1 //===- NVPTXInstrInfo.td - NVPTX Instruction defs -------------*- tblgen-*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file describes the PTX instructions in TableGen format.
12 //===----------------------------------------------------------------------===//
14 include "NVPTXInstrFormats.td"
17 let hasSideEffects = 0 in {
18 def NOP : NVPTXInst<(outs), (ins), "", []>;
21 let OperandType = "OPERAND_IMMEDIATE" in {
22 def f16imm : Operand<f16>;
25 // List of vector specific properties
26 def isVecLD : VecInstTypeEnum<1>;
27 def isVecST : VecInstTypeEnum<2>;
28 def isVecBuild : VecInstTypeEnum<3>;
29 def isVecShuffle : VecInstTypeEnum<4>;
30 def isVecExtract : VecInstTypeEnum<5>;
31 def isVecInsert : VecInstTypeEnum<6>;
32 def isVecDest : VecInstTypeEnum<7>;
33 def isVecOther : VecInstTypeEnum<15>;
35 //===----------------------------------------------------------------------===//
36 // NVPTX Operand Definitions.
37 //===----------------------------------------------------------------------===//
39 def brtarget : Operand<OtherVT>;
41 // CVT conversion modes
42 // These must match the enum in NVPTX.h
43 def CvtNONE : PatLeaf<(i32 0x0)>;
44 def CvtRNI : PatLeaf<(i32 0x1)>;
45 def CvtRZI : PatLeaf<(i32 0x2)>;
46 def CvtRMI : PatLeaf<(i32 0x3)>;
47 def CvtRPI : PatLeaf<(i32 0x4)>;
48 def CvtRN : PatLeaf<(i32 0x5)>;
49 def CvtRZ : PatLeaf<(i32 0x6)>;
50 def CvtRM : PatLeaf<(i32 0x7)>;
51 def CvtRP : PatLeaf<(i32 0x8)>;
53 def CvtNONE_FTZ : PatLeaf<(i32 0x10)>;
54 def CvtRNI_FTZ : PatLeaf<(i32 0x11)>;
55 def CvtRZI_FTZ : PatLeaf<(i32 0x12)>;
56 def CvtRMI_FTZ : PatLeaf<(i32 0x13)>;
57 def CvtRPI_FTZ : PatLeaf<(i32 0x14)>;
58 def CvtRN_FTZ : PatLeaf<(i32 0x15)>;
59 def CvtRZ_FTZ : PatLeaf<(i32 0x16)>;
60 def CvtRM_FTZ : PatLeaf<(i32 0x17)>;
61 def CvtRP_FTZ : PatLeaf<(i32 0x18)>;
63 def CvtSAT : PatLeaf<(i32 0x20)>;
64 def CvtSAT_FTZ : PatLeaf<(i32 0x30)>;
66 def CvtMode : Operand<i32> {
67 let PrintMethod = "printCvtMode";
71 // These must match the enum in NVPTX.h
72 def CmpEQ : PatLeaf<(i32 0)>;
73 def CmpNE : PatLeaf<(i32 1)>;
74 def CmpLT : PatLeaf<(i32 2)>;
75 def CmpLE : PatLeaf<(i32 3)>;
76 def CmpGT : PatLeaf<(i32 4)>;
77 def CmpGE : PatLeaf<(i32 5)>;
78 def CmpEQU : PatLeaf<(i32 10)>;
79 def CmpNEU : PatLeaf<(i32 11)>;
80 def CmpLTU : PatLeaf<(i32 12)>;
81 def CmpLEU : PatLeaf<(i32 13)>;
82 def CmpGTU : PatLeaf<(i32 14)>;
83 def CmpGEU : PatLeaf<(i32 15)>;
84 def CmpNUM : PatLeaf<(i32 16)>;
85 def CmpNAN : PatLeaf<(i32 17)>;
87 def CmpEQ_FTZ : PatLeaf<(i32 0x100)>;
88 def CmpNE_FTZ : PatLeaf<(i32 0x101)>;
89 def CmpLT_FTZ : PatLeaf<(i32 0x102)>;
90 def CmpLE_FTZ : PatLeaf<(i32 0x103)>;
91 def CmpGT_FTZ : PatLeaf<(i32 0x104)>;
92 def CmpGE_FTZ : PatLeaf<(i32 0x105)>;
93 def CmpEQU_FTZ : PatLeaf<(i32 0x10A)>;
94 def CmpNEU_FTZ : PatLeaf<(i32 0x10B)>;
95 def CmpLTU_FTZ : PatLeaf<(i32 0x10C)>;
96 def CmpLEU_FTZ : PatLeaf<(i32 0x10D)>;
97 def CmpGTU_FTZ : PatLeaf<(i32 0x10E)>;
98 def CmpGEU_FTZ : PatLeaf<(i32 0x10F)>;
99 def CmpNUM_FTZ : PatLeaf<(i32 0x110)>;
100 def CmpNAN_FTZ : PatLeaf<(i32 0x111)>;
102 def CmpMode : Operand<i32> {
103 let PrintMethod = "printCmpMode";
105 def VecElement : Operand<i32> {
106 let PrintMethod = "printVecElement";
109 //===----------------------------------------------------------------------===//
110 // NVPTX Instruction Predicate Definitions
111 //===----------------------------------------------------------------------===//
114 def hasAtomAddF64 : Predicate<"Subtarget->hasAtomAddF64()">;
115 def hasAtomScope : Predicate<"Subtarget->hasAtomScope()">;
116 def hasAtomBitwise64 : Predicate<"Subtarget->hasAtomBitwise64()">;
117 def hasAtomMinMax64 : Predicate<"Subtarget->hasAtomMinMax64()">;
118 def hasVote : Predicate<"Subtarget->hasVote()">;
119 def hasDouble : Predicate<"Subtarget->hasDouble()">;
120 def hasLDG : Predicate<"Subtarget->hasLDG()">;
121 def hasLDU : Predicate<"Subtarget->hasLDU()">;
123 def doF32FTZ : Predicate<"useF32FTZ()">;
124 def doNoF32FTZ : Predicate<"!useF32FTZ()">;
126 def doMulWide : Predicate<"doMulWide">;
128 def allowFMA : Predicate<"allowFMA()">;
129 def noFMA : Predicate<"!allowFMA()">;
130 def allowUnsafeFPMath : Predicate<"allowUnsafeFPMath()">;
132 def do_DIVF32_APPROX : Predicate<"getDivF32Level()==0">;
133 def do_DIVF32_FULL : Predicate<"getDivF32Level()==1">;
135 def do_SQRTF32_APPROX : Predicate<"!usePrecSqrtF32()">;
136 def do_SQRTF32_RN : Predicate<"usePrecSqrtF32()">;
138 def hasHWROT32 : Predicate<"Subtarget->hasHWROT32()">;
139 def noHWROT32 : Predicate<"!Subtarget->hasHWROT32()">;
141 def true : Predicate<"true">;
143 def hasPTX31 : Predicate<"Subtarget->getPTXVersion() >= 31">;
144 def hasPTX60 : Predicate<"Subtarget->getPTXVersion() >= 60">;
145 def hasPTX61 : Predicate<"Subtarget->getPTXVersion() >= 61">;
147 def hasSM30 : Predicate<"Subtarget->getSmVersion() >= 30">;
148 def hasSM70 : Predicate<"Subtarget->getSmVersion() >= 70">;
150 def useShortPtr : Predicate<"useShortPointers()">;
151 def useFP16Math: Predicate<"Subtarget->allowFP16Math()">;
153 //===----------------------------------------------------------------------===//
154 // Some Common Instruction Class Templates
155 //===----------------------------------------------------------------------===//
157 // Template for instructions which take three int64, int32, or int16 args.
158 // The instructions are named "<OpcStr><Width>" (e.g. "add.s64").
159 multiclass I3<string OpcStr, SDNode OpNode> {
161 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b),
162 !strconcat(OpcStr, "64 \t$dst, $a, $b;"),
163 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int64Regs:$b))]>;
165 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b),
166 !strconcat(OpcStr, "64 \t$dst, $a, $b;"),
167 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>;
169 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
170 !strconcat(OpcStr, "32 \t$dst, $a, $b;"),
171 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>;
173 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
174 !strconcat(OpcStr, "32 \t$dst, $a, $b;"),
175 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>;
177 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
178 !strconcat(OpcStr, "16 \t$dst, $a, $b;"),
179 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int16Regs:$b))]>;
181 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
182 !strconcat(OpcStr, "16 \t$dst, $a, $b;"),
183 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, (imm):$b))]>;
186 // Template for instructions which take 3 int32 args. The instructions are
187 // named "<OpcStr>.s32" (e.g. "addc.cc.s32").
188 multiclass ADD_SUB_INT_32<string OpcStr, SDNode OpNode> {
190 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
191 !strconcat(OpcStr, ".s32 \t$dst, $a, $b;"),
192 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>;
194 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
195 !strconcat(OpcStr, ".s32 \t$dst, $a, $b;"),
196 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>;
199 // Template for instructions which take three fp64 or fp32 args. The
200 // instructions are named "<OpcStr>.f<Width>" (e.g. "min.f64").
202 // Also defines ftz (flush subnormal inputs and results to sign-preserving
203 // zero) variants for fp32 functions.
205 // This multiclass should be used for nodes that cannot be folded into FMAs.
206 // For nodes that can be folded into FMAs (i.e. adds and muls), use
208 multiclass F3<string OpcStr, SDNode OpNode> {
210 NVPTXInst<(outs Float64Regs:$dst),
211 (ins Float64Regs:$a, Float64Regs:$b),
212 !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"),
213 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>;
215 NVPTXInst<(outs Float64Regs:$dst),
216 (ins Float64Regs:$a, f64imm:$b),
217 !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"),
218 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>;
220 NVPTXInst<(outs Float32Regs:$dst),
221 (ins Float32Regs:$a, Float32Regs:$b),
222 !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"),
223 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
224 Requires<[doF32FTZ]>;
226 NVPTXInst<(outs Float32Regs:$dst),
227 (ins Float32Regs:$a, f32imm:$b),
228 !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"),
229 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
230 Requires<[doF32FTZ]>;
232 NVPTXInst<(outs Float32Regs:$dst),
233 (ins Float32Regs:$a, Float32Regs:$b),
234 !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"),
235 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>;
237 NVPTXInst<(outs Float32Regs:$dst),
238 (ins Float32Regs:$a, f32imm:$b),
239 !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"),
240 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>;
243 // Template for instructions which take three FP args. The
244 // instructions are named "<OpcStr>.f<Width>" (e.g. "add.f64").
246 // Also defines ftz (flush subnormal inputs and results to sign-preserving
247 // zero) variants for fp32/fp16 functions.
249 // This multiclass should be used for nodes that can be folded to make fma ops.
250 // In this case, we use the ".rn" variant when FMA is disabled, as this behaves
251 // just like the non ".rn" op, but prevents ptxas from creating FMAs.
252 multiclass F3_fma_component<string OpcStr, SDNode OpNode> {
254 NVPTXInst<(outs Float64Regs:$dst),
255 (ins Float64Regs:$a, Float64Regs:$b),
256 !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"),
257 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>,
258 Requires<[allowFMA]>;
260 NVPTXInst<(outs Float64Regs:$dst),
261 (ins Float64Regs:$a, f64imm:$b),
262 !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"),
263 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>,
264 Requires<[allowFMA]>;
266 NVPTXInst<(outs Float32Regs:$dst),
267 (ins Float32Regs:$a, Float32Regs:$b),
268 !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"),
269 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
270 Requires<[allowFMA, doF32FTZ]>;
272 NVPTXInst<(outs Float32Regs:$dst),
273 (ins Float32Regs:$a, f32imm:$b),
274 !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"),
275 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
276 Requires<[allowFMA, doF32FTZ]>;
278 NVPTXInst<(outs Float32Regs:$dst),
279 (ins Float32Regs:$a, Float32Regs:$b),
280 !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"),
281 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
282 Requires<[allowFMA]>;
284 NVPTXInst<(outs Float32Regs:$dst),
285 (ins Float32Regs:$a, f32imm:$b),
286 !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"),
287 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
288 Requires<[allowFMA]>;
291 NVPTXInst<(outs Float16Regs:$dst),
292 (ins Float16Regs:$a, Float16Regs:$b),
293 !strconcat(OpcStr, ".ftz.f16 \t$dst, $a, $b;"),
294 [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>,
295 Requires<[useFP16Math, allowFMA, doF32FTZ]>;
297 NVPTXInst<(outs Float16Regs:$dst),
298 (ins Float16Regs:$a, Float16Regs:$b),
299 !strconcat(OpcStr, ".f16 \t$dst, $a, $b;"),
300 [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>,
301 Requires<[useFP16Math, allowFMA]>;
304 NVPTXInst<(outs Float16x2Regs:$dst),
305 (ins Float16x2Regs:$a, Float16x2Regs:$b),
306 !strconcat(OpcStr, ".ftz.f16x2 \t$dst, $a, $b;"),
307 [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>,
308 Requires<[useFP16Math, allowFMA, doF32FTZ]>;
310 NVPTXInst<(outs Float16x2Regs:$dst),
311 (ins Float16x2Regs:$a, Float16x2Regs:$b),
312 !strconcat(OpcStr, ".f16x2 \t$dst, $a, $b;"),
313 [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>,
314 Requires<[useFP16Math, allowFMA]>;
316 // These have strange names so we don't perturb existing mir tests.
318 NVPTXInst<(outs Float64Regs:$dst),
319 (ins Float64Regs:$a, Float64Regs:$b),
320 !strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"),
321 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>,
324 NVPTXInst<(outs Float64Regs:$dst),
325 (ins Float64Regs:$a, f64imm:$b),
326 !strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"),
327 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>,
330 NVPTXInst<(outs Float32Regs:$dst),
331 (ins Float32Regs:$a, Float32Regs:$b),
332 !strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"),
333 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
334 Requires<[noFMA, doF32FTZ]>;
336 NVPTXInst<(outs Float32Regs:$dst),
337 (ins Float32Regs:$a, f32imm:$b),
338 !strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"),
339 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
340 Requires<[noFMA, doF32FTZ]>;
342 NVPTXInst<(outs Float32Regs:$dst),
343 (ins Float32Regs:$a, Float32Regs:$b),
344 !strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"),
345 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
348 NVPTXInst<(outs Float32Regs:$dst),
349 (ins Float32Regs:$a, f32imm:$b),
350 !strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"),
351 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
354 NVPTXInst<(outs Float16Regs:$dst),
355 (ins Float16Regs:$a, Float16Regs:$b),
356 !strconcat(OpcStr, ".rn.ftz.f16 \t$dst, $a, $b;"),
357 [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>,
358 Requires<[useFP16Math, noFMA, doF32FTZ]>;
360 NVPTXInst<(outs Float16Regs:$dst),
361 (ins Float16Regs:$a, Float16Regs:$b),
362 !strconcat(OpcStr, ".rn.f16 \t$dst, $a, $b;"),
363 [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>,
364 Requires<[useFP16Math, noFMA]>;
366 NVPTXInst<(outs Float16x2Regs:$dst),
367 (ins Float16x2Regs:$a, Float16x2Regs:$b),
368 !strconcat(OpcStr, ".rn.ftz.f16x2 \t$dst, $a, $b;"),
369 [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>,
370 Requires<[useFP16Math, noFMA, doF32FTZ]>;
372 NVPTXInst<(outs Float16x2Regs:$dst),
373 (ins Float16x2Regs:$a, Float16x2Regs:$b),
374 !strconcat(OpcStr, ".rn.f16x2 \t$dst, $a, $b;"),
375 [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>,
376 Requires<[useFP16Math, noFMA]>;
379 // Template for operations which take two f32 or f64 operands. Provides three
380 // instructions: <OpcStr>.f64, <OpcStr>.f32, and <OpcStr>.ftz.f32 (flush
381 // subnormal inputs and results to zero).
382 multiclass F2<string OpcStr, SDNode OpNode> {
383 def f64 : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$a),
384 !strconcat(OpcStr, ".f64 \t$dst, $a;"),
385 [(set Float64Regs:$dst, (OpNode Float64Regs:$a))]>;
386 def f32_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a),
387 !strconcat(OpcStr, ".ftz.f32 \t$dst, $a;"),
388 [(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>,
389 Requires<[doF32FTZ]>;
390 def f32 : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a),
391 !strconcat(OpcStr, ".f32 \t$dst, $a;"),
392 [(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>;
395 //===----------------------------------------------------------------------===//
396 // NVPTX Instructions.
397 //===----------------------------------------------------------------------===//
399 //-----------------------------------
401 //-----------------------------------
403 let hasSideEffects = 0 in {
404 // Generate a cvt to the given type from all possible types. Each instance
405 // takes a CvtMode immediate that defines the conversion mode to use. It can
406 // be CvtNONE to omit a conversion mode.
407 multiclass CVT_FROM_ALL<string FromName, RegisterClass RC> {
409 NVPTXInst<(outs RC:$dst),
410 (ins Int16Regs:$src, CvtMode:$mode),
411 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
412 FromName, ".s8 \t$dst, $src;"), []>;
414 NVPTXInst<(outs RC:$dst),
415 (ins Int16Regs:$src, CvtMode:$mode),
416 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
417 FromName, ".u8 \t$dst, $src;"), []>;
419 NVPTXInst<(outs RC:$dst),
420 (ins Int16Regs:$src, CvtMode:$mode),
421 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
422 FromName, ".s16 \t$dst, $src;"), []>;
424 NVPTXInst<(outs RC:$dst),
425 (ins Int16Regs:$src, CvtMode:$mode),
426 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
427 FromName, ".u16 \t$dst, $src;"), []>;
429 NVPTXInst<(outs RC:$dst),
430 (ins Int32Regs:$src, CvtMode:$mode),
431 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
432 FromName, ".s32 \t$dst, $src;"), []>;
434 NVPTXInst<(outs RC:$dst),
435 (ins Int32Regs:$src, CvtMode:$mode),
436 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
437 FromName, ".u32 \t$dst, $src;"), []>;
439 NVPTXInst<(outs RC:$dst),
440 (ins Int64Regs:$src, CvtMode:$mode),
441 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
442 FromName, ".s64 \t$dst, $src;"), []>;
444 NVPTXInst<(outs RC:$dst),
445 (ins Int64Regs:$src, CvtMode:$mode),
446 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
447 FromName, ".u64 \t$dst, $src;"), []>;
449 NVPTXInst<(outs RC:$dst),
450 (ins Float16Regs:$src, CvtMode:$mode),
451 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
452 FromName, ".f16 \t$dst, $src;"), []>;
454 NVPTXInst<(outs RC:$dst),
455 (ins Float32Regs:$src, CvtMode:$mode),
456 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
457 FromName, ".f32 \t$dst, $src;"), []>;
459 NVPTXInst<(outs RC:$dst),
460 (ins Float64Regs:$src, CvtMode:$mode),
461 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
462 FromName, ".f64 \t$dst, $src;"), []>;
465 // Generate cvts from all types to all types.
466 defm CVT_s8 : CVT_FROM_ALL<"s8", Int16Regs>;
467 defm CVT_u8 : CVT_FROM_ALL<"u8", Int16Regs>;
468 defm CVT_s16 : CVT_FROM_ALL<"s16", Int16Regs>;
469 defm CVT_u16 : CVT_FROM_ALL<"u16", Int16Regs>;
470 defm CVT_s32 : CVT_FROM_ALL<"s32", Int32Regs>;
471 defm CVT_u32 : CVT_FROM_ALL<"u32", Int32Regs>;
472 defm CVT_s64 : CVT_FROM_ALL<"s64", Int64Regs>;
473 defm CVT_u64 : CVT_FROM_ALL<"u64", Int64Regs>;
474 defm CVT_f16 : CVT_FROM_ALL<"f16", Float16Regs>;
475 defm CVT_f32 : CVT_FROM_ALL<"f32", Float32Regs>;
476 defm CVT_f64 : CVT_FROM_ALL<"f64", Float64Regs>;
478 // These cvts are different from those above: The source and dest registers
479 // are of the same type.
480 def CVT_INREG_s16_s8 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
481 "cvt.s16.s8 \t$dst, $src;", []>;
482 def CVT_INREG_s32_s8 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
483 "cvt.s32.s8 \t$dst, $src;", []>;
484 def CVT_INREG_s32_s16 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
485 "cvt.s32.s16 \t$dst, $src;", []>;
486 def CVT_INREG_s64_s8 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
487 "cvt.s64.s8 \t$dst, $src;", []>;
488 def CVT_INREG_s64_s16 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
489 "cvt.s64.s16 \t$dst, $src;", []>;
490 def CVT_INREG_s64_s32 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
491 "cvt.s64.s32 \t$dst, $src;", []>;
494 //-----------------------------------
495 // Integer Arithmetic
496 //-----------------------------------
498 // Template for xor masquerading as int1 arithmetic.
499 multiclass ADD_SUB_i1<SDNode OpNode> {
500 def _rr: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b),
501 "xor.pred \t$dst, $a, $b;",
502 [(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>;
503 def _ri: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b),
504 "xor.pred \t$dst, $a, $b;",
505 [(set Int1Regs:$dst, (OpNode Int1Regs:$a, (imm):$b))]>;
508 // int1 addition and subtraction are both just xor.
509 defm ADD_i1 : ADD_SUB_i1<add>;
510 defm SUB_i1 : ADD_SUB_i1<sub>;
512 // int16, int32, and int64 signed addition. Since nvptx is 2's complement, we
513 // also use these for unsigned arithmetic.
514 defm ADD : I3<"add.s", add>;
515 defm SUB : I3<"sub.s", sub>;
517 // int32 addition and subtraction with carry-out.
518 // FIXME: PTX 4.3 adds a 64-bit add.cc (and maybe also 64-bit addc.cc?).
519 defm ADDCC : ADD_SUB_INT_32<"add.cc", addc>;
520 defm SUBCC : ADD_SUB_INT_32<"sub.cc", subc>;
522 // int32 addition and subtraction with carry-in and carry-out.
523 defm ADDCCC : ADD_SUB_INT_32<"addc.cc", adde>;
524 defm SUBCCC : ADD_SUB_INT_32<"subc.cc", sube>;
526 defm MULT : I3<"mul.lo.s", mul>;
528 defm MULTHS : I3<"mul.hi.s", mulhs>;
529 defm MULTHU : I3<"mul.hi.u", mulhu>;
531 defm SDIV : I3<"div.s", sdiv>;
532 defm UDIV : I3<"div.u", udiv>;
534 // The ri versions of rem.s and rem.u won't be selected; DAGCombiner::visitSREM
536 defm SREM : I3<"rem.s", srem>;
537 defm UREM : I3<"rem.u", urem>;
539 // Integer absolute value. NumBits should be one minus the bit width of RC.
540 // This idiom implements the algorithm at
541 // http://graphics.stanford.edu/~seander/bithacks.html#IntegerAbs.
542 multiclass ABS<RegisterClass RC, string SizeName> {
543 def : NVPTXInst<(outs RC:$dst), (ins RC:$a),
544 !strconcat("abs", SizeName, " \t$dst, $a;"),
545 [(set RC:$dst, (abs RC:$a))]>;
547 defm ABS_16 : ABS<Int16Regs, ".s16">;
548 defm ABS_32 : ABS<Int32Regs, ".s32">;
549 defm ABS_64 : ABS<Int64Regs, ".s64">;
552 defm SMAX : I3<"max.s", smax>;
553 defm UMAX : I3<"max.u", umax>;
554 defm SMIN : I3<"min.s", smin>;
555 defm UMIN : I3<"min.u", umin>;
558 // Wide multiplication
561 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
562 "mul.wide.s32 \t$dst, $a, $b;", []>;
564 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
565 "mul.wide.s32 \t$dst, $a, $b;", []>;
566 def MULWIDES64Imm64 :
567 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b),
568 "mul.wide.s32 \t$dst, $a, $b;", []>;
571 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
572 "mul.wide.u32 \t$dst, $a, $b;", []>;
574 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
575 "mul.wide.u32 \t$dst, $a, $b;", []>;
576 def MULWIDEU64Imm64 :
577 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b),
578 "mul.wide.u32 \t$dst, $a, $b;", []>;
581 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
582 "mul.wide.s16 \t$dst, $a, $b;", []>;
584 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
585 "mul.wide.s16 \t$dst, $a, $b;", []>;
586 def MULWIDES32Imm32 :
587 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b),
588 "mul.wide.s16 \t$dst, $a, $b;", []>;
591 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
592 "mul.wide.u16 \t$dst, $a, $b;", []>;
594 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
595 "mul.wide.u16 \t$dst, $a, $b;", []>;
596 def MULWIDEU32Imm32 :
597 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b),
598 "mul.wide.u16 \t$dst, $a, $b;", []>;
600 def SDTMulWide : SDTypeProfile<1, 2, [SDTCisSameAs<1, 2>]>;
601 def mul_wide_signed : SDNode<"NVPTXISD::MUL_WIDE_SIGNED", SDTMulWide>;
602 def mul_wide_unsigned : SDNode<"NVPTXISD::MUL_WIDE_UNSIGNED", SDTMulWide>;
604 // Matchers for signed, unsigned mul.wide ISD nodes.
605 def : Pat<(i32 (mul_wide_signed Int16Regs:$a, Int16Regs:$b)),
606 (MULWIDES32 Int16Regs:$a, Int16Regs:$b)>,
607 Requires<[doMulWide]>;
608 def : Pat<(i32 (mul_wide_signed Int16Regs:$a, imm:$b)),
609 (MULWIDES32Imm Int16Regs:$a, imm:$b)>,
610 Requires<[doMulWide]>;
611 def : Pat<(i32 (mul_wide_unsigned Int16Regs:$a, Int16Regs:$b)),
612 (MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>,
613 Requires<[doMulWide]>;
614 def : Pat<(i32 (mul_wide_unsigned Int16Regs:$a, imm:$b)),
615 (MULWIDEU32Imm Int16Regs:$a, imm:$b)>,
616 Requires<[doMulWide]>;
618 def : Pat<(i64 (mul_wide_signed Int32Regs:$a, Int32Regs:$b)),
619 (MULWIDES64 Int32Regs:$a, Int32Regs:$b)>,
620 Requires<[doMulWide]>;
621 def : Pat<(i64 (mul_wide_signed Int32Regs:$a, imm:$b)),
622 (MULWIDES64Imm Int32Regs:$a, imm:$b)>,
623 Requires<[doMulWide]>;
624 def : Pat<(i64 (mul_wide_unsigned Int32Regs:$a, Int32Regs:$b)),
625 (MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>,
626 Requires<[doMulWide]>;
627 def : Pat<(i64 (mul_wide_unsigned Int32Regs:$a, imm:$b)),
628 (MULWIDEU64Imm Int32Regs:$a, imm:$b)>,
629 Requires<[doMulWide]>;
631 // Predicates used for converting some patterns to mul.wide.
632 def SInt32Const : PatLeaf<(imm), [{
633 const APInt &v = N->getAPIntValue();
634 return v.isSignedIntN(32);
637 def UInt32Const : PatLeaf<(imm), [{
638 const APInt &v = N->getAPIntValue();
642 def SInt16Const : PatLeaf<(imm), [{
643 const APInt &v = N->getAPIntValue();
644 return v.isSignedIntN(16);
647 def UInt16Const : PatLeaf<(imm), [{
648 const APInt &v = N->getAPIntValue();
652 def Int5Const : PatLeaf<(imm), [{
653 // Check if 0 <= v < 32; only then will the result of (x << v) be an int32.
654 const APInt &v = N->getAPIntValue();
655 return v.sge(0) && v.slt(32);
658 def Int4Const : PatLeaf<(imm), [{
659 // Check if 0 <= v < 16; only then will the result of (x << v) be an int16.
660 const APInt &v = N->getAPIntValue();
661 return v.sge(0) && v.slt(16);
664 def SHL2MUL32 : SDNodeXForm<imm, [{
665 const APInt &v = N->getAPIntValue();
667 return CurDAG->getTargetConstant(temp.shl(v), SDLoc(N), MVT::i32);
670 def SHL2MUL16 : SDNodeXForm<imm, [{
671 const APInt &v = N->getAPIntValue();
673 return CurDAG->getTargetConstant(temp.shl(v), SDLoc(N), MVT::i16);
676 // Convert "sign/zero-extend, then shift left by an immediate" to mul.wide.
677 def : Pat<(shl (sext Int32Regs:$a), (i32 Int5Const:$b)),
678 (MULWIDES64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>,
679 Requires<[doMulWide]>;
680 def : Pat<(shl (zext Int32Regs:$a), (i32 Int5Const:$b)),
681 (MULWIDEU64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>,
682 Requires<[doMulWide]>;
684 def : Pat<(shl (sext Int16Regs:$a), (i16 Int4Const:$b)),
685 (MULWIDES32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>,
686 Requires<[doMulWide]>;
687 def : Pat<(shl (zext Int16Regs:$a), (i16 Int4Const:$b)),
688 (MULWIDEU32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>,
689 Requires<[doMulWide]>;
691 // Convert "sign/zero-extend then multiply" to mul.wide.
692 def : Pat<(mul (sext Int32Regs:$a), (sext Int32Regs:$b)),
693 (MULWIDES64 Int32Regs:$a, Int32Regs:$b)>,
694 Requires<[doMulWide]>;
695 def : Pat<(mul (sext Int32Regs:$a), (i64 SInt32Const:$b)),
696 (MULWIDES64Imm64 Int32Regs:$a, (i64 SInt32Const:$b))>,
697 Requires<[doMulWide]>;
699 def : Pat<(mul (zext Int32Regs:$a), (zext Int32Regs:$b)),
700 (MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>,
701 Requires<[doMulWide]>;
702 def : Pat<(mul (zext Int32Regs:$a), (i64 UInt32Const:$b)),
703 (MULWIDEU64Imm64 Int32Regs:$a, (i64 UInt32Const:$b))>,
704 Requires<[doMulWide]>;
706 def : Pat<(mul (sext Int16Regs:$a), (sext Int16Regs:$b)),
707 (MULWIDES32 Int16Regs:$a, Int16Regs:$b)>,
708 Requires<[doMulWide]>;
709 def : Pat<(mul (sext Int16Regs:$a), (i32 SInt16Const:$b)),
710 (MULWIDES32Imm32 Int16Regs:$a, (i32 SInt16Const:$b))>,
711 Requires<[doMulWide]>;
713 def : Pat<(mul (zext Int16Regs:$a), (zext Int16Regs:$b)),
714 (MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>,
715 Requires<[doMulWide]>;
716 def : Pat<(mul (zext Int16Regs:$a), (i32 UInt16Const:$b)),
717 (MULWIDEU32Imm32 Int16Regs:$a, (i32 UInt16Const:$b))>,
718 Requires<[doMulWide]>;
721 // Integer multiply-add
724 SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<2>,
725 SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>]>;
726 def imad : SDNode<"NVPTXISD::IMAD", SDTIMAD>;
729 NVPTXInst<(outs Int16Regs:$dst),
730 (ins Int16Regs:$a, Int16Regs:$b, Int16Regs:$c),
731 "mad.lo.s16 \t$dst, $a, $b, $c;",
732 [(set Int16Regs:$dst, (imad Int16Regs:$a, Int16Regs:$b, Int16Regs:$c))]>;
734 NVPTXInst<(outs Int16Regs:$dst),
735 (ins Int16Regs:$a, Int16Regs:$b, i16imm:$c),
736 "mad.lo.s16 \t$dst, $a, $b, $c;",
737 [(set Int16Regs:$dst, (imad Int16Regs:$a, Int16Regs:$b, imm:$c))]>;
739 NVPTXInst<(outs Int16Regs:$dst),
740 (ins Int16Regs:$a, i16imm:$b, Int16Regs:$c),
741 "mad.lo.s16 \t$dst, $a, $b, $c;",
742 [(set Int16Regs:$dst, (imad Int16Regs:$a, imm:$b, Int16Regs:$c))]>;
744 NVPTXInst<(outs Int16Regs:$dst),
745 (ins Int16Regs:$a, i16imm:$b, i16imm:$c),
746 "mad.lo.s16 \t$dst, $a, $b, $c;",
747 [(set Int16Regs:$dst, (imad Int16Regs:$a, imm:$b, imm:$c))]>;
750 NVPTXInst<(outs Int32Regs:$dst),
751 (ins Int32Regs:$a, Int32Regs:$b, Int32Regs:$c),
752 "mad.lo.s32 \t$dst, $a, $b, $c;",
753 [(set Int32Regs:$dst, (imad Int32Regs:$a, Int32Regs:$b, Int32Regs:$c))]>;
755 NVPTXInst<(outs Int32Regs:$dst),
756 (ins Int32Regs:$a, Int32Regs:$b, i32imm:$c),
757 "mad.lo.s32 \t$dst, $a, $b, $c;",
758 [(set Int32Regs:$dst, (imad Int32Regs:$a, Int32Regs:$b, imm:$c))]>;
760 NVPTXInst<(outs Int32Regs:$dst),
761 (ins Int32Regs:$a, i32imm:$b, Int32Regs:$c),
762 "mad.lo.s32 \t$dst, $a, $b, $c;",
763 [(set Int32Regs:$dst, (imad Int32Regs:$a, imm:$b, Int32Regs:$c))]>;
765 NVPTXInst<(outs Int32Regs:$dst),
766 (ins Int32Regs:$a, i32imm:$b, i32imm:$c),
767 "mad.lo.s32 \t$dst, $a, $b, $c;",
768 [(set Int32Regs:$dst, (imad Int32Regs:$a, imm:$b, imm:$c))]>;
771 NVPTXInst<(outs Int64Regs:$dst),
772 (ins Int64Regs:$a, Int64Regs:$b, Int64Regs:$c),
773 "mad.lo.s64 \t$dst, $a, $b, $c;",
774 [(set Int64Regs:$dst, (imad Int64Regs:$a, Int64Regs:$b, Int64Regs:$c))]>;
776 NVPTXInst<(outs Int64Regs:$dst),
777 (ins Int64Regs:$a, Int64Regs:$b, i64imm:$c),
778 "mad.lo.s64 \t$dst, $a, $b, $c;",
779 [(set Int64Regs:$dst, (imad Int64Regs:$a, Int64Regs:$b, imm:$c))]>;
781 NVPTXInst<(outs Int64Regs:$dst),
782 (ins Int64Regs:$a, i64imm:$b, Int64Regs:$c),
783 "mad.lo.s64 \t$dst, $a, $b, $c;",
784 [(set Int64Regs:$dst, (imad Int64Regs:$a, imm:$b, Int64Regs:$c))]>;
786 NVPTXInst<(outs Int64Regs:$dst),
787 (ins Int64Regs:$a, i64imm:$b, i64imm:$c),
788 "mad.lo.s64 \t$dst, $a, $b, $c;",
789 [(set Int64Regs:$dst, (imad Int64Regs:$a, imm:$b, imm:$c))]>;
792 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
793 "neg.s16 \t$dst, $src;",
794 [(set Int16Regs:$dst, (ineg Int16Regs:$src))]>;
796 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
797 "neg.s32 \t$dst, $src;",
798 [(set Int32Regs:$dst, (ineg Int32Regs:$src))]>;
800 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
801 "neg.s64 \t$dst, $src;",
802 [(set Int64Regs:$dst, (ineg Int64Regs:$src))]>;
804 //-----------------------------------
805 // Floating Point Arithmetic
806 //-----------------------------------
809 def FloatConst1 : PatLeaf<(fpimm), [{
810 return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEsingle() &&
811 N->getValueAPF().convertToFloat() == 1.0f;
813 // Constant 1.0 (double)
814 def DoubleConst1 : PatLeaf<(fpimm), [{
815 return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEdouble() &&
816 N->getValueAPF().convertToDouble() == 1.0;
819 // Loads FP16 constant into a register.
821 // ptxas does not have hex representation for fp16, so we can't use
822 // fp16 immediate values in .f16 instructions. Instead we have to load
823 // the constant into a register using mov.b16.
825 NVPTXInst<(outs Float16Regs:$dst), (ins f16imm:$a),
826 "mov.b16 \t$dst, $a;", []>;
828 defm FADD : F3_fma_component<"add", fadd>;
829 defm FSUB : F3_fma_component<"sub", fsub>;
830 defm FMUL : F3_fma_component<"mul", fmul>;
832 defm FMIN : F3<"min", fminnum>;
833 defm FMAX : F3<"max", fmaxnum>;
835 defm FABS : F2<"abs", fabs>;
836 defm FNEG : F2<"neg", fneg>;
837 defm FSQRT : F2<"sqrt.rn", fsqrt>;
843 NVPTXInst<(outs Float64Regs:$dst),
844 (ins f64imm:$a, Float64Regs:$b),
845 "rcp.rn.f64 \t$dst, $b;",
846 [(set Float64Regs:$dst, (fdiv DoubleConst1:$a, Float64Regs:$b))]>;
848 NVPTXInst<(outs Float64Regs:$dst),
849 (ins Float64Regs:$a, Float64Regs:$b),
850 "div.rn.f64 \t$dst, $a, $b;",
851 [(set Float64Regs:$dst, (fdiv Float64Regs:$a, Float64Regs:$b))]>;
853 NVPTXInst<(outs Float64Regs:$dst),
854 (ins Float64Regs:$a, f64imm:$b),
855 "div.rn.f64 \t$dst, $a, $b;",
856 [(set Float64Regs:$dst, (fdiv Float64Regs:$a, fpimm:$b))]>;
859 // F32 Approximate reciprocal
862 NVPTXInst<(outs Float32Regs:$dst),
863 (ins f32imm:$a, Float32Regs:$b),
864 "rcp.approx.ftz.f32 \t$dst, $b;",
865 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
866 Requires<[do_DIVF32_APPROX, doF32FTZ]>;
868 NVPTXInst<(outs Float32Regs:$dst),
869 (ins f32imm:$a, Float32Regs:$b),
870 "rcp.approx.f32 \t$dst, $b;",
871 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
872 Requires<[do_DIVF32_APPROX]>;
874 // F32 Approximate division
876 def FDIV32approxrr_ftz :
877 NVPTXInst<(outs Float32Regs:$dst),
878 (ins Float32Regs:$a, Float32Regs:$b),
879 "div.approx.ftz.f32 \t$dst, $a, $b;",
880 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
881 Requires<[do_DIVF32_APPROX, doF32FTZ]>;
882 def FDIV32approxri_ftz :
883 NVPTXInst<(outs Float32Regs:$dst),
884 (ins Float32Regs:$a, f32imm:$b),
885 "div.approx.ftz.f32 \t$dst, $a, $b;",
886 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
887 Requires<[do_DIVF32_APPROX, doF32FTZ]>;
889 NVPTXInst<(outs Float32Regs:$dst),
890 (ins Float32Regs:$a, Float32Regs:$b),
891 "div.approx.f32 \t$dst, $a, $b;",
892 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
893 Requires<[do_DIVF32_APPROX]>;
895 NVPTXInst<(outs Float32Regs:$dst),
896 (ins Float32Regs:$a, f32imm:$b),
897 "div.approx.f32 \t$dst, $a, $b;",
898 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
899 Requires<[do_DIVF32_APPROX]>;
901 // F32 Semi-accurate reciprocal
903 // rcp.approx gives the same result as div.full(1.0f, a) and is faster.
905 def FDIV321r_approx_ftz :
906 NVPTXInst<(outs Float32Regs:$dst),
907 (ins f32imm:$a, Float32Regs:$b),
908 "rcp.approx.ftz.f32 \t$dst, $b;",
909 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
910 Requires<[do_DIVF32_FULL, doF32FTZ]>;
911 def FDIV321r_approx :
912 NVPTXInst<(outs Float32Regs:$dst),
913 (ins f32imm:$a, Float32Regs:$b),
914 "rcp.approx.f32 \t$dst, $b;",
915 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
916 Requires<[do_DIVF32_FULL]>;
918 // F32 Semi-accurate division
921 NVPTXInst<(outs Float32Regs:$dst),
922 (ins Float32Regs:$a, Float32Regs:$b),
923 "div.full.ftz.f32 \t$dst, $a, $b;",
924 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
925 Requires<[do_DIVF32_FULL, doF32FTZ]>;
927 NVPTXInst<(outs Float32Regs:$dst),
928 (ins Float32Regs:$a, f32imm:$b),
929 "div.full.ftz.f32 \t$dst, $a, $b;",
930 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
931 Requires<[do_DIVF32_FULL, doF32FTZ]>;
933 NVPTXInst<(outs Float32Regs:$dst),
934 (ins Float32Regs:$a, Float32Regs:$b),
935 "div.full.f32 \t$dst, $a, $b;",
936 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
937 Requires<[do_DIVF32_FULL]>;
939 NVPTXInst<(outs Float32Regs:$dst),
940 (ins Float32Regs:$a, f32imm:$b),
941 "div.full.f32 \t$dst, $a, $b;",
942 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
943 Requires<[do_DIVF32_FULL]>;
945 // F32 Accurate reciprocal
947 def FDIV321r_prec_ftz :
948 NVPTXInst<(outs Float32Regs:$dst),
949 (ins f32imm:$a, Float32Regs:$b),
950 "rcp.rn.ftz.f32 \t$dst, $b;",
951 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
952 Requires<[doF32FTZ]>;
954 NVPTXInst<(outs Float32Regs:$dst),
955 (ins f32imm:$a, Float32Regs:$b),
956 "rcp.rn.f32 \t$dst, $b;",
957 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>;
959 // F32 Accurate division
961 def FDIV32rr_prec_ftz :
962 NVPTXInst<(outs Float32Regs:$dst),
963 (ins Float32Regs:$a, Float32Regs:$b),
964 "div.rn.ftz.f32 \t$dst, $a, $b;",
965 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
966 Requires<[doF32FTZ]>;
967 def FDIV32ri_prec_ftz :
968 NVPTXInst<(outs Float32Regs:$dst),
969 (ins Float32Regs:$a, f32imm:$b),
970 "div.rn.ftz.f32 \t$dst, $a, $b;",
971 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
972 Requires<[doF32FTZ]>;
974 NVPTXInst<(outs Float32Regs:$dst),
975 (ins Float32Regs:$a, Float32Regs:$b),
976 "div.rn.f32 \t$dst, $a, $b;",
977 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>;
979 NVPTXInst<(outs Float32Regs:$dst),
980 (ins Float32Regs:$a, f32imm:$b),
981 "div.rn.f32 \t$dst, $a, $b;",
982 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>;
988 multiclass FMA<string OpcStr, RegisterClass RC, Operand ImmCls, Predicate Pred> {
989 def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c),
990 !strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
991 [(set RC:$dst, (fma RC:$a, RC:$b, RC:$c))]>,
993 def rri : NVPTXInst<(outs RC:$dst),
994 (ins RC:$a, RC:$b, ImmCls:$c),
995 !strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
996 [(set RC:$dst, (fma RC:$a, RC:$b, fpimm:$c))]>,
998 def rir : NVPTXInst<(outs RC:$dst),
999 (ins RC:$a, ImmCls:$b, RC:$c),
1000 !strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
1001 [(set RC:$dst, (fma RC:$a, fpimm:$b, RC:$c))]>,
1003 def rii : NVPTXInst<(outs RC:$dst),
1004 (ins RC:$a, ImmCls:$b, ImmCls:$c),
1005 !strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
1006 [(set RC:$dst, (fma RC:$a, fpimm:$b, fpimm:$c))]>,
1010 multiclass FMA_F16<string OpcStr, RegisterClass RC, Predicate Pred> {
1011 def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c),
1012 !strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
1013 [(set RC:$dst, (fma RC:$a, RC:$b, RC:$c))]>,
1014 Requires<[useFP16Math, Pred]>;
1017 defm FMA16_ftz : FMA_F16<"fma.rn.ftz.f16", Float16Regs, doF32FTZ>;
1018 defm FMA16 : FMA_F16<"fma.rn.f16", Float16Regs, true>;
1019 defm FMA16x2_ftz : FMA_F16<"fma.rn.ftz.f16x2", Float16x2Regs, doF32FTZ>;
1020 defm FMA16x2 : FMA_F16<"fma.rn.f16x2", Float16x2Regs, true>;
1021 defm FMA32_ftz : FMA<"fma.rn.ftz.f32", Float32Regs, f32imm, doF32FTZ>;
1022 defm FMA32 : FMA<"fma.rn.f32", Float32Regs, f32imm, true>;
1023 defm FMA64 : FMA<"fma.rn.f64", Float64Regs, f64imm, true>;
1026 def SINF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src),
1027 "sin.approx.f32 \t$dst, $src;",
1028 [(set Float32Regs:$dst, (fsin Float32Regs:$src))]>,
1029 Requires<[allowUnsafeFPMath]>;
1030 def COSF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src),
1031 "cos.approx.f32 \t$dst, $src;",
1032 [(set Float32Regs:$dst, (fcos Float32Regs:$src))]>,
1033 Requires<[allowUnsafeFPMath]>;
1035 // Lower (frem x, y) into (sub x, (mul (floor (div x, y)) y)),
1036 // i.e. "poor man's fmod()"
1039 def : Pat<(frem Float32Regs:$x, Float32Regs:$y),
1040 (FSUBf32rr_ftz Float32Regs:$x, (FMULf32rr_ftz (CVT_f32_f32
1041 (FDIV32rr_prec_ftz Float32Regs:$x, Float32Regs:$y), CvtRMI_FTZ),
1043 Requires<[doF32FTZ]>;
1044 def : Pat<(frem Float32Regs:$x, fpimm:$y),
1045 (FSUBf32rr_ftz Float32Regs:$x, (FMULf32ri_ftz (CVT_f32_f32
1046 (FDIV32ri_prec_ftz Float32Regs:$x, fpimm:$y), CvtRMI_FTZ),
1048 Requires<[doF32FTZ]>;
1051 def : Pat<(frem Float32Regs:$x, Float32Regs:$y),
1052 (FSUBf32rr Float32Regs:$x, (FMULf32rr (CVT_f32_f32
1053 (FDIV32rr_prec Float32Regs:$x, Float32Regs:$y), CvtRMI),
1055 def : Pat<(frem Float32Regs:$x, fpimm:$y),
1056 (FSUBf32rr Float32Regs:$x, (FMULf32ri (CVT_f32_f32
1057 (FDIV32ri_prec Float32Regs:$x, fpimm:$y), CvtRMI),
1061 def : Pat<(frem Float64Regs:$x, Float64Regs:$y),
1062 (FSUBf64rr Float64Regs:$x, (FMULf64rr (CVT_f64_f64
1063 (FDIV64rr Float64Regs:$x, Float64Regs:$y), CvtRMI),
1065 def : Pat<(frem Float64Regs:$x, fpimm:$y),
1066 (FSUBf64rr Float64Regs:$x, (FMULf64ri (CVT_f64_f64
1067 (FDIV64ri Float64Regs:$x, fpimm:$y), CvtRMI),
1070 //-----------------------------------
1071 // Bitwise operations
1072 //-----------------------------------
1074 // Template for three-arg bitwise operations. Takes three args, Creates .b16,
1075 // .b32, .b64, and .pred (predicate registers -- i.e., i1) versions of OpcStr.
1076 multiclass BITWISE<string OpcStr, SDNode OpNode> {
1078 NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b),
1079 !strconcat(OpcStr, ".pred \t$dst, $a, $b;"),
1080 [(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>;
1082 NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b),
1083 !strconcat(OpcStr, ".pred \t$dst, $a, $b;"),
1084 [(set Int1Regs:$dst, (OpNode Int1Regs:$a, imm:$b))]>;
1086 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
1087 !strconcat(OpcStr, ".b16 \t$dst, $a, $b;"),
1088 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int16Regs:$b))]>;
1090 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
1091 !strconcat(OpcStr, ".b16 \t$dst, $a, $b;"),
1092 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, imm:$b))]>;
1094 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
1095 !strconcat(OpcStr, ".b32 \t$dst, $a, $b;"),
1096 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>;
1098 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
1099 !strconcat(OpcStr, ".b32 \t$dst, $a, $b;"),
1100 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>;
1102 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b),
1103 !strconcat(OpcStr, ".b64 \t$dst, $a, $b;"),
1104 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int64Regs:$b))]>;
1106 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b),
1107 !strconcat(OpcStr, ".b64 \t$dst, $a, $b;"),
1108 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>;
1111 defm OR : BITWISE<"or", or>;
1112 defm AND : BITWISE<"and", and>;
1113 defm XOR : BITWISE<"xor", xor>;
1115 def NOT1 : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$src),
1116 "not.pred \t$dst, $src;",
1117 [(set Int1Regs:$dst, (not Int1Regs:$src))]>;
1118 def NOT16 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
1119 "not.b16 \t$dst, $src;",
1120 [(set Int16Regs:$dst, (not Int16Regs:$src))]>;
1121 def NOT32 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
1122 "not.b32 \t$dst, $src;",
1123 [(set Int32Regs:$dst, (not Int32Regs:$src))]>;
1124 def NOT64 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
1125 "not.b64 \t$dst, $src;",
1126 [(set Int64Regs:$dst, (not Int64Regs:$src))]>;
1128 // Template for left/right shifts. Takes three operands,
1129 // [dest (reg), src (reg), shift (reg or imm)].
1130 // dest and src may be int64, int32, or int16, but shift is always int32.
1132 // This template also defines a 32-bit shift (imm, imm) instruction.
1133 multiclass SHIFT<string OpcStr, SDNode OpNode> {
1135 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int32Regs:$b),
1136 !strconcat(OpcStr, "64 \t$dst, $a, $b;"),
1137 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int32Regs:$b))]>;
1139 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i32imm:$b),
1140 !strconcat(OpcStr, "64 \t$dst, $a, $b;"),
1141 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, (i32 imm:$b)))]>;
1143 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
1144 !strconcat(OpcStr, "32 \t$dst, $a, $b;"),
1145 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>;
1147 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
1148 !strconcat(OpcStr, "32 \t$dst, $a, $b;"),
1149 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, (i32 imm:$b)))]>;
1151 NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$a, i32imm:$b),
1152 !strconcat(OpcStr, "32 \t$dst, $a, $b;"),
1153 [(set Int32Regs:$dst, (OpNode (i32 imm:$a), (i32 imm:$b)))]>;
1155 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int32Regs:$b),
1156 !strconcat(OpcStr, "16 \t$dst, $a, $b;"),
1157 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int32Regs:$b))]>;
1159 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i32imm:$b),
1160 !strconcat(OpcStr, "16 \t$dst, $a, $b;"),
1161 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, (i32 imm:$b)))]>;
1164 defm SHL : SHIFT<"shl.b", shl>;
1165 defm SRA : SHIFT<"shr.s", sra>;
1166 defm SRL : SHIFT<"shr.u", srl>;
1170 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a),
1171 "brev.b32 \t$dst, $a;",
1172 [(set Int32Regs:$dst, (bitreverse Int32Regs:$a))]>;
1174 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a),
1175 "brev.b64 \t$dst, $a;",
1176 [(set Int64Regs:$dst, (bitreverse Int64Regs:$a))]>;
1179 // Rotate: Use ptx shf instruction if available.
1182 // 32 bit r2 = rotl r1, n
1184 // r2 = shf.l r1, r1, n
1186 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, i32imm:$amt),
1187 "shf.l.wrap.b32 \t$dst, $src, $src, $amt;",
1188 [(set Int32Regs:$dst, (rotl Int32Regs:$src, (i32 imm:$amt)))]>,
1189 Requires<[hasHWROT32]>;
1192 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt),
1193 "shf.l.wrap.b32 \t$dst, $src, $src, $amt;",
1194 [(set Int32Regs:$dst, (rotl Int32Regs:$src, Int32Regs:$amt))]>,
1195 Requires<[hasHWROT32]>;
1197 // 32 bit r2 = rotr r1, n
1199 // r2 = shf.r r1, r1, n
1201 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, i32imm:$amt),
1202 "shf.r.wrap.b32 \t$dst, $src, $src, $amt;",
1203 [(set Int32Regs:$dst, (rotr Int32Regs:$src, (i32 imm:$amt)))]>,
1204 Requires<[hasHWROT32]>;
1207 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt),
1208 "shf.r.wrap.b32 \t$dst, $src, $src, $amt;",
1209 [(set Int32Regs:$dst, (rotr Int32Regs:$src, Int32Regs:$amt))]>,
1210 Requires<[hasHWROT32]>;
1212 // 32-bit software rotate by immediate. $amt2 should equal 32 - $amt1.
1214 NVPTXInst<(outs Int32Regs:$dst),
1215 (ins Int32Regs:$src, i32imm:$amt1, i32imm:$amt2),
1217 ".reg .b32 %lhs;\n\t"
1218 ".reg .b32 %rhs;\n\t"
1219 "shl.b32 \t%lhs, $src, $amt1;\n\t"
1220 "shr.b32 \t%rhs, $src, $amt2;\n\t"
1221 "add.u32 \t$dst, %lhs, %rhs;\n\t"
1225 def SUB_FRM_32 : SDNodeXForm<imm, [{
1226 return CurDAG->getTargetConstant(32 - N->getZExtValue(), SDLoc(N), MVT::i32);
1229 def : Pat<(rotl Int32Regs:$src, (i32 imm:$amt)),
1230 (ROT32imm_sw Int32Regs:$src, imm:$amt, (SUB_FRM_32 node:$amt))>,
1231 Requires<[noHWROT32]>;
1232 def : Pat<(rotr Int32Regs:$src, (i32 imm:$amt)),
1233 (ROT32imm_sw Int32Regs:$src, (SUB_FRM_32 node:$amt), imm:$amt)>,
1234 Requires<[noHWROT32]>;
1236 // 32-bit software rotate left by register.
1238 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt),
1240 ".reg .b32 %lhs;\n\t"
1241 ".reg .b32 %rhs;\n\t"
1242 ".reg .b32 %amt2;\n\t"
1243 "shl.b32 \t%lhs, $src, $amt;\n\t"
1244 "sub.s32 \t%amt2, 32, $amt;\n\t"
1245 "shr.b32 \t%rhs, $src, %amt2;\n\t"
1246 "add.u32 \t$dst, %lhs, %rhs;\n\t"
1248 [(set Int32Regs:$dst, (rotl Int32Regs:$src, Int32Regs:$amt))]>,
1249 Requires<[noHWROT32]>;
1251 // 32-bit software rotate right by register.
1253 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt),
1255 ".reg .b32 %lhs;\n\t"
1256 ".reg .b32 %rhs;\n\t"
1257 ".reg .b32 %amt2;\n\t"
1258 "shr.b32 \t%lhs, $src, $amt;\n\t"
1259 "sub.s32 \t%amt2, 32, $amt;\n\t"
1260 "shl.b32 \t%rhs, $src, %amt2;\n\t"
1261 "add.u32 \t$dst, %lhs, %rhs;\n\t"
1263 [(set Int32Regs:$dst, (rotr Int32Regs:$src, Int32Regs:$amt))]>,
1264 Requires<[noHWROT32]>;
1266 // 64-bit software rotate by immediate. $amt2 should equal 64 - $amt1.
1268 NVPTXInst<(outs Int64Regs:$dst),
1269 (ins Int64Regs:$src, i32imm:$amt1, i32imm:$amt2),
1271 ".reg .b64 %lhs;\n\t"
1272 ".reg .b64 %rhs;\n\t"
1273 "shl.b64 \t%lhs, $src, $amt1;\n\t"
1274 "shr.b64 \t%rhs, $src, $amt2;\n\t"
1275 "add.u64 \t$dst, %lhs, %rhs;\n\t"
1279 def SUB_FRM_64 : SDNodeXForm<imm, [{
1280 return CurDAG->getTargetConstant(64-N->getZExtValue(), SDLoc(N), MVT::i32);
1283 def : Pat<(rotl Int64Regs:$src, (i32 imm:$amt)),
1284 (ROT64imm_sw Int64Regs:$src, imm:$amt, (SUB_FRM_64 node:$amt))>;
1285 def : Pat<(rotr Int64Regs:$src, (i32 imm:$amt)),
1286 (ROT64imm_sw Int64Regs:$src, (SUB_FRM_64 node:$amt), imm:$amt)>;
1288 // 64-bit software rotate left by register.
1290 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src, Int32Regs:$amt),
1292 ".reg .b64 %lhs;\n\t"
1293 ".reg .b64 %rhs;\n\t"
1294 ".reg .u32 %amt2;\n\t"
1295 "shl.b64 \t%lhs, $src, $amt;\n\t"
1296 "sub.u32 \t%amt2, 64, $amt;\n\t"
1297 "shr.b64 \t%rhs, $src, %amt2;\n\t"
1298 "add.u64 \t$dst, %lhs, %rhs;\n\t"
1300 [(set Int64Regs:$dst, (rotl Int64Regs:$src, Int32Regs:$amt))]>;
1303 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src, Int32Regs:$amt),
1305 ".reg .b64 %lhs;\n\t"
1306 ".reg .b64 %rhs;\n\t"
1307 ".reg .u32 %amt2;\n\t"
1308 "shr.b64 \t%lhs, $src, $amt;\n\t"
1309 "sub.u32 \t%amt2, 64, $amt;\n\t"
1310 "shl.b64 \t%rhs, $src, %amt2;\n\t"
1311 "add.u64 \t$dst, %lhs, %rhs;\n\t"
1313 [(set Int64Regs:$dst, (rotr Int64Regs:$src, Int32Regs:$amt))]>;
1316 // Funnnel shift in clamp mode
1319 // Create SDNodes so they can be used in the DAG code, e.g.
1320 // NVPTXISelLowering (LowerShiftLeftParts and LowerShiftRightParts)
1321 def SDTIntShiftDOp :
1322 SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
1323 SDTCisInt<0>, SDTCisInt<3>]>;
1324 def FUN_SHFL_CLAMP : SDNode<"NVPTXISD::FUN_SHFL_CLAMP", SDTIntShiftDOp, []>;
1325 def FUN_SHFR_CLAMP : SDNode<"NVPTXISD::FUN_SHFR_CLAMP", SDTIntShiftDOp, []>;
1328 NVPTXInst<(outs Int32Regs:$dst),
1329 (ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt),
1330 "shf.l.clamp.b32 \t$dst, $lo, $hi, $amt;",
1331 [(set Int32Regs:$dst,
1332 (FUN_SHFL_CLAMP Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt))]>;
1335 NVPTXInst<(outs Int32Regs:$dst),
1336 (ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt),
1337 "shf.r.clamp.b32 \t$dst, $lo, $hi, $amt;",
1338 [(set Int32Regs:$dst,
1339 (FUN_SHFR_CLAMP Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt))]>;
1342 // BFE - bit-field extract
1345 // Template for BFE instructions. Takes four args,
1346 // [dest (reg), src (reg), start (reg or imm), end (reg or imm)].
1347 // Start may be an imm only if end is also an imm. FIXME: Is this a
1348 // restriction in PTX?
1350 // dest and src may be int32 or int64, but start and end are always int32.
1351 multiclass BFE<string TyStr, RegisterClass RC> {
1353 : NVPTXInst<(outs RC:$d),
1354 (ins RC:$a, Int32Regs:$b, Int32Regs:$c),
1355 !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>;
1357 : NVPTXInst<(outs RC:$d),
1358 (ins RC:$a, Int32Regs:$b, i32imm:$c),
1359 !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>;
1361 : NVPTXInst<(outs RC:$d),
1362 (ins RC:$a, i32imm:$b, i32imm:$c),
1363 !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>;
1366 let hasSideEffects = 0 in {
1367 defm BFE_S32 : BFE<"s32", Int32Regs>;
1368 defm BFE_U32 : BFE<"u32", Int32Regs>;
1369 defm BFE_S64 : BFE<"s64", Int64Regs>;
1370 defm BFE_U64 : BFE<"u64", Int64Regs>;
1373 //-----------------------------------
1374 // Comparison instructions (setp, set)
1375 //-----------------------------------
1377 // FIXME: This doesn't cover versions of set and setp that combine with a
1378 // boolean predicate, e.g. setp.eq.and.b16.
1380 let hasSideEffects = 0 in {
1381 multiclass SETP<string TypeStr, RegisterClass RC, Operand ImmCls> {
1383 NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, RC:$b, CmpMode:$cmp),
1384 !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr,
1385 " \t$dst, $a, $b;"), []>;
1387 NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, ImmCls:$b, CmpMode:$cmp),
1388 !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr,
1389 " \t$dst, $a, $b;"), []>;
1391 NVPTXInst<(outs Int1Regs:$dst), (ins ImmCls:$a, RC:$b, CmpMode:$cmp),
1392 !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr,
1393 " \t$dst, $a, $b;"), []>;
1397 defm SETP_b16 : SETP<"b16", Int16Regs, i16imm>;
1398 defm SETP_s16 : SETP<"s16", Int16Regs, i16imm>;
1399 defm SETP_u16 : SETP<"u16", Int16Regs, i16imm>;
1400 defm SETP_b32 : SETP<"b32", Int32Regs, i32imm>;
1401 defm SETP_s32 : SETP<"s32", Int32Regs, i32imm>;
1402 defm SETP_u32 : SETP<"u32", Int32Regs, i32imm>;
1403 defm SETP_b64 : SETP<"b64", Int64Regs, i64imm>;
1404 defm SETP_s64 : SETP<"s64", Int64Regs, i64imm>;
1405 defm SETP_u64 : SETP<"u64", Int64Regs, i64imm>;
1406 defm SETP_f32 : SETP<"f32", Float32Regs, f32imm>;
1407 defm SETP_f64 : SETP<"f64", Float64Regs, f64imm>;
1409 NVPTXInst<(outs Int1Regs:$dst),
1410 (ins Float16Regs:$a, Float16Regs:$b, CmpMode:$cmp),
1411 "setp${cmp:base}${cmp:ftz}.f16 \t$dst, $a, $b;",
1412 []>, Requires<[useFP16Math]>;
1415 NVPTXInst<(outs Int1Regs:$p, Int1Regs:$q),
1416 (ins Float16x2Regs:$a, Float16x2Regs:$b, CmpMode:$cmp),
1417 "setp${cmp:base}${cmp:ftz}.f16x2 \t$p|$q, $a, $b;",
1419 Requires<[useFP16Math]>;
1422 // FIXME: This doesn't appear to be correct. The "set" mnemonic has the form
1423 // "set.CmpOp{.ftz}.dtype.stype", where dtype is the type of the destination
1424 // reg, either u32, s32, or f32. Anyway these aren't used at the moment.
1426 let hasSideEffects = 0 in {
1427 multiclass SET<string TypeStr, RegisterClass RC, Operand ImmCls> {
1428 def rr : NVPTXInst<(outs Int32Regs:$dst),
1429 (ins RC:$a, RC:$b, CmpMode:$cmp),
1430 !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>;
1431 def ri : NVPTXInst<(outs Int32Regs:$dst),
1432 (ins RC:$a, ImmCls:$b, CmpMode:$cmp),
1433 !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>;
1434 def ir : NVPTXInst<(outs Int32Regs:$dst),
1435 (ins ImmCls:$a, RC:$b, CmpMode:$cmp),
1436 !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>;
1440 defm SET_b16 : SET<"b16", Int16Regs, i16imm>;
1441 defm SET_s16 : SET<"s16", Int16Regs, i16imm>;
1442 defm SET_u16 : SET<"u16", Int16Regs, i16imm>;
1443 defm SET_b32 : SET<"b32", Int32Regs, i32imm>;
1444 defm SET_s32 : SET<"s32", Int32Regs, i32imm>;
1445 defm SET_u32 : SET<"u32", Int32Regs, i32imm>;
1446 defm SET_b64 : SET<"b64", Int64Regs, i64imm>;
1447 defm SET_s64 : SET<"s64", Int64Regs, i64imm>;
1448 defm SET_u64 : SET<"u64", Int64Regs, i64imm>;
1449 defm SET_f16 : SET<"f16", Float16Regs, f16imm>;
1450 defm SET_f32 : SET<"f32", Float32Regs, f32imm>;
1451 defm SET_f64 : SET<"f64", Float64Regs, f64imm>;
1453 //-----------------------------------
1454 // Selection instructions (selp)
1455 //-----------------------------------
1457 // FIXME: Missing slct
1459 // selp instructions that don't have any pattern matches; we explicitly use
1460 // them within this file.
1461 let hasSideEffects = 0 in {
1462 multiclass SELP<string TypeStr, RegisterClass RC, Operand ImmCls> {
1463 def rr : NVPTXInst<(outs RC:$dst),
1464 (ins RC:$a, RC:$b, Int1Regs:$p),
1465 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>;
1466 def ri : NVPTXInst<(outs RC:$dst),
1467 (ins RC:$a, ImmCls:$b, Int1Regs:$p),
1468 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>;
1469 def ir : NVPTXInst<(outs RC:$dst),
1470 (ins ImmCls:$a, RC:$b, Int1Regs:$p),
1471 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>;
1472 def ii : NVPTXInst<(outs RC:$dst),
1473 (ins ImmCls:$a, ImmCls:$b, Int1Regs:$p),
1474 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>;
1477 multiclass SELP_PATTERN<string TypeStr, RegisterClass RC, Operand ImmCls,
1480 NVPTXInst<(outs RC:$dst),
1481 (ins RC:$a, RC:$b, Int1Regs:$p),
1482 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"),
1483 [(set RC:$dst, (select Int1Regs:$p, RC:$a, RC:$b))]>;
1485 NVPTXInst<(outs RC:$dst),
1486 (ins RC:$a, ImmCls:$b, Int1Regs:$p),
1487 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"),
1488 [(set RC:$dst, (select Int1Regs:$p, RC:$a, ImmNode:$b))]>;
1490 NVPTXInst<(outs RC:$dst),
1491 (ins ImmCls:$a, RC:$b, Int1Regs:$p),
1492 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"),
1493 [(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, RC:$b))]>;
1495 NVPTXInst<(outs RC:$dst),
1496 (ins ImmCls:$a, ImmCls:$b, Int1Regs:$p),
1497 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"),
1498 [(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, ImmNode:$b))]>;
1502 // Don't pattern match on selp.{s,u}{16,32,64} -- selp.b{16,32,64} is just as
1504 defm SELP_b16 : SELP_PATTERN<"b16", Int16Regs, i16imm, imm>;
1505 defm SELP_s16 : SELP<"s16", Int16Regs, i16imm>;
1506 defm SELP_u16 : SELP<"u16", Int16Regs, i16imm>;
1507 defm SELP_b32 : SELP_PATTERN<"b32", Int32Regs, i32imm, imm>;
1508 defm SELP_s32 : SELP<"s32", Int32Regs, i32imm>;
1509 defm SELP_u32 : SELP<"u32", Int32Regs, i32imm>;
1510 defm SELP_b64 : SELP_PATTERN<"b64", Int64Regs, i64imm, imm>;
1511 defm SELP_s64 : SELP<"s64", Int64Regs, i64imm>;
1512 defm SELP_u64 : SELP<"u64", Int64Regs, i64imm>;
1513 defm SELP_f16 : SELP_PATTERN<"b16", Float16Regs, f16imm, fpimm>;
1514 defm SELP_f32 : SELP_PATTERN<"f32", Float32Regs, f32imm, fpimm>;
1515 defm SELP_f64 : SELP_PATTERN<"f64", Float64Regs, f64imm, fpimm>;
1518 NVPTXInst<(outs Float16x2Regs:$dst),
1519 (ins Float16x2Regs:$a, Float16x2Regs:$b, Int1Regs:$p),
1520 "selp.b32 \t$dst, $a, $b, $p;",
1521 [(set Float16x2Regs:$dst,
1522 (select Int1Regs:$p, Float16x2Regs:$a, Float16x2Regs:$b))]>;
1524 //-----------------------------------
1525 // Data Movement (Load / Store, Move)
1526 //-----------------------------------
1528 def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex],
1530 def ADDRri64 : ComplexPattern<i64, 2, "SelectADDRri64", [frameindex],
1532 def ADDRvar : ComplexPattern<iPTR, 1, "SelectDirectAddr", [], []>;
1534 def MEMri : Operand<i32> {
1535 let PrintMethod = "printMemOperand";
1536 let MIOperandInfo = (ops Int32Regs, i32imm);
1538 def MEMri64 : Operand<i64> {
1539 let PrintMethod = "printMemOperand";
1540 let MIOperandInfo = (ops Int64Regs, i64imm);
1543 def imem : Operand<iPTR> {
1544 let PrintMethod = "printOperand";
1547 def imemAny : Operand<iPTRAny> {
1548 let PrintMethod = "printOperand";
1551 def LdStCode : Operand<i32> {
1552 let PrintMethod = "printLdStCode";
1555 def SDTWrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>;
1556 def Wrapper : SDNode<"NVPTXISD::Wrapper", SDTWrapper>;
1558 // Load a memory address into a u32 or u64 register.
1559 def MOV_ADDR : NVPTXInst<(outs Int32Regs:$dst), (ins imem:$a),
1560 "mov.u32 \t$dst, $a;",
1561 [(set Int32Regs:$dst, (Wrapper tglobaladdr:$a))]>;
1562 def MOV_ADDR64 : NVPTXInst<(outs Int64Regs:$dst), (ins imem:$a),
1563 "mov.u64 \t$dst, $a;",
1564 [(set Int64Regs:$dst, (Wrapper tglobaladdr:$a))]>;
1566 // Get pointer to local stack.
1567 let hasSideEffects = 0 in {
1568 def MOV_DEPOT_ADDR : NVPTXInst<(outs Int32Regs:$d), (ins i32imm:$num),
1569 "mov.u32 \t$d, __local_depot$num;", []>;
1570 def MOV_DEPOT_ADDR_64 : NVPTXInst<(outs Int64Regs:$d), (ins i32imm:$num),
1571 "mov.u64 \t$d, __local_depot$num;", []>;
1575 // copyPhysreg is hard-coded in NVPTXInstrInfo.cpp
1576 let IsSimpleMove=1, hasSideEffects=0 in {
1577 def IMOV1rr : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$sss),
1578 "mov.pred \t$dst, $sss;", []>;
1579 def IMOV16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$sss),
1580 "mov.u16 \t$dst, $sss;", []>;
1581 def IMOV32rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$sss),
1582 "mov.u32 \t$dst, $sss;", []>;
1583 def IMOV64rr : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$sss),
1584 "mov.u64 \t$dst, $sss;", []>;
1586 def FMOV16rr : NVPTXInst<(outs Float16Regs:$dst), (ins Float16Regs:$src),
1587 // We have to use .b16 here as there's no mov.f16.
1588 "mov.b16 \t$dst, $src;", []>;
1589 def FMOV32rr : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src),
1590 "mov.f32 \t$dst, $src;", []>;
1591 def FMOV64rr : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$src),
1592 "mov.f64 \t$dst, $src;", []>;
1595 def IMOV1ri : NVPTXInst<(outs Int1Regs:$dst), (ins i1imm:$src),
1596 "mov.pred \t$dst, $src;",
1597 [(set Int1Regs:$dst, imm:$src)]>;
1598 def IMOV16ri : NVPTXInst<(outs Int16Regs:$dst), (ins i16imm:$src),
1599 "mov.u16 \t$dst, $src;",
1600 [(set Int16Regs:$dst, imm:$src)]>;
1601 def IMOV32ri : NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$src),
1602 "mov.u32 \t$dst, $src;",
1603 [(set Int32Regs:$dst, imm:$src)]>;
1604 def IMOV64i : NVPTXInst<(outs Int64Regs:$dst), (ins i64imm:$src),
1605 "mov.u64 \t$dst, $src;",
1606 [(set Int64Regs:$dst, imm:$src)]>;
1608 def FMOV32ri : NVPTXInst<(outs Float32Regs:$dst), (ins f32imm:$src),
1609 "mov.f32 \t$dst, $src;",
1610 [(set Float32Regs:$dst, fpimm:$src)]>;
1611 def FMOV64ri : NVPTXInst<(outs Float64Regs:$dst), (ins f64imm:$src),
1612 "mov.f64 \t$dst, $src;",
1613 [(set Float64Regs:$dst, fpimm:$src)]>;
1615 def : Pat<(i32 (Wrapper texternalsym:$dst)), (IMOV32ri texternalsym:$dst)>;
1617 //---- Copy Frame Index ----
1618 def LEA_ADDRi : NVPTXInst<(outs Int32Regs:$dst), (ins MEMri:$addr),
1619 "add.u32 \t$dst, ${addr:add};",
1620 [(set Int32Regs:$dst, ADDRri:$addr)]>;
1621 def LEA_ADDRi64 : NVPTXInst<(outs Int64Regs:$dst), (ins MEMri64:$addr),
1622 "add.u64 \t$dst, ${addr:add};",
1623 [(set Int64Regs:$dst, ADDRri64:$addr)]>;
1625 //-----------------------------------
1626 // Comparison and Selection
1627 //-----------------------------------
1629 multiclass ISET_FORMAT<PatFrag OpNode, PatLeaf Mode,
1630 Instruction setp_16rr,
1631 Instruction setp_16ri,
1632 Instruction setp_16ir,
1633 Instruction setp_32rr,
1634 Instruction setp_32ri,
1635 Instruction setp_32ir,
1636 Instruction setp_64rr,
1637 Instruction setp_64ri,
1638 Instruction setp_64ir,
1639 Instruction set_16rr,
1640 Instruction set_16ri,
1641 Instruction set_16ir,
1642 Instruction set_32rr,
1643 Instruction set_32ri,
1644 Instruction set_32ir,
1645 Instruction set_64rr,
1646 Instruction set_64ri,
1647 Instruction set_64ir> {
1649 def : Pat<(i1 (OpNode Int16Regs:$a, Int16Regs:$b)),
1650 (setp_16rr Int16Regs:$a, Int16Regs:$b, Mode)>;
1651 def : Pat<(i1 (OpNode Int16Regs:$a, imm:$b)),
1652 (setp_16ri Int16Regs:$a, imm:$b, Mode)>;
1653 def : Pat<(i1 (OpNode imm:$a, Int16Regs:$b)),
1654 (setp_16ir imm:$a, Int16Regs:$b, Mode)>;
1656 def : Pat<(i1 (OpNode Int32Regs:$a, Int32Regs:$b)),
1657 (setp_32rr Int32Regs:$a, Int32Regs:$b, Mode)>;
1658 def : Pat<(i1 (OpNode Int32Regs:$a, imm:$b)),
1659 (setp_32ri Int32Regs:$a, imm:$b, Mode)>;
1660 def : Pat<(i1 (OpNode imm:$a, Int32Regs:$b)),
1661 (setp_32ir imm:$a, Int32Regs:$b, Mode)>;
1663 def : Pat<(i1 (OpNode Int64Regs:$a, Int64Regs:$b)),
1664 (setp_64rr Int64Regs:$a, Int64Regs:$b, Mode)>;
1665 def : Pat<(i1 (OpNode Int64Regs:$a, imm:$b)),
1666 (setp_64ri Int64Regs:$a, imm:$b, Mode)>;
1667 def : Pat<(i1 (OpNode imm:$a, Int64Regs:$b)),
1668 (setp_64ir imm:$a, Int64Regs:$b, Mode)>;
1671 def : Pat<(i32 (OpNode Int16Regs:$a, Int16Regs:$b)),
1672 (set_16rr Int16Regs:$a, Int16Regs:$b, Mode)>;
1673 def : Pat<(i32 (OpNode Int16Regs:$a, imm:$b)),
1674 (set_16ri Int16Regs:$a, imm:$b, Mode)>;
1675 def : Pat<(i32 (OpNode imm:$a, Int16Regs:$b)),
1676 (set_16ir imm:$a, Int16Regs:$b, Mode)>;
1678 def : Pat<(i32 (OpNode Int32Regs:$a, Int32Regs:$b)),
1679 (set_32rr Int32Regs:$a, Int32Regs:$b, Mode)>;
1680 def : Pat<(i32 (OpNode Int32Regs:$a, imm:$b)),
1681 (set_32ri Int32Regs:$a, imm:$b, Mode)>;
1682 def : Pat<(i32 (OpNode imm:$a, Int32Regs:$b)),
1683 (set_32ir imm:$a, Int32Regs:$b, Mode)>;
1685 def : Pat<(i32 (OpNode Int64Regs:$a, Int64Regs:$b)),
1686 (set_64rr Int64Regs:$a, Int64Regs:$b, Mode)>;
1687 def : Pat<(i32 (OpNode Int64Regs:$a, imm:$b)),
1688 (set_64ri Int64Regs:$a, imm:$b, Mode)>;
1689 def : Pat<(i32 (OpNode imm:$a, Int64Regs:$b)),
1690 (set_64ir imm:$a, Int64Regs:$b, Mode)>;
1693 multiclass ISET_FORMAT_SIGNED<PatFrag OpNode, PatLeaf Mode>
1694 : ISET_FORMAT<OpNode, Mode,
1695 SETP_s16rr, SETP_s16ri, SETP_s16ir,
1696 SETP_s32rr, SETP_s32ri, SETP_s32ir,
1697 SETP_s64rr, SETP_s64ri, SETP_s64ir,
1698 SET_s16rr, SET_s16ri, SET_s16ir,
1699 SET_s32rr, SET_s32ri, SET_s32ir,
1700 SET_s64rr, SET_s64ri, SET_s64ir> {
1701 // TableGen doesn't like empty multiclasses.
1702 def : PatLeaf<(i32 0)>;
1705 multiclass ISET_FORMAT_UNSIGNED<PatFrag OpNode, PatLeaf Mode>
1706 : ISET_FORMAT<OpNode, Mode,
1707 SETP_u16rr, SETP_u16ri, SETP_u16ir,
1708 SETP_u32rr, SETP_u32ri, SETP_u32ir,
1709 SETP_u64rr, SETP_u64ri, SETP_u64ir,
1710 SET_u16rr, SET_u16ri, SET_u16ir,
1711 SET_u32rr, SET_u32ri, SET_u32ir,
1712 SET_u64rr, SET_u64ri, SET_u64ir> {
1713 // TableGen doesn't like empty multiclasses.
1714 def : PatLeaf<(i32 0)>;
1717 defm : ISET_FORMAT_SIGNED<setgt, CmpGT>;
1718 defm : ISET_FORMAT_SIGNED<setlt, CmpLT>;
1719 defm : ISET_FORMAT_SIGNED<setge, CmpGE>;
1720 defm : ISET_FORMAT_SIGNED<setle, CmpLE>;
1721 defm : ISET_FORMAT_SIGNED<seteq, CmpEQ>;
1722 defm : ISET_FORMAT_SIGNED<setne, CmpNE>;
1723 defm : ISET_FORMAT_UNSIGNED<setugt, CmpGT>;
1724 defm : ISET_FORMAT_UNSIGNED<setult, CmpLT>;
1725 defm : ISET_FORMAT_UNSIGNED<setuge, CmpGE>;
1726 defm : ISET_FORMAT_UNSIGNED<setule, CmpLE>;
1727 defm : ISET_FORMAT_UNSIGNED<setueq, CmpEQ>;
1728 defm : ISET_FORMAT_UNSIGNED<setune, CmpNE>;
1731 def : Pat<(setne Int1Regs:$a, Int1Regs:$b),
1732 (XORb1rr Int1Regs:$a, Int1Regs:$b)>;
1733 def : Pat<(setune Int1Regs:$a, Int1Regs:$b),
1734 (XORb1rr Int1Regs:$a, Int1Regs:$b)>;
1736 def : Pat<(seteq Int1Regs:$a, Int1Regs:$b),
1737 (NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
1738 def : Pat<(setueq Int1Regs:$a, Int1Regs:$b),
1739 (NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
1741 // i1 compare -> i32
1742 def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)),
1743 (SELP_u32ii -1, 0, (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
1744 def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)),
1745 (SELP_u32ii 0, -1, (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
1749 multiclass FSET_FORMAT<PatFrag OpNode, PatLeaf Mode, PatLeaf ModeFTZ> {
1751 def : Pat<(i1 (OpNode Float16Regs:$a, Float16Regs:$b)),
1752 (SETP_f16rr Float16Regs:$a, Float16Regs:$b, ModeFTZ)>,
1753 Requires<[useFP16Math,doF32FTZ]>;
1754 def : Pat<(i1 (OpNode Float16Regs:$a, Float16Regs:$b)),
1755 (SETP_f16rr Float16Regs:$a, Float16Regs:$b, Mode)>,
1756 Requires<[useFP16Math]>;
1757 def : Pat<(i1 (OpNode Float16Regs:$a, fpimm:$b)),
1758 (SETP_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), ModeFTZ)>,
1759 Requires<[useFP16Math,doF32FTZ]>;
1760 def : Pat<(i1 (OpNode Float16Regs:$a, fpimm:$b)),
1761 (SETP_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), Mode)>,
1762 Requires<[useFP16Math]>;
1763 def : Pat<(i1 (OpNode fpimm:$a, Float16Regs:$b)),
1764 (SETP_f16rr (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, ModeFTZ)>,
1765 Requires<[useFP16Math,doF32FTZ]>;
1766 def : Pat<(i1 (OpNode fpimm:$a, Float16Regs:$b)),
1767 (SETP_f16rr (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, Mode)>,
1768 Requires<[useFP16Math]>;
1771 def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)),
1772 (SETP_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>,
1773 Requires<[doF32FTZ]>;
1774 def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)),
1775 (SETP_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>;
1776 def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)),
1777 (SETP_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>,
1778 Requires<[doF32FTZ]>;
1779 def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)),
1780 (SETP_f32ri Float32Regs:$a, fpimm:$b, Mode)>;
1781 def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)),
1782 (SETP_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>,
1783 Requires<[doF32FTZ]>;
1784 def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)),
1785 (SETP_f32ir fpimm:$a, Float32Regs:$b, Mode)>;
1788 def : Pat<(i1 (OpNode Float64Regs:$a, Float64Regs:$b)),
1789 (SETP_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>;
1790 def : Pat<(i1 (OpNode Float64Regs:$a, fpimm:$b)),
1791 (SETP_f64ri Float64Regs:$a, fpimm:$b, Mode)>;
1792 def : Pat<(i1 (OpNode fpimm:$a, Float64Regs:$b)),
1793 (SETP_f64ir fpimm:$a, Float64Regs:$b, Mode)>;
1796 def : Pat<(i32 (OpNode Float16Regs:$a, Float16Regs:$b)),
1797 (SET_f16rr Float16Regs:$a, Float16Regs:$b, ModeFTZ)>,
1798 Requires<[useFP16Math, doF32FTZ]>;
1799 def : Pat<(i32 (OpNode Float16Regs:$a, Float16Regs:$b)),
1800 (SET_f16rr Float16Regs:$a, Float16Regs:$b, Mode)>,
1801 Requires<[useFP16Math]>;
1802 def : Pat<(i32 (OpNode Float16Regs:$a, fpimm:$b)),
1803 (SET_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), ModeFTZ)>,
1804 Requires<[useFP16Math, doF32FTZ]>;
1805 def : Pat<(i32 (OpNode Float16Regs:$a, fpimm:$b)),
1806 (SET_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), Mode)>,
1807 Requires<[useFP16Math]>;
1808 def : Pat<(i32 (OpNode fpimm:$a, Float16Regs:$b)),
1809 (SET_f16ir (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, ModeFTZ)>,
1810 Requires<[useFP16Math, doF32FTZ]>;
1811 def : Pat<(i32 (OpNode fpimm:$a, Float16Regs:$b)),
1812 (SET_f16ir (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, Mode)>,
1813 Requires<[useFP16Math]>;
1816 def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)),
1817 (SET_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>,
1818 Requires<[doF32FTZ]>;
1819 def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)),
1820 (SET_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>;
1821 def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)),
1822 (SET_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>,
1823 Requires<[doF32FTZ]>;
1824 def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)),
1825 (SET_f32ri Float32Regs:$a, fpimm:$b, Mode)>;
1826 def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)),
1827 (SET_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>,
1828 Requires<[doF32FTZ]>;
1829 def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)),
1830 (SET_f32ir fpimm:$a, Float32Regs:$b, Mode)>;
1833 def : Pat<(i32 (OpNode Float64Regs:$a, Float64Regs:$b)),
1834 (SET_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>;
1835 def : Pat<(i32 (OpNode Float64Regs:$a, fpimm:$b)),
1836 (SET_f64ri Float64Regs:$a, fpimm:$b, Mode)>;
1837 def : Pat<(i32 (OpNode fpimm:$a, Float64Regs:$b)),
1838 (SET_f64ir fpimm:$a, Float64Regs:$b, Mode)>;
1841 defm FSetOGT : FSET_FORMAT<setogt, CmpGT, CmpGT_FTZ>;
1842 defm FSetOLT : FSET_FORMAT<setolt, CmpLT, CmpLT_FTZ>;
1843 defm FSetOGE : FSET_FORMAT<setoge, CmpGE, CmpGE_FTZ>;
1844 defm FSetOLE : FSET_FORMAT<setole, CmpLE, CmpLE_FTZ>;
1845 defm FSetOEQ : FSET_FORMAT<setoeq, CmpEQ, CmpEQ_FTZ>;
1846 defm FSetONE : FSET_FORMAT<setone, CmpNE, CmpNE_FTZ>;
1848 defm FSetUGT : FSET_FORMAT<setugt, CmpGTU, CmpGTU_FTZ>;
1849 defm FSetULT : FSET_FORMAT<setult, CmpLTU, CmpLTU_FTZ>;
1850 defm FSetUGE : FSET_FORMAT<setuge, CmpGEU, CmpGEU_FTZ>;
1851 defm FSetULE : FSET_FORMAT<setule, CmpLEU, CmpLEU_FTZ>;
1852 defm FSetUEQ : FSET_FORMAT<setueq, CmpEQU, CmpEQU_FTZ>;
1853 defm FSetUNE : FSET_FORMAT<setune, CmpNEU, CmpNEU_FTZ>;
1855 defm FSetGT : FSET_FORMAT<setgt, CmpGT, CmpGT_FTZ>;
1856 defm FSetLT : FSET_FORMAT<setlt, CmpLT, CmpLT_FTZ>;
1857 defm FSetGE : FSET_FORMAT<setge, CmpGE, CmpGE_FTZ>;
1858 defm FSetLE : FSET_FORMAT<setle, CmpLE, CmpLE_FTZ>;
1859 defm FSetEQ : FSET_FORMAT<seteq, CmpEQ, CmpEQ_FTZ>;
1860 defm FSetNE : FSET_FORMAT<setne, CmpNE, CmpNE_FTZ>;
1862 defm FSetNUM : FSET_FORMAT<seto, CmpNUM, CmpNUM_FTZ>;
1863 defm FSetNAN : FSET_FORMAT<setuo, CmpNAN, CmpNAN_FTZ>;
1865 // FIXME: What is this doing here? Can it be deleted?
1866 // def ld_param : SDNode<"NVPTXISD::LOAD_PARAM", SDTLoad,
1867 // [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
1869 def SDTDeclareParamProfile :
1870 SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>;
1871 def SDTDeclareScalarParamProfile :
1872 SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>;
1873 def SDTLoadParamProfile : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>;
1874 def SDTLoadParamV2Profile : SDTypeProfile<2, 2, [SDTCisSameAs<0, 1>, SDTCisInt<2>, SDTCisInt<3>]>;
1875 def SDTLoadParamV4Profile : SDTypeProfile<4, 2, [SDTCisInt<4>, SDTCisInt<5>]>;
1876 def SDTPrintCallProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
1877 def SDTPrintCallUniProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
1878 def SDTStoreParamProfile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>;
1879 def SDTStoreParamV2Profile : SDTypeProfile<0, 4, [SDTCisInt<0>, SDTCisInt<1>]>;
1880 def SDTStoreParamV4Profile : SDTypeProfile<0, 6, [SDTCisInt<0>, SDTCisInt<1>]>;
1881 def SDTStoreParam32Profile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>;
1882 def SDTCallArgProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>;
1883 def SDTCallArgMarkProfile : SDTypeProfile<0, 0, []>;
1884 def SDTCallVoidProfile : SDTypeProfile<0, 1, []>;
1885 def SDTCallValProfile : SDTypeProfile<1, 0, []>;
1886 def SDTMoveParamProfile : SDTypeProfile<1, 1, []>;
1887 def SDTStoreRetvalProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>;
1888 def SDTStoreRetvalV2Profile : SDTypeProfile<0, 3, [SDTCisInt<0>]>;
1889 def SDTStoreRetvalV4Profile : SDTypeProfile<0, 5, [SDTCisInt<0>]>;
1890 def SDTPseudoUseParamProfile : SDTypeProfile<0, 1, []>;
1893 SDNode<"NVPTXISD::DeclareParam", SDTDeclareParamProfile,
1894 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
1895 def DeclareScalarParam :
1896 SDNode<"NVPTXISD::DeclareScalarParam", SDTDeclareScalarParamProfile,
1897 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
1898 def DeclareRetParam :
1899 SDNode<"NVPTXISD::DeclareRetParam", SDTDeclareParamProfile,
1900 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
1902 SDNode<"NVPTXISD::DeclareRet", SDTDeclareScalarParamProfile,
1903 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
1905 SDNode<"NVPTXISD::LoadParam", SDTLoadParamProfile,
1906 [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>;
1908 SDNode<"NVPTXISD::LoadParamV2", SDTLoadParamV2Profile,
1909 [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>;
1911 SDNode<"NVPTXISD::LoadParamV4", SDTLoadParamV4Profile,
1912 [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>;
1914 SDNode<"NVPTXISD::PrintCall", SDTPrintCallProfile,
1915 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
1916 def PrintConvergentCall :
1917 SDNode<"NVPTXISD::PrintConvergentCall", SDTPrintCallProfile,
1918 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
1920 SDNode<"NVPTXISD::PrintCallUni", SDTPrintCallUniProfile,
1921 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
1922 def PrintConvergentCallUni :
1923 SDNode<"NVPTXISD::PrintConvergentCallUni", SDTPrintCallUniProfile,
1924 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
1926 SDNode<"NVPTXISD::StoreParam", SDTStoreParamProfile,
1927 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
1929 SDNode<"NVPTXISD::StoreParamV2", SDTStoreParamV2Profile,
1930 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
1932 SDNode<"NVPTXISD::StoreParamV4", SDTStoreParamV4Profile,
1933 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
1935 SDNode<"NVPTXISD::StoreParamU32", SDTStoreParam32Profile,
1936 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
1938 SDNode<"NVPTXISD::StoreParamS32", SDTStoreParam32Profile,
1939 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
1941 SDNode<"NVPTXISD::CallArgBegin", SDTCallArgMarkProfile,
1942 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
1944 SDNode<"NVPTXISD::CallArg", SDTCallArgProfile,
1945 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
1947 SDNode<"NVPTXISD::LastCallArg", SDTCallArgProfile,
1948 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
1950 SDNode<"NVPTXISD::CallArgEnd", SDTCallVoidProfile,
1951 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
1953 SDNode<"NVPTXISD::CallVoid", SDTCallVoidProfile,
1954 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
1956 SDNode<"NVPTXISD::Prototype", SDTCallVoidProfile,
1957 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
1959 SDNode<"NVPTXISD::CallVal", SDTCallValProfile,
1960 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
1962 SDNode<"NVPTXISD::MoveParam", SDTMoveParamProfile, []>;
1964 SDNode<"NVPTXISD::StoreRetval", SDTStoreRetvalProfile,
1965 [SDNPHasChain, SDNPSideEffect]>;
1967 SDNode<"NVPTXISD::StoreRetvalV2", SDTStoreRetvalV2Profile,
1968 [SDNPHasChain, SDNPSideEffect]>;
1970 SDNode<"NVPTXISD::StoreRetvalV4", SDTStoreRetvalV4Profile,
1971 [SDNPHasChain, SDNPSideEffect]>;
1972 def PseudoUseParam :
1973 SDNode<"NVPTXISD::PseudoUseParam", SDTPseudoUseParamProfile,
1974 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
1976 SDNode<"NVPTXISD::RETURN", SDTCallArgMarkProfile,
1977 [SDNPHasChain, SDNPSideEffect]>;
1979 let mayLoad = 1 in {
1980 class LoadParamMemInst<NVPTXRegClass regclass, string opstr> :
1981 NVPTXInst<(outs regclass:$dst), (ins i32imm:$b),
1982 !strconcat("ld.param", opstr, " \t$dst, [retval0+$b];"),
1985 class LoadParamV2MemInst<NVPTXRegClass regclass, string opstr> :
1986 NVPTXInst<(outs regclass:$dst, regclass:$dst2), (ins i32imm:$b),
1987 !strconcat("ld.param.v2", opstr,
1988 " \t{{$dst, $dst2}}, [retval0+$b];"), []>;
1990 class LoadParamV4MemInst<NVPTXRegClass regclass, string opstr> :
1991 NVPTXInst<(outs regclass:$dst, regclass:$dst2, regclass:$dst3,
1994 !strconcat("ld.param.v4", opstr,
1995 " \t{{$dst, $dst2, $dst3, $dst4}}, [retval0+$b];"),
1999 class LoadParamRegInst<NVPTXRegClass regclass, string opstr> :
2000 NVPTXInst<(outs regclass:$dst), (ins i32imm:$b),
2001 !strconcat("mov", opstr, " \t$dst, retval$b;"),
2002 [(set regclass:$dst, (LoadParam (i32 0), (i32 imm:$b)))]>;
2004 let mayStore = 1 in {
2005 class StoreParamInst<NVPTXRegClass regclass, string opstr> :
2006 NVPTXInst<(outs), (ins regclass:$val, i32imm:$a, i32imm:$b),
2007 !strconcat("st.param", opstr, " \t[param$a+$b], $val;"),
2010 class StoreParamV2Inst<NVPTXRegClass regclass, string opstr> :
2011 NVPTXInst<(outs), (ins regclass:$val, regclass:$val2,
2012 i32imm:$a, i32imm:$b),
2013 !strconcat("st.param.v2", opstr,
2014 " \t[param$a+$b], {{$val, $val2}};"),
2017 class StoreParamV4Inst<NVPTXRegClass regclass, string opstr> :
2018 NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, regclass:$val3,
2019 regclass:$val4, i32imm:$a,
2021 !strconcat("st.param.v4", opstr,
2022 " \t[param$a+$b], {{$val, $val2, $val3, $val4}};"),
2025 class StoreRetvalInst<NVPTXRegClass regclass, string opstr> :
2026 NVPTXInst<(outs), (ins regclass:$val, i32imm:$a),
2027 !strconcat("st.param", opstr, " \t[func_retval0+$a], $val;"),
2030 class StoreRetvalV2Inst<NVPTXRegClass regclass, string opstr> :
2031 NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, i32imm:$a),
2032 !strconcat("st.param.v2", opstr,
2033 " \t[func_retval0+$a], {{$val, $val2}};"),
2036 class StoreRetvalV4Inst<NVPTXRegClass regclass, string opstr> :
2038 (ins regclass:$val, regclass:$val2, regclass:$val3,
2039 regclass:$val4, i32imm:$a),
2040 !strconcat("st.param.v4", opstr,
2041 " \t[func_retval0+$a], {{$val, $val2, $val3, $val4}};"),
2046 multiclass CALL<string OpcStr, SDNode OpNode> {
2047 def PrintCallNoRetInst : NVPTXInst<(outs), (ins),
2048 !strconcat(OpcStr, " "), [(OpNode (i32 0))]>;
2049 def PrintCallRetInst1 : NVPTXInst<(outs), (ins),
2050 !strconcat(OpcStr, " (retval0), "), [(OpNode (i32 1))]>;
2051 def PrintCallRetInst2 : NVPTXInst<(outs), (ins),
2052 !strconcat(OpcStr, " (retval0, retval1), "), [(OpNode (i32 2))]>;
2053 def PrintCallRetInst3 : NVPTXInst<(outs), (ins),
2054 !strconcat(OpcStr, " (retval0, retval1, retval2), "), [(OpNode (i32 3))]>;
2055 def PrintCallRetInst4 : NVPTXInst<(outs), (ins),
2056 !strconcat(OpcStr, " (retval0, retval1, retval2, retval3), "),
2057 [(OpNode (i32 4))]>;
2058 def PrintCallRetInst5 : NVPTXInst<(outs), (ins),
2059 !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4), "),
2060 [(OpNode (i32 5))]>;
2061 def PrintCallRetInst6 : NVPTXInst<(outs), (ins),
2062 !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, "
2064 [(OpNode (i32 6))]>;
2065 def PrintCallRetInst7 : NVPTXInst<(outs), (ins),
2066 !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, "
2067 "retval5, retval6), "),
2068 [(OpNode (i32 7))]>;
2069 def PrintCallRetInst8 : NVPTXInst<(outs), (ins),
2070 !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, "
2071 "retval5, retval6, retval7), "),
2072 [(OpNode (i32 8))]>;
2076 defm Call : CALL<"call", PrintCall>;
2077 defm CallUni : CALL<"call.uni", PrintCallUni>;
2079 // Convergent call instructions. These are identical to regular calls, except
2080 // they have the isConvergent bit set.
2081 let isConvergent=1 in {
2082 defm ConvergentCall : CALL<"call", PrintConvergentCall>;
2083 defm ConvergentCallUni : CALL<"call.uni", PrintConvergentCallUni>;
2086 def LoadParamMemI64 : LoadParamMemInst<Int64Regs, ".b64">;
2087 def LoadParamMemI32 : LoadParamMemInst<Int32Regs, ".b32">;
2088 def LoadParamMemI16 : LoadParamMemInst<Int16Regs, ".b16">;
2089 def LoadParamMemI8 : LoadParamMemInst<Int16Regs, ".b8">;
2090 def LoadParamMemV2I64 : LoadParamV2MemInst<Int64Regs, ".b64">;
2091 def LoadParamMemV2I32 : LoadParamV2MemInst<Int32Regs, ".b32">;
2092 def LoadParamMemV2I16 : LoadParamV2MemInst<Int16Regs, ".b16">;
2093 def LoadParamMemV2I8 : LoadParamV2MemInst<Int16Regs, ".b8">;
2094 def LoadParamMemV4I32 : LoadParamV4MemInst<Int32Regs, ".b32">;
2095 def LoadParamMemV4I16 : LoadParamV4MemInst<Int16Regs, ".b16">;
2096 def LoadParamMemV4I8 : LoadParamV4MemInst<Int16Regs, ".b8">;
2097 def LoadParamMemF16 : LoadParamMemInst<Float16Regs, ".b16">;
2098 def LoadParamMemF16x2 : LoadParamMemInst<Float16x2Regs, ".b32">;
2099 def LoadParamMemF32 : LoadParamMemInst<Float32Regs, ".f32">;
2100 def LoadParamMemF64 : LoadParamMemInst<Float64Regs, ".f64">;
2101 def LoadParamMemV2F16 : LoadParamV2MemInst<Float16Regs, ".b16">;
2102 def LoadParamMemV2F16x2: LoadParamV2MemInst<Float16x2Regs, ".b32">;
2103 def LoadParamMemV2F32 : LoadParamV2MemInst<Float32Regs, ".f32">;
2104 def LoadParamMemV2F64 : LoadParamV2MemInst<Float64Regs, ".f64">;
2105 def LoadParamMemV4F16 : LoadParamV4MemInst<Float16Regs, ".b16">;
2106 def LoadParamMemV4F16x2: LoadParamV4MemInst<Float16x2Regs, ".b32">;
2107 def LoadParamMemV4F32 : LoadParamV4MemInst<Float32Regs, ".f32">;
2109 def StoreParamI64 : StoreParamInst<Int64Regs, ".b64">;
2110 def StoreParamI32 : StoreParamInst<Int32Regs, ".b32">;
2112 def StoreParamI16 : StoreParamInst<Int16Regs, ".b16">;
2113 def StoreParamI8 : StoreParamInst<Int16Regs, ".b8">;
2114 def StoreParamV2I64 : StoreParamV2Inst<Int64Regs, ".b64">;
2115 def StoreParamV2I32 : StoreParamV2Inst<Int32Regs, ".b32">;
2116 def StoreParamV2I16 : StoreParamV2Inst<Int16Regs, ".b16">;
2117 def StoreParamV2I8 : StoreParamV2Inst<Int16Regs, ".b8">;
2119 def StoreParamV4I32 : StoreParamV4Inst<Int32Regs, ".b32">;
2120 def StoreParamV4I16 : StoreParamV4Inst<Int16Regs, ".b16">;
2121 def StoreParamV4I8 : StoreParamV4Inst<Int16Regs, ".b8">;
2123 def StoreParamF16 : StoreParamInst<Float16Regs, ".b16">;
2124 def StoreParamF16x2 : StoreParamInst<Float16x2Regs, ".b32">;
2125 def StoreParamF32 : StoreParamInst<Float32Regs, ".f32">;
2126 def StoreParamF64 : StoreParamInst<Float64Regs, ".f64">;
2127 def StoreParamV2F16 : StoreParamV2Inst<Float16Regs, ".b16">;
2128 def StoreParamV2F16x2 : StoreParamV2Inst<Float16x2Regs, ".b32">;
2129 def StoreParamV2F32 : StoreParamV2Inst<Float32Regs, ".f32">;
2130 def StoreParamV2F64 : StoreParamV2Inst<Float64Regs, ".f64">;
2131 def StoreParamV4F16 : StoreParamV4Inst<Float16Regs, ".b16">;
2132 def StoreParamV4F16x2 : StoreParamV4Inst<Float16x2Regs, ".b32">;
2133 def StoreParamV4F32 : StoreParamV4Inst<Float32Regs, ".f32">;
2135 def StoreRetvalI64 : StoreRetvalInst<Int64Regs, ".b64">;
2136 def StoreRetvalI32 : StoreRetvalInst<Int32Regs, ".b32">;
2137 def StoreRetvalI16 : StoreRetvalInst<Int16Regs, ".b16">;
2138 def StoreRetvalI8 : StoreRetvalInst<Int16Regs, ".b8">;
2139 def StoreRetvalV2I64 : StoreRetvalV2Inst<Int64Regs, ".b64">;
2140 def StoreRetvalV2I32 : StoreRetvalV2Inst<Int32Regs, ".b32">;
2141 def StoreRetvalV2I16 : StoreRetvalV2Inst<Int16Regs, ".b16">;
2142 def StoreRetvalV2I8 : StoreRetvalV2Inst<Int16Regs, ".b8">;
2143 def StoreRetvalV4I32 : StoreRetvalV4Inst<Int32Regs, ".b32">;
2144 def StoreRetvalV4I16 : StoreRetvalV4Inst<Int16Regs, ".b16">;
2145 def StoreRetvalV4I8 : StoreRetvalV4Inst<Int16Regs, ".b8">;
2147 def StoreRetvalF64 : StoreRetvalInst<Float64Regs, ".f64">;
2148 def StoreRetvalF32 : StoreRetvalInst<Float32Regs, ".f32">;
2149 def StoreRetvalF16 : StoreRetvalInst<Float16Regs, ".b16">;
2150 def StoreRetvalF16x2 : StoreRetvalInst<Float16x2Regs, ".b32">;
2151 def StoreRetvalV2F64 : StoreRetvalV2Inst<Float64Regs, ".f64">;
2152 def StoreRetvalV2F32 : StoreRetvalV2Inst<Float32Regs, ".f32">;
2153 def StoreRetvalV2F16 : StoreRetvalV2Inst<Float16Regs, ".b16">;
2154 def StoreRetvalV2F16x2: StoreRetvalV2Inst<Float16x2Regs, ".b32">;
2155 def StoreRetvalV4F32 : StoreRetvalV4Inst<Float32Regs, ".f32">;
2156 def StoreRetvalV4F16 : StoreRetvalV4Inst<Float16Regs, ".b16">;
2157 def StoreRetvalV4F16x2: StoreRetvalV4Inst<Float16x2Regs, ".b32">;
2159 def CallArgBeginInst : NVPTXInst<(outs), (ins), "(", [(CallArgBegin)]>;
2160 def CallArgEndInst1 : NVPTXInst<(outs), (ins), ");", [(CallArgEnd (i32 1))]>;
2161 def CallArgEndInst0 : NVPTXInst<(outs), (ins), ")", [(CallArgEnd (i32 0))]>;
2162 def RETURNInst : NVPTXInst<(outs), (ins), "ret;", [(RETURNNode)]>;
2164 class CallArgInst<NVPTXRegClass regclass> :
2165 NVPTXInst<(outs), (ins regclass:$a), "$a, ",
2166 [(CallArg (i32 0), regclass:$a)]>;
2168 class LastCallArgInst<NVPTXRegClass regclass> :
2169 NVPTXInst<(outs), (ins regclass:$a), "$a",
2170 [(LastCallArg (i32 0), regclass:$a)]>;
2172 def CallArgI64 : CallArgInst<Int64Regs>;
2173 def CallArgI32 : CallArgInst<Int32Regs>;
2174 def CallArgI16 : CallArgInst<Int16Regs>;
2175 def CallArgF64 : CallArgInst<Float64Regs>;
2176 def CallArgF32 : CallArgInst<Float32Regs>;
2178 def LastCallArgI64 : LastCallArgInst<Int64Regs>;
2179 def LastCallArgI32 : LastCallArgInst<Int32Regs>;
2180 def LastCallArgI16 : LastCallArgInst<Int16Regs>;
2181 def LastCallArgF64 : LastCallArgInst<Float64Regs>;
2182 def LastCallArgF32 : LastCallArgInst<Float32Regs>;
2184 def CallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a, ",
2185 [(CallArg (i32 0), (i32 imm:$a))]>;
2186 def LastCallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a",
2187 [(LastCallArg (i32 0), (i32 imm:$a))]>;
2189 def CallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a, ",
2190 [(CallArg (i32 1), (i32 imm:$a))]>;
2191 def LastCallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a",
2192 [(LastCallArg (i32 1), (i32 imm:$a))]>;
2194 def CallVoidInst : NVPTXInst<(outs), (ins imem:$addr), "$addr, ",
2195 [(CallVoid (Wrapper tglobaladdr:$addr))]>;
2196 def CallVoidInstReg : NVPTXInst<(outs), (ins Int32Regs:$addr), "$addr, ",
2197 [(CallVoid Int32Regs:$addr)]>;
2198 def CallVoidInstReg64 : NVPTXInst<(outs), (ins Int64Regs:$addr), "$addr, ",
2199 [(CallVoid Int64Regs:$addr)]>;
2200 def PrototypeInst : NVPTXInst<(outs), (ins i32imm:$val), ", prototype_$val;",
2201 [(Prototype (i32 imm:$val))]>;
2203 def DeclareRetMemInst :
2204 NVPTXInst<(outs), (ins i32imm:$align, i32imm:$size, i32imm:$num),
2205 ".param .align $align .b8 retval$num[$size];",
2206 [(DeclareRetParam (i32 imm:$align), (i32 imm:$size), (i32 imm:$num))]>;
2207 def DeclareRetScalarInst :
2208 NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num),
2209 ".param .b$size retval$num;",
2210 [(DeclareRet (i32 1), (i32 imm:$size), (i32 imm:$num))]>;
2211 def DeclareRetRegInst :
2212 NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num),
2213 ".reg .b$size retval$num;",
2214 [(DeclareRet (i32 2), (i32 imm:$size), (i32 imm:$num))]>;
2216 def DeclareParamInst :
2217 NVPTXInst<(outs), (ins i32imm:$align, i32imm:$a, i32imm:$size),
2218 ".param .align $align .b8 param$a[$size];",
2219 [(DeclareParam (i32 imm:$align), (i32 imm:$a), (i32 imm:$size))]>;
2220 def DeclareScalarParamInst :
2221 NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size),
2222 ".param .b$size param$a;",
2223 [(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 0))]>;
2224 def DeclareScalarRegInst :
2225 NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size),
2226 ".reg .b$size param$a;",
2227 [(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 1))]>;
2229 class MoveParamInst<NVPTXRegClass regclass, string asmstr> :
2230 NVPTXInst<(outs regclass:$dst), (ins regclass:$src),
2231 !strconcat("mov", asmstr, " \t$dst, $src;"),
2232 [(set regclass:$dst, (MoveParam regclass:$src))]>;
2234 def MoveParamI64 : MoveParamInst<Int64Regs, ".b64">;
2235 def MoveParamI32 : MoveParamInst<Int32Regs, ".b32">;
2237 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
2238 "cvt.u16.u32 \t$dst, $src;",
2239 [(set Int16Regs:$dst, (MoveParam Int16Regs:$src))]>;
2240 def MoveParamF64 : MoveParamInst<Float64Regs, ".f64">;
2241 def MoveParamF32 : MoveParamInst<Float32Regs, ".f32">;
2242 def MoveParamF16 : MoveParamInst<Float16Regs, ".f16">;
2244 class PseudoUseParamInst<NVPTXRegClass regclass> :
2245 NVPTXInst<(outs), (ins regclass:$src),
2246 "// Pseudo use of $src",
2247 [(PseudoUseParam regclass:$src)]>;
2249 def PseudoUseParamI64 : PseudoUseParamInst<Int64Regs>;
2250 def PseudoUseParamI32 : PseudoUseParamInst<Int32Regs>;
2251 def PseudoUseParamI16 : PseudoUseParamInst<Int16Regs>;
2252 def PseudoUseParamF64 : PseudoUseParamInst<Float64Regs>;
2253 def PseudoUseParamF32 : PseudoUseParamInst<Float32Regs>;
2257 // Load / Store Handling
2259 multiclass LD<NVPTXRegClass regclass> {
2260 def _avar : NVPTXInst<
2261 (outs regclass:$dst),
2262 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
2263 i32imm:$fromWidth, imem:$addr),
2264 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2265 "\t$dst, [$addr];", []>;
2266 def _areg : NVPTXInst<
2267 (outs regclass:$dst),
2268 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
2269 i32imm:$fromWidth, Int32Regs:$addr),
2270 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2271 "\t$dst, [$addr];", []>;
2272 def _areg_64 : NVPTXInst<
2273 (outs regclass:$dst),
2274 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
2275 i32imm:$fromWidth, Int64Regs:$addr),
2276 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2277 "\t$dst, [$addr];", []>;
2278 def _ari : NVPTXInst<
2279 (outs regclass:$dst),
2280 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
2281 i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
2282 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2283 "\t$dst, [$addr+$offset];", []>;
2284 def _ari_64 : NVPTXInst<
2285 (outs regclass:$dst),
2286 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
2287 LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
2288 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2289 "\t$dst, [$addr+$offset];", []>;
2290 def _asi : NVPTXInst<
2291 (outs regclass:$dst),
2292 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
2293 LdStCode:$Sign, i32imm:$fromWidth, imem:$addr, i32imm:$offset),
2294 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2295 "\t$dst, [$addr+$offset];", []>;
2298 let mayLoad=1, hasSideEffects=0 in {
2299 defm LD_i8 : LD<Int16Regs>;
2300 defm LD_i16 : LD<Int16Regs>;
2301 defm LD_i32 : LD<Int32Regs>;
2302 defm LD_i64 : LD<Int64Regs>;
2303 defm LD_f16 : LD<Float16Regs>;
2304 defm LD_f16x2 : LD<Float16x2Regs>;
2305 defm LD_f32 : LD<Float32Regs>;
2306 defm LD_f64 : LD<Float64Regs>;
2309 multiclass ST<NVPTXRegClass regclass> {
2310 def _avar : NVPTXInst<
2312 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
2313 LdStCode:$Sign, i32imm:$toWidth, imem:$addr),
2314 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
2315 " \t[$addr], $src;", []>;
2316 def _areg : NVPTXInst<
2318 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp,
2319 LdStCode:$Vec, LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr),
2320 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
2321 " \t[$addr], $src;", []>;
2322 def _areg_64 : NVPTXInst<
2324 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
2325 LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr),
2326 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
2327 " \t[$addr], $src;", []>;
2328 def _ari : NVPTXInst<
2330 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
2331 LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr, i32imm:$offset),
2332 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
2333 " \t[$addr+$offset], $src;", []>;
2334 def _ari_64 : NVPTXInst<
2336 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
2337 LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr, i32imm:$offset),
2338 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
2339 " \t[$addr+$offset], $src;", []>;
2340 def _asi : NVPTXInst<
2342 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
2343 LdStCode:$Sign, i32imm:$toWidth, imem:$addr, i32imm:$offset),
2344 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
2345 " \t[$addr+$offset], $src;", []>;
2348 let mayStore=1, hasSideEffects=0 in {
2349 defm ST_i8 : ST<Int16Regs>;
2350 defm ST_i16 : ST<Int16Regs>;
2351 defm ST_i32 : ST<Int32Regs>;
2352 defm ST_i64 : ST<Int64Regs>;
2353 defm ST_f16 : ST<Float16Regs>;
2354 defm ST_f16x2 : ST<Float16x2Regs>;
2355 defm ST_f32 : ST<Float32Regs>;
2356 defm ST_f64 : ST<Float64Regs>;
2359 // The following is used only in and after vector elementizations. Vector
2360 // elementization happens at the machine instruction level, so the following
2361 // instructions never appear in the DAG.
2362 multiclass LD_VEC<NVPTXRegClass regclass> {
2363 def _v2_avar : NVPTXInst<
2364 (outs regclass:$dst1, regclass:$dst2),
2365 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
2366 i32imm:$fromWidth, imem:$addr),
2367 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2368 "\t{{$dst1, $dst2}}, [$addr];", []>;
2369 def _v2_areg : NVPTXInst<
2370 (outs regclass:$dst1, regclass:$dst2),
2371 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
2372 i32imm:$fromWidth, Int32Regs:$addr),
2373 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2374 "\t{{$dst1, $dst2}}, [$addr];", []>;
2375 def _v2_areg_64 : NVPTXInst<
2376 (outs regclass:$dst1, regclass:$dst2),
2377 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
2378 i32imm:$fromWidth, Int64Regs:$addr),
2379 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2380 "\t{{$dst1, $dst2}}, [$addr];", []>;
2381 def _v2_ari : NVPTXInst<
2382 (outs regclass:$dst1, regclass:$dst2),
2383 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
2384 i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
2385 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2386 "\t{{$dst1, $dst2}}, [$addr+$offset];", []>;
2387 def _v2_ari_64 : NVPTXInst<
2388 (outs regclass:$dst1, regclass:$dst2),
2389 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
2390 i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
2391 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2392 "\t{{$dst1, $dst2}}, [$addr+$offset];", []>;
2393 def _v2_asi : NVPTXInst<
2394 (outs regclass:$dst1, regclass:$dst2),
2395 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
2396 i32imm:$fromWidth, imem:$addr, i32imm:$offset),
2397 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2398 "\t{{$dst1, $dst2}}, [$addr+$offset];", []>;
2399 def _v4_avar : NVPTXInst<
2400 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
2401 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
2402 i32imm:$fromWidth, imem:$addr),
2403 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2404 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>;
2405 def _v4_areg : NVPTXInst<
2406 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
2407 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
2408 i32imm:$fromWidth, Int32Regs:$addr),
2409 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2410 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>;
2411 def _v4_areg_64 : NVPTXInst<
2412 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
2413 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
2414 i32imm:$fromWidth, Int64Regs:$addr),
2415 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2416 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>;
2417 def _v4_ari : NVPTXInst<
2418 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
2419 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
2420 i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
2421 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2422 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>;
2423 def _v4_ari_64 : NVPTXInst<
2424 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
2425 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
2426 i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
2427 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2428 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>;
2429 def _v4_asi : NVPTXInst<
2430 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
2431 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
2432 i32imm:$fromWidth, imem:$addr, i32imm:$offset),
2433 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2434 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>;
2436 let mayLoad=1, hasSideEffects=0 in {
2437 defm LDV_i8 : LD_VEC<Int16Regs>;
2438 defm LDV_i16 : LD_VEC<Int16Regs>;
2439 defm LDV_i32 : LD_VEC<Int32Regs>;
2440 defm LDV_i64 : LD_VEC<Int64Regs>;
2441 defm LDV_f16 : LD_VEC<Float16Regs>;
2442 defm LDV_f16x2 : LD_VEC<Float16x2Regs>;
2443 defm LDV_f32 : LD_VEC<Float32Regs>;
2444 defm LDV_f64 : LD_VEC<Float64Regs>;
2447 multiclass ST_VEC<NVPTXRegClass regclass> {
2448 def _v2_avar : NVPTXInst<
2450 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
2451 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr),
2452 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2453 "\t[$addr], {{$src1, $src2}};", []>;
2454 def _v2_areg : NVPTXInst<
2456 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
2457 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr),
2458 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2459 "\t[$addr], {{$src1, $src2}};", []>;
2460 def _v2_areg_64 : NVPTXInst<
2462 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
2463 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr),
2464 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2465 "\t[$addr], {{$src1, $src2}};", []>;
2466 def _v2_ari : NVPTXInst<
2468 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
2469 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr,
2471 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2472 "\t[$addr+$offset], {{$src1, $src2}};", []>;
2473 def _v2_ari_64 : NVPTXInst<
2475 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
2476 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr,
2478 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2479 "\t[$addr+$offset], {{$src1, $src2}};", []>;
2480 def _v2_asi : NVPTXInst<
2482 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
2483 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr,
2485 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2486 "\t[$addr+$offset], {{$src1, $src2}};", []>;
2487 def _v4_avar : NVPTXInst<
2489 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
2490 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
2491 i32imm:$fromWidth, imem:$addr),
2492 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2493 "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>;
2494 def _v4_areg : NVPTXInst<
2496 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
2497 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
2498 i32imm:$fromWidth, Int32Regs:$addr),
2499 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2500 "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>;
2501 def _v4_areg_64 : NVPTXInst<
2503 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
2504 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
2505 i32imm:$fromWidth, Int64Regs:$addr),
2506 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2507 "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>;
2508 def _v4_ari : NVPTXInst<
2510 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
2511 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
2512 i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
2513 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2514 "\t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>;
2515 def _v4_ari_64 : NVPTXInst<
2517 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
2518 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
2519 i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
2520 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
2521 "\t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>;
2522 def _v4_asi : NVPTXInst<
2524 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
2525 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
2526 i32imm:$fromWidth, imem:$addr, i32imm:$offset),
2527 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}"
2528 "$fromWidth \t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>;
2531 let mayStore=1, hasSideEffects=0 in {
2532 defm STV_i8 : ST_VEC<Int16Regs>;
2533 defm STV_i16 : ST_VEC<Int16Regs>;
2534 defm STV_i32 : ST_VEC<Int32Regs>;
2535 defm STV_i64 : ST_VEC<Int64Regs>;
2536 defm STV_f16 : ST_VEC<Float16Regs>;
2537 defm STV_f16x2 : ST_VEC<Float16x2Regs>;
2538 defm STV_f32 : ST_VEC<Float32Regs>;
2539 defm STV_f64 : ST_VEC<Float64Regs>;
2542 //---- Conversion ----
2544 class F_BITCONVERT<string SzStr, NVPTXRegClass regclassIn,
2545 NVPTXRegClass regclassOut> :
2546 NVPTXInst<(outs regclassOut:$d), (ins regclassIn:$a),
2547 !strconcat("mov.b", !strconcat(SzStr, " \t$d, $a;")),
2548 [(set regclassOut:$d, (bitconvert regclassIn:$a))]>;
2550 def BITCONVERT_16_I2F : F_BITCONVERT<"16", Int16Regs, Float16Regs>;
2551 def BITCONVERT_16_F2I : F_BITCONVERT<"16", Float16Regs, Int16Regs>;
2552 def BITCONVERT_32_I2F : F_BITCONVERT<"32", Int32Regs, Float32Regs>;
2553 def BITCONVERT_32_F2I : F_BITCONVERT<"32", Float32Regs, Int32Regs>;
2554 def BITCONVERT_64_I2F : F_BITCONVERT<"64", Int64Regs, Float64Regs>;
2555 def BITCONVERT_64_F2I : F_BITCONVERT<"64", Float64Regs, Int64Regs>;
2556 def BITCONVERT_32_I2F16x2 : F_BITCONVERT<"32", Int32Regs, Float16x2Regs>;
2557 def BITCONVERT_32_F16x22I : F_BITCONVERT<"32", Float16x2Regs, Int32Regs>;
2559 // NOTE: pred->fp are currently sub-optimal due to an issue in TableGen where
2560 // we cannot specify floating-point literals in isel patterns. Therefore, we
2561 // use an integer selp to select either 1 or 0 and then cvt to floating-point.
2564 def : Pat<(f16 (sint_to_fp Int1Regs:$a)),
2565 (CVT_f16_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
2566 def : Pat<(f16 (sint_to_fp Int16Regs:$a)),
2567 (CVT_f16_s16 Int16Regs:$a, CvtRN)>;
2568 def : Pat<(f16 (sint_to_fp Int32Regs:$a)),
2569 (CVT_f16_s32 Int32Regs:$a, CvtRN)>;
2570 def : Pat<(f16 (sint_to_fp Int64Regs:$a)),
2571 (CVT_f16_s64 Int64Regs:$a, CvtRN)>;
2574 def : Pat<(f16 (uint_to_fp Int1Regs:$a)),
2575 (CVT_f16_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
2576 def : Pat<(f16 (uint_to_fp Int16Regs:$a)),
2577 (CVT_f16_u16 Int16Regs:$a, CvtRN)>;
2578 def : Pat<(f16 (uint_to_fp Int32Regs:$a)),
2579 (CVT_f16_u32 Int32Regs:$a, CvtRN)>;
2580 def : Pat<(f16 (uint_to_fp Int64Regs:$a)),
2581 (CVT_f16_u64 Int64Regs:$a, CvtRN)>;
2584 def : Pat<(f32 (sint_to_fp Int1Regs:$a)),
2585 (CVT_f32_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
2586 def : Pat<(f32 (sint_to_fp Int16Regs:$a)),
2587 (CVT_f32_s16 Int16Regs:$a, CvtRN)>;
2588 def : Pat<(f32 (sint_to_fp Int32Regs:$a)),
2589 (CVT_f32_s32 Int32Regs:$a, CvtRN)>;
2590 def : Pat<(f32 (sint_to_fp Int64Regs:$a)),
2591 (CVT_f32_s64 Int64Regs:$a, CvtRN)>;
2594 def : Pat<(f32 (uint_to_fp Int1Regs:$a)),
2595 (CVT_f32_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
2596 def : Pat<(f32 (uint_to_fp Int16Regs:$a)),
2597 (CVT_f32_u16 Int16Regs:$a, CvtRN)>;
2598 def : Pat<(f32 (uint_to_fp Int32Regs:$a)),
2599 (CVT_f32_u32 Int32Regs:$a, CvtRN)>;
2600 def : Pat<(f32 (uint_to_fp Int64Regs:$a)),
2601 (CVT_f32_u64 Int64Regs:$a, CvtRN)>;
2604 def : Pat<(f64 (sint_to_fp Int1Regs:$a)),
2605 (CVT_f64_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
2606 def : Pat<(f64 (sint_to_fp Int16Regs:$a)),
2607 (CVT_f64_s16 Int16Regs:$a, CvtRN)>;
2608 def : Pat<(f64 (sint_to_fp Int32Regs:$a)),
2609 (CVT_f64_s32 Int32Regs:$a, CvtRN)>;
2610 def : Pat<(f64 (sint_to_fp Int64Regs:$a)),
2611 (CVT_f64_s64 Int64Regs:$a, CvtRN)>;
2614 def : Pat<(f64 (uint_to_fp Int1Regs:$a)),
2615 (CVT_f64_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
2616 def : Pat<(f64 (uint_to_fp Int16Regs:$a)),
2617 (CVT_f64_u16 Int16Regs:$a, CvtRN)>;
2618 def : Pat<(f64 (uint_to_fp Int32Regs:$a)),
2619 (CVT_f64_u32 Int32Regs:$a, CvtRN)>;
2620 def : Pat<(f64 (uint_to_fp Int64Regs:$a)),
2621 (CVT_f64_u64 Int64Regs:$a, CvtRN)>;
2625 def : Pat<(i1 (fp_to_sint Float16Regs:$a)),
2626 (SETP_b16ri (BITCONVERT_16_F2I Float16Regs:$a), 0, CmpEQ)>;
2627 def : Pat<(i16 (fp_to_sint Float16Regs:$a)),
2628 (CVT_s16_f16 Float16Regs:$a, CvtRZI)>;
2629 def : Pat<(i32 (fp_to_sint Float16Regs:$a)),
2630 (CVT_s32_f16 Float16Regs:$a, CvtRZI)>;
2631 def : Pat<(i64 (fp_to_sint Float16Regs:$a)),
2632 (CVT_s64_f16 Float16Regs:$a, CvtRZI)>;
2635 def : Pat<(i1 (fp_to_uint Float16Regs:$a)),
2636 (SETP_b16ri (BITCONVERT_16_F2I Float16Regs:$a), 0, CmpEQ)>;
2637 def : Pat<(i16 (fp_to_uint Float16Regs:$a)),
2638 (CVT_u16_f16 Float16Regs:$a, CvtRZI)>;
2639 def : Pat<(i32 (fp_to_uint Float16Regs:$a)),
2640 (CVT_u32_f16 Float16Regs:$a, CvtRZI)>;
2641 def : Pat<(i64 (fp_to_uint Float16Regs:$a)),
2642 (CVT_u64_f16 Float16Regs:$a, CvtRZI)>;
2645 def : Pat<(i1 (fp_to_sint Float32Regs:$a)),
2646 (SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>;
2647 def : Pat<(i16 (fp_to_sint Float32Regs:$a)),
2648 (CVT_s16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
2649 def : Pat<(i16 (fp_to_sint Float32Regs:$a)),
2650 (CVT_s16_f32 Float32Regs:$a, CvtRZI)>;
2651 def : Pat<(i32 (fp_to_sint Float32Regs:$a)),
2652 (CVT_s32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
2653 def : Pat<(i32 (fp_to_sint Float32Regs:$a)),
2654 (CVT_s32_f32 Float32Regs:$a, CvtRZI)>;
2655 def : Pat<(i64 (fp_to_sint Float32Regs:$a)),
2656 (CVT_s64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
2657 def : Pat<(i64 (fp_to_sint Float32Regs:$a)),
2658 (CVT_s64_f32 Float32Regs:$a, CvtRZI)>;
2661 def : Pat<(i1 (fp_to_uint Float32Regs:$a)),
2662 (SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>;
2663 def : Pat<(i16 (fp_to_uint Float32Regs:$a)),
2664 (CVT_u16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
2665 def : Pat<(i16 (fp_to_uint Float32Regs:$a)),
2666 (CVT_u16_f32 Float32Regs:$a, CvtRZI)>;
2667 def : Pat<(i32 (fp_to_uint Float32Regs:$a)),
2668 (CVT_u32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
2669 def : Pat<(i32 (fp_to_uint Float32Regs:$a)),
2670 (CVT_u32_f32 Float32Regs:$a, CvtRZI)>;
2671 def : Pat<(i64 (fp_to_uint Float32Regs:$a)),
2672 (CVT_u64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
2673 def : Pat<(i64 (fp_to_uint Float32Regs:$a)),
2674 (CVT_u64_f32 Float32Regs:$a, CvtRZI)>;
2677 def : Pat<(i1 (fp_to_sint Float64Regs:$a)),
2678 (SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>;
2679 def : Pat<(i16 (fp_to_sint Float64Regs:$a)),
2680 (CVT_s16_f64 Float64Regs:$a, CvtRZI)>;
2681 def : Pat<(i32 (fp_to_sint Float64Regs:$a)),
2682 (CVT_s32_f64 Float64Regs:$a, CvtRZI)>;
2683 def : Pat<(i64 (fp_to_sint Float64Regs:$a)),
2684 (CVT_s64_f64 Float64Regs:$a, CvtRZI)>;
2687 def : Pat<(i1 (fp_to_uint Float64Regs:$a)),
2688 (SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>;
2689 def : Pat<(i16 (fp_to_uint Float64Regs:$a)),
2690 (CVT_u16_f64 Float64Regs:$a, CvtRZI)>;
2691 def : Pat<(i32 (fp_to_uint Float64Regs:$a)),
2692 (CVT_u32_f64 Float64Regs:$a, CvtRZI)>;
2693 def : Pat<(i64 (fp_to_uint Float64Regs:$a)),
2694 (CVT_u64_f64 Float64Regs:$a, CvtRZI)>;
2697 def : Pat<(i16 (sext Int1Regs:$a)),
2698 (SELP_s16ii -1, 0, Int1Regs:$a)>;
2699 def : Pat<(i32 (sext Int1Regs:$a)),
2700 (SELP_s32ii -1, 0, Int1Regs:$a)>;
2701 def : Pat<(i64 (sext Int1Regs:$a)),
2702 (SELP_s64ii -1, 0, Int1Regs:$a)>;
2705 def : Pat<(i16 (zext Int1Regs:$a)),
2706 (SELP_u16ii 1, 0, Int1Regs:$a)>;
2707 def : Pat<(i32 (zext Int1Regs:$a)),
2708 (SELP_u32ii 1, 0, Int1Regs:$a)>;
2709 def : Pat<(i64 (zext Int1Regs:$a)),
2710 (SELP_u64ii 1, 0, Int1Regs:$a)>;
2713 def : Pat<(i16 (anyext Int1Regs:$a)),
2714 (SELP_u16ii -1, 0, Int1Regs:$a)>;
2715 def : Pat<(i32 (anyext Int1Regs:$a)),
2716 (SELP_u32ii -1, 0, Int1Regs:$a)>;
2717 def : Pat<(i64 (anyext Int1Regs:$a)),
2718 (SELP_u64ii -1, 0, Int1Regs:$a)>;
2721 def : Pat<(i32 (sext Int16Regs:$a)),
2722 (CVT_s32_s16 Int16Regs:$a, CvtNONE)>;
2723 def : Pat<(i64 (sext Int16Regs:$a)),
2724 (CVT_s64_s16 Int16Regs:$a, CvtNONE)>;
2727 def : Pat<(i32 (zext Int16Regs:$a)),
2728 (CVT_u32_u16 Int16Regs:$a, CvtNONE)>;
2729 def : Pat<(i64 (zext Int16Regs:$a)),
2730 (CVT_u64_u16 Int16Regs:$a, CvtNONE)>;
2733 def : Pat<(i32 (anyext Int16Regs:$a)),
2734 (CVT_u32_u16 Int16Regs:$a, CvtNONE)>;
2735 def : Pat<(i64 (anyext Int16Regs:$a)),
2736 (CVT_u64_u16 Int16Regs:$a, CvtNONE)>;
2739 def : Pat<(i64 (sext Int32Regs:$a)),
2740 (CVT_s64_s32 Int32Regs:$a, CvtNONE)>;
2743 def : Pat<(i64 (zext Int32Regs:$a)),
2744 (CVT_u64_u32 Int32Regs:$a, CvtNONE)>;
2747 def : Pat<(i64 (anyext Int32Regs:$a)),
2748 (CVT_u64_u32 Int32Regs:$a, CvtNONE)>;
2752 def : Pat<(i32 (trunc Int64Regs:$a)),
2753 (CVT_u32_u64 Int64Regs:$a, CvtNONE)>;
2754 def : Pat<(i16 (trunc Int64Regs:$a)),
2755 (CVT_u16_u64 Int64Regs:$a, CvtNONE)>;
2756 def : Pat<(i1 (trunc Int64Regs:$a)),
2757 (SETP_b64ri (ANDb64ri Int64Regs:$a, 1), 1, CmpEQ)>;
2760 def : Pat<(i16 (trunc Int32Regs:$a)),
2761 (CVT_u16_u32 Int32Regs:$a, CvtNONE)>;
2762 def : Pat<(i1 (trunc Int32Regs:$a)),
2763 (SETP_b32ri (ANDb32ri Int32Regs:$a, 1), 1, CmpEQ)>;
2766 def : Pat<(i1 (trunc Int16Regs:$a)),
2767 (SETP_b16ri (ANDb16ri Int16Regs:$a, 1), 1, CmpEQ)>;
2770 def : Pat<(sext_inreg Int16Regs:$a, i8), (CVT_INREG_s16_s8 Int16Regs:$a)>;
2771 def : Pat<(sext_inreg Int32Regs:$a, i8), (CVT_INREG_s32_s8 Int32Regs:$a)>;
2772 def : Pat<(sext_inreg Int32Regs:$a, i16), (CVT_INREG_s32_s16 Int32Regs:$a)>;
2773 def : Pat<(sext_inreg Int64Regs:$a, i8), (CVT_INREG_s64_s8 Int64Regs:$a)>;
2774 def : Pat<(sext_inreg Int64Regs:$a, i16), (CVT_INREG_s64_s16 Int64Regs:$a)>;
2775 def : Pat<(sext_inreg Int64Regs:$a, i32), (CVT_INREG_s64_s32 Int64Regs:$a)>;
2778 // Select instructions with 32-bit predicates
2779 def : Pat<(select Int32Regs:$pred, Int16Regs:$a, Int16Regs:$b),
2780 (SELP_b16rr Int16Regs:$a, Int16Regs:$b,
2781 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
2782 def : Pat<(select Int32Regs:$pred, Int32Regs:$a, Int32Regs:$b),
2783 (SELP_b32rr Int32Regs:$a, Int32Regs:$b,
2784 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
2785 def : Pat<(select Int32Regs:$pred, Int64Regs:$a, Int64Regs:$b),
2786 (SELP_b64rr Int64Regs:$a, Int64Regs:$b,
2787 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
2788 def : Pat<(select Int32Regs:$pred, Float16Regs:$a, Float16Regs:$b),
2789 (SELP_f16rr Float16Regs:$a, Float16Regs:$b,
2790 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
2791 def : Pat<(select Int32Regs:$pred, Float32Regs:$a, Float32Regs:$b),
2792 (SELP_f32rr Float32Regs:$a, Float32Regs:$b,
2793 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
2794 def : Pat<(select Int32Regs:$pred, Float64Regs:$a, Float64Regs:$b),
2795 (SELP_f64rr Float64Regs:$a, Float64Regs:$b,
2796 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
2799 let hasSideEffects = 0 in {
2800 // pack a set of smaller int registers to a larger int register
2801 def V4I16toI64 : NVPTXInst<(outs Int64Regs:$d),
2802 (ins Int16Regs:$s1, Int16Regs:$s2,
2803 Int16Regs:$s3, Int16Regs:$s4),
2804 "mov.b64 \t$d, {{$s1, $s2, $s3, $s4}};", []>;
2805 def V2I16toI32 : NVPTXInst<(outs Int32Regs:$d),
2806 (ins Int16Regs:$s1, Int16Regs:$s2),
2807 "mov.b32 \t$d, {{$s1, $s2}};", []>;
2808 def V2I32toI64 : NVPTXInst<(outs Int64Regs:$d),
2809 (ins Int32Regs:$s1, Int32Regs:$s2),
2810 "mov.b64 \t$d, {{$s1, $s2}};", []>;
2811 def V2F32toF64 : NVPTXInst<(outs Float64Regs:$d),
2812 (ins Float32Regs:$s1, Float32Regs:$s2),
2813 "mov.b64 \t$d, {{$s1, $s2}};", []>;
2815 // unpack a larger int register to a set of smaller int registers
2816 def I64toV4I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2,
2817 Int16Regs:$d3, Int16Regs:$d4),
2819 "mov.b64 \t{{$d1, $d2, $d3, $d4}}, $s;", []>;
2820 def I32toV2I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2),
2822 "mov.b32 \t{{$d1, $d2}}, $s;", []>;
2823 def I64toV2I32 : NVPTXInst<(outs Int32Regs:$d1, Int32Regs:$d2),
2825 "mov.b64 \t{{$d1, $d2}}, $s;", []>;
2826 def F64toV2F32 : NVPTXInst<(outs Float32Regs:$d1, Float32Regs:$d2),
2827 (ins Float64Regs:$s),
2828 "mov.b64 \t{{$d1, $d2}}, $s;", []>;
2832 let hasSideEffects = 0 in {
2833 // Extract element of f16x2 register. PTX does not provide any way
2834 // to access elements of f16x2 vector directly, so we need to
2835 // extract it using a temporary register.
2836 def F16x2toF16_0 : NVPTXInst<(outs Float16Regs:$dst),
2837 (ins Float16x2Regs:$src),
2838 "{{ .reg .b16 \t%tmp_hi;\n\t"
2839 " mov.b32 \t{$dst, %tmp_hi}, $src; }}",
2840 [(set Float16Regs:$dst,
2841 (extractelt (v2f16 Float16x2Regs:$src), 0))]>;
2842 def F16x2toF16_1 : NVPTXInst<(outs Float16Regs:$dst),
2843 (ins Float16x2Regs:$src),
2844 "{{ .reg .b16 \t%tmp_lo;\n\t"
2845 " mov.b32 \t{%tmp_lo, $dst}, $src; }}",
2846 [(set Float16Regs:$dst,
2847 (extractelt (v2f16 Float16x2Regs:$src), 1))]>;
2849 // Coalesce two f16 registers into f16x2
2850 def BuildF16x2 : NVPTXInst<(outs Float16x2Regs:$dst),
2851 (ins Float16Regs:$a, Float16Regs:$b),
2852 "mov.b32 \t$dst, {{$a, $b}};",
2853 [(set Float16x2Regs:$dst,
2854 (build_vector (f16 Float16Regs:$a), (f16 Float16Regs:$b)))]>;
2856 // Directly initializing underlying the b32 register is one less SASS
2857 // instruction than than vector-packing move.
2858 def BuildF16x2i : NVPTXInst<(outs Float16x2Regs:$dst), (ins i32imm:$src),
2859 "mov.b32 \t$dst, $src;",
2862 // Split f16x2 into two f16 registers.
2863 def SplitF16x2 : NVPTXInst<(outs Float16Regs:$lo, Float16Regs:$hi),
2864 (ins Float16x2Regs:$src),
2865 "mov.b32 \t{{$lo, $hi}}, $src;",
2867 // Split an i32 into two f16
2868 def SplitI32toF16x2 : NVPTXInst<(outs Float16Regs:$lo, Float16Regs:$hi),
2869 (ins Int32Regs:$src),
2870 "mov.b32 \t{{$lo, $hi}}, $src;",
2874 // Count leading zeros
2875 let hasSideEffects = 0 in {
2876 def CLZr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a),
2877 "clz.b32 \t$d, $a;", []>;
2878 def CLZr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
2879 "clz.b64 \t$d, $a;", []>;
2882 // 32-bit has a direct PTX instruction
2883 def : Pat<(ctlz Int32Regs:$a), (CLZr32 Int32Regs:$a)>;
2885 // The return type of the ctlz ISD node is the same as its input, but the PTX
2886 // ctz instruction always returns a 32-bit value. For ctlz.i64, convert the
2887 // ptx value to 64 bits to match the ISD node's semantics, unless we know we're
2888 // truncating back down to 32 bits.
2889 def : Pat<(ctlz Int64Regs:$a), (CVT_u64_u32 (CLZr64 Int64Regs:$a), CvtNONE)>;
2890 def : Pat<(i32 (trunc (ctlz Int64Regs:$a))), (CLZr64 Int64Regs:$a)>;
2892 // For 16-bit ctlz, we zero-extend to 32-bit, perform the count, then trunc the
2893 // result back to 16-bits if necessary. We also need to subtract 16 because
2894 // the high-order 16 zeros were counted.
2896 // TODO: NVPTX has a mov.b32 b32reg, {imm, b16reg} instruction, which we could
2897 // use to save one SASS instruction (on sm_35 anyway):
2899 // mov.b32 $tmp, {0xffff, $a}
2900 // ctlz.b32 $result, $tmp
2902 // That is, instead of zero-extending the input to 32 bits, we'd "one-extend"
2903 // and then ctlz that value. This way we don't have to subtract 16 from the
2904 // result. Unfortunately today we don't have a way to generate
2905 // "mov b32reg, {b16imm, b16reg}", so we don't do this optimization.
2906 def : Pat<(ctlz Int16Regs:$a),
2907 (SUBi16ri (CVT_u16_u32
2908 (CLZr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), CvtNONE), 16)>;
2909 def : Pat<(i32 (zext (ctlz Int16Regs:$a))),
2910 (SUBi32ri (CLZr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), 16)>;
2913 let hasSideEffects = 0 in {
2914 def POPCr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a),
2915 "popc.b32 \t$d, $a;", []>;
2916 def POPCr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
2917 "popc.b64 \t$d, $a;", []>;
2920 // 32-bit has a direct PTX instruction
2921 def : Pat<(ctpop Int32Regs:$a), (POPCr32 Int32Regs:$a)>;
2923 // For 64-bit, the result in PTX is actually 32-bit so we zero-extend to 64-bit
2924 // to match the LLVM semantics. Just as with ctlz.i64, we provide a second
2925 // pattern that avoids the type conversion if we're truncating the result to
2927 def : Pat<(ctpop Int64Regs:$a), (CVT_u64_u32 (POPCr64 Int64Regs:$a), CvtNONE)>;
2928 def : Pat<(i32 (trunc (ctpop Int64Regs:$a))), (POPCr64 Int64Regs:$a)>;
2930 // For 16-bit, we zero-extend to 32-bit, then trunc the result back to 16-bits.
2931 // If we know that we're storing into an i32, we can avoid the final trunc.
2932 def : Pat<(ctpop Int16Regs:$a),
2933 (CVT_u16_u32 (POPCr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), CvtNONE)>;
2934 def : Pat<(i32 (zext (ctpop Int16Regs:$a))),
2935 (POPCr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE))>;
2937 // fpround f32 -> f16
2938 def : Pat<(f16 (fpround Float32Regs:$a)),
2939 (CVT_f16_f32 Float32Regs:$a, CvtRN)>;
2941 // fpround f64 -> f16
2942 def : Pat<(f16 (fpround Float64Regs:$a)),
2943 (CVT_f16_f64 Float64Regs:$a, CvtRN)>;
2945 // fpround f64 -> f32
2946 def : Pat<(f32 (fpround Float64Regs:$a)),
2947 (CVT_f32_f64 Float64Regs:$a, CvtRN_FTZ)>, Requires<[doF32FTZ]>;
2948 def : Pat<(f32 (fpround Float64Regs:$a)),
2949 (CVT_f32_f64 Float64Regs:$a, CvtRN)>;
2951 // fpextend f16 -> f32
2952 def : Pat<(f32 (fpextend Float16Regs:$a)),
2953 (CVT_f32_f16 Float16Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>;
2954 def : Pat<(f32 (fpextend Float16Regs:$a)),
2955 (CVT_f32_f16 Float16Regs:$a, CvtNONE)>;
2957 // fpextend f16 -> f64
2958 def : Pat<(f64 (fpextend Float16Regs:$a)),
2959 (CVT_f64_f16 Float16Regs:$a, CvtNONE)>;
2961 // fpextend f32 -> f64
2962 def : Pat<(f64 (fpextend Float32Regs:$a)),
2963 (CVT_f64_f32 Float32Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>;
2964 def : Pat<(f64 (fpextend Float32Regs:$a)),
2965 (CVT_f64_f32 Float32Regs:$a, CvtNONE)>;
2967 def retflag : SDNode<"NVPTXISD::RET_FLAG", SDTNone,
2968 [SDNPHasChain, SDNPOptInGlue]>;
2970 // fceil, ffloor, fround, ftrunc.
2972 def : Pat<(fceil Float16Regs:$a),
2973 (CVT_f16_f16 Float16Regs:$a, CvtRPI)>;
2974 def : Pat<(fceil Float32Regs:$a),
2975 (CVT_f32_f32 Float32Regs:$a, CvtRPI_FTZ)>, Requires<[doF32FTZ]>;
2976 def : Pat<(fceil Float32Regs:$a),
2977 (CVT_f32_f32 Float32Regs:$a, CvtRPI)>, Requires<[doNoF32FTZ]>;
2978 def : Pat<(fceil Float64Regs:$a),
2979 (CVT_f64_f64 Float64Regs:$a, CvtRPI)>;
2981 def : Pat<(ffloor Float16Regs:$a),
2982 (CVT_f16_f16 Float16Regs:$a, CvtRMI)>;
2983 def : Pat<(ffloor Float32Regs:$a),
2984 (CVT_f32_f32 Float32Regs:$a, CvtRMI_FTZ)>, Requires<[doF32FTZ]>;
2985 def : Pat<(ffloor Float32Regs:$a),
2986 (CVT_f32_f32 Float32Regs:$a, CvtRMI)>, Requires<[doNoF32FTZ]>;
2987 def : Pat<(ffloor Float64Regs:$a),
2988 (CVT_f64_f64 Float64Regs:$a, CvtRMI)>;
2990 def : Pat<(f16 (fround Float16Regs:$a)),
2991 (CVT_f16_f16 Float16Regs:$a, CvtRNI)>;
2992 def : Pat<(fround Float32Regs:$a),
2993 (CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>;
2994 def : Pat<(f32 (fround Float32Regs:$a)),
2995 (CVT_f32_f32 Float32Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>;
2996 def : Pat<(f64 (fround Float64Regs:$a)),
2997 (CVT_f64_f64 Float64Regs:$a, CvtRNI)>;
2999 def : Pat<(ftrunc Float16Regs:$a),
3000 (CVT_f16_f16 Float16Regs:$a, CvtRZI)>;
3001 def : Pat<(ftrunc Float32Regs:$a),
3002 (CVT_f32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
3003 def : Pat<(ftrunc Float32Regs:$a),
3004 (CVT_f32_f32 Float32Regs:$a, CvtRZI)>, Requires<[doNoF32FTZ]>;
3005 def : Pat<(ftrunc Float64Regs:$a),
3006 (CVT_f64_f64 Float64Regs:$a, CvtRZI)>;
3008 // nearbyint and rint are implemented as rounding to nearest even. This isn't
3009 // strictly correct, because it causes us to ignore the rounding mode. But it
3010 // matches what CUDA's "libm" does.
3012 def : Pat<(fnearbyint Float16Regs:$a),
3013 (CVT_f16_f16 Float16Regs:$a, CvtRNI)>;
3014 def : Pat<(fnearbyint Float32Regs:$a),
3015 (CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>;
3016 def : Pat<(fnearbyint Float32Regs:$a),
3017 (CVT_f32_f32 Float32Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>;
3018 def : Pat<(fnearbyint Float64Regs:$a),
3019 (CVT_f64_f64 Float64Regs:$a, CvtRNI)>;
3021 def : Pat<(frint Float16Regs:$a),
3022 (CVT_f16_f16 Float16Regs:$a, CvtRNI)>;
3023 def : Pat<(frint Float32Regs:$a),
3024 (CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>;
3025 def : Pat<(frint Float32Regs:$a),
3026 (CVT_f32_f32 Float32Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>;
3027 def : Pat<(frint Float64Regs:$a),
3028 (CVT_f64_f64 Float64Regs:$a, CvtRNI)>;
3031 //-----------------------------------
3033 //-----------------------------------
3035 let isTerminator=1 in {
3036 let isReturn=1, isBarrier=1 in
3037 def Return : NVPTXInst<(outs), (ins), "ret;", [(retflag)]>;
3040 def CBranch : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target),
3041 "@$a bra \t$target;",
3042 [(brcond Int1Regs:$a, bb:$target)]>;
3044 def CBranchOther : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target),
3045 "@!$a bra \t$target;", []>;
3047 let isBranch=1, isBarrier=1 in
3048 def GOTO : NVPTXInst<(outs), (ins brtarget:$target),
3049 "bra.uni \t$target;", [(br bb:$target)]>;
3052 def : Pat<(brcond Int32Regs:$a, bb:$target),
3053 (CBranch (SETP_u32ri Int32Regs:$a, 0, CmpNE), bb:$target)>;
3055 // SelectionDAGBuilder::visitSWitchCase() will invert the condition of a
3056 // conditional branch if the target block is the next block so that the code
3057 // can fall through to the target block. The invertion is done by 'xor
3058 // condition, 1', which will be translated to (setne condition, -1). Since ptx
3059 // supports '@!pred bra target', we should use it.
3060 def : Pat<(brcond (i1 (setne Int1Regs:$a, -1)), bb:$target),
3061 (CBranchOther Int1Regs:$a, bb:$target)>;
3064 def SDT_NVPTXCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>,
3066 def SDT_NVPTXCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
3068 def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_NVPTXCallSeqStart,
3069 [SDNPHasChain, SDNPOutGlue, SDNPSideEffect]>;
3070 def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_NVPTXCallSeqEnd,
3071 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
3074 def SDT_NVPTXCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
3075 def call : SDNode<"NVPTXISD::CALL", SDT_NVPTXCall,
3076 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
3077 def calltarget : Operand<i32>;
3079 def CALL : NVPTXInst<(outs), (ins calltarget:$dst), "call \t$dst, (1);", []>;
3082 def : Pat<(call tglobaladdr:$dst), (CALL tglobaladdr:$dst)>;
3083 def : Pat<(call texternalsym:$dst), (CALL texternalsym:$dst)>;
3085 // Pseudo instructions.
3086 class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
3087 : NVPTXInst<outs, ins, asmstr, pattern>;
3090 NVPTXInst<(outs), (ins i32imm:$amt1, i32imm:$amt2),
3091 "\\{ // callseq $amt1, $amt2\n"
3092 "\t.reg .b32 temp_param_reg;",
3093 [(callseq_start timm:$amt1, timm:$amt2)]>;
3095 NVPTXInst<(outs), (ins i32imm:$amt1, i32imm:$amt2),
3096 "\\} // callseq $amt1",
3097 [(callseq_end timm:$amt1, timm:$amt2)]>;
3100 def trapinst : NVPTXInst<(outs), (ins), "trap;", [(trap)]>;
3102 // Call prototype wrapper
3103 def SDTCallPrototype : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
3105 SDNode<"NVPTXISD::CallPrototype", SDTCallPrototype,
3106 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
3107 def ProtoIdent : Operand<i32> {
3108 let PrintMethod = "printProtoIdent";
3110 def CALL_PROTOTYPE :
3111 NVPTXInst<(outs), (ins ProtoIdent:$ident),
3112 "$ident", [(CallPrototype (i32 texternalsym:$ident))]>;
3115 include "NVPTXIntrinsics.td"
3118 //-----------------------------------
3120 //-----------------------------------
3121 // BSWAP is currently expanded. The following is a more efficient
3122 // - for < sm_20, use vector scalar mov, as tesla support native 16-bit register
3123 // - for sm_20, use pmpt (use vector scalar mov to get the pack and
3124 // unpack). sm_20 supports native 32-bit register, but not native 16-bit