // - These offsets never wrap and never step outside
1172 // of allocated objects.
1173 // - There should never be any negative offsets here.
1175 // FIXME: Modify API to hide this math from "user"
1176 // Even before we go to AA we can reason locally about some
1177 // memory objects. It can save compile time, and possibly catch some
1178 // corner cases not currently covered.
1180 int64_t OffsetA = MMOa->getOffset();
1181 int64_t OffsetB = MMOb->getOffset();
1182 int64_t MinOffset = std::min(OffsetA, OffsetB);
1184 uint64_t WidthA = MMOa->getSize();
1185 uint64_t WidthB = MMOb->getSize();
1186 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1187 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1189 const Value *ValA = MMOa->getValue();
1190 const Value *ValB = MMOb->getValue();
1191 bool SameVal = (ValA && ValB && (ValA == ValB));
1192 if (!SameVal) {
1193 const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1194 const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1195 if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1196 return false;
1197 if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1198 return false;
1199 if (PSVa && PSVb && (PSVa == PSVb))
1200 SameVal = true;
1203 if (SameVal) {
1204 if (!KnownWidthA || !KnownWidthB)
1205 return true;
1206 int64_t MaxOffset = std::max(OffsetA, OffsetB);
1207 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1208 return (MinOffset + LowWidth > MaxOffset);
1211 if (!AA)
1212 return true;
1214 if (!ValA || !ValB)
1215 return true;
1217 assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1218 assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1220 int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset
1221 : MemoryLocation::UnknownSize;
1222 int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset
1223 : MemoryLocation::UnknownSize;
1225 AliasResult AAResult = AA->alias(
1226 MemoryLocation(ValA, OverlapA,
1227 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1228 MemoryLocation(ValB, OverlapB,
1229 UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1231 return (AAResult != NoAlias);
1234 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1235 /// or volatile memory reference, or if the information describing the memory
1236 /// reference is not available. Return false if it is known to have no ordered
1237 /// memory references.
1238 bool MachineInstr::hasOrderedMemoryRef() const {
1239 // An instruction known never to access memory won't have a volatile access.
1240 if (!mayStore() &&
1241 !mayLoad() &&
1242 !isCall() &&
1243 !hasUnmodeledSideEffects())
1244 return false;
1246 // Otherwise, if the instruction has no memory reference information,
1247 // conservatively assume it wasn't preserved.
1248 if (memoperands_empty())
1249 return true;
1251 // Check if any of our memory operands are ordered.
1252 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1253 return !MMO->isUnordered();
1257 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1258 /// trap and is loading from a location whose value is invariant across a run of
1259 /// this function.
1260 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const {
1261 // If the instruction doesn't load at all, it isn't an invariant load.
1262 if (!mayLoad())
1263 return false;
1265 // If the instruction has lost its memoperands, conservatively assume that
1266 // it may not be an invariant load.
1267 if (memoperands_empty())
1268 return false;
1270 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1272 for (MachineMemOperand *MMO : memoperands()) {
1273 if (MMO->isVolatile()) return false;
1274 if (MMO->isStore()) return false;
1275 if (MMO->isInvariant() && MMO->isDereferenceable())
1276 continue;
1278 // A load from a constant PseudoSourceValue is invariant.
1279 if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1280 if (PSV->isConstant(&MFI))
1281 continue;
1283 if (const Value *V = MMO->getValue()) {
1284 // If we have an AliasAnalysis, ask it whether the memory is constant.
1285 if (AA &&
1286 AA->pointsToConstantMemory(
1287 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1288 continue;
1291 // Otherwise assume conservatively.
1292 return false;
1295 // Everything checks out.
1296 return true;
1299 /// isConstantValuePHI - If the specified instruction is a PHI that always
1300 /// merges together the same virtual register, return the register, otherwise
1301 /// return 0.
1302 unsigned MachineInstr::isConstantValuePHI() const {
1303 if (!isPHI())
1304 return 0;
1305 assert(getNumOperands() >= 3 &&
1306 "It's illegal to have a PHI without source operands");
1308 unsigned Reg = getOperand(1).getReg();
1309 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1310 if (getOperand(i).getReg() != Reg)
1311 return 0;
1312 return Reg;
1315 bool MachineInstr::hasUnmodeledSideEffects() const {
1316 if (hasProperty(MCID::UnmodeledSideEffects))
1317 return true;
1318 if (isInlineAsm()) {
1319 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1320 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1321 return true;
1324 return false;
1327 bool MachineInstr::isLoadFoldBarrier() const {
1328 return mayStore() || isCall() || hasUnmodeledSideEffects();
1331 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1333 bool MachineInstr::allDefsAreDead() const {
1334 for (const MachineOperand &MO : operands()) {
1335 if (!MO.isReg() || MO.isUse())
1336 continue;
1337 if (!MO.isDead())
1338 return false;
1340 return true;
1343 /// copyImplicitOps - Copy implicit register operands from specified
1344 /// instruction to this instruction.
1345 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1346 const MachineInstr &MI) {
1347 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1348 i != e; ++i) {
1349 const MachineOperand &MO = MI.getOperand(i);
1350 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1351 addOperand(MF, MO);
1355 bool MachineInstr::hasComplexRegisterTies() const {
1356 const MCInstrDesc &MCID = getDesc();
1357 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1358 const auto &Operand = getOperand(I);
1359 if (!Operand.isReg() || Operand.isDef())
1360 // Ignore the defined registers as MCID marks only the uses as tied.
1361 continue;
1362 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1363 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1364 if (ExpectedTiedIdx != TiedIdx)
1365 return true;
1367 return false;
1370 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1371 const MachineRegisterInfo &MRI) const {
1372 const MachineOperand &Op = getOperand(OpIdx);
1373 if (!Op.isReg())
1374 return LLT{};
1376 if (isVariadic() || OpIdx >= getNumExplicitOperands())
1377 return MRI.getType(Op.getReg());
1379 auto &OpInfo = getDesc().OpInfo[OpIdx];
1380 if (!OpInfo.isGenericType())
1381 return MRI.getType(Op.getReg());
1383 if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1384 return LLT{};
1386 LLT TypeToPrint = MRI.getType(Op.getReg());
1387 // Don't mark the type index printed if it wasn't actually printed: maybe
1388 // another operand with the same type index has an actual type attached:
1389 if (TypeToPrint.isValid())
1390 PrintedTypes.set(OpInfo.getGenericTypeIndex());
1391 return TypeToPrint;
1394 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1395 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1396 dbgs() << " ";
1397 print(dbgs());
1399 #endif
1401 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1402 bool SkipDebugLoc, bool AddNewLine,
1403 const TargetInstrInfo *TII) const {
1404 const Module *M = nullptr;
1405 const Function *F = nullptr;
1406 if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1407 F = &MF->getFunction();
1408 M = F->getParent();
1409 if (!TII)
1410 TII = MF->getSubtarget().getInstrInfo();
1413 ModuleSlotTracker MST(M);
1414 if (F)
1415 MST.incorporateFunction(*F);
1416 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, TII);
1419 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1420 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1421 bool AddNewLine, const TargetInstrInfo *TII) const {
1422 // We can be a bit tidier if we know the MachineFunction.
1423 const MachineFunction *MF = nullptr;
1424 const TargetRegisterInfo *TRI = nullptr;
1425 const MachineRegisterInfo *MRI = nullptr;
1426 const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1427 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1429 if (isCFIInstruction())
1430 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1432 SmallBitVector PrintedTypes(8);
1433 bool ShouldPrintRegisterTies = hasComplexRegisterTies();
1434 auto getTiedOperandIdx = [&](unsigned OpIdx) {
1435 if (!ShouldPrintRegisterTies)
1436 return 0U;
1437 const MachineOperand &MO = getOperand(OpIdx);
1438 if (MO.isReg() && MO.isTied() && !MO.isDef())
1439 return findTiedOperandIdx(OpIdx);
1440 return 0U;
1442 unsigned StartOp = 0;
1443 unsigned e = getNumOperands();
1445 // Print explicitly defined operands on the left of an assignment syntax.
1446 while (StartOp < e) {
1447 const MachineOperand &MO = getOperand(StartOp);
1448 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1449 break;
1451 if (StartOp != 0)
1452 OS << ", ";
1454 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1455 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1456 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/false, IsStandalone,
1457 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1458 ++StartOp;
1461 if (StartOp != 0)
1462 OS << " = ";
1464 if (getFlag(MachineInstr::FrameSetup))
1465 OS << "frame-setup ";
1466 if (getFlag(MachineInstr::FrameDestroy))
1467 OS << "frame-destroy ";
1468 if (getFlag(MachineInstr::FmNoNans))
1469 OS << "nnan ";
1470 if (getFlag(MachineInstr::FmNoInfs))
1471 OS << "ninf ";
1472 if (getFlag(MachineInstr::FmNsz))
1473 OS << "nsz ";
1474 if (getFlag(MachineInstr::FmArcp))
1475 OS << "arcp ";
1476 if (getFlag(MachineInstr::FmContract))
1477 OS << "contract ";
1478 if (getFlag(MachineInstr::FmAfn))
1479 OS << "afn ";
1480 if (getFlag(MachineInstr::FmReassoc))
1481 OS << "reassoc ";
1482 if (getFlag(MachineInstr::NoUWrap))
1483 OS << "nuw ";
1484 if (getFlag(MachineInstr::NoSWrap))
1485 OS << "nsw ";
1486 if (getFlag(MachineInstr::IsExact))
1487 OS << "exact ";
1489 // Print the opcode name.
1490 if (TII)
1491 OS << TII->getName(getOpcode());
1492 else
1493 OS << "UNKNOWN";
1495 if (SkipOpers)
1496 return;
1498 // Print the rest of the operands.
1499 bool FirstOp = true;
1500 unsigned AsmDescOp = ~0u;
1501 unsigned AsmOpCount = 0;
1503 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1504 // Print asm string.
1505 OS << " ";
1506 const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1507 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1508 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1509 getOperand(OpIdx).print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1510 ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1511 IntrinsicInfo);
1513 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1514 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1515 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1516 OS << " [sideeffect]";
1517 if (ExtraInfo & InlineAsm::Extra_MayLoad)
1518 OS << " [mayload]";
1519 if (ExtraInfo & InlineAsm::Extra_MayStore)
1520 OS << " [maystore]";
1521 if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1522 OS << " [isconvergent]";
1523 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1524 OS << " [alignstack]";
1525 if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1526 OS << " [attdialect]";
1527 if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1528 OS << " [inteldialect]";
1530 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1531 FirstOp = false;
1534 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1535 const MachineOperand &MO = getOperand(i);
1537 if (FirstOp) FirstOp = false; else OS << ",";
1538 OS << " ";
1540 if (isDebugValue() && MO.isMetadata()) {
1541 // Pretty print DBG_VALUE instructions.
1542 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1543 if (DIV && !DIV->getName().empty())
1544 OS << "!\"" << DIV->getName() << '\"';
1545 else {
1546 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1547 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1548 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1549 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1551 } else if (isDebugLabel() && MO.isMetadata()) {
1552 // Pretty print DBG_LABEL instructions.
1553 auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1554 if (DIL && !DIL->getName().empty())
1555 OS << "\"" << DIL->getName() << '\"';
1556 else {
1557 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1558 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1559 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1560 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1562 } else if (i == AsmDescOp && MO.isImm()) {
1563 // Pretty print the inline asm operand descriptor.
1564 OS << '$' << AsmOpCount++;
1565 unsigned Flag = MO.getImm();
1566 switch (InlineAsm::getKind(Flag)) {
1567 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break;
1568 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break;
1569 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1570 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break;
1571 case InlineAsm::Kind_Imm: OS << ":[imm"; break;
1572 case InlineAsm::Kind_Mem: OS << ":[mem"; break;
1573 default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1576 unsigned RCID = 0;
1577 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1578 InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1579 if (TRI) {
1580 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1581 } else
1582 OS << ":RC" << RCID;
1585 if (InlineAsm::isMemKind(Flag)) {
1586 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1587 switch (MCID) {
1588 case InlineAsm::Constraint_es: OS << ":es"; break;
1589 case InlineAsm::Constraint_i: OS << ":i"; break;
1590 case InlineAsm::Constraint_m: OS << ":m"; break;
1591 case InlineAsm::Constraint_o: OS << ":o"; break;
1592 case InlineAsm::Constraint_v: OS << ":v"; break;
1593 case InlineAsm::Constraint_Q: OS << ":Q"; break;
1594 case InlineAsm::Constraint_R: OS << ":R"; break;
1595 case InlineAsm::Constraint_S: OS << ":S"; break;
1596 case InlineAsm::Constraint_T: OS << ":T"; break;
1597 case InlineAsm::Constraint_Um: OS << ":Um"; break;
1598 case InlineAsm::Constraint_Un: OS << ":Un"; break;
1599 case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1600 case InlineAsm::Constraint_Us: OS << ":Us"; break;
1601 case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1602 case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1603 case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1604 case InlineAsm::Constraint_X: OS << ":X"; break;
1605 case InlineAsm::Constraint_Z: OS << ":Z"; break;
1606 case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
1607 case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
1608 default: OS << ":?"; break;
1612 unsigned TiedTo = 0;
1613 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1614 OS << " tiedto:$" << TiedTo;
1616 OS << ']';
1618 // Compute the index of the next operand descriptor.
1619 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1620 } else {
1621 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1622 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1623 if (MO.isImm() && isOperandSubregIdx(i))
1624 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1625 else
1626 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1627 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1631 // Print any optional symbols attached to this instruction as-if they were
1632 // operands.
1633 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1634 if (!FirstOp) {
1635 FirstOp = false;
1636 OS << ',';
1638 OS << " pre-instr-symbol ";
1639 MachineOperand::printSymbol(OS, *PreInstrSymbol);
1641 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1642 if (!FirstOp) {
1643 FirstOp = false;
1644 OS << ',';
1646 OS << " post-instr-symbol ";
1647 MachineOperand::printSymbol(OS, *PostInstrSymbol);
1650 if (!SkipDebugLoc) {
1651 if (const DebugLoc &DL = getDebugLoc()) {
1652 if (!FirstOp)
1653 OS << ',';
1654 OS << " debug-location ";
1655 DL->printAsOperand(OS, MST);
1659 if (!memoperands_empty()) {
1660 SmallVector<StringRef, 0> SSNs;
1661 const LLVMContext *Context = nullptr;
1662 std::unique_ptr<LLVMContext> CtxPtr;
1663 const MachineFrameInfo *MFI = nullptr;
1664 if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1665 MFI = &MF->getFrameInfo();
1666 Context = &MF->getFunction().getContext();
1667 } else {
1668 CtxPtr = llvm::make_unique<LLVMContext>();
1669 Context = CtxPtr.get();
1672 OS << " :: ";
1673 bool NeedComma = false;
1674 for (const MachineMemOperand *Op : memoperands()) {
1675 if (NeedComma)
1676 OS << ", ";
1677 Op->print(OS, MST, SSNs, *Context, MFI, TII);
1678 NeedComma = true;
1682 if (SkipDebugLoc)
1683 return;
1685 bool HaveSemi = false;
1687 // Print debug location information.
1688 if (const DebugLoc &DL = getDebugLoc()) {
1689 if (!HaveSemi) {
1690 OS << ';';
1691 HaveSemi = true;
1693 OS << ' ';
1694 DL.print(OS);
1697 // Print extra comments for DEBUG_VALUE.
1698 if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1699 if (!HaveSemi) {
1700 OS << ";";
1701 HaveSemi = true;
1703 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1704 OS << " line no:" << DV->getLine();
1705 if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1706 DebugLoc InlinedAtDL(InlinedAt);
1707 if (InlinedAtDL && MF) {
1708 OS << " inlined @[ ";
1709 InlinedAtDL.print(OS);
1710 OS << " ]";
1713 if (isIndirectDebugValue())
1714 OS << " indirect";
1716 // TODO: DBG_LABEL
1718 if (AddNewLine)
1719 OS << '\n';
1722 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1723 const TargetRegisterInfo *RegInfo,
1724 bool AddIfNotFound) {
1725 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1726 bool hasAliases = isPhysReg &&
1727 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1728 bool Found = false;
1729 SmallVector<unsigned,4> DeadOps;
1730 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1731 MachineOperand &MO = getOperand(i);
1732 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1733 continue;
1735 // DEBUG_VALUE nodes do not contribute to code generation and should
1736 // always be ignored. Failure to do so may result in trying to modify
1737 // KILL flags on DEBUG_VALUE nodes.
1738 if (MO.isDebug())
1739 continue;
1741 unsigned Reg = MO.getReg();
1742 if (!Reg)
1743 continue;
1745 if (Reg == IncomingReg) {
1746 if (!Found) {
1747 if (MO.isKill())
1748 // The register is already marked kill.
1749 return true;
1750 if (isPhysReg && isRegTiedToDefOperand(i))
1751 // Two-address uses of physregs must not be marked kill.
1752 return true;
1753 MO.setIsKill();
1754 Found = true;
1756 } else if (hasAliases && MO.isKill() &&
1757 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1758 // A super-register kill already exists.
1759 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1760 return true;
1761 if (RegInfo->isSubRegister(IncomingReg, Reg))
1762 DeadOps.push_back(i);
1766 // Trim unneeded kill operands.
1767 while (!DeadOps.empty()) {
1768 unsigned OpIdx = DeadOps.back();
1769 if (getOperand(OpIdx).isImplicit() &&
1770 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1771 RemoveOperand(OpIdx);
1772 else
1773 getOperand(OpIdx).setIsKill(false);
1774 DeadOps.pop_back();
1777 // If not found, this means an alias of one of the operands is killed. Add a
1778 // new implicit operand if required.
1779 if (!Found && AddIfNotFound) {
1780 addOperand(MachineOperand::CreateReg(IncomingReg,
1781 false /*IsDef*/,
1782 true /*IsImp*/,
1783 true /*IsKill*/));
1784 return true;
1786 return Found;
1789 void MachineInstr::clearRegisterKills(unsigned Reg,
1790 const TargetRegisterInfo *RegInfo) {
1791 if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1792 RegInfo = nullptr;
1793 for (MachineOperand &MO : operands()) {
1794 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1795 continue;
1796 unsigned OpReg = MO.getReg();
1797 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1798 MO.setIsKill(false);
1802 bool MachineInstr::addRegisterDead(unsigned Reg,
1803 const TargetRegisterInfo *RegInfo,
1804 bool AddIfNotFound) {
1805 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
1806 bool hasAliases = isPhysReg &&
1807 MCRegAliasIterator(Reg, RegInfo, false).isValid();
1808 bool Found = false;
1809 SmallVector<unsigned,4> DeadOps;
1810 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1811 MachineOperand &MO = getOperand(i);
1812 if (!MO.isReg() || !MO.isDef())
1813 continue;
1814 unsigned MOReg = MO.getReg();
1815 if (!MOReg)
1816 continue;
1818 if (MOReg == Reg) {
1819 MO.setIsDead();
1820 Found = true;
1821 } else if (hasAliases && MO.isDead() &&
1822 TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1823 // There exists a super-register that's marked dead.
1824 if (RegInfo->isSuperRegister(Reg, MOReg))
1825 return true;
1826 if (RegInfo->isSubRegister(Reg, MOReg))
1827 DeadOps.push_back(i);
1831 // Trim unneeded dead operands.
1832 while (!DeadOps.empty()) {
1833 unsigned OpIdx = DeadOps.back();
1834 if (getOperand(OpIdx).isImplicit() &&
1835 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1836 RemoveOperand(OpIdx);
1837 else
1838 getOperand(OpIdx).setIsDead(false);
1839 DeadOps.pop_back();
1842 // If not found, this means an alias of one of the operands is dead. Add a
1843 // new implicit operand if required.
1844 if (Found || !AddIfNotFound)
1845 return Found;
1847 addOperand(MachineOperand::CreateReg(Reg,
1848 true /*IsDef*/,
1849 true /*IsImp*/,
1850 false /*IsKill*/,
1851 true /*IsDead*/));
1852 return true;
1855 void MachineInstr::clearRegisterDeads(unsigned Reg) {
1856 for (MachineOperand &MO : operands()) {
1857 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1858 continue;
1859 MO.setIsDead(false);
1863 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
1864 for (MachineOperand &MO : operands()) {
1865 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1866 continue;
1867 MO.setIsUndef(IsUndef);
1871 void MachineInstr::addRegisterDefined(unsigned Reg,
1872 const TargetRegisterInfo *RegInfo) {
1873 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1874 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
1875 if (MO)
1876 return;
1877 } else {
1878 for (const MachineOperand &MO : operands()) {
1879 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1880 MO.getSubReg() == 0)
1881 return;
1884 addOperand(MachineOperand::CreateReg(Reg,
1885 true /*IsDef*/,
1886 true /*IsImp*/));
1889 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1890 const TargetRegisterInfo &TRI) {
1891 bool HasRegMask = false;
1892 for (MachineOperand &MO : operands()) {
1893 if (MO.isRegMask()) {
1894 HasRegMask = true;
1895 continue;
1897 if (!MO.isReg() || !MO.isDef()) continue;
1898 unsigned Reg = MO.getReg();
1899 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1900 // If there are no uses, including partial uses, the def is dead.
1901 if (llvm::none_of(UsedRegs,
1902 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
1903 MO.setIsDead();
1906 // This is a call with a register mask operand.
1907 // Mask clobbers are always dead, so add defs for the non-dead defines.
1908 if (HasRegMask)
1909 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1910 I != E; ++I)
1911 addRegisterDefined(*I, &TRI);
1914 unsigned
1915 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1916 // Build up a buffer of hash code components.
1917 SmallVector<size_t, 8> HashComponents;
1918 HashComponents.reserve(MI->getNumOperands() + 1);
1919 HashComponents.push_back(MI->getOpcode());
1920 for (const MachineOperand &MO : MI->operands()) {
1921 if (MO.isReg() && MO.isDef() &&
1922 TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1923 continue; // Skip virtual register defs.
1925 HashComponents.push_back(hash_value(MO));
1927 return hash_combine_range(HashComponents.begin(), HashComponents.end());
1930 void MachineInstr::emitError(StringRef Msg) const {
1931 // Find the source location cookie.
1932 unsigned LocCookie = 0;
1933 const MDNode *LocMD = nullptr;
1934 for (unsigned i = getNumOperands(); i != 0; --i) {
1935 if (getOperand(i-1).isMetadata() &&
1936 (LocMD = getOperand(i-1).getMetadata()) &&
1937 LocMD->getNumOperands() != 0) {
1938 if (const ConstantInt *CI =
1939 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
1940 LocCookie = CI->getZExtValue();
1941 break;
1946 if (const MachineBasicBlock *MBB = getParent())
1947 if (const MachineFunction *MF = MBB->getParent())
1948 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1949 report_fatal_error(Msg);
1952 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
1953 const MCInstrDesc &MCID, bool IsIndirect,
1954 unsigned Reg, const MDNode *Variable,
1955 const MDNode *Expr) {
1956 assert(isa<DILocalVariable>(Variable) && "not a variable");
1957 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
1958 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
1959 "Expected inlined-at fields to agree");
1960 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug);
1961 if (IsIndirect)
1962 MIB.addImm(0U);
1963 else
1964 MIB.addReg(0U, RegState::Debug);
1965 return MIB.addMetadata(Variable).addMetadata(Expr);
1968 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
1969 const MCInstrDesc &MCID, bool IsIndirect,
1970 MachineOperand &MO, const MDNode *Variable,
1971 const MDNode *Expr) {
1972 assert(isa<DILocalVariable>(Variable) && "not a variable");
1973 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
1974 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
1975 "Expected inlined-at fields to agree");
1976 if (MO.isReg())
1977 return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
1979 auto MIB = BuildMI(MF, DL, MCID).add(MO);
1980 if (IsIndirect)
1981 MIB.addImm(0U);
1982 else
1983 MIB.addReg(0U, RegState::Debug);
1984 return MIB.addMetadata(Variable).addMetadata(Expr);
1987 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
1988 MachineBasicBlock::iterator I,
1989 const DebugLoc &DL, const MCInstrDesc &MCID,
1990 bool IsIndirect, unsigned Reg,
1991 const MDNode *Variable, const MDNode *Expr) {
1992 MachineFunction &MF = *BB.getParent();
1993 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
1994 BB.insert(I, MI);
1995 return MachineInstrBuilder(MF, MI);
1998 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
1999 MachineBasicBlock::iterator I,
2000 const DebugLoc &DL, const MCInstrDesc &MCID,
2001 bool IsIndirect, MachineOperand &MO,
2002 const MDNode *Variable, const MDNode *Expr) {
2003 MachineFunction &MF = *BB.getParent();
2004 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2005 BB.insert(I, MI);
2006 return MachineInstrBuilder(MF, *MI);
2009 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2010 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2011 static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
2012 assert(MI.getOperand(0).isReg() && "can't spill non-register");
2013 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2014 "Expected inlined-at fields to agree");
2016 const DIExpression *Expr = MI.getDebugExpression();
2017 if (MI.isIndirectDebugValue()) {
2018 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
2019 Expr = DIExpression::prepend(Expr, DIExpression::WithDeref);
2021 return Expr;
2024 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2025 MachineBasicBlock::iterator I,
2026 const MachineInstr &Orig,
2027 int FrameIndex) {
2028 const DIExpression *Expr = computeExprForSpill(Orig);
2029 return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
2030 .addFrameIndex(FrameIndex)
2031 .addImm(0U)
2032 .addMetadata(Orig.getDebugVariable())
2033 .addMetadata(Expr);
2036 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
2037 const DIExpression *Expr = computeExprForSpill(Orig);
2038 Orig.getOperand(0).ChangeToFrameIndex(FrameIndex);
2039 Orig.getOperand(1).ChangeToImmediate(0U);
2040 Orig.getOperand(3).setMetadata(Expr);
2043 void MachineInstr::collectDebugValues(
2044 SmallVectorImpl<MachineInstr *> &DbgValues) {
2045 MachineInstr &MI = *this;
2046 if (!MI.getOperand(0).isReg())
2047 return;
2049 MachineBasicBlock::iterator DI = MI; ++DI;
2050 for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2051 DI != DE; ++DI) {
2052 if (!DI->isDebugValue())
2053 return;
2054 if (DI->getOperand(0).isReg() &&
2055 DI->getOperand(0).getReg() == MI.getOperand(0).getReg())
2056 DbgValues.push_back(&*DI);