1 //===-- WinEHPrepare - Prepare exception handling for code generation ---===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass lowers LLVM IR exception handling into something closer to what the
11 // backend wants for functions using a personality function from a runtime
12 // provided by MSVC. Functions with other personality functions are left alone
13 // and may be prepared by other passes. In particular, all supported MSVC
14 // personality functions require cleanup code to be outlined, and the C++
15 // personality requires catch handler code to be outlined.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/EHPersonalities.h"
24 #include "llvm/Transforms/Utils/Local.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/CodeGen/WinEHFuncInfo.h"
28 #include "llvm/IR/Verifier.h"
29 #include "llvm/MC/MCSymbol.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/Cloning.h"
35 #include "llvm/Transforms/Utils/SSAUpdater.h"
39 #define DEBUG_TYPE "winehprepare"
41 static cl::opt
<bool> DisableDemotion(
42 "disable-demotion", cl::Hidden
,
44 "Clone multicolor basic blocks but do not demote cross scopes"),
47 static cl::opt
<bool> DisableCleanups(
48 "disable-cleanups", cl::Hidden
,
49 cl::desc("Do not remove implausible terminators or other similar cleanups"),
52 static cl::opt
<bool> DemoteCatchSwitchPHIOnlyOpt(
53 "demote-catchswitch-only", cl::Hidden
,
54 cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false));
58 class WinEHPrepare
: public FunctionPass
{
60 static char ID
; // Pass identification, replacement for typeid.
61 WinEHPrepare(bool DemoteCatchSwitchPHIOnly
= false)
62 : FunctionPass(ID
), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly
) {}
64 bool runOnFunction(Function
&Fn
) override
;
66 bool doFinalization(Module
&M
) override
;
68 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
70 StringRef
getPassName() const override
{
71 return "Windows exception handling preparation";
75 void insertPHIStores(PHINode
*OriginalPHI
, AllocaInst
*SpillSlot
);
77 insertPHIStore(BasicBlock
*PredBlock
, Value
*PredVal
, AllocaInst
*SpillSlot
,
78 SmallVectorImpl
<std::pair
<BasicBlock
*, Value
*>> &Worklist
);
79 AllocaInst
*insertPHILoads(PHINode
*PN
, Function
&F
);
80 void replaceUseWithLoad(Value
*V
, Use
&U
, AllocaInst
*&SpillSlot
,
81 DenseMap
<BasicBlock
*, Value
*> &Loads
, Function
&F
);
82 bool prepareExplicitEH(Function
&F
);
83 void colorFunclets(Function
&F
);
85 void demotePHIsOnFunclets(Function
&F
, bool DemoteCatchSwitchPHIOnly
);
86 void cloneCommonBlocks(Function
&F
);
87 void removeImplausibleInstructions(Function
&F
);
88 void cleanupPreparedFunclets(Function
&F
);
89 void verifyPreparedFunclets(Function
&F
);
91 bool DemoteCatchSwitchPHIOnly
;
93 // All fields are reset by runOnFunction.
94 EHPersonality Personality
= EHPersonality::Unknown
;
96 const DataLayout
*DL
= nullptr;
97 DenseMap
<BasicBlock
*, ColorVector
> BlockColors
;
98 MapVector
<BasicBlock
*, std::vector
<BasicBlock
*>> FuncletBlocks
;
101 } // end anonymous namespace
103 char WinEHPrepare::ID
= 0;
104 INITIALIZE_PASS(WinEHPrepare
, DEBUG_TYPE
, "Prepare Windows exceptions",
107 FunctionPass
*llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly
) {
108 return new WinEHPrepare(DemoteCatchSwitchPHIOnly
);
111 bool WinEHPrepare::runOnFunction(Function
&Fn
) {
112 if (!Fn
.hasPersonalityFn())
115 // Classify the personality to see what kind of preparation we need.
116 Personality
= classifyEHPersonality(Fn
.getPersonalityFn());
118 // Do nothing if this is not a scope-based personality.
119 if (!isScopedEHPersonality(Personality
))
122 DL
= &Fn
.getParent()->getDataLayout();
123 return prepareExplicitEH(Fn
);
126 bool WinEHPrepare::doFinalization(Module
&M
) { return false; }
128 void WinEHPrepare::getAnalysisUsage(AnalysisUsage
&AU
) const {}
130 static int addUnwindMapEntry(WinEHFuncInfo
&FuncInfo
, int ToState
,
131 const BasicBlock
*BB
) {
132 CxxUnwindMapEntry UME
;
133 UME
.ToState
= ToState
;
135 FuncInfo
.CxxUnwindMap
.push_back(UME
);
136 return FuncInfo
.getLastStateNumber();
139 static void addTryBlockMapEntry(WinEHFuncInfo
&FuncInfo
, int TryLow
,
140 int TryHigh
, int CatchHigh
,
141 ArrayRef
<const CatchPadInst
*> Handlers
) {
142 WinEHTryBlockMapEntry TBME
;
143 TBME
.TryLow
= TryLow
;
144 TBME
.TryHigh
= TryHigh
;
145 TBME
.CatchHigh
= CatchHigh
;
146 assert(TBME
.TryLow
<= TBME
.TryHigh
);
147 for (const CatchPadInst
*CPI
: Handlers
) {
149 Constant
*TypeInfo
= cast
<Constant
>(CPI
->getArgOperand(0));
150 if (TypeInfo
->isNullValue())
151 HT
.TypeDescriptor
= nullptr;
153 HT
.TypeDescriptor
= cast
<GlobalVariable
>(TypeInfo
->stripPointerCasts());
154 HT
.Adjectives
= cast
<ConstantInt
>(CPI
->getArgOperand(1))->getZExtValue();
155 HT
.Handler
= CPI
->getParent();
157 dyn_cast
<AllocaInst
>(CPI
->getArgOperand(2)->stripPointerCasts()))
158 HT
.CatchObj
.Alloca
= AI
;
160 HT
.CatchObj
.Alloca
= nullptr;
161 TBME
.HandlerArray
.push_back(HT
);
163 FuncInfo
.TryBlockMap
.push_back(TBME
);
166 static BasicBlock
*getCleanupRetUnwindDest(const CleanupPadInst
*CleanupPad
) {
167 for (const User
*U
: CleanupPad
->users())
168 if (const auto *CRI
= dyn_cast
<CleanupReturnInst
>(U
))
169 return CRI
->getUnwindDest();
173 static void calculateStateNumbersForInvokes(const Function
*Fn
,
174 WinEHFuncInfo
&FuncInfo
) {
175 auto *F
= const_cast<Function
*>(Fn
);
176 DenseMap
<BasicBlock
*, ColorVector
> BlockColors
= colorEHFunclets(*F
);
177 for (BasicBlock
&BB
: *F
) {
178 auto *II
= dyn_cast
<InvokeInst
>(BB
.getTerminator());
182 auto &BBColors
= BlockColors
[&BB
];
183 assert(BBColors
.size() == 1 && "multi-color BB not removed by preparation");
184 BasicBlock
*FuncletEntryBB
= BBColors
.front();
186 BasicBlock
*FuncletUnwindDest
;
188 dyn_cast
<FuncletPadInst
>(FuncletEntryBB
->getFirstNonPHI());
189 assert(FuncletPad
|| FuncletEntryBB
== &Fn
->getEntryBlock());
191 FuncletUnwindDest
= nullptr;
192 else if (auto *CatchPad
= dyn_cast
<CatchPadInst
>(FuncletPad
))
193 FuncletUnwindDest
= CatchPad
->getCatchSwitch()->getUnwindDest();
194 else if (auto *CleanupPad
= dyn_cast
<CleanupPadInst
>(FuncletPad
))
195 FuncletUnwindDest
= getCleanupRetUnwindDest(CleanupPad
);
197 llvm_unreachable("unexpected funclet pad!");
199 BasicBlock
*InvokeUnwindDest
= II
->getUnwindDest();
201 if (FuncletUnwindDest
== InvokeUnwindDest
) {
202 auto BaseStateI
= FuncInfo
.FuncletBaseStateMap
.find(FuncletPad
);
203 if (BaseStateI
!= FuncInfo
.FuncletBaseStateMap
.end())
204 BaseState
= BaseStateI
->second
;
207 if (BaseState
!= -1) {
208 FuncInfo
.InvokeStateMap
[II
] = BaseState
;
210 Instruction
*PadInst
= InvokeUnwindDest
->getFirstNonPHI();
211 assert(FuncInfo
.EHPadStateMap
.count(PadInst
) && "EH Pad has no state!");
212 FuncInfo
.InvokeStateMap
[II
] = FuncInfo
.EHPadStateMap
[PadInst
];
217 // Given BB which ends in an unwind edge, return the EHPad that this BB belongs
218 // to. If the unwind edge came from an invoke, return null.
219 static const BasicBlock
*getEHPadFromPredecessor(const BasicBlock
*BB
,
221 const TerminatorInst
*TI
= BB
->getTerminator();
222 if (isa
<InvokeInst
>(TI
))
224 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(TI
)) {
225 if (CatchSwitch
->getParentPad() != ParentPad
)
229 assert(!TI
->isEHPad() && "unexpected EHPad!");
230 auto *CleanupPad
= cast
<CleanupReturnInst
>(TI
)->getCleanupPad();
231 if (CleanupPad
->getParentPad() != ParentPad
)
233 return CleanupPad
->getParent();
236 static void calculateCXXStateNumbers(WinEHFuncInfo
&FuncInfo
,
237 const Instruction
*FirstNonPHI
,
239 const BasicBlock
*BB
= FirstNonPHI
->getParent();
240 assert(BB
->isEHPad() && "not a funclet!");
242 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(FirstNonPHI
)) {
243 assert(FuncInfo
.EHPadStateMap
.count(CatchSwitch
) == 0 &&
244 "shouldn't revist catch funclets!");
246 SmallVector
<const CatchPadInst
*, 2> Handlers
;
247 for (const BasicBlock
*CatchPadBB
: CatchSwitch
->handlers()) {
248 auto *CatchPad
= cast
<CatchPadInst
>(CatchPadBB
->getFirstNonPHI());
249 Handlers
.push_back(CatchPad
);
251 int TryLow
= addUnwindMapEntry(FuncInfo
, ParentState
, nullptr);
252 FuncInfo
.EHPadStateMap
[CatchSwitch
] = TryLow
;
253 for (const BasicBlock
*PredBlock
: predecessors(BB
))
254 if ((PredBlock
= getEHPadFromPredecessor(PredBlock
,
255 CatchSwitch
->getParentPad())))
256 calculateCXXStateNumbers(FuncInfo
, PredBlock
->getFirstNonPHI(),
258 int CatchLow
= addUnwindMapEntry(FuncInfo
, ParentState
, nullptr);
260 // catchpads are separate funclets in C++ EH due to the way rethrow works.
261 int TryHigh
= CatchLow
- 1;
262 for (const auto *CatchPad
: Handlers
) {
263 FuncInfo
.FuncletBaseStateMap
[CatchPad
] = CatchLow
;
264 for (const User
*U
: CatchPad
->users()) {
265 const auto *UserI
= cast
<Instruction
>(U
);
266 if (auto *InnerCatchSwitch
= dyn_cast
<CatchSwitchInst
>(UserI
)) {
267 BasicBlock
*UnwindDest
= InnerCatchSwitch
->getUnwindDest();
268 if (!UnwindDest
|| UnwindDest
== CatchSwitch
->getUnwindDest())
269 calculateCXXStateNumbers(FuncInfo
, UserI
, CatchLow
);
271 if (auto *InnerCleanupPad
= dyn_cast
<CleanupPadInst
>(UserI
)) {
272 BasicBlock
*UnwindDest
= getCleanupRetUnwindDest(InnerCleanupPad
);
273 // If a nested cleanup pad reports a null unwind destination and the
274 // enclosing catch pad doesn't it must be post-dominated by an
275 // unreachable instruction.
276 if (!UnwindDest
|| UnwindDest
== CatchSwitch
->getUnwindDest())
277 calculateCXXStateNumbers(FuncInfo
, UserI
, CatchLow
);
281 int CatchHigh
= FuncInfo
.getLastStateNumber();
282 addTryBlockMapEntry(FuncInfo
, TryLow
, TryHigh
, CatchHigh
, Handlers
);
283 LLVM_DEBUG(dbgs() << "TryLow[" << BB
->getName() << "]: " << TryLow
<< '\n');
284 LLVM_DEBUG(dbgs() << "TryHigh[" << BB
->getName() << "]: " << TryHigh
286 LLVM_DEBUG(dbgs() << "CatchHigh[" << BB
->getName() << "]: " << CatchHigh
289 auto *CleanupPad
= cast
<CleanupPadInst
>(FirstNonPHI
);
291 // It's possible for a cleanup to be visited twice: it might have multiple
292 // cleanupret instructions.
293 if (FuncInfo
.EHPadStateMap
.count(CleanupPad
))
296 int CleanupState
= addUnwindMapEntry(FuncInfo
, ParentState
, BB
);
297 FuncInfo
.EHPadStateMap
[CleanupPad
] = CleanupState
;
298 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState
<< " to BB "
299 << BB
->getName() << '\n');
300 for (const BasicBlock
*PredBlock
: predecessors(BB
)) {
301 if ((PredBlock
= getEHPadFromPredecessor(PredBlock
,
302 CleanupPad
->getParentPad()))) {
303 calculateCXXStateNumbers(FuncInfo
, PredBlock
->getFirstNonPHI(),
307 for (const User
*U
: CleanupPad
->users()) {
308 const auto *UserI
= cast
<Instruction
>(U
);
309 if (UserI
->isEHPad())
310 report_fatal_error("Cleanup funclets for the MSVC++ personality cannot "
311 "contain exceptional actions");
316 static int addSEHExcept(WinEHFuncInfo
&FuncInfo
, int ParentState
,
317 const Function
*Filter
, const BasicBlock
*Handler
) {
318 SEHUnwindMapEntry Entry
;
319 Entry
.ToState
= ParentState
;
320 Entry
.IsFinally
= false;
321 Entry
.Filter
= Filter
;
322 Entry
.Handler
= Handler
;
323 FuncInfo
.SEHUnwindMap
.push_back(Entry
);
324 return FuncInfo
.SEHUnwindMap
.size() - 1;
327 static int addSEHFinally(WinEHFuncInfo
&FuncInfo
, int ParentState
,
328 const BasicBlock
*Handler
) {
329 SEHUnwindMapEntry Entry
;
330 Entry
.ToState
= ParentState
;
331 Entry
.IsFinally
= true;
332 Entry
.Filter
= nullptr;
333 Entry
.Handler
= Handler
;
334 FuncInfo
.SEHUnwindMap
.push_back(Entry
);
335 return FuncInfo
.SEHUnwindMap
.size() - 1;
338 static void calculateSEHStateNumbers(WinEHFuncInfo
&FuncInfo
,
339 const Instruction
*FirstNonPHI
,
341 const BasicBlock
*BB
= FirstNonPHI
->getParent();
342 assert(BB
->isEHPad() && "no a funclet!");
344 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(FirstNonPHI
)) {
345 assert(FuncInfo
.EHPadStateMap
.count(CatchSwitch
) == 0 &&
346 "shouldn't revist catch funclets!");
348 // Extract the filter function and the __except basic block and create a
350 assert(CatchSwitch
->getNumHandlers() == 1 &&
351 "SEH doesn't have multiple handlers per __try");
352 const auto *CatchPad
=
353 cast
<CatchPadInst
>((*CatchSwitch
->handler_begin())->getFirstNonPHI());
354 const BasicBlock
*CatchPadBB
= CatchPad
->getParent();
355 const Constant
*FilterOrNull
=
356 cast
<Constant
>(CatchPad
->getArgOperand(0)->stripPointerCasts());
357 const Function
*Filter
= dyn_cast
<Function
>(FilterOrNull
);
358 assert((Filter
|| FilterOrNull
->isNullValue()) &&
359 "unexpected filter value");
360 int TryState
= addSEHExcept(FuncInfo
, ParentState
, Filter
, CatchPadBB
);
362 // Everything in the __try block uses TryState as its parent state.
363 FuncInfo
.EHPadStateMap
[CatchSwitch
] = TryState
;
364 LLVM_DEBUG(dbgs() << "Assigning state #" << TryState
<< " to BB "
365 << CatchPadBB
->getName() << '\n');
366 for (const BasicBlock
*PredBlock
: predecessors(BB
))
367 if ((PredBlock
= getEHPadFromPredecessor(PredBlock
,
368 CatchSwitch
->getParentPad())))
369 calculateSEHStateNumbers(FuncInfo
, PredBlock
->getFirstNonPHI(),
372 // Everything in the __except block unwinds to ParentState, just like code
373 // outside the __try.
374 for (const User
*U
: CatchPad
->users()) {
375 const auto *UserI
= cast
<Instruction
>(U
);
376 if (auto *InnerCatchSwitch
= dyn_cast
<CatchSwitchInst
>(UserI
)) {
377 BasicBlock
*UnwindDest
= InnerCatchSwitch
->getUnwindDest();
378 if (!UnwindDest
|| UnwindDest
== CatchSwitch
->getUnwindDest())
379 calculateSEHStateNumbers(FuncInfo
, UserI
, ParentState
);
381 if (auto *InnerCleanupPad
= dyn_cast
<CleanupPadInst
>(UserI
)) {
382 BasicBlock
*UnwindDest
= getCleanupRetUnwindDest(InnerCleanupPad
);
383 // If a nested cleanup pad reports a null unwind destination and the
384 // enclosing catch pad doesn't it must be post-dominated by an
385 // unreachable instruction.
386 if (!UnwindDest
|| UnwindDest
== CatchSwitch
->getUnwindDest())
387 calculateSEHStateNumbers(FuncInfo
, UserI
, ParentState
);
391 auto *CleanupPad
= cast
<CleanupPadInst
>(FirstNonPHI
);
393 // It's possible for a cleanup to be visited twice: it might have multiple
394 // cleanupret instructions.
395 if (FuncInfo
.EHPadStateMap
.count(CleanupPad
))
398 int CleanupState
= addSEHFinally(FuncInfo
, ParentState
, BB
);
399 FuncInfo
.EHPadStateMap
[CleanupPad
] = CleanupState
;
400 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState
<< " to BB "
401 << BB
->getName() << '\n');
402 for (const BasicBlock
*PredBlock
: predecessors(BB
))
404 getEHPadFromPredecessor(PredBlock
, CleanupPad
->getParentPad())))
405 calculateSEHStateNumbers(FuncInfo
, PredBlock
->getFirstNonPHI(),
407 for (const User
*U
: CleanupPad
->users()) {
408 const auto *UserI
= cast
<Instruction
>(U
);
409 if (UserI
->isEHPad())
410 report_fatal_error("Cleanup funclets for the SEH personality cannot "
411 "contain exceptional actions");
416 static bool isTopLevelPadForMSVC(const Instruction
*EHPad
) {
417 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(EHPad
))
418 return isa
<ConstantTokenNone
>(CatchSwitch
->getParentPad()) &&
419 CatchSwitch
->unwindsToCaller();
420 if (auto *CleanupPad
= dyn_cast
<CleanupPadInst
>(EHPad
))
421 return isa
<ConstantTokenNone
>(CleanupPad
->getParentPad()) &&
422 getCleanupRetUnwindDest(CleanupPad
) == nullptr;
423 if (isa
<CatchPadInst
>(EHPad
))
425 llvm_unreachable("unexpected EHPad!");
428 void llvm::calculateSEHStateNumbers(const Function
*Fn
,
429 WinEHFuncInfo
&FuncInfo
) {
430 // Don't compute state numbers twice.
431 if (!FuncInfo
.SEHUnwindMap
.empty())
434 for (const BasicBlock
&BB
: *Fn
) {
437 const Instruction
*FirstNonPHI
= BB
.getFirstNonPHI();
438 if (!isTopLevelPadForMSVC(FirstNonPHI
))
440 ::calculateSEHStateNumbers(FuncInfo
, FirstNonPHI
, -1);
443 calculateStateNumbersForInvokes(Fn
, FuncInfo
);
446 void llvm::calculateWinCXXEHStateNumbers(const Function
*Fn
,
447 WinEHFuncInfo
&FuncInfo
) {
448 // Return if it's already been done.
449 if (!FuncInfo
.EHPadStateMap
.empty())
452 for (const BasicBlock
&BB
: *Fn
) {
455 const Instruction
*FirstNonPHI
= BB
.getFirstNonPHI();
456 if (!isTopLevelPadForMSVC(FirstNonPHI
))
458 calculateCXXStateNumbers(FuncInfo
, FirstNonPHI
, -1);
461 calculateStateNumbersForInvokes(Fn
, FuncInfo
);
464 static int addClrEHHandler(WinEHFuncInfo
&FuncInfo
, int HandlerParentState
,
465 int TryParentState
, ClrHandlerType HandlerType
,
466 uint32_t TypeToken
, const BasicBlock
*Handler
) {
467 ClrEHUnwindMapEntry Entry
;
468 Entry
.HandlerParentState
= HandlerParentState
;
469 Entry
.TryParentState
= TryParentState
;
470 Entry
.Handler
= Handler
;
471 Entry
.HandlerType
= HandlerType
;
472 Entry
.TypeToken
= TypeToken
;
473 FuncInfo
.ClrEHUnwindMap
.push_back(Entry
);
474 return FuncInfo
.ClrEHUnwindMap
.size() - 1;
477 void llvm::calculateClrEHStateNumbers(const Function
*Fn
,
478 WinEHFuncInfo
&FuncInfo
) {
479 // Return if it's already been done.
480 if (!FuncInfo
.EHPadStateMap
.empty())
483 // This numbering assigns one state number to each catchpad and cleanuppad.
484 // It also computes two tree-like relations over states:
485 // 1) Each state has a "HandlerParentState", which is the state of the next
486 // outer handler enclosing this state's handler (same as nearest ancestor
487 // per the ParentPad linkage on EH pads, but skipping over catchswitches).
488 // 2) Each state has a "TryParentState", which:
489 // a) for a catchpad that's not the last handler on its catchswitch, is
490 // the state of the next catchpad on that catchswitch
491 // b) for all other pads, is the state of the pad whose try region is the
492 // next outer try region enclosing this state's try region. The "try
493 // regions are not present as such in the IR, but will be inferred
494 // based on the placement of invokes and pads which reach each other
495 // by exceptional exits
496 // Catchswitches do not get their own states, but each gets mapped to the
497 // state of its first catchpad.
499 // Step one: walk down from outermost to innermost funclets, assigning each
500 // catchpad and cleanuppad a state number. Add an entry to the
501 // ClrEHUnwindMap for each state, recording its HandlerParentState and
502 // handler attributes. Record the TryParentState as well for each catchpad
503 // that's not the last on its catchswitch, but initialize all other entries'
504 // TryParentStates to a sentinel -1 value that the next pass will update.
506 // Seed a worklist with pads that have no parent.
507 SmallVector
<std::pair
<const Instruction
*, int>, 8> Worklist
;
508 for (const BasicBlock
&BB
: *Fn
) {
509 const Instruction
*FirstNonPHI
= BB
.getFirstNonPHI();
510 const Value
*ParentPad
;
511 if (const auto *CPI
= dyn_cast
<CleanupPadInst
>(FirstNonPHI
))
512 ParentPad
= CPI
->getParentPad();
513 else if (const auto *CSI
= dyn_cast
<CatchSwitchInst
>(FirstNonPHI
))
514 ParentPad
= CSI
->getParentPad();
517 if (isa
<ConstantTokenNone
>(ParentPad
))
518 Worklist
.emplace_back(FirstNonPHI
, -1);
521 // Use the worklist to visit all pads, from outer to inner. Record
522 // HandlerParentState for all pads. Record TryParentState only for catchpads
523 // that aren't the last on their catchswitch (setting all other entries'
524 // TryParentStates to an initial value of -1). This loop is also responsible
525 // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and
527 while (!Worklist
.empty()) {
528 const Instruction
*Pad
;
529 int HandlerParentState
;
530 std::tie(Pad
, HandlerParentState
) = Worklist
.pop_back_val();
532 if (const auto *Cleanup
= dyn_cast
<CleanupPadInst
>(Pad
)) {
533 // Create the entry for this cleanup with the appropriate handler
534 // properties. Finally and fault handlers are distinguished by arity.
535 ClrHandlerType HandlerType
=
536 (Cleanup
->getNumArgOperands() ? ClrHandlerType::Fault
537 : ClrHandlerType::Finally
);
538 int CleanupState
= addClrEHHandler(FuncInfo
, HandlerParentState
, -1,
539 HandlerType
, 0, Pad
->getParent());
540 // Queue any child EH pads on the worklist.
541 for (const User
*U
: Cleanup
->users())
542 if (const auto *I
= dyn_cast
<Instruction
>(U
))
544 Worklist
.emplace_back(I
, CleanupState
);
545 // Remember this pad's state.
546 FuncInfo
.EHPadStateMap
[Cleanup
] = CleanupState
;
548 // Walk the handlers of this catchswitch in reverse order since all but
549 // the last need to set the following one as its TryParentState.
550 const auto *CatchSwitch
= cast
<CatchSwitchInst
>(Pad
);
551 int CatchState
= -1, FollowerState
= -1;
552 SmallVector
<const BasicBlock
*, 4> CatchBlocks(CatchSwitch
->handlers());
553 for (auto CBI
= CatchBlocks
.rbegin(), CBE
= CatchBlocks
.rend();
554 CBI
!= CBE
; ++CBI
, FollowerState
= CatchState
) {
555 const BasicBlock
*CatchBlock
= *CBI
;
556 // Create the entry for this catch with the appropriate handler
558 const auto *Catch
= cast
<CatchPadInst
>(CatchBlock
->getFirstNonPHI());
559 uint32_t TypeToken
= static_cast<uint32_t>(
560 cast
<ConstantInt
>(Catch
->getArgOperand(0))->getZExtValue());
562 addClrEHHandler(FuncInfo
, HandlerParentState
, FollowerState
,
563 ClrHandlerType::Catch
, TypeToken
, CatchBlock
);
564 // Queue any child EH pads on the worklist.
565 for (const User
*U
: Catch
->users())
566 if (const auto *I
= dyn_cast
<Instruction
>(U
))
568 Worklist
.emplace_back(I
, CatchState
);
569 // Remember this catch's state.
570 FuncInfo
.EHPadStateMap
[Catch
] = CatchState
;
572 // Associate the catchswitch with the state of its first catch.
573 assert(CatchSwitch
->getNumHandlers());
574 FuncInfo
.EHPadStateMap
[CatchSwitch
] = CatchState
;
578 // Step two: record the TryParentState of each state. For cleanuppads that
579 // don't have cleanuprets, we may need to infer this from their child pads,
580 // so visit pads in descendant-most to ancestor-most order.
581 for (auto Entry
= FuncInfo
.ClrEHUnwindMap
.rbegin(),
582 End
= FuncInfo
.ClrEHUnwindMap
.rend();
583 Entry
!= End
; ++Entry
) {
584 const Instruction
*Pad
=
585 Entry
->Handler
.get
<const BasicBlock
*>()->getFirstNonPHI();
586 // For most pads, the TryParentState is the state associated with the
587 // unwind dest of exceptional exits from it.
588 const BasicBlock
*UnwindDest
;
589 if (const auto *Catch
= dyn_cast
<CatchPadInst
>(Pad
)) {
590 // If a catch is not the last in its catchswitch, its TryParentState is
591 // the state associated with the next catch in the switch, even though
592 // that's not the unwind dest of exceptions escaping the catch. Those
593 // cases were already assigned a TryParentState in the first pass, so
595 if (Entry
->TryParentState
!= -1)
597 // Otherwise, get the unwind dest from the catchswitch.
598 UnwindDest
= Catch
->getCatchSwitch()->getUnwindDest();
600 const auto *Cleanup
= cast
<CleanupPadInst
>(Pad
);
601 UnwindDest
= nullptr;
602 for (const User
*U
: Cleanup
->users()) {
603 if (auto *CleanupRet
= dyn_cast
<CleanupReturnInst
>(U
)) {
604 // Common and unambiguous case -- cleanupret indicates cleanup's
606 UnwindDest
= CleanupRet
->getUnwindDest();
610 // Get an unwind dest for the user
611 const BasicBlock
*UserUnwindDest
= nullptr;
612 if (auto *Invoke
= dyn_cast
<InvokeInst
>(U
)) {
613 UserUnwindDest
= Invoke
->getUnwindDest();
614 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(U
)) {
615 UserUnwindDest
= CatchSwitch
->getUnwindDest();
616 } else if (auto *ChildCleanup
= dyn_cast
<CleanupPadInst
>(U
)) {
617 int UserState
= FuncInfo
.EHPadStateMap
[ChildCleanup
];
618 int UserUnwindState
=
619 FuncInfo
.ClrEHUnwindMap
[UserState
].TryParentState
;
620 if (UserUnwindState
!= -1)
621 UserUnwindDest
= FuncInfo
.ClrEHUnwindMap
[UserUnwindState
]
622 .Handler
.get
<const BasicBlock
*>();
625 // Not having an unwind dest for this user might indicate that it
626 // doesn't unwind, so can't be taken as proof that the cleanup itself
627 // may unwind to caller (see e.g. SimplifyUnreachable and
628 // RemoveUnwindEdge).
632 // Now we have an unwind dest for the user, but we need to see if it
633 // unwinds all the way out of the cleanup or if it stays within it.
634 const Instruction
*UserUnwindPad
= UserUnwindDest
->getFirstNonPHI();
635 const Value
*UserUnwindParent
;
636 if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(UserUnwindPad
))
637 UserUnwindParent
= CSI
->getParentPad();
640 cast
<CleanupPadInst
>(UserUnwindPad
)->getParentPad();
642 // The unwind stays within the cleanup iff it targets a child of the
644 if (UserUnwindParent
== Cleanup
)
647 // This unwind exits the cleanup, so its dest is the cleanup's dest.
648 UnwindDest
= UserUnwindDest
;
653 // Record the state of the unwind dest as the TryParentState.
656 // If UnwindDest is null at this point, either the pad in question can
657 // be exited by unwind to caller, or it cannot be exited by unwind. In
658 // either case, reporting such cases as unwinding to caller is correct.
659 // This can lead to EH tables that "look strange" -- if this pad's is in
660 // a parent funclet which has other children that do unwind to an enclosing
661 // pad, the try region for this pad will be missing the "duplicate" EH
662 // clause entries that you'd expect to see covering the whole parent. That
663 // should be benign, since the unwind never actually happens. If it were
664 // an issue, we could add a subsequent pass that pushes unwind dests down
665 // from parents that have them to children that appear to unwind to caller.
667 UnwindDestState
= -1;
669 UnwindDestState
= FuncInfo
.EHPadStateMap
[UnwindDest
->getFirstNonPHI()];
672 Entry
->TryParentState
= UnwindDestState
;
675 // Step three: transfer information from pads to invokes.
676 calculateStateNumbersForInvokes(Fn
, FuncInfo
);
679 void WinEHPrepare::colorFunclets(Function
&F
) {
680 BlockColors
= colorEHFunclets(F
);
682 // Invert the map from BB to colors to color to BBs.
683 for (BasicBlock
&BB
: F
) {
684 ColorVector
&Colors
= BlockColors
[&BB
];
685 for (BasicBlock
*Color
: Colors
)
686 FuncletBlocks
[Color
].push_back(&BB
);
690 void WinEHPrepare::demotePHIsOnFunclets(Function
&F
,
691 bool DemoteCatchSwitchPHIOnly
) {
692 // Strip PHI nodes off of EH pads.
693 SmallVector
<PHINode
*, 16> PHINodes
;
694 for (Function::iterator FI
= F
.begin(), FE
= F
.end(); FI
!= FE
;) {
695 BasicBlock
*BB
= &*FI
++;
698 if (DemoteCatchSwitchPHIOnly
&& !isa
<CatchSwitchInst
>(BB
->getFirstNonPHI()))
701 for (BasicBlock::iterator BI
= BB
->begin(), BE
= BB
->end(); BI
!= BE
;) {
702 Instruction
*I
= &*BI
++;
703 auto *PN
= dyn_cast
<PHINode
>(I
);
704 // Stop at the first non-PHI.
708 AllocaInst
*SpillSlot
= insertPHILoads(PN
, F
);
710 insertPHIStores(PN
, SpillSlot
);
712 PHINodes
.push_back(PN
);
716 for (auto *PN
: PHINodes
) {
717 // There may be lingering uses on other EH PHIs being removed
718 PN
->replaceAllUsesWith(UndefValue::get(PN
->getType()));
719 PN
->eraseFromParent();
723 void WinEHPrepare::cloneCommonBlocks(Function
&F
) {
724 // We need to clone all blocks which belong to multiple funclets. Values are
725 // remapped throughout the funclet to propagate both the new instructions
726 // *and* the new basic blocks themselves.
727 for (auto &Funclets
: FuncletBlocks
) {
728 BasicBlock
*FuncletPadBB
= Funclets
.first
;
729 std::vector
<BasicBlock
*> &BlocksInFunclet
= Funclets
.second
;
731 if (FuncletPadBB
== &F
.getEntryBlock())
732 FuncletToken
= ConstantTokenNone::get(F
.getContext());
734 FuncletToken
= FuncletPadBB
->getFirstNonPHI();
736 std::vector
<std::pair
<BasicBlock
*, BasicBlock
*>> Orig2Clone
;
737 ValueToValueMapTy VMap
;
738 for (BasicBlock
*BB
: BlocksInFunclet
) {
739 ColorVector
&ColorsForBB
= BlockColors
[BB
];
740 // We don't need to do anything if the block is monochromatic.
741 size_t NumColorsForBB
= ColorsForBB
.size();
742 if (NumColorsForBB
== 1)
745 DEBUG_WITH_TYPE("winehprepare-coloring",
746 dbgs() << " Cloning block \'" << BB
->getName()
747 << "\' for funclet \'" << FuncletPadBB
->getName()
750 // Create a new basic block and copy instructions into it!
752 CloneBasicBlock(BB
, VMap
, Twine(".for.", FuncletPadBB
->getName()));
753 // Insert the clone immediately after the original to ensure determinism
754 // and to keep the same relative ordering of any funclet's blocks.
755 CBB
->insertInto(&F
, BB
->getNextNode());
757 // Add basic block mapping.
760 // Record delta operations that we need to perform to our color mappings.
761 Orig2Clone
.emplace_back(BB
, CBB
);
764 // If nothing was cloned, we're done cloning in this funclet.
765 if (Orig2Clone
.empty())
768 // Update our color mappings to reflect that one block has lost a color and
769 // another has gained a color.
770 for (auto &BBMapping
: Orig2Clone
) {
771 BasicBlock
*OldBlock
= BBMapping
.first
;
772 BasicBlock
*NewBlock
= BBMapping
.second
;
774 BlocksInFunclet
.push_back(NewBlock
);
775 ColorVector
&NewColors
= BlockColors
[NewBlock
];
776 assert(NewColors
.empty() && "A new block should only have one color!");
777 NewColors
.push_back(FuncletPadBB
);
779 DEBUG_WITH_TYPE("winehprepare-coloring",
780 dbgs() << " Assigned color \'" << FuncletPadBB
->getName()
781 << "\' to block \'" << NewBlock
->getName()
784 BlocksInFunclet
.erase(
785 std::remove(BlocksInFunclet
.begin(), BlocksInFunclet
.end(), OldBlock
),
786 BlocksInFunclet
.end());
787 ColorVector
&OldColors
= BlockColors
[OldBlock
];
789 std::remove(OldColors
.begin(), OldColors
.end(), FuncletPadBB
),
792 DEBUG_WITH_TYPE("winehprepare-coloring",
793 dbgs() << " Removed color \'" << FuncletPadBB
->getName()
794 << "\' from block \'" << OldBlock
->getName()
798 // Loop over all of the instructions in this funclet, fixing up operand
799 // references as we go. This uses VMap to do all the hard work.
800 for (BasicBlock
*BB
: BlocksInFunclet
)
801 // Loop over all instructions, fixing each one as we find it...
802 for (Instruction
&I
: *BB
)
803 RemapInstruction(&I
, VMap
,
804 RF_IgnoreMissingLocals
| RF_NoModuleLevelChanges
);
806 // Catchrets targeting cloned blocks need to be updated separately from
807 // the loop above because they are not in the current funclet.
808 SmallVector
<CatchReturnInst
*, 2> FixupCatchrets
;
809 for (auto &BBMapping
: Orig2Clone
) {
810 BasicBlock
*OldBlock
= BBMapping
.first
;
811 BasicBlock
*NewBlock
= BBMapping
.second
;
813 FixupCatchrets
.clear();
814 for (BasicBlock
*Pred
: predecessors(OldBlock
))
815 if (auto *CatchRet
= dyn_cast
<CatchReturnInst
>(Pred
->getTerminator()))
816 if (CatchRet
->getCatchSwitchParentPad() == FuncletToken
)
817 FixupCatchrets
.push_back(CatchRet
);
819 for (CatchReturnInst
*CatchRet
: FixupCatchrets
)
820 CatchRet
->setSuccessor(NewBlock
);
823 auto UpdatePHIOnClonedBlock
= [&](PHINode
*PN
, bool IsForOldBlock
) {
824 unsigned NumPreds
= PN
->getNumIncomingValues();
825 for (unsigned PredIdx
= 0, PredEnd
= NumPreds
; PredIdx
!= PredEnd
;
827 BasicBlock
*IncomingBlock
= PN
->getIncomingBlock(PredIdx
);
828 bool EdgeTargetsFunclet
;
830 dyn_cast
<CatchReturnInst
>(IncomingBlock
->getTerminator())) {
831 EdgeTargetsFunclet
= (CRI
->getCatchSwitchParentPad() == FuncletToken
);
833 ColorVector
&IncomingColors
= BlockColors
[IncomingBlock
];
834 assert(!IncomingColors
.empty() && "Block not colored!");
835 assert((IncomingColors
.size() == 1 ||
836 llvm::all_of(IncomingColors
,
837 [&](BasicBlock
*Color
) {
838 return Color
!= FuncletPadBB
;
840 "Cloning should leave this funclet's blocks monochromatic");
841 EdgeTargetsFunclet
= (IncomingColors
.front() == FuncletPadBB
);
843 if (IsForOldBlock
!= EdgeTargetsFunclet
)
845 PN
->removeIncomingValue(IncomingBlock
, /*DeletePHIIfEmpty=*/false);
846 // Revisit the next entry.
852 for (auto &BBMapping
: Orig2Clone
) {
853 BasicBlock
*OldBlock
= BBMapping
.first
;
854 BasicBlock
*NewBlock
= BBMapping
.second
;
855 for (PHINode
&OldPN
: OldBlock
->phis()) {
856 UpdatePHIOnClonedBlock(&OldPN
, /*IsForOldBlock=*/true);
858 for (PHINode
&NewPN
: NewBlock
->phis()) {
859 UpdatePHIOnClonedBlock(&NewPN
, /*IsForOldBlock=*/false);
863 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
864 // the PHI nodes for NewBB now.
865 for (auto &BBMapping
: Orig2Clone
) {
866 BasicBlock
*OldBlock
= BBMapping
.first
;
867 BasicBlock
*NewBlock
= BBMapping
.second
;
868 for (BasicBlock
*SuccBB
: successors(NewBlock
)) {
869 for (PHINode
&SuccPN
: SuccBB
->phis()) {
870 // Ok, we have a PHI node. Figure out what the incoming value was for
872 int OldBlockIdx
= SuccPN
.getBasicBlockIndex(OldBlock
);
873 if (OldBlockIdx
== -1)
875 Value
*IV
= SuccPN
.getIncomingValue(OldBlockIdx
);
877 // Remap the value if necessary.
878 if (auto *Inst
= dyn_cast
<Instruction
>(IV
)) {
879 ValueToValueMapTy::iterator I
= VMap
.find(Inst
);
884 SuccPN
.addIncoming(IV
, NewBlock
);
889 for (ValueToValueMapTy::value_type VT
: VMap
) {
890 // If there were values defined in BB that are used outside the funclet,
891 // then we now have to update all uses of the value to use either the
892 // original value, the cloned value, or some PHI derived value. This can
893 // require arbitrary PHI insertion, of which we are prepared to do, clean
895 SmallVector
<Use
*, 16> UsesToRename
;
897 auto *OldI
= dyn_cast
<Instruction
>(const_cast<Value
*>(VT
.first
));
900 auto *NewI
= cast
<Instruction
>(VT
.second
);
901 // Scan all uses of this instruction to see if it is used outside of its
902 // funclet, and if so, record them in UsesToRename.
903 for (Use
&U
: OldI
->uses()) {
904 Instruction
*UserI
= cast
<Instruction
>(U
.getUser());
905 BasicBlock
*UserBB
= UserI
->getParent();
906 ColorVector
&ColorsForUserBB
= BlockColors
[UserBB
];
907 assert(!ColorsForUserBB
.empty());
908 if (ColorsForUserBB
.size() > 1 ||
909 *ColorsForUserBB
.begin() != FuncletPadBB
)
910 UsesToRename
.push_back(&U
);
913 // If there are no uses outside the block, we're done with this
915 if (UsesToRename
.empty())
918 // We found a use of OldI outside of the funclet. Rename all uses of OldI
919 // that are outside its funclet to be uses of the appropriate PHI node
921 SSAUpdater SSAUpdate
;
922 SSAUpdate
.Initialize(OldI
->getType(), OldI
->getName());
923 SSAUpdate
.AddAvailableValue(OldI
->getParent(), OldI
);
924 SSAUpdate
.AddAvailableValue(NewI
->getParent(), NewI
);
926 while (!UsesToRename
.empty())
927 SSAUpdate
.RewriteUseAfterInsertions(*UsesToRename
.pop_back_val());
932 void WinEHPrepare::removeImplausibleInstructions(Function
&F
) {
933 // Remove implausible terminators and replace them with UnreachableInst.
934 for (auto &Funclet
: FuncletBlocks
) {
935 BasicBlock
*FuncletPadBB
= Funclet
.first
;
936 std::vector
<BasicBlock
*> &BlocksInFunclet
= Funclet
.second
;
937 Instruction
*FirstNonPHI
= FuncletPadBB
->getFirstNonPHI();
938 auto *FuncletPad
= dyn_cast
<FuncletPadInst
>(FirstNonPHI
);
939 auto *CatchPad
= dyn_cast_or_null
<CatchPadInst
>(FuncletPad
);
940 auto *CleanupPad
= dyn_cast_or_null
<CleanupPadInst
>(FuncletPad
);
942 for (BasicBlock
*BB
: BlocksInFunclet
) {
943 for (Instruction
&I
: *BB
) {
948 Value
*FuncletBundleOperand
= nullptr;
949 if (auto BU
= CS
.getOperandBundle(LLVMContext::OB_funclet
))
950 FuncletBundleOperand
= BU
->Inputs
.front();
952 if (FuncletBundleOperand
== FuncletPad
)
955 // Skip call sites which are nounwind intrinsics or inline asm.
957 dyn_cast
<Function
>(CS
.getCalledValue()->stripPointerCasts());
958 if (CalledFn
&& ((CalledFn
->isIntrinsic() && CS
.doesNotThrow()) ||
962 // This call site was not part of this funclet, remove it.
964 // Remove the unwind edge if it was an invoke.
965 removeUnwindEdge(BB
);
966 // Get a pointer to the new call.
967 BasicBlock::iterator CallI
=
968 std::prev(BB
->getTerminator()->getIterator());
969 auto *CI
= cast
<CallInst
>(&*CallI
);
970 changeToUnreachable(CI
, /*UseLLVMTrap=*/false);
972 changeToUnreachable(&I
, /*UseLLVMTrap=*/false);
975 // There are no more instructions in the block (except for unreachable),
980 TerminatorInst
*TI
= BB
->getTerminator();
981 // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
982 bool IsUnreachableRet
= isa
<ReturnInst
>(TI
) && FuncletPad
;
983 // The token consumed by a CatchReturnInst must match the funclet token.
984 bool IsUnreachableCatchret
= false;
985 if (auto *CRI
= dyn_cast
<CatchReturnInst
>(TI
))
986 IsUnreachableCatchret
= CRI
->getCatchPad() != CatchPad
;
987 // The token consumed by a CleanupReturnInst must match the funclet token.
988 bool IsUnreachableCleanupret
= false;
989 if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(TI
))
990 IsUnreachableCleanupret
= CRI
->getCleanupPad() != CleanupPad
;
991 if (IsUnreachableRet
|| IsUnreachableCatchret
||
992 IsUnreachableCleanupret
) {
993 changeToUnreachable(TI
, /*UseLLVMTrap=*/false);
994 } else if (isa
<InvokeInst
>(TI
)) {
995 if (Personality
== EHPersonality::MSVC_CXX
&& CleanupPad
) {
996 // Invokes within a cleanuppad for the MSVC++ personality never
997 // transfer control to their unwind edge: the personality will
998 // terminate the program.
999 removeUnwindEdge(BB
);
1006 void WinEHPrepare::cleanupPreparedFunclets(Function
&F
) {
1007 // Clean-up some of the mess we made by removing useles PHI nodes, trivial
1009 for (Function::iterator FI
= F
.begin(), FE
= F
.end(); FI
!= FE
;) {
1010 BasicBlock
*BB
= &*FI
++;
1011 SimplifyInstructionsInBlock(BB
);
1012 ConstantFoldTerminator(BB
, /*DeleteDeadConditions=*/true);
1013 MergeBlockIntoPredecessor(BB
);
1016 // We might have some unreachable blocks after cleaning up some impossible
1018 removeUnreachableBlocks(F
);
1022 void WinEHPrepare::verifyPreparedFunclets(Function
&F
) {
1023 for (BasicBlock
&BB
: F
) {
1024 size_t NumColors
= BlockColors
[&BB
].size();
1025 assert(NumColors
== 1 && "Expected monochromatic BB!");
1027 report_fatal_error("Uncolored BB!");
1029 report_fatal_error("Multicolor BB!");
1030 assert((DisableDemotion
|| !(BB
.isEHPad() && isa
<PHINode
>(BB
.begin()))) &&
1031 "EH Pad still has a PHI!");
1036 bool WinEHPrepare::prepareExplicitEH(Function
&F
) {
1037 // Remove unreachable blocks. It is not valuable to assign them a color and
1038 // their existence can trick us into thinking values are alive when they are
1040 removeUnreachableBlocks(F
);
1042 // Determine which blocks are reachable from which funclet entries.
1045 cloneCommonBlocks(F
);
1047 if (!DisableDemotion
)
1048 demotePHIsOnFunclets(F
, DemoteCatchSwitchPHIOnly
||
1049 DemoteCatchSwitchPHIOnlyOpt
);
1051 if (!DisableCleanups
) {
1052 LLVM_DEBUG(verifyFunction(F
));
1053 removeImplausibleInstructions(F
);
1055 LLVM_DEBUG(verifyFunction(F
));
1056 cleanupPreparedFunclets(F
);
1059 LLVM_DEBUG(verifyPreparedFunclets(F
));
1060 // Recolor the CFG to verify that all is well.
1061 LLVM_DEBUG(colorFunclets(F
));
1062 LLVM_DEBUG(verifyPreparedFunclets(F
));
1064 BlockColors
.clear();
1065 FuncletBlocks
.clear();
1070 // TODO: Share loads when one use dominates another, or when a catchpad exit
1071 // dominates uses (needs dominators).
1072 AllocaInst
*WinEHPrepare::insertPHILoads(PHINode
*PN
, Function
&F
) {
1073 BasicBlock
*PHIBlock
= PN
->getParent();
1074 AllocaInst
*SpillSlot
= nullptr;
1075 Instruction
*EHPad
= PHIBlock
->getFirstNonPHI();
1077 if (!EHPad
->isTerminator()) {
1078 // If the EHPad isn't a terminator, then we can insert a load in this block
1079 // that will dominate all uses.
1080 SpillSlot
= new AllocaInst(PN
->getType(), DL
->getAllocaAddrSpace(), nullptr,
1081 Twine(PN
->getName(), ".wineh.spillslot"),
1082 &F
.getEntryBlock().front());
1083 Value
*V
= new LoadInst(SpillSlot
, Twine(PN
->getName(), ".wineh.reload"),
1084 &*PHIBlock
->getFirstInsertionPt());
1085 PN
->replaceAllUsesWith(V
);
1089 // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert
1090 // loads of the slot before every use.
1091 DenseMap
<BasicBlock
*, Value
*> Loads
;
1092 for (Value::use_iterator UI
= PN
->use_begin(), UE
= PN
->use_end();
1095 auto *UsingInst
= cast
<Instruction
>(U
.getUser());
1096 if (isa
<PHINode
>(UsingInst
) && UsingInst
->getParent()->isEHPad()) {
1097 // Use is on an EH pad phi. Leave it alone; we'll insert loads and
1098 // stores for it separately.
1101 replaceUseWithLoad(PN
, U
, SpillSlot
, Loads
, F
);
1106 // TODO: improve store placement. Inserting at def is probably good, but need
1107 // to be careful not to introduce interfering stores (needs liveness analysis).
1108 // TODO: identify related phi nodes that can share spill slots, and share them
1109 // (also needs liveness).
1110 void WinEHPrepare::insertPHIStores(PHINode
*OriginalPHI
,
1111 AllocaInst
*SpillSlot
) {
1112 // Use a worklist of (Block, Value) pairs -- the given Value needs to be
1113 // stored to the spill slot by the end of the given Block.
1114 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 4> Worklist
;
1116 Worklist
.push_back({OriginalPHI
->getParent(), OriginalPHI
});
1118 while (!Worklist
.empty()) {
1119 BasicBlock
*EHBlock
;
1121 std::tie(EHBlock
, InVal
) = Worklist
.pop_back_val();
1123 PHINode
*PN
= dyn_cast
<PHINode
>(InVal
);
1124 if (PN
&& PN
->getParent() == EHBlock
) {
1125 // The value is defined by another PHI we need to remove, with no room to
1126 // insert a store after the PHI, so each predecessor needs to store its
1128 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
< e
; ++i
) {
1129 Value
*PredVal
= PN
->getIncomingValue(i
);
1131 // Undef can safely be skipped.
1132 if (isa
<UndefValue
>(PredVal
))
1135 insertPHIStore(PN
->getIncomingBlock(i
), PredVal
, SpillSlot
, Worklist
);
1138 // We need to store InVal, which dominates EHBlock, but can't put a store
1139 // in EHBlock, so need to put stores in each predecessor.
1140 for (BasicBlock
*PredBlock
: predecessors(EHBlock
)) {
1141 insertPHIStore(PredBlock
, InVal
, SpillSlot
, Worklist
);
1147 void WinEHPrepare::insertPHIStore(
1148 BasicBlock
*PredBlock
, Value
*PredVal
, AllocaInst
*SpillSlot
,
1149 SmallVectorImpl
<std::pair
<BasicBlock
*, Value
*>> &Worklist
) {
1151 if (PredBlock
->isEHPad() && PredBlock
->getFirstNonPHI()->isTerminator()) {
1152 // Pred is unsplittable, so we need to queue it on the worklist.
1153 Worklist
.push_back({PredBlock
, PredVal
});
1157 // Otherwise, insert the store at the end of the basic block.
1158 new StoreInst(PredVal
, SpillSlot
, PredBlock
->getTerminator());
1161 void WinEHPrepare::replaceUseWithLoad(Value
*V
, Use
&U
, AllocaInst
*&SpillSlot
,
1162 DenseMap
<BasicBlock
*, Value
*> &Loads
,
1164 // Lazilly create the spill slot.
1166 SpillSlot
= new AllocaInst(V
->getType(), DL
->getAllocaAddrSpace(), nullptr,
1167 Twine(V
->getName(), ".wineh.spillslot"),
1168 &F
.getEntryBlock().front());
1170 auto *UsingInst
= cast
<Instruction
>(U
.getUser());
1171 if (auto *UsingPHI
= dyn_cast
<PHINode
>(UsingInst
)) {
1172 // If this is a PHI node, we can't insert a load of the value before
1173 // the use. Instead insert the load in the predecessor block
1174 // corresponding to the incoming value.
1176 // Note that if there are multiple edges from a basic block to this
1177 // PHI node that we cannot have multiple loads. The problem is that
1178 // the resulting PHI node will have multiple values (from each load)
1179 // coming in from the same block, which is illegal SSA form.
1180 // For this reason, we keep track of and reuse loads we insert.
1181 BasicBlock
*IncomingBlock
= UsingPHI
->getIncomingBlock(U
);
1182 if (auto *CatchRet
=
1183 dyn_cast
<CatchReturnInst
>(IncomingBlock
->getTerminator())) {
1184 // Putting a load above a catchret and use on the phi would still leave
1185 // a cross-funclet def/use. We need to split the edge, change the
1186 // catchret to target the new block, and put the load there.
1187 BasicBlock
*PHIBlock
= UsingInst
->getParent();
1188 BasicBlock
*NewBlock
= SplitEdge(IncomingBlock
, PHIBlock
);
1189 // SplitEdge gives us:
1192 // br label %NewBlock
1194 // catchret label %PHIBlock
1198 // catchret label %NewBlock
1200 // br label %PHIBlock
1201 // So move the terminators to each others' blocks and swap their
1203 BranchInst
*Goto
= cast
<BranchInst
>(IncomingBlock
->getTerminator());
1204 Goto
->removeFromParent();
1205 CatchRet
->removeFromParent();
1206 IncomingBlock
->getInstList().push_back(CatchRet
);
1207 NewBlock
->getInstList().push_back(Goto
);
1208 Goto
->setSuccessor(0, PHIBlock
);
1209 CatchRet
->setSuccessor(NewBlock
);
1210 // Update the color mapping for the newly split edge.
1211 // Grab a reference to the ColorVector to be inserted before getting the
1212 // reference to the vector we are copying because inserting the new
1213 // element in BlockColors might cause the map to be reallocated.
1214 ColorVector
&ColorsForNewBlock
= BlockColors
[NewBlock
];
1215 ColorVector
&ColorsForPHIBlock
= BlockColors
[PHIBlock
];
1216 ColorsForNewBlock
= ColorsForPHIBlock
;
1217 for (BasicBlock
*FuncletPad
: ColorsForPHIBlock
)
1218 FuncletBlocks
[FuncletPad
].push_back(NewBlock
);
1219 // Treat the new block as incoming for load insertion.
1220 IncomingBlock
= NewBlock
;
1222 Value
*&Load
= Loads
[IncomingBlock
];
1223 // Insert the load into the predecessor block
1225 Load
= new LoadInst(SpillSlot
, Twine(V
->getName(), ".wineh.reload"),
1226 /*Volatile=*/false, IncomingBlock
->getTerminator());
1230 // Reload right before the old use.
1231 auto *Load
= new LoadInst(SpillSlot
, Twine(V
->getName(), ".wineh.reload"),
1232 /*Volatile=*/false, UsingInst
);
1237 void WinEHFuncInfo::addIPToStateRange(const InvokeInst
*II
,
1238 MCSymbol
*InvokeBegin
,
1239 MCSymbol
*InvokeEnd
) {
1240 assert(InvokeStateMap
.count(II
) &&
1241 "should get invoke with precomputed state");
1242 LabelToStateMap
[InvokeBegin
] = std::make_pair(InvokeStateMap
[II
], InvokeEnd
);
1245 WinEHFuncInfo::WinEHFuncInfo() {}