1 //===- X86EvexToVex.cpp ---------------------------------------------------===//
2 // Compress EVEX instructions to VEX encoding when possible to reduce code size
4 // The LLVM Compiler Infrastructure
6 // This file is distributed under the University of Illinois Open Source
7 // License. See LICENSE.TXT for details.
9 //===----------------------------------------------------------------------===//
12 /// This file defines the pass that goes over all AVX-512 instructions which
13 /// are encoded using the EVEX prefix and if possible replaces them by their
14 /// corresponding VEX encoding which is usually shorter by 2 bytes.
15 /// EVEX instructions may be encoded via the VEX prefix when the AVX-512
16 /// instruction has a corresponding AVX/AVX2 opcode and when it does not
17 /// use the xmm or the mask registers or xmm/ymm registers with indexes
19 /// The pass applies code reduction on the generated code for AVX-512 instrs.
21 //===----------------------------------------------------------------------===//
23 #include "InstPrinter/X86InstComments.h"
24 #include "MCTargetDesc/X86BaseInfo.h"
26 #include "X86InstrInfo.h"
27 #include "X86Subtarget.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/MC/MCInstrDesc.h"
34 #include "llvm/Pass.h"
40 // Including the generated EVEX2VEX tables.
41 struct X86EvexToVexCompressTableEntry
{
45 bool operator<(const X86EvexToVexCompressTableEntry
&RHS
) const {
46 return EvexOpcode
< RHS
.EvexOpcode
;
49 friend bool operator<(const X86EvexToVexCompressTableEntry
&TE
,
51 return TE
.EvexOpcode
< Opc
;
54 #include "X86GenEVEX2VEXTables.inc"
56 #define EVEX2VEX_DESC "Compressing EVEX instrs to VEX encoding when possible"
57 #define EVEX2VEX_NAME "x86-evex-to-vex-compress"
59 #define DEBUG_TYPE EVEX2VEX_NAME
63 class EvexToVexInstPass
: public MachineFunctionPass
{
65 /// For EVEX instructions that can be encoded using VEX encoding, replace
66 /// them by the VEX encoding in order to reduce size.
67 bool CompressEvexToVexImpl(MachineInstr
&MI
) const;
72 EvexToVexInstPass() : MachineFunctionPass(ID
) {
73 initializeEvexToVexInstPassPass(*PassRegistry::getPassRegistry());
76 StringRef
getPassName() const override
{ return EVEX2VEX_DESC
; }
78 /// Loop over all of the basic blocks, replacing EVEX instructions
79 /// by equivalent VEX instructions when possible for reducing code size.
80 bool runOnMachineFunction(MachineFunction
&MF
) override
;
82 // This pass runs after regalloc and doesn't support VReg operands.
83 MachineFunctionProperties
getRequiredProperties() const override
{
84 return MachineFunctionProperties().set(
85 MachineFunctionProperties::Property::NoVRegs
);
89 /// Machine instruction info used throughout the class.
90 const X86InstrInfo
*TII
;
93 } // end anonymous namespace
95 char EvexToVexInstPass::ID
= 0;
97 bool EvexToVexInstPass::runOnMachineFunction(MachineFunction
&MF
) {
98 TII
= MF
.getSubtarget
<X86Subtarget
>().getInstrInfo();
100 const X86Subtarget
&ST
= MF
.getSubtarget
<X86Subtarget
>();
104 bool Changed
= false;
106 /// Go over all basic blocks in function and replace
107 /// EVEX encoded instrs by VEX encoding when possible.
108 for (MachineBasicBlock
&MBB
: MF
) {
110 // Traverse the basic block.
111 for (MachineInstr
&MI
: MBB
)
112 Changed
|= CompressEvexToVexImpl(MI
);
118 static bool usesExtendedRegister(const MachineInstr
&MI
) {
119 auto isHiRegIdx
= [](unsigned Reg
) {
120 // Check for XMM register with indexes between 16 - 31.
121 if (Reg
>= X86::XMM16
&& Reg
<= X86::XMM31
)
124 // Check for YMM register with indexes between 16 - 31.
125 if (Reg
>= X86::YMM16
&& Reg
<= X86::YMM31
)
131 // Check that operands are not ZMM regs or
132 // XMM/YMM regs with hi indexes between 16 - 31.
133 for (const MachineOperand
&MO
: MI
.explicit_operands()) {
137 unsigned Reg
= MO
.getReg();
139 assert(!(Reg
>= X86::ZMM0
&& Reg
<= X86::ZMM31
) &&
140 "ZMM instructions should not be in the EVEX->VEX tables");
149 // Do any custom cleanup needed to finalize the conversion.
150 static bool performCustomAdjustments(MachineInstr
&MI
, unsigned NewOpc
) {
152 unsigned Opc
= MI
.getOpcode();
154 case X86::VALIGNDZ128rri
:
155 case X86::VALIGNDZ128rmi
:
156 case X86::VALIGNQZ128rri
:
157 case X86::VALIGNQZ128rmi
: {
158 assert((NewOpc
== X86::VPALIGNRrri
|| NewOpc
== X86::VPALIGNRrmi
) &&
159 "Unexpected new opcode!");
160 unsigned Scale
= (Opc
== X86::VALIGNQZ128rri
||
161 Opc
== X86::VALIGNQZ128rmi
) ? 8 : 4;
162 MachineOperand
&Imm
= MI
.getOperand(MI
.getNumExplicitOperands()-1);
163 Imm
.setImm(Imm
.getImm() * Scale
);
166 case X86::VSHUFF32X4Z256rmi
:
167 case X86::VSHUFF32X4Z256rri
:
168 case X86::VSHUFF64X2Z256rmi
:
169 case X86::VSHUFF64X2Z256rri
:
170 case X86::VSHUFI32X4Z256rmi
:
171 case X86::VSHUFI32X4Z256rri
:
172 case X86::VSHUFI64X2Z256rmi
:
173 case X86::VSHUFI64X2Z256rri
: {
174 assert((NewOpc
== X86::VPERM2F128rr
|| NewOpc
== X86::VPERM2I128rr
||
175 NewOpc
== X86::VPERM2F128rm
|| NewOpc
== X86::VPERM2I128rm
) &&
176 "Unexpected new opcode!");
177 MachineOperand
&Imm
= MI
.getOperand(MI
.getNumExplicitOperands()-1);
178 int64_t ImmVal
= Imm
.getImm();
179 // Set bit 5, move bit 1 to bit 4, copy bit 0.
180 Imm
.setImm(0x20 | ((ImmVal
& 2) << 3) | (ImmVal
& 1));
183 case X86::VRNDSCALEPDZ128rri
:
184 case X86::VRNDSCALEPDZ128rmi
:
185 case X86::VRNDSCALEPSZ128rri
:
186 case X86::VRNDSCALEPSZ128rmi
:
187 case X86::VRNDSCALEPDZ256rri
:
188 case X86::VRNDSCALEPDZ256rmi
:
189 case X86::VRNDSCALEPSZ256rri
:
190 case X86::VRNDSCALEPSZ256rmi
:
191 case X86::VRNDSCALESDZr
:
192 case X86::VRNDSCALESDZm
:
193 case X86::VRNDSCALESSZr
:
194 case X86::VRNDSCALESSZm
:
195 case X86::VRNDSCALESDZr_Int
:
196 case X86::VRNDSCALESDZm_Int
:
197 case X86::VRNDSCALESSZr_Int
:
198 case X86::VRNDSCALESSZm_Int
:
199 const MachineOperand
&Imm
= MI
.getOperand(MI
.getNumExplicitOperands()-1);
200 int64_t ImmVal
= Imm
.getImm();
201 // Ensure that only bits 3:0 of the immediate are used.
202 if ((ImmVal
& 0xf) != ImmVal
)
211 // For EVEX instructions that can be encoded using VEX encoding
212 // replace them by the VEX encoding in order to reduce size.
213 bool EvexToVexInstPass::CompressEvexToVexImpl(MachineInstr
&MI
) const {
215 // # of bytes: 0,2,3 1 1 0,1 0,1,2,4 0,1
216 // [Prefixes] [VEX] OPCODE ModR/M [SIB] [DISP] [IMM]
219 // # of bytes: 4 1 1 1 4 / 1 1
220 // [Prefixes] EVEX Opcode ModR/M [SIB] [Disp32] / [Disp8*N] [Immediate]
222 const MCInstrDesc
&Desc
= MI
.getDesc();
224 // Check for EVEX instructions only.
225 if ((Desc
.TSFlags
& X86II::EncodingMask
) != X86II::EVEX
)
228 // Check for EVEX instructions with mask or broadcast as in these cases
229 // the EVEX prefix is needed in order to carry this information
230 // thus preventing the transformation to VEX encoding.
231 if (Desc
.TSFlags
& (X86II::EVEX_K
| X86II::EVEX_B
))
234 // Check for EVEX instructions with L2 set. These instructions are 512-bits
235 // and can't be converted to VEX.
236 if (Desc
.TSFlags
& X86II::EVEX_L2
)
240 // Make sure the tables are sorted.
241 static std::atomic
<bool> TableChecked(false);
242 if (!TableChecked
.load(std::memory_order_relaxed
)) {
243 assert(std::is_sorted(std::begin(X86EvexToVex128CompressTable
),
244 std::end(X86EvexToVex128CompressTable
)) &&
245 "X86EvexToVex128CompressTable is not sorted!");
246 assert(std::is_sorted(std::begin(X86EvexToVex256CompressTable
),
247 std::end(X86EvexToVex256CompressTable
)) &&
248 "X86EvexToVex256CompressTable is not sorted!");
249 TableChecked
.store(true, std::memory_order_relaxed
);
253 // Use the VEX.L bit to select the 128 or 256-bit table.
254 ArrayRef
<X86EvexToVexCompressTableEntry
> Table
=
255 (Desc
.TSFlags
& X86II::VEX_L
) ? makeArrayRef(X86EvexToVex256CompressTable
)
256 : makeArrayRef(X86EvexToVex128CompressTable
);
258 auto I
= std::lower_bound(Table
.begin(), Table
.end(), MI
.getOpcode());
259 if (I
== Table
.end() || I
->EvexOpcode
!= MI
.getOpcode())
262 unsigned NewOpc
= I
->VexOpcode
;
264 if (usesExtendedRegister(MI
))
267 if (!performCustomAdjustments(MI
, NewOpc
))
270 MI
.setDesc(TII
->get(NewOpc
));
271 MI
.setAsmPrinterFlag(X86::AC_EVEX_2_VEX
);
275 INITIALIZE_PASS(EvexToVexInstPass
, EVEX2VEX_NAME
, EVEX2VEX_DESC
, false, false)
277 FunctionPass
*llvm::createX86EvexToVexInsts() {
278 return new EvexToVexInstPass();