[PowerPC] Do not emit record-form rotates when record-form andi/andis suffices
[llvm-core.git] / lib / CodeGen / MachineVerifier.cpp
blob8b274701d2ca17073604dc32d23bcb9752d027d2
1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
12 // Operand counts: All explicit operands must be present.
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
26 #include "LiveRangeCalc.h"
27 #include "llvm/ADT/BitVector.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/DenseSet.h"
30 #include "llvm/ADT/DepthFirstIterator.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SetOperations.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/Twine.h"
37 #include "llvm/Analysis/EHPersonalities.h"
38 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
39 #include "llvm/CodeGen/LiveInterval.h"
40 #include "llvm/CodeGen/LiveIntervals.h"
41 #include "llvm/CodeGen/LiveStacks.h"
42 #include "llvm/CodeGen/LiveVariables.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBundle.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/PseudoSourceValue.h"
53 #include "llvm/CodeGen/SlotIndexes.h"
54 #include "llvm/CodeGen/StackMaps.h"
55 #include "llvm/CodeGen/TargetInstrInfo.h"
56 #include "llvm/CodeGen/TargetOpcodes.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/InlineAsm.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/MC/LaneBitmask.h"
64 #include "llvm/MC/MCAsmInfo.h"
65 #include "llvm/MC/MCInstrDesc.h"
66 #include "llvm/MC/MCRegisterInfo.h"
67 #include "llvm/MC/MCTargetOptions.h"
68 #include "llvm/Pass.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/LowLevelTypeImpl.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <string>
81 #include <utility>
83 using namespace llvm;
85 namespace {
87 struct MachineVerifier {
88 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
90 unsigned verify(MachineFunction &MF);
92 Pass *const PASS;
93 const char *Banner;
94 const MachineFunction *MF;
95 const TargetMachine *TM;
96 const TargetInstrInfo *TII;
97 const TargetRegisterInfo *TRI;
98 const MachineRegisterInfo *MRI;
100 unsigned foundErrors;
102 // Avoid querying the MachineFunctionProperties for each operand.
103 bool isFunctionRegBankSelected;
104 bool isFunctionSelected;
106 using RegVector = SmallVector<unsigned, 16>;
107 using RegMaskVector = SmallVector<const uint32_t *, 4>;
108 using RegSet = DenseSet<unsigned>;
109 using RegMap = DenseMap<unsigned, const MachineInstr *>;
110 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
112 const MachineInstr *FirstTerminator;
113 BlockSet FunctionBlocks;
115 BitVector regsReserved;
116 RegSet regsLive;
117 RegVector regsDefined, regsDead, regsKilled;
118 RegMaskVector regMasks;
120 SlotIndex lastIndex;
122 // Add Reg and any sub-registers to RV
123 void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
124 RV.push_back(Reg);
125 if (TargetRegisterInfo::isPhysicalRegister(Reg))
126 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
127 RV.push_back(*SubRegs);
130 struct BBInfo {
131 // Is this MBB reachable from the MF entry point?
132 bool reachable = false;
134 // Vregs that must be live in because they are used without being
135 // defined. Map value is the user.
136 RegMap vregsLiveIn;
138 // Regs killed in MBB. They may be defined again, and will then be in both
139 // regsKilled and regsLiveOut.
140 RegSet regsKilled;
142 // Regs defined in MBB and live out. Note that vregs passing through may
143 // be live out without being mentioned here.
144 RegSet regsLiveOut;
146 // Vregs that pass through MBB untouched. This set is disjoint from
147 // regsKilled and regsLiveOut.
148 RegSet vregsPassed;
150 // Vregs that must pass through MBB because they are needed by a successor
151 // block. This set is disjoint from regsLiveOut.
152 RegSet vregsRequired;
154 // Set versions of block's predecessor and successor lists.
155 BlockSet Preds, Succs;
157 BBInfo() = default;
159 // Add register to vregsPassed if it belongs there. Return true if
160 // anything changed.
161 bool addPassed(unsigned Reg) {
162 if (!TargetRegisterInfo::isVirtualRegister(Reg))
163 return false;
164 if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
165 return false;
166 return vregsPassed.insert(Reg).second;
169 // Same for a full set.
170 bool addPassed(const RegSet &RS) {
171 bool changed = false;
172 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
173 if (addPassed(*I))
174 changed = true;
175 return changed;
178 // Add register to vregsRequired if it belongs there. Return true if
179 // anything changed.
180 bool addRequired(unsigned Reg) {
181 if (!TargetRegisterInfo::isVirtualRegister(Reg))
182 return false;
183 if (regsLiveOut.count(Reg))
184 return false;
185 return vregsRequired.insert(Reg).second;
188 // Same for a full set.
189 bool addRequired(const RegSet &RS) {
190 bool changed = false;
191 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
192 if (addRequired(*I))
193 changed = true;
194 return changed;
197 // Same for a full map.
198 bool addRequired(const RegMap &RM) {
199 bool changed = false;
200 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
201 if (addRequired(I->first))
202 changed = true;
203 return changed;
206 // Live-out registers are either in regsLiveOut or vregsPassed.
207 bool isLiveOut(unsigned Reg) const {
208 return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
212 // Extra register info per MBB.
213 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
215 bool isReserved(unsigned Reg) {
216 return Reg < regsReserved.size() && regsReserved.test(Reg);
219 bool isAllocatable(unsigned Reg) const {
220 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
221 !regsReserved.test(Reg);
224 // Analysis information if available
225 LiveVariables *LiveVars;
226 LiveIntervals *LiveInts;
227 LiveStacks *LiveStks;
228 SlotIndexes *Indexes;
230 void visitMachineFunctionBefore();
231 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
232 void visitMachineBundleBefore(const MachineInstr *MI);
233 void visitMachineInstrBefore(const MachineInstr *MI);
234 void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
235 void visitMachineInstrAfter(const MachineInstr *MI);
236 void visitMachineBundleAfter(const MachineInstr *MI);
237 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
238 void visitMachineFunctionAfter();
240 void report(const char *msg, const MachineFunction *MF);
241 void report(const char *msg, const MachineBasicBlock *MBB);
242 void report(const char *msg, const MachineInstr *MI);
243 void report(const char *msg, const MachineOperand *MO, unsigned MONum,
244 LLT MOVRegType = LLT{});
246 void report_context(const LiveInterval &LI) const;
247 void report_context(const LiveRange &LR, unsigned VRegUnit,
248 LaneBitmask LaneMask) const;
249 void report_context(const LiveRange::Segment &S) const;
250 void report_context(const VNInfo &VNI) const;
251 void report_context(SlotIndex Pos) const;
252 void report_context_liverange(const LiveRange &LR) const;
253 void report_context_lanemask(LaneBitmask LaneMask) const;
254 void report_context_vreg(unsigned VReg) const;
255 void report_context_vreg_regunit(unsigned VRegOrUnit) const;
257 void verifyInlineAsm(const MachineInstr *MI);
259 void checkLiveness(const MachineOperand *MO, unsigned MONum);
260 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
261 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
262 LaneBitmask LaneMask = LaneBitmask::getNone());
263 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
264 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
265 LaneBitmask LaneMask = LaneBitmask::getNone());
267 void markReachable(const MachineBasicBlock *MBB);
268 void calcRegsPassed();
269 void checkPHIOps(const MachineBasicBlock &MBB);
271 void calcRegsRequired();
272 void verifyLiveVariables();
273 void verifyLiveIntervals();
274 void verifyLiveInterval(const LiveInterval&);
275 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
276 LaneBitmask);
277 void verifyLiveRangeSegment(const LiveRange&,
278 const LiveRange::const_iterator I, unsigned,
279 LaneBitmask);
280 void verifyLiveRange(const LiveRange&, unsigned,
281 LaneBitmask LaneMask = LaneBitmask::getNone());
283 void verifyStackFrame();
285 void verifySlotIndexes() const;
286 void verifyProperties(const MachineFunction &MF);
289 struct MachineVerifierPass : public MachineFunctionPass {
290 static char ID; // Pass ID, replacement for typeid
292 const std::string Banner;
294 MachineVerifierPass(std::string banner = std::string())
295 : MachineFunctionPass(ID), Banner(std::move(banner)) {
296 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
299 void getAnalysisUsage(AnalysisUsage &AU) const override {
300 AU.setPreservesAll();
301 MachineFunctionPass::getAnalysisUsage(AU);
304 bool runOnMachineFunction(MachineFunction &MF) override {
305 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
306 if (FoundErrors)
307 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
308 return false;
312 } // end anonymous namespace
314 char MachineVerifierPass::ID = 0;
316 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
317 "Verify generated machine code", false, false)
319 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
320 return new MachineVerifierPass(Banner);
323 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
324 const {
325 MachineFunction &MF = const_cast<MachineFunction&>(*this);
326 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
327 if (AbortOnErrors && FoundErrors)
328 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
329 return FoundErrors == 0;
332 void MachineVerifier::verifySlotIndexes() const {
333 if (Indexes == nullptr)
334 return;
336 // Ensure the IdxMBB list is sorted by slot indexes.
337 SlotIndex Last;
338 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
339 E = Indexes->MBBIndexEnd(); I != E; ++I) {
340 assert(!Last.isValid() || I->first > Last);
341 Last = I->first;
345 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
346 // If a pass has introduced virtual registers without clearing the
347 // NoVRegs property (or set it without allocating the vregs)
348 // then report an error.
349 if (MF.getProperties().hasProperty(
350 MachineFunctionProperties::Property::NoVRegs) &&
351 MRI->getNumVirtRegs())
352 report("Function has NoVRegs property but there are VReg operands", &MF);
355 unsigned MachineVerifier::verify(MachineFunction &MF) {
356 foundErrors = 0;
358 this->MF = &MF;
359 TM = &MF.getTarget();
360 TII = MF.getSubtarget().getInstrInfo();
361 TRI = MF.getSubtarget().getRegisterInfo();
362 MRI = &MF.getRegInfo();
364 const bool isFunctionFailedISel = MF.getProperties().hasProperty(
365 MachineFunctionProperties::Property::FailedISel);
366 isFunctionRegBankSelected =
367 !isFunctionFailedISel &&
368 MF.getProperties().hasProperty(
369 MachineFunctionProperties::Property::RegBankSelected);
370 isFunctionSelected = !isFunctionFailedISel &&
371 MF.getProperties().hasProperty(
372 MachineFunctionProperties::Property::Selected);
373 LiveVars = nullptr;
374 LiveInts = nullptr;
375 LiveStks = nullptr;
376 Indexes = nullptr;
377 if (PASS) {
378 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
379 // We don't want to verify LiveVariables if LiveIntervals is available.
380 if (!LiveInts)
381 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
382 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
383 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
386 verifySlotIndexes();
388 verifyProperties(MF);
390 visitMachineFunctionBefore();
391 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
392 MFI!=MFE; ++MFI) {
393 visitMachineBasicBlockBefore(&*MFI);
394 // Keep track of the current bundle header.
395 const MachineInstr *CurBundle = nullptr;
396 // Do we expect the next instruction to be part of the same bundle?
397 bool InBundle = false;
399 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
400 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
401 if (MBBI->getParent() != &*MFI) {
402 report("Bad instruction parent pointer", &*MFI);
403 errs() << "Instruction: " << *MBBI;
404 continue;
407 // Check for consistent bundle flags.
408 if (InBundle && !MBBI->isBundledWithPred())
409 report("Missing BundledPred flag, "
410 "BundledSucc was set on predecessor",
411 &*MBBI);
412 if (!InBundle && MBBI->isBundledWithPred())
413 report("BundledPred flag is set, "
414 "but BundledSucc not set on predecessor",
415 &*MBBI);
417 // Is this a bundle header?
418 if (!MBBI->isInsideBundle()) {
419 if (CurBundle)
420 visitMachineBundleAfter(CurBundle);
421 CurBundle = &*MBBI;
422 visitMachineBundleBefore(CurBundle);
423 } else if (!CurBundle)
424 report("No bundle header", &*MBBI);
425 visitMachineInstrBefore(&*MBBI);
426 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
427 const MachineInstr &MI = *MBBI;
428 const MachineOperand &Op = MI.getOperand(I);
429 if (Op.getParent() != &MI) {
430 // Make sure to use correct addOperand / RemoveOperand / ChangeTo
431 // functions when replacing operands of a MachineInstr.
432 report("Instruction has operand with wrong parent set", &MI);
435 visitMachineOperand(&Op, I);
438 visitMachineInstrAfter(&*MBBI);
440 // Was this the last bundled instruction?
441 InBundle = MBBI->isBundledWithSucc();
443 if (CurBundle)
444 visitMachineBundleAfter(CurBundle);
445 if (InBundle)
446 report("BundledSucc flag set on last instruction in block", &MFI->back());
447 visitMachineBasicBlockAfter(&*MFI);
449 visitMachineFunctionAfter();
451 // Clean up.
452 regsLive.clear();
453 regsDefined.clear();
454 regsDead.clear();
455 regsKilled.clear();
456 regMasks.clear();
457 MBBInfoMap.clear();
459 return foundErrors;
462 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
463 assert(MF);
464 errs() << '\n';
465 if (!foundErrors++) {
466 if (Banner)
467 errs() << "# " << Banner << '\n';
468 if (LiveInts != nullptr)
469 LiveInts->print(errs());
470 else
471 MF->print(errs(), Indexes);
473 errs() << "*** Bad machine code: " << msg << " ***\n"
474 << "- function: " << MF->getName() << "\n";
477 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
478 assert(MBB);
479 report(msg, MBB->getParent());
480 errs() << "- basic block: " << printMBBReference(*MBB) << ' '
481 << MBB->getName() << " (" << (const void *)MBB << ')';
482 if (Indexes)
483 errs() << " [" << Indexes->getMBBStartIdx(MBB)
484 << ';' << Indexes->getMBBEndIdx(MBB) << ')';
485 errs() << '\n';
488 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
489 assert(MI);
490 report(msg, MI->getParent());
491 errs() << "- instruction: ";
492 if (Indexes && Indexes->hasIndex(*MI))
493 errs() << Indexes->getInstructionIndex(*MI) << '\t';
494 MI->print(errs(), /*SkipOpers=*/true);
497 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
498 unsigned MONum, LLT MOVRegType) {
499 assert(MO);
500 report(msg, MO->getParent());
501 errs() << "- operand " << MONum << ": ";
502 MO->print(errs(), MOVRegType, TRI);
503 errs() << "\n";
506 void MachineVerifier::report_context(SlotIndex Pos) const {
507 errs() << "- at: " << Pos << '\n';
510 void MachineVerifier::report_context(const LiveInterval &LI) const {
511 errs() << "- interval: " << LI << '\n';
514 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
515 LaneBitmask LaneMask) const {
516 report_context_liverange(LR);
517 report_context_vreg_regunit(VRegUnit);
518 if (LaneMask.any())
519 report_context_lanemask(LaneMask);
522 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
523 errs() << "- segment: " << S << '\n';
526 void MachineVerifier::report_context(const VNInfo &VNI) const {
527 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n";
530 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
531 errs() << "- liverange: " << LR << '\n';
534 void MachineVerifier::report_context_vreg(unsigned VReg) const {
535 errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
538 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
539 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
540 report_context_vreg(VRegOrUnit);
541 } else {
542 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n';
546 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
547 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n';
550 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
551 BBInfo &MInfo = MBBInfoMap[MBB];
552 if (!MInfo.reachable) {
553 MInfo.reachable = true;
554 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
555 SuE = MBB->succ_end(); SuI != SuE; ++SuI)
556 markReachable(*SuI);
560 void MachineVerifier::visitMachineFunctionBefore() {
561 lastIndex = SlotIndex();
562 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
563 : TRI->getReservedRegs(*MF);
565 if (!MF->empty())
566 markReachable(&MF->front());
568 // Build a set of the basic blocks in the function.
569 FunctionBlocks.clear();
570 for (const auto &MBB : *MF) {
571 FunctionBlocks.insert(&MBB);
572 BBInfo &MInfo = MBBInfoMap[&MBB];
574 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
575 if (MInfo.Preds.size() != MBB.pred_size())
576 report("MBB has duplicate entries in its predecessor list.", &MBB);
578 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
579 if (MInfo.Succs.size() != MBB.succ_size())
580 report("MBB has duplicate entries in its successor list.", &MBB);
583 // Check that the register use lists are sane.
584 MRI->verifyUseLists();
586 if (!MF->empty())
587 verifyStackFrame();
590 // Does iterator point to a and b as the first two elements?
591 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
592 const MachineBasicBlock *a, const MachineBasicBlock *b) {
593 if (*i == a)
594 return *++i == b;
595 if (*i == b)
596 return *++i == a;
597 return false;
600 void
601 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
602 FirstTerminator = nullptr;
604 if (!MF->getProperties().hasProperty(
605 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
606 // If this block has allocatable physical registers live-in, check that
607 // it is an entry block or landing pad.
608 for (const auto &LI : MBB->liveins()) {
609 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
610 MBB->getIterator() != MBB->getParent()->begin()) {
611 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
616 // Count the number of landing pad successors.
617 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
618 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
619 E = MBB->succ_end(); I != E; ++I) {
620 if ((*I)->isEHPad())
621 LandingPadSuccs.insert(*I);
622 if (!FunctionBlocks.count(*I))
623 report("MBB has successor that isn't part of the function.", MBB);
624 if (!MBBInfoMap[*I].Preds.count(MBB)) {
625 report("Inconsistent CFG", MBB);
626 errs() << "MBB is not in the predecessor list of the successor "
627 << printMBBReference(*(*I)) << ".\n";
631 // Check the predecessor list.
632 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
633 E = MBB->pred_end(); I != E; ++I) {
634 if (!FunctionBlocks.count(*I))
635 report("MBB has predecessor that isn't part of the function.", MBB);
636 if (!MBBInfoMap[*I].Succs.count(MBB)) {
637 report("Inconsistent CFG", MBB);
638 errs() << "MBB is not in the successor list of the predecessor "
639 << printMBBReference(*(*I)) << ".\n";
643 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
644 const BasicBlock *BB = MBB->getBasicBlock();
645 const Function &F = MF->getFunction();
646 if (LandingPadSuccs.size() > 1 &&
647 !(AsmInfo &&
648 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
649 BB && isa<SwitchInst>(BB->getTerminator())) &&
650 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
651 report("MBB has more than one landing pad successor", MBB);
653 // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
654 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
655 SmallVector<MachineOperand, 4> Cond;
656 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
657 Cond)) {
658 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
659 // check whether its answers match up with reality.
660 if (!TBB && !FBB) {
661 // Block falls through to its successor.
662 MachineFunction::const_iterator MBBI = MBB->getIterator();
663 ++MBBI;
664 if (MBBI == MF->end()) {
665 // It's possible that the block legitimately ends with a noreturn
666 // call or an unreachable, in which case it won't actually fall
667 // out the bottom of the function.
668 } else if (MBB->succ_size() == LandingPadSuccs.size()) {
669 // It's possible that the block legitimately ends with a noreturn
670 // call or an unreachable, in which case it won't actuall fall
671 // out of the block.
672 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
673 report("MBB exits via unconditional fall-through but doesn't have "
674 "exactly one CFG successor!", MBB);
675 } else if (!MBB->isSuccessor(&*MBBI)) {
676 report("MBB exits via unconditional fall-through but its successor "
677 "differs from its CFG successor!", MBB);
679 if (!MBB->empty() && MBB->back().isBarrier() &&
680 !TII->isPredicated(MBB->back())) {
681 report("MBB exits via unconditional fall-through but ends with a "
682 "barrier instruction!", MBB);
684 if (!Cond.empty()) {
685 report("MBB exits via unconditional fall-through but has a condition!",
686 MBB);
688 } else if (TBB && !FBB && Cond.empty()) {
689 // Block unconditionally branches somewhere.
690 // If the block has exactly one successor, that happens to be a
691 // landingpad, accept it as valid control flow.
692 if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
693 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
694 *MBB->succ_begin() != *LandingPadSuccs.begin())) {
695 report("MBB exits via unconditional branch but doesn't have "
696 "exactly one CFG successor!", MBB);
697 } else if (!MBB->isSuccessor(TBB)) {
698 report("MBB exits via unconditional branch but the CFG "
699 "successor doesn't match the actual successor!", MBB);
701 if (MBB->empty()) {
702 report("MBB exits via unconditional branch but doesn't contain "
703 "any instructions!", MBB);
704 } else if (!MBB->back().isBarrier()) {
705 report("MBB exits via unconditional branch but doesn't end with a "
706 "barrier instruction!", MBB);
707 } else if (!MBB->back().isTerminator()) {
708 report("MBB exits via unconditional branch but the branch isn't a "
709 "terminator instruction!", MBB);
711 } else if (TBB && !FBB && !Cond.empty()) {
712 // Block conditionally branches somewhere, otherwise falls through.
713 MachineFunction::const_iterator MBBI = MBB->getIterator();
714 ++MBBI;
715 if (MBBI == MF->end()) {
716 report("MBB conditionally falls through out of function!", MBB);
717 } else if (MBB->succ_size() == 1) {
718 // A conditional branch with only one successor is weird, but allowed.
719 if (&*MBBI != TBB)
720 report("MBB exits via conditional branch/fall-through but only has "
721 "one CFG successor!", MBB);
722 else if (TBB != *MBB->succ_begin())
723 report("MBB exits via conditional branch/fall-through but the CFG "
724 "successor don't match the actual successor!", MBB);
725 } else if (MBB->succ_size() != 2) {
726 report("MBB exits via conditional branch/fall-through but doesn't have "
727 "exactly two CFG successors!", MBB);
728 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
729 report("MBB exits via conditional branch/fall-through but the CFG "
730 "successors don't match the actual successors!", MBB);
732 if (MBB->empty()) {
733 report("MBB exits via conditional branch/fall-through but doesn't "
734 "contain any instructions!", MBB);
735 } else if (MBB->back().isBarrier()) {
736 report("MBB exits via conditional branch/fall-through but ends with a "
737 "barrier instruction!", MBB);
738 } else if (!MBB->back().isTerminator()) {
739 report("MBB exits via conditional branch/fall-through but the branch "
740 "isn't a terminator instruction!", MBB);
742 } else if (TBB && FBB) {
743 // Block conditionally branches somewhere, otherwise branches
744 // somewhere else.
745 if (MBB->succ_size() == 1) {
746 // A conditional branch with only one successor is weird, but allowed.
747 if (FBB != TBB)
748 report("MBB exits via conditional branch/branch through but only has "
749 "one CFG successor!", MBB);
750 else if (TBB != *MBB->succ_begin())
751 report("MBB exits via conditional branch/branch through but the CFG "
752 "successor don't match the actual successor!", MBB);
753 } else if (MBB->succ_size() != 2) {
754 report("MBB exits via conditional branch/branch but doesn't have "
755 "exactly two CFG successors!", MBB);
756 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
757 report("MBB exits via conditional branch/branch but the CFG "
758 "successors don't match the actual successors!", MBB);
760 if (MBB->empty()) {
761 report("MBB exits via conditional branch/branch but doesn't "
762 "contain any instructions!", MBB);
763 } else if (!MBB->back().isBarrier()) {
764 report("MBB exits via conditional branch/branch but doesn't end with a "
765 "barrier instruction!", MBB);
766 } else if (!MBB->back().isTerminator()) {
767 report("MBB exits via conditional branch/branch but the branch "
768 "isn't a terminator instruction!", MBB);
770 if (Cond.empty()) {
771 report("MBB exits via conditinal branch/branch but there's no "
772 "condition!", MBB);
774 } else {
775 report("AnalyzeBranch returned invalid data!", MBB);
779 regsLive.clear();
780 if (MRI->tracksLiveness()) {
781 for (const auto &LI : MBB->liveins()) {
782 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
783 report("MBB live-in list contains non-physical register", MBB);
784 continue;
786 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
787 SubRegs.isValid(); ++SubRegs)
788 regsLive.insert(*SubRegs);
792 const MachineFrameInfo &MFI = MF->getFrameInfo();
793 BitVector PR = MFI.getPristineRegs(*MF);
794 for (unsigned I : PR.set_bits()) {
795 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
796 SubRegs.isValid(); ++SubRegs)
797 regsLive.insert(*SubRegs);
800 regsKilled.clear();
801 regsDefined.clear();
803 if (Indexes)
804 lastIndex = Indexes->getMBBStartIdx(MBB);
807 // This function gets called for all bundle headers, including normal
808 // stand-alone unbundled instructions.
809 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
810 if (Indexes && Indexes->hasIndex(*MI)) {
811 SlotIndex idx = Indexes->getInstructionIndex(*MI);
812 if (!(idx > lastIndex)) {
813 report("Instruction index out of order", MI);
814 errs() << "Last instruction was at " << lastIndex << '\n';
816 lastIndex = idx;
819 // Ensure non-terminators don't follow terminators.
820 // Ignore predicated terminators formed by if conversion.
821 // FIXME: If conversion shouldn't need to violate this rule.
822 if (MI->isTerminator() && !TII->isPredicated(*MI)) {
823 if (!FirstTerminator)
824 FirstTerminator = MI;
825 } else if (FirstTerminator) {
826 report("Non-terminator instruction after the first terminator", MI);
827 errs() << "First terminator was:\t" << *FirstTerminator;
831 // The operands on an INLINEASM instruction must follow a template.
832 // Verify that the flag operands make sense.
833 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
834 // The first two operands on INLINEASM are the asm string and global flags.
835 if (MI->getNumOperands() < 2) {
836 report("Too few operands on inline asm", MI);
837 return;
839 if (!MI->getOperand(0).isSymbol())
840 report("Asm string must be an external symbol", MI);
841 if (!MI->getOperand(1).isImm())
842 report("Asm flags must be an immediate", MI);
843 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
844 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
845 // and Extra_IsConvergent = 32.
846 if (!isUInt<6>(MI->getOperand(1).getImm()))
847 report("Unknown asm flags", &MI->getOperand(1), 1);
849 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
851 unsigned OpNo = InlineAsm::MIOp_FirstOperand;
852 unsigned NumOps;
853 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
854 const MachineOperand &MO = MI->getOperand(OpNo);
855 // There may be implicit ops after the fixed operands.
856 if (!MO.isImm())
857 break;
858 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
861 if (OpNo > MI->getNumOperands())
862 report("Missing operands in last group", MI);
864 // An optional MDNode follows the groups.
865 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
866 ++OpNo;
868 // All trailing operands must be implicit registers.
869 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
870 const MachineOperand &MO = MI->getOperand(OpNo);
871 if (!MO.isReg() || !MO.isImplicit())
872 report("Expected implicit register after groups", &MO, OpNo);
876 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
877 const MCInstrDesc &MCID = MI->getDesc();
878 if (MI->getNumOperands() < MCID.getNumOperands()) {
879 report("Too few operands", MI);
880 errs() << MCID.getNumOperands() << " operands expected, but "
881 << MI->getNumOperands() << " given.\n";
884 if (MI->isPHI() && MF->getProperties().hasProperty(
885 MachineFunctionProperties::Property::NoPHIs))
886 report("Found PHI instruction with NoPHIs property set", MI);
888 // Check the tied operands.
889 if (MI->isInlineAsm())
890 verifyInlineAsm(MI);
892 // Check the MachineMemOperands for basic consistency.
893 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
894 E = MI->memoperands_end();
895 I != E; ++I) {
896 if ((*I)->isLoad() && !MI->mayLoad())
897 report("Missing mayLoad flag", MI);
898 if ((*I)->isStore() && !MI->mayStore())
899 report("Missing mayStore flag", MI);
902 // Debug values must not have a slot index.
903 // Other instructions must have one, unless they are inside a bundle.
904 if (LiveInts) {
905 bool mapped = !LiveInts->isNotInMIMap(*MI);
906 if (MI->isDebugInstr()) {
907 if (mapped)
908 report("Debug instruction has a slot index", MI);
909 } else if (MI->isInsideBundle()) {
910 if (mapped)
911 report("Instruction inside bundle has a slot index", MI);
912 } else {
913 if (!mapped)
914 report("Missing slot index", MI);
918 if (isPreISelGenericOpcode(MCID.getOpcode())) {
919 if (isFunctionSelected)
920 report("Unexpected generic instruction in a Selected function", MI);
922 // Check types.
923 SmallVector<LLT, 4> Types;
924 for (unsigned I = 0; I < MCID.getNumOperands(); ++I) {
925 if (!MCID.OpInfo[I].isGenericType())
926 continue;
927 // Generic instructions specify type equality constraints between some of
928 // their operands. Make sure these are consistent.
929 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
930 Types.resize(std::max(TypeIdx + 1, Types.size()));
932 const MachineOperand *MO = &MI->getOperand(I);
933 LLT OpTy = MRI->getType(MO->getReg());
934 // Don't report a type mismatch if there is no actual mismatch, only a
935 // type missing, to reduce noise:
936 if (OpTy.isValid()) {
937 // Only the first valid type for a type index will be printed: don't
938 // overwrite it later so it's always clear which type was expected:
939 if (!Types[TypeIdx].isValid())
940 Types[TypeIdx] = OpTy;
941 else if (Types[TypeIdx] != OpTy)
942 report("Type mismatch in generic instruction", MO, I, OpTy);
943 } else {
944 // Generic instructions must have types attached to their operands.
945 report("Generic instruction is missing a virtual register type", MO, I);
949 // Generic opcodes must not have physical register operands.
950 for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
951 const MachineOperand *MO = &MI->getOperand(I);
952 if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg()))
953 report("Generic instruction cannot have physical register", MO, I);
957 StringRef ErrorInfo;
958 if (!TII->verifyInstruction(*MI, ErrorInfo))
959 report(ErrorInfo.data(), MI);
961 // Verify properties of various specific instruction types
962 switch(MI->getOpcode()) {
963 default:
964 break;
965 case TargetOpcode::G_LOAD:
966 case TargetOpcode::G_STORE:
967 // Generic loads and stores must have a single MachineMemOperand
968 // describing that access.
969 if (!MI->hasOneMemOperand())
970 report("Generic instruction accessing memory must have one mem operand",
971 MI);
972 break;
973 case TargetOpcode::G_PHI: {
974 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
975 if (!DstTy.isValid() ||
976 !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
977 [this, &DstTy](const MachineOperand &MO) {
978 if (!MO.isReg())
979 return true;
980 LLT Ty = MRI->getType(MO.getReg());
981 if (!Ty.isValid() || (Ty != DstTy))
982 return false;
983 return true;
985 report("Generic Instruction G_PHI has operands with incompatible/missing "
986 "types",
987 MI);
988 break;
990 case TargetOpcode::G_SEXT:
991 case TargetOpcode::G_ZEXT:
992 case TargetOpcode::G_ANYEXT:
993 case TargetOpcode::G_TRUNC:
994 case TargetOpcode::G_FPEXT:
995 case TargetOpcode::G_FPTRUNC: {
996 // Number of operands and presense of types is already checked (and
997 // reported in case of any issues), so no need to report them again. As
998 // we're trying to report as many issues as possible at once, however, the
999 // instructions aren't guaranteed to have the right number of operands or
1000 // types attached to them at this point
1001 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1002 if (MI->getNumOperands() < MCID.getNumOperands())
1003 break;
1004 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1005 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1006 if (!DstTy.isValid() || !SrcTy.isValid())
1007 break;
1009 LLT DstElTy = DstTy.isVector() ? DstTy.getElementType() : DstTy;
1010 LLT SrcElTy = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy;
1011 if (DstElTy.isPointer() || SrcElTy.isPointer())
1012 report("Generic extend/truncate can not operate on pointers", MI);
1014 if (DstTy.isVector() != SrcTy.isVector()) {
1015 report("Generic extend/truncate must be all-vector or all-scalar", MI);
1016 // Generally we try to report as many issues as possible at once, but in
1017 // this case it's not clear what should we be comparing the size of the
1018 // scalar with: the size of the whole vector or its lane. Instead of
1019 // making an arbitrary choice and emitting not so helpful message, let's
1020 // avoid the extra noise and stop here.
1021 break;
1023 if (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())
1024 report("Generic vector extend/truncate must preserve number of lanes",
1025 MI);
1026 unsigned DstSize = DstElTy.getSizeInBits();
1027 unsigned SrcSize = SrcElTy.getSizeInBits();
1028 switch (MI->getOpcode()) {
1029 default:
1030 if (DstSize <= SrcSize)
1031 report("Generic extend has destination type no larger than source", MI);
1032 break;
1033 case TargetOpcode::G_TRUNC:
1034 case TargetOpcode::G_FPTRUNC:
1035 if (DstSize >= SrcSize)
1036 report("Generic truncate has destination type no smaller than source",
1037 MI);
1038 break;
1040 break;
1042 case TargetOpcode::COPY: {
1043 if (foundErrors)
1044 break;
1045 const MachineOperand &DstOp = MI->getOperand(0);
1046 const MachineOperand &SrcOp = MI->getOperand(1);
1047 LLT DstTy = MRI->getType(DstOp.getReg());
1048 LLT SrcTy = MRI->getType(SrcOp.getReg());
1049 if (SrcTy.isValid() && DstTy.isValid()) {
1050 // If both types are valid, check that the types are the same.
1051 if (SrcTy != DstTy) {
1052 report("Copy Instruction is illegal with mismatching types", MI);
1053 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1056 if (SrcTy.isValid() || DstTy.isValid()) {
1057 // If one of them have valid types, let's just check they have the same
1058 // size.
1059 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1060 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1061 assert(SrcSize && "Expecting size here");
1062 assert(DstSize && "Expecting size here");
1063 if (SrcSize != DstSize)
1064 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1065 report("Copy Instruction is illegal with mismatching sizes", MI);
1066 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1067 << "\n";
1070 break;
1072 case TargetOpcode::STATEPOINT:
1073 if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
1074 !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
1075 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
1076 report("meta operands to STATEPOINT not constant!", MI);
1077 break;
1079 auto VerifyStackMapConstant = [&](unsigned Offset) {
1080 if (!MI->getOperand(Offset).isImm() ||
1081 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
1082 !MI->getOperand(Offset + 1).isImm())
1083 report("stack map constant to STATEPOINT not well formed!", MI);
1085 const unsigned VarStart = StatepointOpers(MI).getVarIdx();
1086 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
1087 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
1088 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
1090 // TODO: verify we have properly encoded deopt arguments
1094 void
1095 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1096 const MachineInstr *MI = MO->getParent();
1097 const MCInstrDesc &MCID = MI->getDesc();
1098 unsigned NumDefs = MCID.getNumDefs();
1099 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1100 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1102 // The first MCID.NumDefs operands must be explicit register defines
1103 if (MONum < NumDefs) {
1104 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1105 if (!MO->isReg())
1106 report("Explicit definition must be a register", MO, MONum);
1107 else if (!MO->isDef() && !MCOI.isOptionalDef())
1108 report("Explicit definition marked as use", MO, MONum);
1109 else if (MO->isImplicit())
1110 report("Explicit definition marked as implicit", MO, MONum);
1111 } else if (MONum < MCID.getNumOperands()) {
1112 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1113 // Don't check if it's the last operand in a variadic instruction. See,
1114 // e.g., LDM_RET in the arm back end.
1115 if (MO->isReg() &&
1116 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
1117 if (MO->isDef() && !MCOI.isOptionalDef())
1118 report("Explicit operand marked as def", MO, MONum);
1119 if (MO->isImplicit())
1120 report("Explicit operand marked as implicit", MO, MONum);
1123 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1124 if (TiedTo != -1) {
1125 if (!MO->isReg())
1126 report("Tied use must be a register", MO, MONum);
1127 else if (!MO->isTied())
1128 report("Operand should be tied", MO, MONum);
1129 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1130 report("Tied def doesn't match MCInstrDesc", MO, MONum);
1131 else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) {
1132 const MachineOperand &MOTied = MI->getOperand(TiedTo);
1133 if (!MOTied.isReg())
1134 report("Tied counterpart must be a register", &MOTied, TiedTo);
1135 else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) &&
1136 MO->getReg() != MOTied.getReg())
1137 report("Tied physical registers must match.", &MOTied, TiedTo);
1139 } else if (MO->isReg() && MO->isTied())
1140 report("Explicit operand should not be tied", MO, MONum);
1141 } else {
1142 // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1143 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1144 report("Extra explicit operand on non-variadic instruction", MO, MONum);
1147 switch (MO->getType()) {
1148 case MachineOperand::MO_Register: {
1149 const unsigned Reg = MO->getReg();
1150 if (!Reg)
1151 return;
1152 if (MRI->tracksLiveness() && !MI->isDebugValue())
1153 checkLiveness(MO, MONum);
1155 // Verify the consistency of tied operands.
1156 if (MO->isTied()) {
1157 unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1158 const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1159 if (!OtherMO.isReg())
1160 report("Must be tied to a register", MO, MONum);
1161 if (!OtherMO.isTied())
1162 report("Missing tie flags on tied operand", MO, MONum);
1163 if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1164 report("Inconsistent tie links", MO, MONum);
1165 if (MONum < MCID.getNumDefs()) {
1166 if (OtherIdx < MCID.getNumOperands()) {
1167 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1168 report("Explicit def tied to explicit use without tie constraint",
1169 MO, MONum);
1170 } else {
1171 if (!OtherMO.isImplicit())
1172 report("Explicit def should be tied to implicit use", MO, MONum);
1177 // Verify two-address constraints after leaving SSA form.
1178 unsigned DefIdx;
1179 if (!MRI->isSSA() && MO->isUse() &&
1180 MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1181 Reg != MI->getOperand(DefIdx).getReg())
1182 report("Two-address instruction operands must be identical", MO, MONum);
1184 // Check register classes.
1185 unsigned SubIdx = MO->getSubReg();
1187 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1188 if (SubIdx) {
1189 report("Illegal subregister index for physical register", MO, MONum);
1190 return;
1192 if (MONum < MCID.getNumOperands()) {
1193 if (const TargetRegisterClass *DRC =
1194 TII->getRegClass(MCID, MONum, TRI, *MF)) {
1195 if (!DRC->contains(Reg)) {
1196 report("Illegal physical register for instruction", MO, MONum);
1197 errs() << printReg(Reg, TRI) << " is not a "
1198 << TRI->getRegClassName(DRC) << " register.\n";
1202 if (MO->isRenamable()) {
1203 if (MRI->isReserved(Reg)) {
1204 report("isRenamable set on reserved register", MO, MONum);
1205 return;
1208 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1209 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1210 return;
1212 } else {
1213 // Virtual register.
1214 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1215 if (!RC) {
1216 // This is a generic virtual register.
1218 // If we're post-Select, we can't have gvregs anymore.
1219 if (isFunctionSelected) {
1220 report("Generic virtual register invalid in a Selected function",
1221 MO, MONum);
1222 return;
1225 // The gvreg must have a type and it must not have a SubIdx.
1226 LLT Ty = MRI->getType(Reg);
1227 if (!Ty.isValid()) {
1228 report("Generic virtual register must have a valid type", MO,
1229 MONum);
1230 return;
1233 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1235 // If we're post-RegBankSelect, the gvreg must have a bank.
1236 if (!RegBank && isFunctionRegBankSelected) {
1237 report("Generic virtual register must have a bank in a "
1238 "RegBankSelected function",
1239 MO, MONum);
1240 return;
1243 // Make sure the register fits into its register bank if any.
1244 if (RegBank && Ty.isValid() &&
1245 RegBank->getSize() < Ty.getSizeInBits()) {
1246 report("Register bank is too small for virtual register", MO,
1247 MONum);
1248 errs() << "Register bank " << RegBank->getName() << " too small("
1249 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1250 << "-bits\n";
1251 return;
1253 if (SubIdx) {
1254 report("Generic virtual register does not subregister index", MO,
1255 MONum);
1256 return;
1259 // If this is a target specific instruction and this operand
1260 // has register class constraint, the virtual register must
1261 // comply to it.
1262 if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1263 MONum < MCID.getNumOperands() &&
1264 TII->getRegClass(MCID, MONum, TRI, *MF)) {
1265 report("Virtual register does not match instruction constraint", MO,
1266 MONum);
1267 errs() << "Expect register class "
1268 << TRI->getRegClassName(
1269 TII->getRegClass(MCID, MONum, TRI, *MF))
1270 << " but got nothing\n";
1271 return;
1274 break;
1276 if (SubIdx) {
1277 const TargetRegisterClass *SRC =
1278 TRI->getSubClassWithSubReg(RC, SubIdx);
1279 if (!SRC) {
1280 report("Invalid subregister index for virtual register", MO, MONum);
1281 errs() << "Register class " << TRI->getRegClassName(RC)
1282 << " does not support subreg index " << SubIdx << "\n";
1283 return;
1285 if (RC != SRC) {
1286 report("Invalid register class for subregister index", MO, MONum);
1287 errs() << "Register class " << TRI->getRegClassName(RC)
1288 << " does not fully support subreg index " << SubIdx << "\n";
1289 return;
1292 if (MONum < MCID.getNumOperands()) {
1293 if (const TargetRegisterClass *DRC =
1294 TII->getRegClass(MCID, MONum, TRI, *MF)) {
1295 if (SubIdx) {
1296 const TargetRegisterClass *SuperRC =
1297 TRI->getLargestLegalSuperClass(RC, *MF);
1298 if (!SuperRC) {
1299 report("No largest legal super class exists.", MO, MONum);
1300 return;
1302 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1303 if (!DRC) {
1304 report("No matching super-reg register class.", MO, MONum);
1305 return;
1308 if (!RC->hasSuperClassEq(DRC)) {
1309 report("Illegal virtual register for instruction", MO, MONum);
1310 errs() << "Expected a " << TRI->getRegClassName(DRC)
1311 << " register, but got a " << TRI->getRegClassName(RC)
1312 << " register\n";
1317 break;
1320 case MachineOperand::MO_RegisterMask:
1321 regMasks.push_back(MO->getRegMask());
1322 break;
1324 case MachineOperand::MO_MachineBasicBlock:
1325 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1326 report("PHI operand is not in the CFG", MO, MONum);
1327 break;
1329 case MachineOperand::MO_FrameIndex:
1330 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1331 LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1332 int FI = MO->getIndex();
1333 LiveInterval &LI = LiveStks->getInterval(FI);
1334 SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1336 bool stores = MI->mayStore();
1337 bool loads = MI->mayLoad();
1338 // For a memory-to-memory move, we need to check if the frame
1339 // index is used for storing or loading, by inspecting the
1340 // memory operands.
1341 if (stores && loads) {
1342 for (auto *MMO : MI->memoperands()) {
1343 const PseudoSourceValue *PSV = MMO->getPseudoValue();
1344 if (PSV == nullptr) continue;
1345 const FixedStackPseudoSourceValue *Value =
1346 dyn_cast<FixedStackPseudoSourceValue>(PSV);
1347 if (Value == nullptr) continue;
1348 if (Value->getFrameIndex() != FI) continue;
1350 if (MMO->isStore())
1351 loads = false;
1352 else
1353 stores = false;
1354 break;
1356 if (loads == stores)
1357 report("Missing fixed stack memoperand.", MI);
1359 if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1360 report("Instruction loads from dead spill slot", MO, MONum);
1361 errs() << "Live stack: " << LI << '\n';
1363 if (stores && !LI.liveAt(Idx.getRegSlot())) {
1364 report("Instruction stores to dead spill slot", MO, MONum);
1365 errs() << "Live stack: " << LI << '\n';
1368 break;
1370 default:
1371 break;
1375 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1376 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1377 LaneBitmask LaneMask) {
1378 LiveQueryResult LRQ = LR.Query(UseIdx);
1379 // Check if we have a segment at the use, note however that we only need one
1380 // live subregister range, the others may be dead.
1381 if (!LRQ.valueIn() && LaneMask.none()) {
1382 report("No live segment at use", MO, MONum);
1383 report_context_liverange(LR);
1384 report_context_vreg_regunit(VRegOrUnit);
1385 report_context(UseIdx);
1387 if (MO->isKill() && !LRQ.isKill()) {
1388 report("Live range continues after kill flag", MO, MONum);
1389 report_context_liverange(LR);
1390 report_context_vreg_regunit(VRegOrUnit);
1391 if (LaneMask.any())
1392 report_context_lanemask(LaneMask);
1393 report_context(UseIdx);
1397 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1398 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1399 LaneBitmask LaneMask) {
1400 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1401 assert(VNI && "NULL valno is not allowed");
1402 if (VNI->def != DefIdx) {
1403 report("Inconsistent valno->def", MO, MONum);
1404 report_context_liverange(LR);
1405 report_context_vreg_regunit(VRegOrUnit);
1406 if (LaneMask.any())
1407 report_context_lanemask(LaneMask);
1408 report_context(*VNI);
1409 report_context(DefIdx);
1411 } else {
1412 report("No live segment at def", MO, MONum);
1413 report_context_liverange(LR);
1414 report_context_vreg_regunit(VRegOrUnit);
1415 if (LaneMask.any())
1416 report_context_lanemask(LaneMask);
1417 report_context(DefIdx);
1419 // Check that, if the dead def flag is present, LiveInts agree.
1420 if (MO->isDead()) {
1421 LiveQueryResult LRQ = LR.Query(DefIdx);
1422 if (!LRQ.isDeadDef()) {
1423 // In case of physregs we can have a non-dead definition on another
1424 // operand.
1425 bool otherDef = false;
1426 if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
1427 const MachineInstr &MI = *MO->getParent();
1428 for (const MachineOperand &MO : MI.operands()) {
1429 if (!MO.isReg() || !MO.isDef() || MO.isDead())
1430 continue;
1431 unsigned Reg = MO.getReg();
1432 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1433 if (*Units == VRegOrUnit) {
1434 otherDef = true;
1435 break;
1441 if (!otherDef) {
1442 report("Live range continues after dead def flag", MO, MONum);
1443 report_context_liverange(LR);
1444 report_context_vreg_regunit(VRegOrUnit);
1445 if (LaneMask.any())
1446 report_context_lanemask(LaneMask);
1452 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1453 const MachineInstr *MI = MO->getParent();
1454 const unsigned Reg = MO->getReg();
1456 // Both use and def operands can read a register.
1457 if (MO->readsReg()) {
1458 if (MO->isKill())
1459 addRegWithSubRegs(regsKilled, Reg);
1461 // Check that LiveVars knows this kill.
1462 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1463 MO->isKill()) {
1464 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1465 if (!is_contained(VI.Kills, MI))
1466 report("Kill missing from LiveVariables", MO, MONum);
1469 // Check LiveInts liveness and kill.
1470 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1471 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1472 // Check the cached regunit intervals.
1473 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1474 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1475 if (MRI->isReservedRegUnit(*Units))
1476 continue;
1477 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1478 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1482 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1483 if (LiveInts->hasInterval(Reg)) {
1484 // This is a virtual register interval.
1485 const LiveInterval &LI = LiveInts->getInterval(Reg);
1486 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1488 if (LI.hasSubRanges() && !MO->isDef()) {
1489 unsigned SubRegIdx = MO->getSubReg();
1490 LaneBitmask MOMask = SubRegIdx != 0
1491 ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1492 : MRI->getMaxLaneMaskForVReg(Reg);
1493 LaneBitmask LiveInMask;
1494 for (const LiveInterval::SubRange &SR : LI.subranges()) {
1495 if ((MOMask & SR.LaneMask).none())
1496 continue;
1497 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1498 LiveQueryResult LRQ = SR.Query(UseIdx);
1499 if (LRQ.valueIn())
1500 LiveInMask |= SR.LaneMask;
1502 // At least parts of the register has to be live at the use.
1503 if ((LiveInMask & MOMask).none()) {
1504 report("No live subrange at use", MO, MONum);
1505 report_context(LI);
1506 report_context(UseIdx);
1509 } else {
1510 report("Virtual register has no live interval", MO, MONum);
1515 // Use of a dead register.
1516 if (!regsLive.count(Reg)) {
1517 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1518 // Reserved registers may be used even when 'dead'.
1519 bool Bad = !isReserved(Reg);
1520 // We are fine if just any subregister has a defined value.
1521 if (Bad) {
1522 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1523 ++SubRegs) {
1524 if (regsLive.count(*SubRegs)) {
1525 Bad = false;
1526 break;
1530 // If there is an additional implicit-use of a super register we stop
1531 // here. By definition we are fine if the super register is not
1532 // (completely) dead, if the complete super register is dead we will
1533 // get a report for its operand.
1534 if (Bad) {
1535 for (const MachineOperand &MOP : MI->uses()) {
1536 if (!MOP.isReg() || !MOP.isImplicit())
1537 continue;
1539 if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg()))
1540 continue;
1542 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1543 ++SubRegs) {
1544 if (*SubRegs == Reg) {
1545 Bad = false;
1546 break;
1551 if (Bad)
1552 report("Using an undefined physical register", MO, MONum);
1553 } else if (MRI->def_empty(Reg)) {
1554 report("Reading virtual register without a def", MO, MONum);
1555 } else {
1556 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1557 // We don't know which virtual registers are live in, so only complain
1558 // if vreg was killed in this MBB. Otherwise keep track of vregs that
1559 // must be live in. PHI instructions are handled separately.
1560 if (MInfo.regsKilled.count(Reg))
1561 report("Using a killed virtual register", MO, MONum);
1562 else if (!MI->isPHI())
1563 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1568 if (MO->isDef()) {
1569 // Register defined.
1570 // TODO: verify that earlyclobber ops are not used.
1571 if (MO->isDead())
1572 addRegWithSubRegs(regsDead, Reg);
1573 else
1574 addRegWithSubRegs(regsDefined, Reg);
1576 // Verify SSA form.
1577 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1578 std::next(MRI->def_begin(Reg)) != MRI->def_end())
1579 report("Multiple virtual register defs in SSA form", MO, MONum);
1581 // Check LiveInts for a live segment, but only for virtual registers.
1582 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1583 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1584 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1586 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1587 if (LiveInts->hasInterval(Reg)) {
1588 const LiveInterval &LI = LiveInts->getInterval(Reg);
1589 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1591 if (LI.hasSubRanges()) {
1592 unsigned SubRegIdx = MO->getSubReg();
1593 LaneBitmask MOMask = SubRegIdx != 0
1594 ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1595 : MRI->getMaxLaneMaskForVReg(Reg);
1596 for (const LiveInterval::SubRange &SR : LI.subranges()) {
1597 if ((SR.LaneMask & MOMask).none())
1598 continue;
1599 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask);
1602 } else {
1603 report("Virtual register has no Live interval", MO, MONum);
1610 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
1612 // This function gets called after visiting all instructions in a bundle. The
1613 // argument points to the bundle header.
1614 // Normal stand-alone instructions are also considered 'bundles', and this
1615 // function is called for all of them.
1616 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1617 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1618 set_union(MInfo.regsKilled, regsKilled);
1619 set_subtract(regsLive, regsKilled); regsKilled.clear();
1620 // Kill any masked registers.
1621 while (!regMasks.empty()) {
1622 const uint32_t *Mask = regMasks.pop_back_val();
1623 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1624 if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1625 MachineOperand::clobbersPhysReg(Mask, *I))
1626 regsDead.push_back(*I);
1628 set_subtract(regsLive, regsDead); regsDead.clear();
1629 set_union(regsLive, regsDefined); regsDefined.clear();
1632 void
1633 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1634 MBBInfoMap[MBB].regsLiveOut = regsLive;
1635 regsLive.clear();
1637 if (Indexes) {
1638 SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1639 if (!(stop > lastIndex)) {
1640 report("Block ends before last instruction index", MBB);
1641 errs() << "Block ends at " << stop
1642 << " last instruction was at " << lastIndex << '\n';
1644 lastIndex = stop;
1648 // Calculate the largest possible vregsPassed sets. These are the registers that
1649 // can pass through an MBB live, but may not be live every time. It is assumed
1650 // that all vregsPassed sets are empty before the call.
1651 void MachineVerifier::calcRegsPassed() {
1652 // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1653 // have any vregsPassed.
1654 SmallPtrSet<const MachineBasicBlock*, 8> todo;
1655 for (const auto &MBB : *MF) {
1656 BBInfo &MInfo = MBBInfoMap[&MBB];
1657 if (!MInfo.reachable)
1658 continue;
1659 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1660 SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1661 BBInfo &SInfo = MBBInfoMap[*SuI];
1662 if (SInfo.addPassed(MInfo.regsLiveOut))
1663 todo.insert(*SuI);
1667 // Iteratively push vregsPassed to successors. This will converge to the same
1668 // final state regardless of DenseSet iteration order.
1669 while (!todo.empty()) {
1670 const MachineBasicBlock *MBB = *todo.begin();
1671 todo.erase(MBB);
1672 BBInfo &MInfo = MBBInfoMap[MBB];
1673 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1674 SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1675 if (*SuI == MBB)
1676 continue;
1677 BBInfo &SInfo = MBBInfoMap[*SuI];
1678 if (SInfo.addPassed(MInfo.vregsPassed))
1679 todo.insert(*SuI);
1684 // Calculate the set of virtual registers that must be passed through each basic
1685 // block in order to satisfy the requirements of successor blocks. This is very
1686 // similar to calcRegsPassed, only backwards.
1687 void MachineVerifier::calcRegsRequired() {
1688 // First push live-in regs to predecessors' vregsRequired.
1689 SmallPtrSet<const MachineBasicBlock*, 8> todo;
1690 for (const auto &MBB : *MF) {
1691 BBInfo &MInfo = MBBInfoMap[&MBB];
1692 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1693 PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1694 BBInfo &PInfo = MBBInfoMap[*PrI];
1695 if (PInfo.addRequired(MInfo.vregsLiveIn))
1696 todo.insert(*PrI);
1700 // Iteratively push vregsRequired to predecessors. This will converge to the
1701 // same final state regardless of DenseSet iteration order.
1702 while (!todo.empty()) {
1703 const MachineBasicBlock *MBB = *todo.begin();
1704 todo.erase(MBB);
1705 BBInfo &MInfo = MBBInfoMap[MBB];
1706 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1707 PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1708 if (*PrI == MBB)
1709 continue;
1710 BBInfo &SInfo = MBBInfoMap[*PrI];
1711 if (SInfo.addRequired(MInfo.vregsRequired))
1712 todo.insert(*PrI);
1717 // Check PHI instructions at the beginning of MBB. It is assumed that
1718 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1719 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
1720 BBInfo &MInfo = MBBInfoMap[&MBB];
1722 SmallPtrSet<const MachineBasicBlock*, 8> seen;
1723 for (const MachineInstr &Phi : MBB) {
1724 if (!Phi.isPHI())
1725 break;
1726 seen.clear();
1728 const MachineOperand &MODef = Phi.getOperand(0);
1729 if (!MODef.isReg() || !MODef.isDef()) {
1730 report("Expected first PHI operand to be a register def", &MODef, 0);
1731 continue;
1733 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
1734 MODef.isEarlyClobber() || MODef.isDebug())
1735 report("Unexpected flag on PHI operand", &MODef, 0);
1736 unsigned DefReg = MODef.getReg();
1737 if (!TargetRegisterInfo::isVirtualRegister(DefReg))
1738 report("Expected first PHI operand to be a virtual register", &MODef, 0);
1740 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
1741 const MachineOperand &MO0 = Phi.getOperand(I);
1742 if (!MO0.isReg()) {
1743 report("Expected PHI operand to be a register", &MO0, I);
1744 continue;
1746 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
1747 MO0.isDebug() || MO0.isTied())
1748 report("Unexpected flag on PHI operand", &MO0, I);
1750 const MachineOperand &MO1 = Phi.getOperand(I + 1);
1751 if (!MO1.isMBB()) {
1752 report("Expected PHI operand to be a basic block", &MO1, I + 1);
1753 continue;
1756 const MachineBasicBlock &Pre = *MO1.getMBB();
1757 if (!Pre.isSuccessor(&MBB)) {
1758 report("PHI input is not a predecessor block", &MO1, I + 1);
1759 continue;
1762 if (MInfo.reachable) {
1763 seen.insert(&Pre);
1764 BBInfo &PrInfo = MBBInfoMap[&Pre];
1765 if (!MO0.isUndef() && PrInfo.reachable &&
1766 !PrInfo.isLiveOut(MO0.getReg()))
1767 report("PHI operand is not live-out from predecessor", &MO0, I);
1771 // Did we see all predecessors?
1772 if (MInfo.reachable) {
1773 for (MachineBasicBlock *Pred : MBB.predecessors()) {
1774 if (!seen.count(Pred)) {
1775 report("Missing PHI operand", &Phi);
1776 errs() << printMBBReference(*Pred)
1777 << " is a predecessor according to the CFG.\n";
1784 void MachineVerifier::visitMachineFunctionAfter() {
1785 calcRegsPassed();
1787 for (const MachineBasicBlock &MBB : *MF)
1788 checkPHIOps(MBB);
1790 // Now check liveness info if available
1791 calcRegsRequired();
1793 // Check for killed virtual registers that should be live out.
1794 for (const auto &MBB : *MF) {
1795 BBInfo &MInfo = MBBInfoMap[&MBB];
1796 for (RegSet::iterator
1797 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1798 ++I)
1799 if (MInfo.regsKilled.count(*I)) {
1800 report("Virtual register killed in block, but needed live out.", &MBB);
1801 errs() << "Virtual register " << printReg(*I)
1802 << " is used after the block.\n";
1806 if (!MF->empty()) {
1807 BBInfo &MInfo = MBBInfoMap[&MF->front()];
1808 for (RegSet::iterator
1809 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1810 ++I) {
1811 report("Virtual register defs don't dominate all uses.", MF);
1812 report_context_vreg(*I);
1816 if (LiveVars)
1817 verifyLiveVariables();
1818 if (LiveInts)
1819 verifyLiveIntervals();
1822 void MachineVerifier::verifyLiveVariables() {
1823 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1824 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1825 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1826 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1827 for (const auto &MBB : *MF) {
1828 BBInfo &MInfo = MBBInfoMap[&MBB];
1830 // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1831 if (MInfo.vregsRequired.count(Reg)) {
1832 if (!VI.AliveBlocks.test(MBB.getNumber())) {
1833 report("LiveVariables: Block missing from AliveBlocks", &MBB);
1834 errs() << "Virtual register " << printReg(Reg)
1835 << " must be live through the block.\n";
1837 } else {
1838 if (VI.AliveBlocks.test(MBB.getNumber())) {
1839 report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1840 errs() << "Virtual register " << printReg(Reg)
1841 << " is not needed live through the block.\n";
1848 void MachineVerifier::verifyLiveIntervals() {
1849 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1850 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1851 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1853 // Spilling and splitting may leave unused registers around. Skip them.
1854 if (MRI->reg_nodbg_empty(Reg))
1855 continue;
1857 if (!LiveInts->hasInterval(Reg)) {
1858 report("Missing live interval for virtual register", MF);
1859 errs() << printReg(Reg, TRI) << " still has defs or uses\n";
1860 continue;
1863 const LiveInterval &LI = LiveInts->getInterval(Reg);
1864 assert(Reg == LI.reg && "Invalid reg to interval mapping");
1865 verifyLiveInterval(LI);
1868 // Verify all the cached regunit intervals.
1869 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1870 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1871 verifyLiveRange(*LR, i);
1874 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1875 const VNInfo *VNI, unsigned Reg,
1876 LaneBitmask LaneMask) {
1877 if (VNI->isUnused())
1878 return;
1880 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1882 if (!DefVNI) {
1883 report("Value not live at VNInfo def and not marked unused", MF);
1884 report_context(LR, Reg, LaneMask);
1885 report_context(*VNI);
1886 return;
1889 if (DefVNI != VNI) {
1890 report("Live segment at def has different VNInfo", MF);
1891 report_context(LR, Reg, LaneMask);
1892 report_context(*VNI);
1893 return;
1896 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1897 if (!MBB) {
1898 report("Invalid VNInfo definition index", MF);
1899 report_context(LR, Reg, LaneMask);
1900 report_context(*VNI);
1901 return;
1904 if (VNI->isPHIDef()) {
1905 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1906 report("PHIDef VNInfo is not defined at MBB start", MBB);
1907 report_context(LR, Reg, LaneMask);
1908 report_context(*VNI);
1910 return;
1913 // Non-PHI def.
1914 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1915 if (!MI) {
1916 report("No instruction at VNInfo def index", MBB);
1917 report_context(LR, Reg, LaneMask);
1918 report_context(*VNI);
1919 return;
1922 if (Reg != 0) {
1923 bool hasDef = false;
1924 bool isEarlyClobber = false;
1925 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1926 if (!MOI->isReg() || !MOI->isDef())
1927 continue;
1928 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1929 if (MOI->getReg() != Reg)
1930 continue;
1931 } else {
1932 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1933 !TRI->hasRegUnit(MOI->getReg(), Reg))
1934 continue;
1936 if (LaneMask.any() &&
1937 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
1938 continue;
1939 hasDef = true;
1940 if (MOI->isEarlyClobber())
1941 isEarlyClobber = true;
1944 if (!hasDef) {
1945 report("Defining instruction does not modify register", MI);
1946 report_context(LR, Reg, LaneMask);
1947 report_context(*VNI);
1950 // Early clobber defs begin at USE slots, but other defs must begin at
1951 // DEF slots.
1952 if (isEarlyClobber) {
1953 if (!VNI->def.isEarlyClobber()) {
1954 report("Early clobber def must be at an early-clobber slot", MBB);
1955 report_context(LR, Reg, LaneMask);
1956 report_context(*VNI);
1958 } else if (!VNI->def.isRegister()) {
1959 report("Non-PHI, non-early clobber def must be at a register slot", MBB);
1960 report_context(LR, Reg, LaneMask);
1961 report_context(*VNI);
1966 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
1967 const LiveRange::const_iterator I,
1968 unsigned Reg, LaneBitmask LaneMask)
1970 const LiveRange::Segment &S = *I;
1971 const VNInfo *VNI = S.valno;
1972 assert(VNI && "Live segment has no valno");
1974 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
1975 report("Foreign valno in live segment", MF);
1976 report_context(LR, Reg, LaneMask);
1977 report_context(S);
1978 report_context(*VNI);
1981 if (VNI->isUnused()) {
1982 report("Live segment valno is marked unused", MF);
1983 report_context(LR, Reg, LaneMask);
1984 report_context(S);
1987 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
1988 if (!MBB) {
1989 report("Bad start of live segment, no basic block", MF);
1990 report_context(LR, Reg, LaneMask);
1991 report_context(S);
1992 return;
1994 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1995 if (S.start != MBBStartIdx && S.start != VNI->def) {
1996 report("Live segment must begin at MBB entry or valno def", MBB);
1997 report_context(LR, Reg, LaneMask);
1998 report_context(S);
2001 const MachineBasicBlock *EndMBB =
2002 LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2003 if (!EndMBB) {
2004 report("Bad end of live segment, no basic block", MF);
2005 report_context(LR, Reg, LaneMask);
2006 report_context(S);
2007 return;
2010 // No more checks for live-out segments.
2011 if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2012 return;
2014 // RegUnit intervals are allowed dead phis.
2015 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2016 S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2017 return;
2019 // The live segment is ending inside EndMBB
2020 const MachineInstr *MI =
2021 LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2022 if (!MI) {
2023 report("Live segment doesn't end at a valid instruction", EndMBB);
2024 report_context(LR, Reg, LaneMask);
2025 report_context(S);
2026 return;
2029 // The block slot must refer to a basic block boundary.
2030 if (S.end.isBlock()) {
2031 report("Live segment ends at B slot of an instruction", EndMBB);
2032 report_context(LR, Reg, LaneMask);
2033 report_context(S);
2036 if (S.end.isDead()) {
2037 // Segment ends on the dead slot.
2038 // That means there must be a dead def.
2039 if (!SlotIndex::isSameInstr(S.start, S.end)) {
2040 report("Live segment ending at dead slot spans instructions", EndMBB);
2041 report_context(LR, Reg, LaneMask);
2042 report_context(S);
2046 // A live segment can only end at an early-clobber slot if it is being
2047 // redefined by an early-clobber def.
2048 if (S.end.isEarlyClobber()) {
2049 if (I+1 == LR.end() || (I+1)->start != S.end) {
2050 report("Live segment ending at early clobber slot must be "
2051 "redefined by an EC def in the same instruction", EndMBB);
2052 report_context(LR, Reg, LaneMask);
2053 report_context(S);
2057 // The following checks only apply to virtual registers. Physreg liveness
2058 // is too weird to check.
2059 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2060 // A live segment can end with either a redefinition, a kill flag on a
2061 // use, or a dead flag on a def.
2062 bool hasRead = false;
2063 bool hasSubRegDef = false;
2064 bool hasDeadDef = false;
2065 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2066 if (!MOI->isReg() || MOI->getReg() != Reg)
2067 continue;
2068 unsigned Sub = MOI->getSubReg();
2069 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2070 : LaneBitmask::getAll();
2071 if (MOI->isDef()) {
2072 if (Sub != 0) {
2073 hasSubRegDef = true;
2074 // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2075 // mask for subregister defs. Read-undef defs will be handled by
2076 // readsReg below.
2077 SLM = ~SLM;
2079 if (MOI->isDead())
2080 hasDeadDef = true;
2082 if (LaneMask.any() && (LaneMask & SLM).none())
2083 continue;
2084 if (MOI->readsReg())
2085 hasRead = true;
2087 if (S.end.isDead()) {
2088 // Make sure that the corresponding machine operand for a "dead" live
2089 // range has the dead flag. We cannot perform this check for subregister
2090 // liveranges as partially dead values are allowed.
2091 if (LaneMask.none() && !hasDeadDef) {
2092 report("Instruction ending live segment on dead slot has no dead flag",
2093 MI);
2094 report_context(LR, Reg, LaneMask);
2095 report_context(S);
2097 } else {
2098 if (!hasRead) {
2099 // When tracking subregister liveness, the main range must start new
2100 // values on partial register writes, even if there is no read.
2101 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2102 !hasSubRegDef) {
2103 report("Instruction ending live segment doesn't read the register",
2104 MI);
2105 report_context(LR, Reg, LaneMask);
2106 report_context(S);
2112 // Now check all the basic blocks in this live segment.
2113 MachineFunction::const_iterator MFI = MBB->getIterator();
2114 // Is this live segment the beginning of a non-PHIDef VN?
2115 if (S.start == VNI->def && !VNI->isPHIDef()) {
2116 // Not live-in to any blocks.
2117 if (MBB == EndMBB)
2118 return;
2119 // Skip this block.
2120 ++MFI;
2123 SmallVector<SlotIndex, 4> Undefs;
2124 if (LaneMask.any()) {
2125 LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2126 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2129 while (true) {
2130 assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2131 // We don't know how to track physregs into a landing pad.
2132 if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
2133 MFI->isEHPad()) {
2134 if (&*MFI == EndMBB)
2135 break;
2136 ++MFI;
2137 continue;
2140 // Is VNI a PHI-def in the current block?
2141 bool IsPHI = VNI->isPHIDef() &&
2142 VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2144 // Check that VNI is live-out of all predecessors.
2145 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
2146 PE = MFI->pred_end(); PI != PE; ++PI) {
2147 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
2148 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2150 // All predecessors must have a live-out value. However for a phi
2151 // instruction with subregister intervals
2152 // only one of the subregisters (not necessarily the current one) needs to
2153 // be defined.
2154 if (!PVNI && (LaneMask.none() || !IsPHI)) {
2155 if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes))
2156 continue;
2157 report("Register not marked live out of predecessor", *PI);
2158 report_context(LR, Reg, LaneMask);
2159 report_context(*VNI);
2160 errs() << " live into " << printMBBReference(*MFI) << '@'
2161 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2162 << PEnd << '\n';
2163 continue;
2166 // Only PHI-defs can take different predecessor values.
2167 if (!IsPHI && PVNI != VNI) {
2168 report("Different value live out of predecessor", *PI);
2169 report_context(LR, Reg, LaneMask);
2170 errs() << "Valno #" << PVNI->id << " live out of "
2171 << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
2172 << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2173 << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2176 if (&*MFI == EndMBB)
2177 break;
2178 ++MFI;
2182 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2183 LaneBitmask LaneMask) {
2184 for (const VNInfo *VNI : LR.valnos)
2185 verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2187 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2188 verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2191 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2192 unsigned Reg = LI.reg;
2193 assert(TargetRegisterInfo::isVirtualRegister(Reg));
2194 verifyLiveRange(LI, Reg);
2196 LaneBitmask Mask;
2197 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2198 for (const LiveInterval::SubRange &SR : LI.subranges()) {
2199 if ((Mask & SR.LaneMask).any()) {
2200 report("Lane masks of sub ranges overlap in live interval", MF);
2201 report_context(LI);
2203 if ((SR.LaneMask & ~MaxMask).any()) {
2204 report("Subrange lanemask is invalid", MF);
2205 report_context(LI);
2207 if (SR.empty()) {
2208 report("Subrange must not be empty", MF);
2209 report_context(SR, LI.reg, SR.LaneMask);
2211 Mask |= SR.LaneMask;
2212 verifyLiveRange(SR, LI.reg, SR.LaneMask);
2213 if (!LI.covers(SR)) {
2214 report("A Subrange is not covered by the main range", MF);
2215 report_context(LI);
2219 // Check the LI only has one connected component.
2220 ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2221 unsigned NumComp = ConEQ.Classify(LI);
2222 if (NumComp > 1) {
2223 report("Multiple connected components in live interval", MF);
2224 report_context(LI);
2225 for (unsigned comp = 0; comp != NumComp; ++comp) {
2226 errs() << comp << ": valnos";
2227 for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2228 E = LI.vni_end(); I!=E; ++I)
2229 if (comp == ConEQ.getEqClass(*I))
2230 errs() << ' ' << (*I)->id;
2231 errs() << '\n';
2236 namespace {
2238 // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2239 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2240 // value is zero.
2241 // We use a bool plus an integer to capture the stack state.
2242 struct StackStateOfBB {
2243 StackStateOfBB() = default;
2244 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2245 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2246 ExitIsSetup(ExitSetup) {}
2248 // Can be negative, which means we are setting up a frame.
2249 int EntryValue = 0;
2250 int ExitValue = 0;
2251 bool EntryIsSetup = false;
2252 bool ExitIsSetup = false;
2255 } // end anonymous namespace
2257 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2258 /// by a FrameDestroy <n>, stack adjustments are identical on all
2259 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2260 void MachineVerifier::verifyStackFrame() {
2261 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
2262 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2263 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2264 return;
2266 SmallVector<StackStateOfBB, 8> SPState;
2267 SPState.resize(MF->getNumBlockIDs());
2268 df_iterator_default_set<const MachineBasicBlock*> Reachable;
2270 // Visit the MBBs in DFS order.
2271 for (df_ext_iterator<const MachineFunction *,
2272 df_iterator_default_set<const MachineBasicBlock *>>
2273 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2274 DFI != DFE; ++DFI) {
2275 const MachineBasicBlock *MBB = *DFI;
2277 StackStateOfBB BBState;
2278 // Check the exit state of the DFS stack predecessor.
2279 if (DFI.getPathLength() >= 2) {
2280 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2281 assert(Reachable.count(StackPred) &&
2282 "DFS stack predecessor is already visited.\n");
2283 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2284 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2285 BBState.ExitValue = BBState.EntryValue;
2286 BBState.ExitIsSetup = BBState.EntryIsSetup;
2289 // Update stack state by checking contents of MBB.
2290 for (const auto &I : *MBB) {
2291 if (I.getOpcode() == FrameSetupOpcode) {
2292 if (BBState.ExitIsSetup)
2293 report("FrameSetup is after another FrameSetup", &I);
2294 BBState.ExitValue -= TII->getFrameTotalSize(I);
2295 BBState.ExitIsSetup = true;
2298 if (I.getOpcode() == FrameDestroyOpcode) {
2299 int Size = TII->getFrameTotalSize(I);
2300 if (!BBState.ExitIsSetup)
2301 report("FrameDestroy is not after a FrameSetup", &I);
2302 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2303 BBState.ExitValue;
2304 if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2305 report("FrameDestroy <n> is after FrameSetup <m>", &I);
2306 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2307 << AbsSPAdj << ">.\n";
2309 BBState.ExitValue += Size;
2310 BBState.ExitIsSetup = false;
2313 SPState[MBB->getNumber()] = BBState;
2315 // Make sure the exit state of any predecessor is consistent with the entry
2316 // state.
2317 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2318 E = MBB->pred_end(); I != E; ++I) {
2319 if (Reachable.count(*I) &&
2320 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2321 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2322 report("The exit stack state of a predecessor is inconsistent.", MBB);
2323 errs() << "Predecessor " << printMBBReference(*(*I))
2324 << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
2325 << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
2326 << printMBBReference(*MBB) << " has entry state ("
2327 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2331 // Make sure the entry state of any successor is consistent with the exit
2332 // state.
2333 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2334 E = MBB->succ_end(); I != E; ++I) {
2335 if (Reachable.count(*I) &&
2336 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2337 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2338 report("The entry stack state of a successor is inconsistent.", MBB);
2339 errs() << "Successor " << printMBBReference(*(*I))
2340 << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
2341 << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
2342 << printMBBReference(*MBB) << " has exit state ("
2343 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2347 // Make sure a basic block with return ends with zero stack adjustment.
2348 if (!MBB->empty() && MBB->back().isReturn()) {
2349 if (BBState.ExitIsSetup)
2350 report("A return block ends with a FrameSetup.", MBB);
2351 if (BBState.ExitValue)
2352 report("A return block ends with a nonzero stack adjustment.", MBB);