1 //==- SystemZInstrHFP.td - Floating-point SystemZ instructions -*- tblgen-*-==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // The instructions in this file implement SystemZ hexadecimal floating-point
11 // arithmetic. Since this format is not mapped to any source-language data
12 // type, these instructions are not used for code generation, but are provided
13 // for use with the assembler and disassembler only.
15 //===----------------------------------------------------------------------===//
17 //===----------------------------------------------------------------------===//
19 //===----------------------------------------------------------------------===//
23 def LTER : UnaryRR <"lter", 0x32, null_frag, FP32, FP32>;
24 def LTDR : UnaryRR <"ltdr", 0x22, null_frag, FP64, FP64>;
25 def LTXR : UnaryRRE<"ltxr", 0xB362, null_frag, FP128, FP128>;
28 //===----------------------------------------------------------------------===//
29 // Conversion instructions
30 //===----------------------------------------------------------------------===//
32 // Convert floating-point values to narrower representations.
33 def LEDR : UnaryRR <"ledr", 0x35, null_frag, FP32, FP64>;
34 def LEXR : UnaryRRE<"lexr", 0xB366, null_frag, FP32, FP128>;
35 def LDXR : UnaryRR <"ldxr", 0x25, null_frag, FP64, FP128>;
36 let isAsmParserOnly = 1 in {
37 def LRER : UnaryRR <"lrer", 0x35, null_frag, FP32, FP64>;
38 def LRDR : UnaryRR <"lrdr", 0x25, null_frag, FP64, FP128>;
41 // Extend floating-point values to wider representations.
42 def LDER : UnaryRRE<"lder", 0xB324, null_frag, FP64, FP32>;
43 def LXER : UnaryRRE<"lxer", 0xB326, null_frag, FP128, FP32>;
44 def LXDR : UnaryRRE<"lxdr", 0xB325, null_frag, FP128, FP64>;
46 def LDE : UnaryRXE<"lde", 0xED24, null_frag, FP64, 4>;
47 def LXE : UnaryRXE<"lxe", 0xED26, null_frag, FP128, 4>;
48 def LXD : UnaryRXE<"lxd", 0xED25, null_frag, FP128, 8>;
50 // Convert a signed integer register value to a floating-point one.
51 def CEFR : UnaryRRE<"cefr", 0xB3B4, null_frag, FP32, GR32>;
52 def CDFR : UnaryRRE<"cdfr", 0xB3B5, null_frag, FP64, GR32>;
53 def CXFR : UnaryRRE<"cxfr", 0xB3B6, null_frag, FP128, GR32>;
55 def CEGR : UnaryRRE<"cegr", 0xB3C4, null_frag, FP32, GR64>;
56 def CDGR : UnaryRRE<"cdgr", 0xB3C5, null_frag, FP64, GR64>;
57 def CXGR : UnaryRRE<"cxgr", 0xB3C6, null_frag, FP128, GR64>;
59 // Convert a floating-point register value to a signed integer value,
60 // with the second operand (modifier M3) specifying the rounding mode.
62 def CFER : BinaryRRFe<"cfer", 0xB3B8, GR32, FP32>;
63 def CFDR : BinaryRRFe<"cfdr", 0xB3B9, GR32, FP64>;
64 def CFXR : BinaryRRFe<"cfxr", 0xB3BA, GR32, FP128>;
66 def CGER : BinaryRRFe<"cger", 0xB3C8, GR64, FP32>;
67 def CGDR : BinaryRRFe<"cgdr", 0xB3C9, GR64, FP64>;
68 def CGXR : BinaryRRFe<"cgxr", 0xB3CA, GR64, FP128>;
71 // Convert BFP to HFP.
73 def THDER : UnaryRRE<"thder", 0xB358, null_frag, FP64, FP32>;
74 def THDR : UnaryRRE<"thdr", 0xB359, null_frag, FP64, FP64>;
77 // Convert HFP to BFP.
79 def TBEDR : BinaryRRFe<"tbedr", 0xB350, FP32, FP64>;
80 def TBDR : BinaryRRFe<"tbdr", 0xB351, FP64, FP64>;
84 //===----------------------------------------------------------------------===//
86 //===----------------------------------------------------------------------===//
88 // Negation (Load Complement).
90 def LCER : UnaryRR <"lcer", 0x33, null_frag, FP32, FP32>;
91 def LCDR : UnaryRR <"lcdr", 0x23, null_frag, FP64, FP64>;
92 def LCXR : UnaryRRE<"lcxr", 0xB363, null_frag, FP128, FP128>;
95 // Absolute value (Load Positive).
97 def LPER : UnaryRR <"lper", 0x30, null_frag, FP32, FP32>;
98 def LPDR : UnaryRR <"lpdr", 0x20, null_frag, FP64, FP64>;
99 def LPXR : UnaryRRE<"lpxr", 0xB360, null_frag, FP128, FP128>;
102 // Negative absolute value (Load Negative).
104 def LNER : UnaryRR <"lner", 0x31, null_frag, FP32, FP32>;
105 def LNDR : UnaryRR <"lndr", 0x21, null_frag, FP64, FP64>;
106 def LNXR : UnaryRRE<"lnxr", 0xB361, null_frag, FP128, FP128>;
110 def HER : UnaryRR <"her", 0x34, null_frag, FP32, FP32>;
111 def HDR : UnaryRR <"hdr", 0x24, null_frag, FP64, FP64>;
114 def SQER : UnaryRRE<"sqer", 0xB245, null_frag, FP32, FP32>;
115 def SQDR : UnaryRRE<"sqdr", 0xB244, null_frag, FP64, FP64>;
116 def SQXR : UnaryRRE<"sqxr", 0xB336, null_frag, FP128, FP128>;
118 def SQE : UnaryRXE<"sqe", 0xED34, null_frag, FP32, 4>;
119 def SQD : UnaryRXE<"sqd", 0xED35, null_frag, FP64, 8>;
121 // Round to an integer (rounding towards zero).
122 def FIER : UnaryRRE<"fier", 0xB377, null_frag, FP32, FP32>;
123 def FIDR : UnaryRRE<"fidr", 0xB37F, null_frag, FP64, FP64>;
124 def FIXR : UnaryRRE<"fixr", 0xB367, null_frag, FP128, FP128>;
127 //===----------------------------------------------------------------------===//
129 //===----------------------------------------------------------------------===//
133 let isCommutable = 1 in {
134 def AER : BinaryRR<"aer", 0x3A, null_frag, FP32, FP32>;
135 def ADR : BinaryRR<"adr", 0x2A, null_frag, FP64, FP64>;
136 def AXR : BinaryRR<"axr", 0x36, null_frag, FP128, FP128>;
138 def AE : BinaryRX<"ae", 0x7A, null_frag, FP32, load, 4>;
139 def AD : BinaryRX<"ad", 0x6A, null_frag, FP64, load, 8>;
142 // Addition (unnormalized).
144 let isCommutable = 1 in {
145 def AUR : BinaryRR<"aur", 0x3E, null_frag, FP32, FP32>;
146 def AWR : BinaryRR<"awr", 0x2E, null_frag, FP64, FP64>;
148 def AU : BinaryRX<"au", 0x7E, null_frag, FP32, load, 4>;
149 def AW : BinaryRX<"aw", 0x6E, null_frag, FP64, load, 8>;
154 def SER : BinaryRR<"ser", 0x3B, null_frag, FP32, FP32>;
155 def SDR : BinaryRR<"sdr", 0x2B, null_frag, FP64, FP64>;
156 def SXR : BinaryRR<"sxr", 0x37, null_frag, FP128, FP128>;
158 def SE : BinaryRX<"se", 0x7B, null_frag, FP32, load, 4>;
159 def SD : BinaryRX<"sd", 0x6B, null_frag, FP64, load, 8>;
162 // Subtraction (unnormalized).
164 def SUR : BinaryRR<"sur", 0x3F, null_frag, FP32, FP32>;
165 def SWR : BinaryRR<"swr", 0x2F, null_frag, FP64, FP64>;
167 def SU : BinaryRX<"su", 0x7F, null_frag, FP32, load, 4>;
168 def SW : BinaryRX<"sw", 0x6F, null_frag, FP64, load, 8>;
172 let isCommutable = 1 in {
173 def MEER : BinaryRRE<"meer", 0xB337, null_frag, FP32, FP32>;
174 def MDR : BinaryRR <"mdr", 0x2C, null_frag, FP64, FP64>;
175 def MXR : BinaryRR <"mxr", 0x26, null_frag, FP128, FP128>;
177 def MEE : BinaryRXE<"mee", 0xED37, null_frag, FP32, load, 4>;
178 def MD : BinaryRX <"md", 0x6C, null_frag, FP64, load, 8>;
180 // Extending multiplication (f32 x f32 -> f64).
181 def MDER : BinaryRR<"mder", 0x3C, null_frag, FP64, FP32>;
182 def MDE : BinaryRX<"mde", 0x7C, null_frag, FP64, load, 4>;
183 let isAsmParserOnly = 1 in {
184 def MER : BinaryRR<"mer", 0x3C, null_frag, FP64, FP32>;
185 def ME : BinaryRX<"me", 0x7C, null_frag, FP64, load, 4>;
188 // Extending multiplication (f64 x f64 -> f128).
189 def MXDR : BinaryRR<"mxdr", 0x27, null_frag, FP128, FP64>;
190 def MXD : BinaryRX<"mxd", 0x67, null_frag, FP128, load, 8>;
192 // Fused multiply-add.
193 def MAER : TernaryRRD<"maer", 0xB32E, null_frag, FP32, FP32>;
194 def MADR : TernaryRRD<"madr", 0xB33E, null_frag, FP64, FP64>;
195 def MAE : TernaryRXF<"mae", 0xED2E, null_frag, FP32, FP32, load, 4>;
196 def MAD : TernaryRXF<"mad", 0xED3E, null_frag, FP64, FP64, load, 8>;
198 // Fused multiply-subtract.
199 def MSER : TernaryRRD<"mser", 0xB32F, null_frag, FP32, FP32>;
200 def MSDR : TernaryRRD<"msdr", 0xB33F, null_frag, FP64, FP64>;
201 def MSE : TernaryRXF<"mse", 0xED2F, null_frag, FP32, FP32, load, 4>;
202 def MSD : TernaryRXF<"msd", 0xED3F, null_frag, FP64, FP64, load, 8>;
204 // Multiplication (unnormalized).
205 def MYR : BinaryRRD<"myr", 0xB33B, null_frag, FP128, FP64>;
206 def MYHR : BinaryRRD<"myhr", 0xB33D, null_frag, FP64, FP64>;
207 def MYLR : BinaryRRD<"mylr", 0xB339, null_frag, FP64, FP64>;
208 def MY : BinaryRXF<"my", 0xED3B, null_frag, FP128, FP64, load, 8>;
209 def MYH : BinaryRXF<"myh", 0xED3D, null_frag, FP64, FP64, load, 8>;
210 def MYL : BinaryRXF<"myl", 0xED39, null_frag, FP64, FP64, load, 8>;
212 // Fused multiply-add (unnormalized).
213 def MAYR : TernaryRRD<"mayr", 0xB33A, null_frag, FP128, FP64>;
214 def MAYHR : TernaryRRD<"mayhr", 0xB33C, null_frag, FP64, FP64>;
215 def MAYLR : TernaryRRD<"maylr", 0xB338, null_frag, FP64, FP64>;
216 def MAY : TernaryRXF<"may", 0xED3A, null_frag, FP128, FP64, load, 8>;
217 def MAYH : TernaryRXF<"mayh", 0xED3C, null_frag, FP64, FP64, load, 8>;
218 def MAYL : TernaryRXF<"mayl", 0xED38, null_frag, FP64, FP64, load, 8>;
221 def DER : BinaryRR <"der", 0x3D, null_frag, FP32, FP32>;
222 def DDR : BinaryRR <"ddr", 0x2D, null_frag, FP64, FP64>;
223 def DXR : BinaryRRE<"dxr", 0xB22D, null_frag, FP128, FP128>;
224 def DE : BinaryRX <"de", 0x7D, null_frag, FP32, load, 4>;
225 def DD : BinaryRX <"dd", 0x6D, null_frag, FP64, load, 8>;
228 //===----------------------------------------------------------------------===//
230 //===----------------------------------------------------------------------===//
233 def CER : CompareRR <"cer", 0x39, null_frag, FP32, FP32>;
234 def CDR : CompareRR <"cdr", 0x29, null_frag, FP64, FP64>;
235 def CXR : CompareRRE<"cxr", 0xB369, null_frag, FP128, FP128>;
237 def CE : CompareRX<"ce", 0x79, null_frag, FP32, load, 4>;
238 def CD : CompareRX<"cd", 0x69, null_frag, FP64, load, 8>;