[PowerPC] Do not emit record-form rotates when record-form andi/andis suffices
[llvm-core.git] / lib / Target / X86 / X86ISelDAGToDAG.cpp
blob32ad262e558792703e5a92168bc89d12c525f770
1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a DAG pattern matching instruction selector for X86,
11 // converting from a legalized dag to a X86 dag.
13 //===----------------------------------------------------------------------===//
15 #include "X86.h"
16 #include "X86MachineFunctionInfo.h"
17 #include "X86RegisterInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/SelectionDAGISel.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/KnownBits.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include "llvm/Target/TargetOptions.h"
37 #include <stdint.h>
38 using namespace llvm;
40 #define DEBUG_TYPE "x86-isel"
42 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
44 static cl::opt<bool> AndImmShrink("x86-and-imm-shrink", cl::init(true),
45 cl::desc("Enable setting constant bits to reduce size of mask immediates"),
46 cl::Hidden);
48 //===----------------------------------------------------------------------===//
49 // Pattern Matcher Implementation
50 //===----------------------------------------------------------------------===//
52 namespace {
53 /// This corresponds to X86AddressMode, but uses SDValue's instead of register
54 /// numbers for the leaves of the matched tree.
55 struct X86ISelAddressMode {
56 enum {
57 RegBase,
58 FrameIndexBase
59 } BaseType;
61 // This is really a union, discriminated by BaseType!
62 SDValue Base_Reg;
63 int Base_FrameIndex;
65 unsigned Scale;
66 SDValue IndexReg;
67 int32_t Disp;
68 SDValue Segment;
69 const GlobalValue *GV;
70 const Constant *CP;
71 const BlockAddress *BlockAddr;
72 const char *ES;
73 MCSymbol *MCSym;
74 int JT;
75 unsigned Align; // CP alignment.
76 unsigned char SymbolFlags; // X86II::MO_*
78 X86ISelAddressMode()
79 : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
80 Segment(), GV(nullptr), CP(nullptr), BlockAddr(nullptr), ES(nullptr),
81 MCSym(nullptr), JT(-1), Align(0), SymbolFlags(X86II::MO_NO_FLAG) {}
83 bool hasSymbolicDisplacement() const {
84 return GV != nullptr || CP != nullptr || ES != nullptr ||
85 MCSym != nullptr || JT != -1 || BlockAddr != nullptr;
88 bool hasBaseOrIndexReg() const {
89 return BaseType == FrameIndexBase ||
90 IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
93 /// Return true if this addressing mode is already RIP-relative.
94 bool isRIPRelative() const {
95 if (BaseType != RegBase) return false;
96 if (RegisterSDNode *RegNode =
97 dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
98 return RegNode->getReg() == X86::RIP;
99 return false;
102 void setBaseReg(SDValue Reg) {
103 BaseType = RegBase;
104 Base_Reg = Reg;
107 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
108 void dump(SelectionDAG *DAG = nullptr) {
109 dbgs() << "X86ISelAddressMode " << this << '\n';
110 dbgs() << "Base_Reg ";
111 if (Base_Reg.getNode())
112 Base_Reg.getNode()->dump(DAG);
113 else
114 dbgs() << "nul\n";
115 if (BaseType == FrameIndexBase)
116 dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n';
117 dbgs() << " Scale " << Scale << '\n'
118 << "IndexReg ";
119 if (IndexReg.getNode())
120 IndexReg.getNode()->dump(DAG);
121 else
122 dbgs() << "nul\n";
123 dbgs() << " Disp " << Disp << '\n'
124 << "GV ";
125 if (GV)
126 GV->dump();
127 else
128 dbgs() << "nul";
129 dbgs() << " CP ";
130 if (CP)
131 CP->dump();
132 else
133 dbgs() << "nul";
134 dbgs() << '\n'
135 << "ES ";
136 if (ES)
137 dbgs() << ES;
138 else
139 dbgs() << "nul";
140 dbgs() << " MCSym ";
141 if (MCSym)
142 dbgs() << MCSym;
143 else
144 dbgs() << "nul";
145 dbgs() << " JT" << JT << " Align" << Align << '\n';
147 #endif
151 namespace {
152 //===--------------------------------------------------------------------===//
153 /// ISel - X86-specific code to select X86 machine instructions for
154 /// SelectionDAG operations.
156 class X86DAGToDAGISel final : public SelectionDAGISel {
157 /// Keep a pointer to the X86Subtarget around so that we can
158 /// make the right decision when generating code for different targets.
159 const X86Subtarget *Subtarget;
161 /// If true, selector should try to optimize for code size instead of
162 /// performance.
163 bool OptForSize;
165 /// If true, selector should try to optimize for minimum code size.
166 bool OptForMinSize;
168 public:
169 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
170 : SelectionDAGISel(tm, OptLevel), OptForSize(false),
171 OptForMinSize(false) {}
173 StringRef getPassName() const override {
174 return "X86 DAG->DAG Instruction Selection";
177 bool runOnMachineFunction(MachineFunction &MF) override {
178 // Reset the subtarget each time through.
179 Subtarget = &MF.getSubtarget<X86Subtarget>();
180 SelectionDAGISel::runOnMachineFunction(MF);
181 return true;
184 void EmitFunctionEntryCode() override;
186 bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
188 void PreprocessISelDAG() override;
189 void PostprocessISelDAG() override;
191 // Include the pieces autogenerated from the target description.
192 #include "X86GenDAGISel.inc"
194 private:
195 void Select(SDNode *N) override;
197 bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
198 bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
199 bool matchWrapper(SDValue N, X86ISelAddressMode &AM);
200 bool matchAddress(SDValue N, X86ISelAddressMode &AM);
201 bool matchVectorAddress(SDValue N, X86ISelAddressMode &AM);
202 bool matchAdd(SDValue N, X86ISelAddressMode &AM, unsigned Depth);
203 bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
204 unsigned Depth);
205 bool matchAddressBase(SDValue N, X86ISelAddressMode &AM);
206 bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
207 SDValue &Scale, SDValue &Index, SDValue &Disp,
208 SDValue &Segment);
209 bool selectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base,
210 SDValue &Scale, SDValue &Index, SDValue &Disp,
211 SDValue &Segment);
212 bool selectMOV64Imm32(SDValue N, SDValue &Imm);
213 bool selectLEAAddr(SDValue N, SDValue &Base,
214 SDValue &Scale, SDValue &Index, SDValue &Disp,
215 SDValue &Segment);
216 bool selectLEA64_32Addr(SDValue N, SDValue &Base,
217 SDValue &Scale, SDValue &Index, SDValue &Disp,
218 SDValue &Segment);
219 bool selectTLSADDRAddr(SDValue N, SDValue &Base,
220 SDValue &Scale, SDValue &Index, SDValue &Disp,
221 SDValue &Segment);
222 bool selectScalarSSELoad(SDNode *Root, SDNode *Parent, SDValue N,
223 SDValue &Base, SDValue &Scale,
224 SDValue &Index, SDValue &Disp,
225 SDValue &Segment,
226 SDValue &NodeWithChain);
227 bool selectRelocImm(SDValue N, SDValue &Op);
229 bool tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
230 SDValue &Base, SDValue &Scale,
231 SDValue &Index, SDValue &Disp,
232 SDValue &Segment);
234 // Convenience method where P is also root.
235 bool tryFoldLoad(SDNode *P, SDValue N,
236 SDValue &Base, SDValue &Scale,
237 SDValue &Index, SDValue &Disp,
238 SDValue &Segment) {
239 return tryFoldLoad(P, P, N, Base, Scale, Index, Disp, Segment);
242 // Try to fold a vector load. This makes sure the load isn't non-temporal.
243 bool tryFoldVecLoad(SDNode *Root, SDNode *P, SDValue N,
244 SDValue &Base, SDValue &Scale,
245 SDValue &Index, SDValue &Disp,
246 SDValue &Segment);
248 /// Implement addressing mode selection for inline asm expressions.
249 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
250 unsigned ConstraintID,
251 std::vector<SDValue> &OutOps) override;
253 void emitSpecialCodeForMain();
255 inline void getAddressOperands(X86ISelAddressMode &AM, const SDLoc &DL,
256 SDValue &Base, SDValue &Scale,
257 SDValue &Index, SDValue &Disp,
258 SDValue &Segment) {
259 Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
260 ? CurDAG->getTargetFrameIndex(
261 AM.Base_FrameIndex,
262 TLI->getPointerTy(CurDAG->getDataLayout()))
263 : AM.Base_Reg;
264 Scale = getI8Imm(AM.Scale, DL);
265 Index = AM.IndexReg;
266 // These are 32-bit even in 64-bit mode since RIP-relative offset
267 // is 32-bit.
268 if (AM.GV)
269 Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
270 MVT::i32, AM.Disp,
271 AM.SymbolFlags);
272 else if (AM.CP)
273 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
274 AM.Align, AM.Disp, AM.SymbolFlags);
275 else if (AM.ES) {
276 assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
277 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
278 } else if (AM.MCSym) {
279 assert(!AM.Disp && "Non-zero displacement is ignored with MCSym.");
280 assert(AM.SymbolFlags == 0 && "oo");
281 Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32);
282 } else if (AM.JT != -1) {
283 assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
284 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
285 } else if (AM.BlockAddr)
286 Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
287 AM.SymbolFlags);
288 else
289 Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32);
291 if (AM.Segment.getNode())
292 Segment = AM.Segment;
293 else
294 Segment = CurDAG->getRegister(0, MVT::i32);
297 // Utility function to determine whether we should avoid selecting
298 // immediate forms of instructions for better code size or not.
299 // At a high level, we'd like to avoid such instructions when
300 // we have similar constants used within the same basic block
301 // that can be kept in a register.
303 bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const {
304 uint32_t UseCount = 0;
306 // Do not want to hoist if we're not optimizing for size.
307 // TODO: We'd like to remove this restriction.
308 // See the comment in X86InstrInfo.td for more info.
309 if (!OptForSize)
310 return false;
312 // Walk all the users of the immediate.
313 for (SDNode::use_iterator UI = N->use_begin(),
314 UE = N->use_end(); (UI != UE) && (UseCount < 2); ++UI) {
316 SDNode *User = *UI;
318 // This user is already selected. Count it as a legitimate use and
319 // move on.
320 if (User->isMachineOpcode()) {
321 UseCount++;
322 continue;
325 // We want to count stores of immediates as real uses.
326 if (User->getOpcode() == ISD::STORE &&
327 User->getOperand(1).getNode() == N) {
328 UseCount++;
329 continue;
332 // We don't currently match users that have > 2 operands (except
333 // for stores, which are handled above)
334 // Those instruction won't match in ISEL, for now, and would
335 // be counted incorrectly.
336 // This may change in the future as we add additional instruction
337 // types.
338 if (User->getNumOperands() != 2)
339 continue;
341 // Immediates that are used for offsets as part of stack
342 // manipulation should be left alone. These are typically
343 // used to indicate SP offsets for argument passing and
344 // will get pulled into stores/pushes (implicitly).
345 if (User->getOpcode() == X86ISD::ADD ||
346 User->getOpcode() == ISD::ADD ||
347 User->getOpcode() == X86ISD::SUB ||
348 User->getOpcode() == ISD::SUB) {
350 // Find the other operand of the add/sub.
351 SDValue OtherOp = User->getOperand(0);
352 if (OtherOp.getNode() == N)
353 OtherOp = User->getOperand(1);
355 // Don't count if the other operand is SP.
356 RegisterSDNode *RegNode;
357 if (OtherOp->getOpcode() == ISD::CopyFromReg &&
358 (RegNode = dyn_cast_or_null<RegisterSDNode>(
359 OtherOp->getOperand(1).getNode())))
360 if ((RegNode->getReg() == X86::ESP) ||
361 (RegNode->getReg() == X86::RSP))
362 continue;
365 // ... otherwise, count this and move on.
366 UseCount++;
369 // If we have more than 1 use, then recommend for hoisting.
370 return (UseCount > 1);
373 /// Return a target constant with the specified value of type i8.
374 inline SDValue getI8Imm(unsigned Imm, const SDLoc &DL) {
375 return CurDAG->getTargetConstant(Imm, DL, MVT::i8);
378 /// Return a target constant with the specified value, of type i32.
379 inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) {
380 return CurDAG->getTargetConstant(Imm, DL, MVT::i32);
383 /// Return a target constant with the specified value, of type i64.
384 inline SDValue getI64Imm(uint64_t Imm, const SDLoc &DL) {
385 return CurDAG->getTargetConstant(Imm, DL, MVT::i64);
388 SDValue getExtractVEXTRACTImmediate(SDNode *N, unsigned VecWidth,
389 const SDLoc &DL) {
390 assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
391 uint64_t Index = N->getConstantOperandVal(1);
392 MVT VecVT = N->getOperand(0).getSimpleValueType();
393 return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
396 SDValue getInsertVINSERTImmediate(SDNode *N, unsigned VecWidth,
397 const SDLoc &DL) {
398 assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
399 uint64_t Index = N->getConstantOperandVal(2);
400 MVT VecVT = N->getSimpleValueType(0);
401 return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
404 /// Return an SDNode that returns the value of the global base register.
405 /// Output instructions required to initialize the global base register,
406 /// if necessary.
407 SDNode *getGlobalBaseReg();
409 /// Return a reference to the TargetMachine, casted to the target-specific
410 /// type.
411 const X86TargetMachine &getTargetMachine() const {
412 return static_cast<const X86TargetMachine &>(TM);
415 /// Return a reference to the TargetInstrInfo, casted to the target-specific
416 /// type.
417 const X86InstrInfo *getInstrInfo() const {
418 return Subtarget->getInstrInfo();
421 /// Address-mode matching performs shift-of-and to and-of-shift
422 /// reassociation in order to expose more scaled addressing
423 /// opportunities.
424 bool ComplexPatternFuncMutatesDAG() const override {
425 return true;
428 bool isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const;
430 /// Returns whether this is a relocatable immediate in the range
431 /// [-2^Width .. 2^Width-1].
432 template <unsigned Width> bool isSExtRelocImm(SDNode *N) const {
433 if (auto *CN = dyn_cast<ConstantSDNode>(N))
434 return isInt<Width>(CN->getSExtValue());
435 return isSExtAbsoluteSymbolRef(Width, N);
438 // Indicates we should prefer to use a non-temporal load for this load.
439 bool useNonTemporalLoad(LoadSDNode *N) const {
440 if (!N->isNonTemporal())
441 return false;
443 unsigned StoreSize = N->getMemoryVT().getStoreSize();
445 if (N->getAlignment() < StoreSize)
446 return false;
448 switch (StoreSize) {
449 default: llvm_unreachable("Unsupported store size");
450 case 16:
451 return Subtarget->hasSSE41();
452 case 32:
453 return Subtarget->hasAVX2();
454 case 64:
455 return Subtarget->hasAVX512();
459 bool foldLoadStoreIntoMemOperand(SDNode *Node);
460 bool matchBEXTRFromAnd(SDNode *Node);
461 bool shrinkAndImmediate(SDNode *N);
462 bool isMaskZeroExtended(SDNode *N) const;
463 bool tryShiftAmountMod(SDNode *N);
465 MachineSDNode *emitPCMPISTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
466 const SDLoc &dl, MVT VT, SDNode *Node);
467 MachineSDNode *emitPCMPESTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
468 const SDLoc &dl, MVT VT, SDNode *Node,
469 SDValue &InFlag);
474 // Returns true if this masked compare can be implemented legally with this
475 // type.
476 static bool isLegalMaskCompare(SDNode *N, const X86Subtarget *Subtarget) {
477 unsigned Opcode = N->getOpcode();
478 if (Opcode == X86ISD::CMPM || Opcode == ISD::SETCC ||
479 Opcode == X86ISD::CMPM_RND || Opcode == X86ISD::VFPCLASS) {
480 // We can get 256-bit 8 element types here without VLX being enabled. When
481 // this happens we will use 512-bit operations and the mask will not be
482 // zero extended.
483 EVT OpVT = N->getOperand(0).getValueType();
484 if (OpVT.is256BitVector() || OpVT.is128BitVector())
485 return Subtarget->hasVLX();
487 return true;
489 // Scalar opcodes use 128 bit registers, but aren't subject to the VLX check.
490 if (Opcode == X86ISD::VFPCLASSS || Opcode == X86ISD::FSETCCM ||
491 Opcode == X86ISD::FSETCCM_RND)
492 return true;
494 return false;
497 // Returns true if we can assume the writer of the mask has zero extended it
498 // for us.
499 bool X86DAGToDAGISel::isMaskZeroExtended(SDNode *N) const {
500 // If this is an AND, check if we have a compare on either side. As long as
501 // one side guarantees the mask is zero extended, the AND will preserve those
502 // zeros.
503 if (N->getOpcode() == ISD::AND)
504 return isLegalMaskCompare(N->getOperand(0).getNode(), Subtarget) ||
505 isLegalMaskCompare(N->getOperand(1).getNode(), Subtarget);
507 return isLegalMaskCompare(N, Subtarget);
510 bool
511 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
512 if (OptLevel == CodeGenOpt::None) return false;
514 if (!N.hasOneUse())
515 return false;
517 if (N.getOpcode() != ISD::LOAD)
518 return true;
520 // If N is a load, do additional profitability checks.
521 if (U == Root) {
522 switch (U->getOpcode()) {
523 default: break;
524 case X86ISD::ADD:
525 case X86ISD::ADC:
526 case X86ISD::SUB:
527 case X86ISD::SBB:
528 case X86ISD::AND:
529 case X86ISD::XOR:
530 case X86ISD::OR:
531 case ISD::ADD:
532 case ISD::ADDCARRY:
533 case ISD::AND:
534 case ISD::OR:
535 case ISD::XOR: {
536 SDValue Op1 = U->getOperand(1);
538 // If the other operand is a 8-bit immediate we should fold the immediate
539 // instead. This reduces code size.
540 // e.g.
541 // movl 4(%esp), %eax
542 // addl $4, %eax
543 // vs.
544 // movl $4, %eax
545 // addl 4(%esp), %eax
546 // The former is 2 bytes shorter. In case where the increment is 1, then
547 // the saving can be 4 bytes (by using incl %eax).
548 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) {
549 if (Imm->getAPIntValue().isSignedIntN(8))
550 return false;
552 // If this is a 64-bit AND with an immediate that fits in 32-bits,
553 // prefer using the smaller and over folding the load. This is needed to
554 // make sure immediates created by shrinkAndImmediate are always folded.
555 // Ideally we would narrow the load during DAG combine and get the
556 // best of both worlds.
557 if (U->getOpcode() == ISD::AND &&
558 Imm->getAPIntValue().getBitWidth() == 64 &&
559 Imm->getAPIntValue().isIntN(32))
560 return false;
563 // If the other operand is a TLS address, we should fold it instead.
564 // This produces
565 // movl %gs:0, %eax
566 // leal i@NTPOFF(%eax), %eax
567 // instead of
568 // movl $i@NTPOFF, %eax
569 // addl %gs:0, %eax
570 // if the block also has an access to a second TLS address this will save
571 // a load.
572 // FIXME: This is probably also true for non-TLS addresses.
573 if (Op1.getOpcode() == X86ISD::Wrapper) {
574 SDValue Val = Op1.getOperand(0);
575 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
576 return false;
579 // Don't fold load if this matches the BTS/BTR/BTC patterns.
580 // BTS: (or X, (shl 1, n))
581 // BTR: (and X, (rotl -2, n))
582 // BTC: (xor X, (shl 1, n))
583 if (U->getOpcode() == ISD::OR || U->getOpcode() == ISD::XOR) {
584 if (U->getOperand(0).getOpcode() == ISD::SHL &&
585 isOneConstant(U->getOperand(0).getOperand(0)))
586 return false;
588 if (U->getOperand(1).getOpcode() == ISD::SHL &&
589 isOneConstant(U->getOperand(1).getOperand(0)))
590 return false;
592 if (U->getOpcode() == ISD::AND) {
593 SDValue U0 = U->getOperand(0);
594 SDValue U1 = U->getOperand(1);
595 if (U0.getOpcode() == ISD::ROTL) {
596 auto *C = dyn_cast<ConstantSDNode>(U0.getOperand(0));
597 if (C && C->getSExtValue() == -2)
598 return false;
601 if (U1.getOpcode() == ISD::ROTL) {
602 auto *C = dyn_cast<ConstantSDNode>(U1.getOperand(0));
603 if (C && C->getSExtValue() == -2)
604 return false;
608 break;
610 case ISD::SHL:
611 case ISD::SRA:
612 case ISD::SRL:
613 // Don't fold a load into a shift by immediate. The BMI2 instructions
614 // support folding a load, but not an immediate. The legacy instructions
615 // support folding an immediate, but can't fold a load. Folding an
616 // immediate is preferable to folding a load.
617 if (isa<ConstantSDNode>(U->getOperand(1)))
618 return false;
620 break;
624 // Prevent folding a load if this can implemented with an insert_subreg or
625 // a move that implicitly zeroes.
626 if (Root->getOpcode() == ISD::INSERT_SUBVECTOR &&
627 isNullConstant(Root->getOperand(2)) &&
628 (Root->getOperand(0).isUndef() ||
629 ISD::isBuildVectorAllZeros(Root->getOperand(0).getNode())))
630 return false;
632 return true;
635 /// Replace the original chain operand of the call with
636 /// load's chain operand and move load below the call's chain operand.
637 static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
638 SDValue Call, SDValue OrigChain) {
639 SmallVector<SDValue, 8> Ops;
640 SDValue Chain = OrigChain.getOperand(0);
641 if (Chain.getNode() == Load.getNode())
642 Ops.push_back(Load.getOperand(0));
643 else {
644 assert(Chain.getOpcode() == ISD::TokenFactor &&
645 "Unexpected chain operand");
646 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
647 if (Chain.getOperand(i).getNode() == Load.getNode())
648 Ops.push_back(Load.getOperand(0));
649 else
650 Ops.push_back(Chain.getOperand(i));
651 SDValue NewChain =
652 CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
653 Ops.clear();
654 Ops.push_back(NewChain);
656 Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end());
657 CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
658 CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
659 Load.getOperand(1), Load.getOperand(2));
661 Ops.clear();
662 Ops.push_back(SDValue(Load.getNode(), 1));
663 Ops.append(Call->op_begin() + 1, Call->op_end());
664 CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
667 /// Return true if call address is a load and it can be
668 /// moved below CALLSEQ_START and the chains leading up to the call.
669 /// Return the CALLSEQ_START by reference as a second output.
670 /// In the case of a tail call, there isn't a callseq node between the call
671 /// chain and the load.
672 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
673 // The transformation is somewhat dangerous if the call's chain was glued to
674 // the call. After MoveBelowOrigChain the load is moved between the call and
675 // the chain, this can create a cycle if the load is not folded. So it is
676 // *really* important that we are sure the load will be folded.
677 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
678 return false;
679 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
680 if (!LD ||
681 LD->isVolatile() ||
682 LD->getAddressingMode() != ISD::UNINDEXED ||
683 LD->getExtensionType() != ISD::NON_EXTLOAD)
684 return false;
686 // Now let's find the callseq_start.
687 while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
688 if (!Chain.hasOneUse())
689 return false;
690 Chain = Chain.getOperand(0);
693 if (!Chain.getNumOperands())
694 return false;
695 // Since we are not checking for AA here, conservatively abort if the chain
696 // writes to memory. It's not safe to move the callee (a load) across a store.
697 if (isa<MemSDNode>(Chain.getNode()) &&
698 cast<MemSDNode>(Chain.getNode())->writeMem())
699 return false;
700 if (Chain.getOperand(0).getNode() == Callee.getNode())
701 return true;
702 if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
703 Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
704 Callee.getValue(1).hasOneUse())
705 return true;
706 return false;
709 void X86DAGToDAGISel::PreprocessISelDAG() {
710 // OptFor[Min]Size are used in pattern predicates that isel is matching.
711 OptForSize = MF->getFunction().optForSize();
712 OptForMinSize = MF->getFunction().optForMinSize();
713 assert((!OptForMinSize || OptForSize) && "OptForMinSize implies OptForSize");
715 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
716 E = CurDAG->allnodes_end(); I != E; ) {
717 SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.
719 // If this is a target specific AND node with no flag usages, turn it back
720 // into ISD::AND to enable test instruction matching.
721 if (N->getOpcode() == X86ISD::AND && !N->hasAnyUseOfValue(1)) {
722 SDValue Res = CurDAG->getNode(ISD::AND, SDLoc(N), N->getValueType(0),
723 N->getOperand(0), N->getOperand(1));
724 --I;
725 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
726 ++I;
727 CurDAG->DeleteNode(N);
728 continue;
731 if (OptLevel != CodeGenOpt::None &&
732 // Only do this when the target can fold the load into the call or
733 // jmp.
734 !Subtarget->useRetpolineIndirectCalls() &&
735 ((N->getOpcode() == X86ISD::CALL && !Subtarget->slowTwoMemOps()) ||
736 (N->getOpcode() == X86ISD::TC_RETURN &&
737 (Subtarget->is64Bit() ||
738 !getTargetMachine().isPositionIndependent())))) {
739 /// Also try moving call address load from outside callseq_start to just
740 /// before the call to allow it to be folded.
742 /// [Load chain]
743 /// ^
744 /// |
745 /// [Load]
746 /// ^ ^
747 /// | |
748 /// / \--
749 /// / |
750 ///[CALLSEQ_START] |
751 /// ^ |
752 /// | |
753 /// [LOAD/C2Reg] |
754 /// | |
755 /// \ /
756 /// \ /
757 /// [CALL]
758 bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
759 SDValue Chain = N->getOperand(0);
760 SDValue Load = N->getOperand(1);
761 if (!isCalleeLoad(Load, Chain, HasCallSeq))
762 continue;
763 moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
764 ++NumLoadMoved;
765 continue;
768 // Lower fpround and fpextend nodes that target the FP stack to be store and
769 // load to the stack. This is a gross hack. We would like to simply mark
770 // these as being illegal, but when we do that, legalize produces these when
771 // it expands calls, then expands these in the same legalize pass. We would
772 // like dag combine to be able to hack on these between the call expansion
773 // and the node legalization. As such this pass basically does "really
774 // late" legalization of these inline with the X86 isel pass.
775 // FIXME: This should only happen when not compiled with -O0.
776 if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
777 continue;
779 MVT SrcVT = N->getOperand(0).getSimpleValueType();
780 MVT DstVT = N->getSimpleValueType(0);
782 // If any of the sources are vectors, no fp stack involved.
783 if (SrcVT.isVector() || DstVT.isVector())
784 continue;
786 // If the source and destination are SSE registers, then this is a legal
787 // conversion that should not be lowered.
788 const X86TargetLowering *X86Lowering =
789 static_cast<const X86TargetLowering *>(TLI);
790 bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
791 bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
792 if (SrcIsSSE && DstIsSSE)
793 continue;
795 if (!SrcIsSSE && !DstIsSSE) {
796 // If this is an FPStack extension, it is a noop.
797 if (N->getOpcode() == ISD::FP_EXTEND)
798 continue;
799 // If this is a value-preserving FPStack truncation, it is a noop.
800 if (N->getConstantOperandVal(1))
801 continue;
804 // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
805 // FPStack has extload and truncstore. SSE can fold direct loads into other
806 // operations. Based on this, decide what we want to do.
807 MVT MemVT;
808 if (N->getOpcode() == ISD::FP_ROUND)
809 MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'.
810 else
811 MemVT = SrcIsSSE ? SrcVT : DstVT;
813 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
814 SDLoc dl(N);
816 // FIXME: optimize the case where the src/dest is a load or store?
817 SDValue Store =
818 CurDAG->getTruncStore(CurDAG->getEntryNode(), dl, N->getOperand(0),
819 MemTmp, MachinePointerInfo(), MemVT);
820 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
821 MachinePointerInfo(), MemVT);
823 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
824 // extload we created. This will cause general havok on the dag because
825 // anything below the conversion could be folded into other existing nodes.
826 // To avoid invalidating 'I', back it up to the convert node.
827 --I;
828 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
830 // Now that we did that, the node is dead. Increment the iterator to the
831 // next node to process, then delete N.
832 ++I;
833 CurDAG->DeleteNode(N);
838 void X86DAGToDAGISel::PostprocessISelDAG() {
839 // Skip peepholes at -O0.
840 if (TM.getOptLevel() == CodeGenOpt::None)
841 return;
843 // Attempt to remove vectors moves that were inserted to zero upper bits.
845 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
846 ++Position;
848 while (Position != CurDAG->allnodes_begin()) {
849 SDNode *N = &*--Position;
850 // Skip dead nodes and any non-machine opcodes.
851 if (N->use_empty() || !N->isMachineOpcode())
852 continue;
854 if (N->getMachineOpcode() != TargetOpcode::SUBREG_TO_REG)
855 continue;
857 unsigned SubRegIdx = N->getConstantOperandVal(2);
858 if (SubRegIdx != X86::sub_xmm && SubRegIdx != X86::sub_ymm)
859 continue;
861 SDValue Move = N->getOperand(1);
862 if (!Move.isMachineOpcode())
863 continue;
865 // Make sure its one of the move opcodes we recognize.
866 switch (Move.getMachineOpcode()) {
867 default:
868 continue;
869 case X86::VMOVAPDrr: case X86::VMOVUPDrr:
870 case X86::VMOVAPSrr: case X86::VMOVUPSrr:
871 case X86::VMOVDQArr: case X86::VMOVDQUrr:
872 case X86::VMOVAPDYrr: case X86::VMOVUPDYrr:
873 case X86::VMOVAPSYrr: case X86::VMOVUPSYrr:
874 case X86::VMOVDQAYrr: case X86::VMOVDQUYrr:
875 case X86::VMOVAPDZ128rr: case X86::VMOVUPDZ128rr:
876 case X86::VMOVAPSZ128rr: case X86::VMOVUPSZ128rr:
877 case X86::VMOVDQA32Z128rr: case X86::VMOVDQU32Z128rr:
878 case X86::VMOVDQA64Z128rr: case X86::VMOVDQU64Z128rr:
879 case X86::VMOVAPDZ256rr: case X86::VMOVUPDZ256rr:
880 case X86::VMOVAPSZ256rr: case X86::VMOVUPSZ256rr:
881 case X86::VMOVDQA32Z256rr: case X86::VMOVDQU32Z256rr:
882 case X86::VMOVDQA64Z256rr: case X86::VMOVDQU64Z256rr:
883 break;
886 SDValue In = Move.getOperand(0);
887 if (!In.isMachineOpcode() ||
888 In.getMachineOpcode() <= TargetOpcode::GENERIC_OP_END)
889 continue;
891 // Make sure the instruction has a VEX, XOP, or EVEX prefix. This covers
892 // the SHA instructions which use a legacy encoding.
893 uint64_t TSFlags = getInstrInfo()->get(In.getMachineOpcode()).TSFlags;
894 if ((TSFlags & X86II::EncodingMask) != X86II::VEX &&
895 (TSFlags & X86II::EncodingMask) != X86II::EVEX &&
896 (TSFlags & X86II::EncodingMask) != X86II::XOP)
897 continue;
899 // Producing instruction is another vector instruction. We can drop the
900 // move.
901 CurDAG->UpdateNodeOperands(N, N->getOperand(0), In, N->getOperand(2));
903 // If the move is now dead, delete it.
904 if (Move.getNode()->use_empty())
905 CurDAG->RemoveDeadNode(Move.getNode());
910 /// Emit any code that needs to be executed only in the main function.
911 void X86DAGToDAGISel::emitSpecialCodeForMain() {
912 if (Subtarget->isTargetCygMing()) {
913 TargetLowering::ArgListTy Args;
914 auto &DL = CurDAG->getDataLayout();
916 TargetLowering::CallLoweringInfo CLI(*CurDAG);
917 CLI.setChain(CurDAG->getRoot())
918 .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()),
919 CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)),
920 std::move(Args));
921 const TargetLowering &TLI = CurDAG->getTargetLoweringInfo();
922 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
923 CurDAG->setRoot(Result.second);
927 void X86DAGToDAGISel::EmitFunctionEntryCode() {
928 // If this is main, emit special code for main.
929 const Function &F = MF->getFunction();
930 if (F.hasExternalLinkage() && F.getName() == "main")
931 emitSpecialCodeForMain();
934 static bool isDispSafeForFrameIndex(int64_t Val) {
935 // On 64-bit platforms, we can run into an issue where a frame index
936 // includes a displacement that, when added to the explicit displacement,
937 // will overflow the displacement field. Assuming that the frame index
938 // displacement fits into a 31-bit integer (which is only slightly more
939 // aggressive than the current fundamental assumption that it fits into
940 // a 32-bit integer), a 31-bit disp should always be safe.
941 return isInt<31>(Val);
944 bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset,
945 X86ISelAddressMode &AM) {
946 // If there's no offset to fold, we don't need to do any work.
947 if (Offset == 0)
948 return false;
950 // Cannot combine ExternalSymbol displacements with integer offsets.
951 if (AM.ES || AM.MCSym)
952 return true;
954 int64_t Val = AM.Disp + Offset;
955 CodeModel::Model M = TM.getCodeModel();
956 if (Subtarget->is64Bit()) {
957 if (!X86::isOffsetSuitableForCodeModel(Val, M,
958 AM.hasSymbolicDisplacement()))
959 return true;
960 // In addition to the checks required for a register base, check that
961 // we do not try to use an unsafe Disp with a frame index.
962 if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
963 !isDispSafeForFrameIndex(Val))
964 return true;
966 AM.Disp = Val;
967 return false;
971 bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
972 SDValue Address = N->getOperand(1);
974 // load gs:0 -> GS segment register.
975 // load fs:0 -> FS segment register.
977 // This optimization is valid because the GNU TLS model defines that
978 // gs:0 (or fs:0 on X86-64) contains its own address.
979 // For more information see http://people.redhat.com/drepper/tls.pdf
980 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
981 if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr &&
982 (Subtarget->isTargetGlibc() || Subtarget->isTargetAndroid() ||
983 Subtarget->isTargetFuchsia()))
984 switch (N->getPointerInfo().getAddrSpace()) {
985 case 256:
986 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
987 return false;
988 case 257:
989 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
990 return false;
991 // Address space 258 is not handled here, because it is not used to
992 // address TLS areas.
995 return true;
998 /// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing
999 /// mode. These wrap things that will resolve down into a symbol reference.
1000 /// If no match is possible, this returns true, otherwise it returns false.
1001 bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) {
1002 // If the addressing mode already has a symbol as the displacement, we can
1003 // never match another symbol.
1004 if (AM.hasSymbolicDisplacement())
1005 return true;
1007 bool IsRIPRel = N.getOpcode() == X86ISD::WrapperRIP;
1009 // We can't use an addressing mode in the 64-bit large code model. In the
1010 // medium code model, we use can use an mode when RIP wrappers are present.
1011 // That signifies access to globals that are known to be "near", such as the
1012 // GOT itself.
1013 CodeModel::Model M = TM.getCodeModel();
1014 if (Subtarget->is64Bit() &&
1015 (M == CodeModel::Large || (M == CodeModel::Medium && !IsRIPRel)))
1016 return true;
1018 // Base and index reg must be 0 in order to use %rip as base.
1019 if (IsRIPRel && AM.hasBaseOrIndexReg())
1020 return true;
1022 // Make a local copy in case we can't do this fold.
1023 X86ISelAddressMode Backup = AM;
1025 int64_t Offset = 0;
1026 SDValue N0 = N.getOperand(0);
1027 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
1028 AM.GV = G->getGlobal();
1029 AM.SymbolFlags = G->getTargetFlags();
1030 Offset = G->getOffset();
1031 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
1032 AM.CP = CP->getConstVal();
1033 AM.Align = CP->getAlignment();
1034 AM.SymbolFlags = CP->getTargetFlags();
1035 Offset = CP->getOffset();
1036 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
1037 AM.ES = S->getSymbol();
1038 AM.SymbolFlags = S->getTargetFlags();
1039 } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) {
1040 AM.MCSym = S->getMCSymbol();
1041 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
1042 AM.JT = J->getIndex();
1043 AM.SymbolFlags = J->getTargetFlags();
1044 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
1045 AM.BlockAddr = BA->getBlockAddress();
1046 AM.SymbolFlags = BA->getTargetFlags();
1047 Offset = BA->getOffset();
1048 } else
1049 llvm_unreachable("Unhandled symbol reference node.");
1051 if (foldOffsetIntoAddress(Offset, AM)) {
1052 AM = Backup;
1053 return true;
1056 if (IsRIPRel)
1057 AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
1059 // Commit the changes now that we know this fold is safe.
1060 return false;
1063 /// Add the specified node to the specified addressing mode, returning true if
1064 /// it cannot be done. This just pattern matches for the addressing mode.
1065 bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) {
1066 if (matchAddressRecursively(N, AM, 0))
1067 return true;
1069 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
1070 // a smaller encoding and avoids a scaled-index.
1071 if (AM.Scale == 2 &&
1072 AM.BaseType == X86ISelAddressMode::RegBase &&
1073 AM.Base_Reg.getNode() == nullptr) {
1074 AM.Base_Reg = AM.IndexReg;
1075 AM.Scale = 1;
1078 // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
1079 // because it has a smaller encoding.
1080 // TODO: Which other code models can use this?
1081 if (TM.getCodeModel() == CodeModel::Small &&
1082 Subtarget->is64Bit() &&
1083 AM.Scale == 1 &&
1084 AM.BaseType == X86ISelAddressMode::RegBase &&
1085 AM.Base_Reg.getNode() == nullptr &&
1086 AM.IndexReg.getNode() == nullptr &&
1087 AM.SymbolFlags == X86II::MO_NO_FLAG &&
1088 AM.hasSymbolicDisplacement())
1089 AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
1091 return false;
1094 bool X86DAGToDAGISel::matchAdd(SDValue N, X86ISelAddressMode &AM,
1095 unsigned Depth) {
1096 // Add an artificial use to this node so that we can keep track of
1097 // it if it gets CSE'd with a different node.
1098 HandleSDNode Handle(N);
1100 X86ISelAddressMode Backup = AM;
1101 if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1102 !matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1103 return false;
1104 AM = Backup;
1106 // Try again after commuting the operands.
1107 if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1) &&
1108 !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
1109 return false;
1110 AM = Backup;
1112 // If we couldn't fold both operands into the address at the same time,
1113 // see if we can just put each operand into a register and fold at least
1114 // the add.
1115 if (AM.BaseType == X86ISelAddressMode::RegBase &&
1116 !AM.Base_Reg.getNode() &&
1117 !AM.IndexReg.getNode()) {
1118 N = Handle.getValue();
1119 AM.Base_Reg = N.getOperand(0);
1120 AM.IndexReg = N.getOperand(1);
1121 AM.Scale = 1;
1122 return false;
1124 N = Handle.getValue();
1125 return true;
1128 // Insert a node into the DAG at least before the Pos node's position. This
1129 // will reposition the node as needed, and will assign it a node ID that is <=
1130 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node
1131 // IDs! The selection DAG must no longer depend on their uniqueness when this
1132 // is used.
1133 static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
1134 if (N->getNodeId() == -1 ||
1135 (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
1136 SelectionDAGISel::getUninvalidatedNodeId(Pos.getNode()))) {
1137 DAG.RepositionNode(Pos->getIterator(), N.getNode());
1138 // Mark Node as invalid for pruning as after this it may be a successor to a
1139 // selected node but otherwise be in the same position of Pos.
1140 // Conservatively mark it with the same -abs(Id) to assure node id
1141 // invariant is preserved.
1142 N->setNodeId(Pos->getNodeId());
1143 SelectionDAGISel::InvalidateNodeId(N.getNode());
1147 // Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
1148 // safe. This allows us to convert the shift and and into an h-register
1149 // extract and a scaled index. Returns false if the simplification is
1150 // performed.
1151 static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
1152 uint64_t Mask,
1153 SDValue Shift, SDValue X,
1154 X86ISelAddressMode &AM) {
1155 if (Shift.getOpcode() != ISD::SRL ||
1156 !isa<ConstantSDNode>(Shift.getOperand(1)) ||
1157 !Shift.hasOneUse())
1158 return true;
1160 int ScaleLog = 8 - Shift.getConstantOperandVal(1);
1161 if (ScaleLog <= 0 || ScaleLog >= 4 ||
1162 Mask != (0xffu << ScaleLog))
1163 return true;
1165 MVT VT = N.getSimpleValueType();
1166 SDLoc DL(N);
1167 SDValue Eight = DAG.getConstant(8, DL, MVT::i8);
1168 SDValue NewMask = DAG.getConstant(0xff, DL, VT);
1169 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
1170 SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
1171 SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8);
1172 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
1174 // Insert the new nodes into the topological ordering. We must do this in
1175 // a valid topological ordering as nothing is going to go back and re-sort
1176 // these nodes. We continually insert before 'N' in sequence as this is
1177 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
1178 // hierarchy left to express.
1179 insertDAGNode(DAG, N, Eight);
1180 insertDAGNode(DAG, N, Srl);
1181 insertDAGNode(DAG, N, NewMask);
1182 insertDAGNode(DAG, N, And);
1183 insertDAGNode(DAG, N, ShlCount);
1184 insertDAGNode(DAG, N, Shl);
1185 DAG.ReplaceAllUsesWith(N, Shl);
1186 AM.IndexReg = And;
1187 AM.Scale = (1 << ScaleLog);
1188 return false;
1191 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
1192 // allows us to fold the shift into this addressing mode. Returns false if the
1193 // transform succeeded.
1194 static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
1195 uint64_t Mask,
1196 SDValue Shift, SDValue X,
1197 X86ISelAddressMode &AM) {
1198 if (Shift.getOpcode() != ISD::SHL ||
1199 !isa<ConstantSDNode>(Shift.getOperand(1)))
1200 return true;
1202 // Not likely to be profitable if either the AND or SHIFT node has more
1203 // than one use (unless all uses are for address computation). Besides,
1204 // isel mechanism requires their node ids to be reused.
1205 if (!N.hasOneUse() || !Shift.hasOneUse())
1206 return true;
1208 // Verify that the shift amount is something we can fold.
1209 unsigned ShiftAmt = Shift.getConstantOperandVal(1);
1210 if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
1211 return true;
1213 MVT VT = N.getSimpleValueType();
1214 SDLoc DL(N);
1215 SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT);
1216 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
1217 SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
1219 // Insert the new nodes into the topological ordering. We must do this in
1220 // a valid topological ordering as nothing is going to go back and re-sort
1221 // these nodes. We continually insert before 'N' in sequence as this is
1222 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
1223 // hierarchy left to express.
1224 insertDAGNode(DAG, N, NewMask);
1225 insertDAGNode(DAG, N, NewAnd);
1226 insertDAGNode(DAG, N, NewShift);
1227 DAG.ReplaceAllUsesWith(N, NewShift);
1229 AM.Scale = 1 << ShiftAmt;
1230 AM.IndexReg = NewAnd;
1231 return false;
1234 // Implement some heroics to detect shifts of masked values where the mask can
1235 // be replaced by extending the shift and undoing that in the addressing mode
1236 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
1237 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
1238 // the addressing mode. This results in code such as:
1240 // int f(short *y, int *lookup_table) {
1241 // ...
1242 // return *y + lookup_table[*y >> 11];
1243 // }
1245 // Turning into:
1246 // movzwl (%rdi), %eax
1247 // movl %eax, %ecx
1248 // shrl $11, %ecx
1249 // addl (%rsi,%rcx,4), %eax
1251 // Instead of:
1252 // movzwl (%rdi), %eax
1253 // movl %eax, %ecx
1254 // shrl $9, %ecx
1255 // andl $124, %rcx
1256 // addl (%rsi,%rcx), %eax
1258 // Note that this function assumes the mask is provided as a mask *after* the
1259 // value is shifted. The input chain may or may not match that, but computing
1260 // such a mask is trivial.
1261 static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
1262 uint64_t Mask,
1263 SDValue Shift, SDValue X,
1264 X86ISelAddressMode &AM) {
1265 if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
1266 !isa<ConstantSDNode>(Shift.getOperand(1)))
1267 return true;
1269 unsigned ShiftAmt = Shift.getConstantOperandVal(1);
1270 unsigned MaskLZ = countLeadingZeros(Mask);
1271 unsigned MaskTZ = countTrailingZeros(Mask);
1273 // The amount of shift we're trying to fit into the addressing mode is taken
1274 // from the trailing zeros of the mask.
1275 unsigned AMShiftAmt = MaskTZ;
1277 // There is nothing we can do here unless the mask is removing some bits.
1278 // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
1279 if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
1281 // We also need to ensure that mask is a continuous run of bits.
1282 if (countTrailingOnes(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
1284 // Scale the leading zero count down based on the actual size of the value.
1285 // Also scale it down based on the size of the shift.
1286 unsigned ScaleDown = (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
1287 if (MaskLZ < ScaleDown)
1288 return true;
1289 MaskLZ -= ScaleDown;
1291 // The final check is to ensure that any masked out high bits of X are
1292 // already known to be zero. Otherwise, the mask has a semantic impact
1293 // other than masking out a couple of low bits. Unfortunately, because of
1294 // the mask, zero extensions will be removed from operands in some cases.
1295 // This code works extra hard to look through extensions because we can
1296 // replace them with zero extensions cheaply if necessary.
1297 bool ReplacingAnyExtend = false;
1298 if (X.getOpcode() == ISD::ANY_EXTEND) {
1299 unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
1300 X.getOperand(0).getSimpleValueType().getSizeInBits();
1301 // Assume that we'll replace the any-extend with a zero-extend, and
1302 // narrow the search to the extended value.
1303 X = X.getOperand(0);
1304 MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
1305 ReplacingAnyExtend = true;
1307 APInt MaskedHighBits =
1308 APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
1309 KnownBits Known;
1310 DAG.computeKnownBits(X, Known);
1311 if (MaskedHighBits != Known.Zero) return true;
1313 // We've identified a pattern that can be transformed into a single shift
1314 // and an addressing mode. Make it so.
1315 MVT VT = N.getSimpleValueType();
1316 if (ReplacingAnyExtend) {
1317 assert(X.getValueType() != VT);
1318 // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
1319 SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
1320 insertDAGNode(DAG, N, NewX);
1321 X = NewX;
1323 SDLoc DL(N);
1324 SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
1325 SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
1326 SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
1327 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
1329 // Insert the new nodes into the topological ordering. We must do this in
1330 // a valid topological ordering as nothing is going to go back and re-sort
1331 // these nodes. We continually insert before 'N' in sequence as this is
1332 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
1333 // hierarchy left to express.
1334 insertDAGNode(DAG, N, NewSRLAmt);
1335 insertDAGNode(DAG, N, NewSRL);
1336 insertDAGNode(DAG, N, NewSHLAmt);
1337 insertDAGNode(DAG, N, NewSHL);
1338 DAG.ReplaceAllUsesWith(N, NewSHL);
1340 AM.Scale = 1 << AMShiftAmt;
1341 AM.IndexReg = NewSRL;
1342 return false;
1345 bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
1346 unsigned Depth) {
1347 SDLoc dl(N);
1348 LLVM_DEBUG({
1349 dbgs() << "MatchAddress: ";
1350 AM.dump(CurDAG);
1352 // Limit recursion.
1353 if (Depth > 5)
1354 return matchAddressBase(N, AM);
1356 // If this is already a %rip relative address, we can only merge immediates
1357 // into it. Instead of handling this in every case, we handle it here.
1358 // RIP relative addressing: %rip + 32-bit displacement!
1359 if (AM.isRIPRelative()) {
1360 // FIXME: JumpTable and ExternalSymbol address currently don't like
1361 // displacements. It isn't very important, but this should be fixed for
1362 // consistency.
1363 if (!(AM.ES || AM.MCSym) && AM.JT != -1)
1364 return true;
1366 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
1367 if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM))
1368 return false;
1369 return true;
1372 switch (N.getOpcode()) {
1373 default: break;
1374 case ISD::LOCAL_RECOVER: {
1375 if (!AM.hasSymbolicDisplacement() && AM.Disp == 0)
1376 if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) {
1377 // Use the symbol and don't prefix it.
1378 AM.MCSym = ESNode->getMCSymbol();
1379 return false;
1381 break;
1383 case ISD::Constant: {
1384 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
1385 if (!foldOffsetIntoAddress(Val, AM))
1386 return false;
1387 break;
1390 case X86ISD::Wrapper:
1391 case X86ISD::WrapperRIP:
1392 if (!matchWrapper(N, AM))
1393 return false;
1394 break;
1396 case ISD::LOAD:
1397 if (!matchLoadInAddress(cast<LoadSDNode>(N), AM))
1398 return false;
1399 break;
1401 case ISD::FrameIndex:
1402 if (AM.BaseType == X86ISelAddressMode::RegBase &&
1403 AM.Base_Reg.getNode() == nullptr &&
1404 (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
1405 AM.BaseType = X86ISelAddressMode::FrameIndexBase;
1406 AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
1407 return false;
1409 break;
1411 case ISD::SHL:
1412 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
1413 break;
1415 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1416 unsigned Val = CN->getZExtValue();
1417 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
1418 // that the base operand remains free for further matching. If
1419 // the base doesn't end up getting used, a post-processing step
1420 // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
1421 if (Val == 1 || Val == 2 || Val == 3) {
1422 AM.Scale = 1 << Val;
1423 SDValue ShVal = N.getOperand(0);
1425 // Okay, we know that we have a scale by now. However, if the scaled
1426 // value is an add of something and a constant, we can fold the
1427 // constant into the disp field here.
1428 if (CurDAG->isBaseWithConstantOffset(ShVal)) {
1429 AM.IndexReg = ShVal.getOperand(0);
1430 ConstantSDNode *AddVal = cast<ConstantSDNode>(ShVal.getOperand(1));
1431 uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
1432 if (!foldOffsetIntoAddress(Disp, AM))
1433 return false;
1436 AM.IndexReg = ShVal;
1437 return false;
1440 break;
1442 case ISD::SRL: {
1443 // Scale must not be used already.
1444 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
1446 SDValue And = N.getOperand(0);
1447 if (And.getOpcode() != ISD::AND) break;
1448 SDValue X = And.getOperand(0);
1450 // We only handle up to 64-bit values here as those are what matter for
1451 // addressing mode optimizations.
1452 if (X.getSimpleValueType().getSizeInBits() > 64) break;
1454 // The mask used for the transform is expected to be post-shift, but we
1455 // found the shift first so just apply the shift to the mask before passing
1456 // it down.
1457 if (!isa<ConstantSDNode>(N.getOperand(1)) ||
1458 !isa<ConstantSDNode>(And.getOperand(1)))
1459 break;
1460 uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
1462 // Try to fold the mask and shift into the scale, and return false if we
1463 // succeed.
1464 if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
1465 return false;
1466 break;
1469 case ISD::SMUL_LOHI:
1470 case ISD::UMUL_LOHI:
1471 // A mul_lohi where we need the low part can be folded as a plain multiply.
1472 if (N.getResNo() != 0) break;
1473 LLVM_FALLTHROUGH;
1474 case ISD::MUL:
1475 case X86ISD::MUL_IMM:
1476 // X*[3,5,9] -> X+X*[2,4,8]
1477 if (AM.BaseType == X86ISelAddressMode::RegBase &&
1478 AM.Base_Reg.getNode() == nullptr &&
1479 AM.IndexReg.getNode() == nullptr) {
1480 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
1481 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
1482 CN->getZExtValue() == 9) {
1483 AM.Scale = unsigned(CN->getZExtValue())-1;
1485 SDValue MulVal = N.getOperand(0);
1486 SDValue Reg;
1488 // Okay, we know that we have a scale by now. However, if the scaled
1489 // value is an add of something and a constant, we can fold the
1490 // constant into the disp field here.
1491 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
1492 isa<ConstantSDNode>(MulVal.getOperand(1))) {
1493 Reg = MulVal.getOperand(0);
1494 ConstantSDNode *AddVal =
1495 cast<ConstantSDNode>(MulVal.getOperand(1));
1496 uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
1497 if (foldOffsetIntoAddress(Disp, AM))
1498 Reg = N.getOperand(0);
1499 } else {
1500 Reg = N.getOperand(0);
1503 AM.IndexReg = AM.Base_Reg = Reg;
1504 return false;
1507 break;
1509 case ISD::SUB: {
1510 // Given A-B, if A can be completely folded into the address and
1511 // the index field with the index field unused, use -B as the index.
1512 // This is a win if a has multiple parts that can be folded into
1513 // the address. Also, this saves a mov if the base register has
1514 // other uses, since it avoids a two-address sub instruction, however
1515 // it costs an additional mov if the index register has other uses.
1517 // Add an artificial use to this node so that we can keep track of
1518 // it if it gets CSE'd with a different node.
1519 HandleSDNode Handle(N);
1521 // Test if the LHS of the sub can be folded.
1522 X86ISelAddressMode Backup = AM;
1523 if (matchAddressRecursively(N.getOperand(0), AM, Depth+1)) {
1524 AM = Backup;
1525 break;
1527 // Test if the index field is free for use.
1528 if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1529 AM = Backup;
1530 break;
1533 int Cost = 0;
1534 SDValue RHS = Handle.getValue().getOperand(1);
1535 // If the RHS involves a register with multiple uses, this
1536 // transformation incurs an extra mov, due to the neg instruction
1537 // clobbering its operand.
1538 if (!RHS.getNode()->hasOneUse() ||
1539 RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1540 RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1541 RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1542 (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1543 RHS.getOperand(0).getValueType() == MVT::i32))
1544 ++Cost;
1545 // If the base is a register with multiple uses, this
1546 // transformation may save a mov.
1547 // FIXME: Don't rely on DELETED_NODEs.
1548 if ((AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() &&
1549 AM.Base_Reg->getOpcode() != ISD::DELETED_NODE &&
1550 !AM.Base_Reg.getNode()->hasOneUse()) ||
1551 AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1552 --Cost;
1553 // If the folded LHS was interesting, this transformation saves
1554 // address arithmetic.
1555 if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1556 ((AM.Disp != 0) && (Backup.Disp == 0)) +
1557 (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1558 --Cost;
1559 // If it doesn't look like it may be an overall win, don't do it.
1560 if (Cost >= 0) {
1561 AM = Backup;
1562 break;
1565 // Ok, the transformation is legal and appears profitable. Go for it.
1566 SDValue Zero = CurDAG->getConstant(0, dl, N.getValueType());
1567 SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1568 AM.IndexReg = Neg;
1569 AM.Scale = 1;
1571 // Insert the new nodes into the topological ordering.
1572 insertDAGNode(*CurDAG, Handle.getValue(), Zero);
1573 insertDAGNode(*CurDAG, Handle.getValue(), Neg);
1574 return false;
1577 case ISD::ADD:
1578 if (!matchAdd(N, AM, Depth))
1579 return false;
1580 break;
1582 case ISD::OR:
1583 // We want to look through a transform in InstCombine and DAGCombiner that
1584 // turns 'add' into 'or', so we can treat this 'or' exactly like an 'add'.
1585 // Example: (or (and x, 1), (shl y, 3)) --> (add (and x, 1), (shl y, 3))
1586 // An 'lea' can then be used to match the shift (multiply) and add:
1587 // and $1, %esi
1588 // lea (%rsi, %rdi, 8), %rax
1589 if (CurDAG->haveNoCommonBitsSet(N.getOperand(0), N.getOperand(1)) &&
1590 !matchAdd(N, AM, Depth))
1591 return false;
1592 break;
1594 case ISD::AND: {
1595 // Perform some heroic transforms on an and of a constant-count shift
1596 // with a constant to enable use of the scaled offset field.
1598 // Scale must not be used already.
1599 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
1601 SDValue Shift = N.getOperand(0);
1602 if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
1603 SDValue X = Shift.getOperand(0);
1605 // We only handle up to 64-bit values here as those are what matter for
1606 // addressing mode optimizations.
1607 if (X.getSimpleValueType().getSizeInBits() > 64) break;
1609 if (!isa<ConstantSDNode>(N.getOperand(1)))
1610 break;
1611 uint64_t Mask = N.getConstantOperandVal(1);
1613 // Try to fold the mask and shift into an extract and scale.
1614 if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
1615 return false;
1617 // Try to fold the mask and shift directly into the scale.
1618 if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
1619 return false;
1621 // Try to swap the mask and shift to place shifts which can be done as
1622 // a scale on the outside of the mask.
1623 if (!foldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
1624 return false;
1625 break;
1629 return matchAddressBase(N, AM);
1632 /// Helper for MatchAddress. Add the specified node to the
1633 /// specified addressing mode without any further recursion.
1634 bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1635 // Is the base register already occupied?
1636 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1637 // If so, check to see if the scale index register is set.
1638 if (!AM.IndexReg.getNode()) {
1639 AM.IndexReg = N;
1640 AM.Scale = 1;
1641 return false;
1644 // Otherwise, we cannot select it.
1645 return true;
1648 // Default, generate it as a register.
1649 AM.BaseType = X86ISelAddressMode::RegBase;
1650 AM.Base_Reg = N;
1651 return false;
1654 /// Helper for selectVectorAddr. Handles things that can be folded into a
1655 /// gather scatter address. The index register and scale should have already
1656 /// been handled.
1657 bool X86DAGToDAGISel::matchVectorAddress(SDValue N, X86ISelAddressMode &AM) {
1658 // TODO: Support other operations.
1659 switch (N.getOpcode()) {
1660 case ISD::Constant: {
1661 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
1662 if (!foldOffsetIntoAddress(Val, AM))
1663 return false;
1664 break;
1666 case X86ISD::Wrapper:
1667 if (!matchWrapper(N, AM))
1668 return false;
1669 break;
1672 return matchAddressBase(N, AM);
1675 bool X86DAGToDAGISel::selectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base,
1676 SDValue &Scale, SDValue &Index,
1677 SDValue &Disp, SDValue &Segment) {
1678 X86ISelAddressMode AM;
1679 auto *Mgs = cast<X86MaskedGatherScatterSDNode>(Parent);
1680 AM.IndexReg = Mgs->getIndex();
1681 AM.Scale = cast<ConstantSDNode>(Mgs->getScale())->getZExtValue();
1683 unsigned AddrSpace = cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1684 // AddrSpace 256 -> GS, 257 -> FS, 258 -> SS.
1685 if (AddrSpace == 256)
1686 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1687 if (AddrSpace == 257)
1688 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1689 if (AddrSpace == 258)
1690 AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
1692 // Try to match into the base and displacement fields.
1693 if (matchVectorAddress(N, AM))
1694 return false;
1696 MVT VT = N.getSimpleValueType();
1697 if (AM.BaseType == X86ISelAddressMode::RegBase) {
1698 if (!AM.Base_Reg.getNode())
1699 AM.Base_Reg = CurDAG->getRegister(0, VT);
1702 getAddressOperands(AM, SDLoc(N), Base, Scale, Index, Disp, Segment);
1703 return true;
1706 /// Returns true if it is able to pattern match an addressing mode.
1707 /// It returns the operands which make up the maximal addressing mode it can
1708 /// match by reference.
1710 /// Parent is the parent node of the addr operand that is being matched. It
1711 /// is always a load, store, atomic node, or null. It is only null when
1712 /// checking memory operands for inline asm nodes.
1713 bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1714 SDValue &Scale, SDValue &Index,
1715 SDValue &Disp, SDValue &Segment) {
1716 X86ISelAddressMode AM;
1718 if (Parent &&
1719 // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1720 // that are not a MemSDNode, and thus don't have proper addrspace info.
1721 Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1722 Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1723 Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
1724 Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
1725 Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
1726 unsigned AddrSpace =
1727 cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1728 // AddrSpace 256 -> GS, 257 -> FS, 258 -> SS.
1729 if (AddrSpace == 256)
1730 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1731 if (AddrSpace == 257)
1732 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1733 if (AddrSpace == 258)
1734 AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
1737 if (matchAddress(N, AM))
1738 return false;
1740 MVT VT = N.getSimpleValueType();
1741 if (AM.BaseType == X86ISelAddressMode::RegBase) {
1742 if (!AM.Base_Reg.getNode())
1743 AM.Base_Reg = CurDAG->getRegister(0, VT);
1746 if (!AM.IndexReg.getNode())
1747 AM.IndexReg = CurDAG->getRegister(0, VT);
1749 getAddressOperands(AM, SDLoc(N), Base, Scale, Index, Disp, Segment);
1750 return true;
1753 // We can only fold a load if all nodes between it and the root node have a
1754 // single use. If there are additional uses, we could end up duplicating the
1755 // load.
1756 static bool hasSingleUsesFromRoot(SDNode *Root, SDNode *User) {
1757 while (User != Root) {
1758 if (!User->hasOneUse())
1759 return false;
1760 User = *User->use_begin();
1763 return true;
1766 /// Match a scalar SSE load. In particular, we want to match a load whose top
1767 /// elements are either undef or zeros. The load flavor is derived from the
1768 /// type of N, which is either v4f32 or v2f64.
1770 /// We also return:
1771 /// PatternChainNode: this is the matched node that has a chain input and
1772 /// output.
1773 bool X86DAGToDAGISel::selectScalarSSELoad(SDNode *Root, SDNode *Parent,
1774 SDValue N, SDValue &Base,
1775 SDValue &Scale, SDValue &Index,
1776 SDValue &Disp, SDValue &Segment,
1777 SDValue &PatternNodeWithChain) {
1778 if (!hasSingleUsesFromRoot(Root, Parent))
1779 return false;
1781 // We can allow a full vector load here since narrowing a load is ok.
1782 if (ISD::isNON_EXTLoad(N.getNode())) {
1783 PatternNodeWithChain = N;
1784 if (IsProfitableToFold(PatternNodeWithChain, N.getNode(), Root) &&
1785 IsLegalToFold(PatternNodeWithChain, Parent, Root, OptLevel)) {
1786 LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1787 return selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp,
1788 Segment);
1792 // We can also match the special zero extended load opcode.
1793 if (N.getOpcode() == X86ISD::VZEXT_LOAD) {
1794 PatternNodeWithChain = N;
1795 if (IsProfitableToFold(PatternNodeWithChain, N.getNode(), Root) &&
1796 IsLegalToFold(PatternNodeWithChain, Parent, Root, OptLevel)) {
1797 auto *MI = cast<MemIntrinsicSDNode>(PatternNodeWithChain);
1798 return selectAddr(MI, MI->getBasePtr(), Base, Scale, Index, Disp,
1799 Segment);
1803 // Need to make sure that the SCALAR_TO_VECTOR and load are both only used
1804 // once. Otherwise the load might get duplicated and the chain output of the
1805 // duplicate load will not be observed by all dependencies.
1806 if (N.getOpcode() == ISD::SCALAR_TO_VECTOR && N.getNode()->hasOneUse()) {
1807 PatternNodeWithChain = N.getOperand(0);
1808 if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1809 IsProfitableToFold(PatternNodeWithChain, N.getNode(), Root) &&
1810 IsLegalToFold(PatternNodeWithChain, N.getNode(), Root, OptLevel)) {
1811 LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1812 return selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp,
1813 Segment);
1817 // Also handle the case where we explicitly require zeros in the top
1818 // elements. This is a vector shuffle from the zero vector.
1819 if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1820 // Check to see if the top elements are all zeros (or bitcast of zeros).
1821 N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1822 N.getOperand(0).getNode()->hasOneUse()) {
1823 PatternNodeWithChain = N.getOperand(0).getOperand(0);
1824 if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1825 IsProfitableToFold(PatternNodeWithChain, N.getNode(), Root) &&
1826 IsLegalToFold(PatternNodeWithChain, N.getNode(), Root, OptLevel)) {
1827 // Okay, this is a zero extending load. Fold it.
1828 LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1829 return selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp,
1830 Segment);
1834 return false;
1838 bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) {
1839 if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1840 uint64_t ImmVal = CN->getZExtValue();
1841 if (!isUInt<32>(ImmVal))
1842 return false;
1844 Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), MVT::i64);
1845 return true;
1848 // In static codegen with small code model, we can get the address of a label
1849 // into a register with 'movl'
1850 if (N->getOpcode() != X86ISD::Wrapper)
1851 return false;
1853 N = N.getOperand(0);
1855 // At least GNU as does not accept 'movl' for TPOFF relocations.
1856 // FIXME: We could use 'movl' when we know we are targeting MC.
1857 if (N->getOpcode() == ISD::TargetGlobalTLSAddress)
1858 return false;
1860 Imm = N;
1861 if (N->getOpcode() != ISD::TargetGlobalAddress)
1862 return TM.getCodeModel() == CodeModel::Small;
1864 Optional<ConstantRange> CR =
1865 cast<GlobalAddressSDNode>(N)->getGlobal()->getAbsoluteSymbolRange();
1866 if (!CR)
1867 return TM.getCodeModel() == CodeModel::Small;
1869 return CR->getUnsignedMax().ult(1ull << 32);
1872 bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base,
1873 SDValue &Scale, SDValue &Index,
1874 SDValue &Disp, SDValue &Segment) {
1875 // Save the debug loc before calling selectLEAAddr, in case it invalidates N.
1876 SDLoc DL(N);
1878 if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment))
1879 return false;
1881 RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
1882 if (RN && RN->getReg() == 0)
1883 Base = CurDAG->getRegister(0, MVT::i64);
1884 else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(Base)) {
1885 // Base could already be %rip, particularly in the x32 ABI.
1886 Base = SDValue(CurDAG->getMachineNode(
1887 TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
1888 CurDAG->getTargetConstant(0, DL, MVT::i64),
1889 Base,
1890 CurDAG->getTargetConstant(X86::sub_32bit, DL, MVT::i32)),
1894 RN = dyn_cast<RegisterSDNode>(Index);
1895 if (RN && RN->getReg() == 0)
1896 Index = CurDAG->getRegister(0, MVT::i64);
1897 else {
1898 assert(Index.getValueType() == MVT::i32 &&
1899 "Expect to be extending 32-bit registers for use in LEA");
1900 Index = SDValue(CurDAG->getMachineNode(
1901 TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
1902 CurDAG->getTargetConstant(0, DL, MVT::i64),
1903 Index,
1904 CurDAG->getTargetConstant(X86::sub_32bit, DL,
1905 MVT::i32)),
1909 return true;
1912 /// Calls SelectAddr and determines if the maximal addressing
1913 /// mode it matches can be cost effectively emitted as an LEA instruction.
1914 bool X86DAGToDAGISel::selectLEAAddr(SDValue N,
1915 SDValue &Base, SDValue &Scale,
1916 SDValue &Index, SDValue &Disp,
1917 SDValue &Segment) {
1918 X86ISelAddressMode AM;
1920 // Save the DL and VT before calling matchAddress, it can invalidate N.
1921 SDLoc DL(N);
1922 MVT VT = N.getSimpleValueType();
1924 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1925 // segments.
1926 SDValue Copy = AM.Segment;
1927 SDValue T = CurDAG->getRegister(0, MVT::i32);
1928 AM.Segment = T;
1929 if (matchAddress(N, AM))
1930 return false;
1931 assert (T == AM.Segment);
1932 AM.Segment = Copy;
1934 unsigned Complexity = 0;
1935 if (AM.BaseType == X86ISelAddressMode::RegBase)
1936 if (AM.Base_Reg.getNode())
1937 Complexity = 1;
1938 else
1939 AM.Base_Reg = CurDAG->getRegister(0, VT);
1940 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1941 Complexity = 4;
1943 if (AM.IndexReg.getNode())
1944 Complexity++;
1945 else
1946 AM.IndexReg = CurDAG->getRegister(0, VT);
1948 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1949 // a simple shift.
1950 if (AM.Scale > 1)
1951 Complexity++;
1953 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1954 // to a LEA. This is determined with some experimentation but is by no means
1955 // optimal (especially for code size consideration). LEA is nice because of
1956 // its three-address nature. Tweak the cost function again when we can run
1957 // convertToThreeAddress() at register allocation time.
1958 if (AM.hasSymbolicDisplacement()) {
1959 // For X86-64, always use LEA to materialize RIP-relative addresses.
1960 if (Subtarget->is64Bit())
1961 Complexity = 4;
1962 else
1963 Complexity += 2;
1966 if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1967 Complexity++;
1969 // If it isn't worth using an LEA, reject it.
1970 if (Complexity <= 2)
1971 return false;
1973 getAddressOperands(AM, DL, Base, Scale, Index, Disp, Segment);
1974 return true;
1977 /// This is only run on TargetGlobalTLSAddress nodes.
1978 bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base,
1979 SDValue &Scale, SDValue &Index,
1980 SDValue &Disp, SDValue &Segment) {
1981 assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1982 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1984 X86ISelAddressMode AM;
1985 AM.GV = GA->getGlobal();
1986 AM.Disp += GA->getOffset();
1987 AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1988 AM.SymbolFlags = GA->getTargetFlags();
1990 if (N.getValueType() == MVT::i32) {
1991 AM.Scale = 1;
1992 AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1993 } else {
1994 AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1997 getAddressOperands(AM, SDLoc(N), Base, Scale, Index, Disp, Segment);
1998 return true;
2001 bool X86DAGToDAGISel::selectRelocImm(SDValue N, SDValue &Op) {
2002 if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2003 Op = CurDAG->getTargetConstant(CN->getAPIntValue(), SDLoc(CN),
2004 N.getValueType());
2005 return true;
2008 // Keep track of the original value type and whether this value was
2009 // truncated. If we see a truncation from pointer type to VT that truncates
2010 // bits that are known to be zero, we can use a narrow reference.
2011 EVT VT = N.getValueType();
2012 bool WasTruncated = false;
2013 if (N.getOpcode() == ISD::TRUNCATE) {
2014 WasTruncated = true;
2015 N = N.getOperand(0);
2018 if (N.getOpcode() != X86ISD::Wrapper)
2019 return false;
2021 // We can only use non-GlobalValues as immediates if they were not truncated,
2022 // as we do not have any range information. If we have a GlobalValue and the
2023 // address was not truncated, we can select it as an operand directly.
2024 unsigned Opc = N.getOperand(0)->getOpcode();
2025 if (Opc != ISD::TargetGlobalAddress || !WasTruncated) {
2026 Op = N.getOperand(0);
2027 // We can only select the operand directly if we didn't have to look past a
2028 // truncate.
2029 return !WasTruncated;
2032 // Check that the global's range fits into VT.
2033 auto *GA = cast<GlobalAddressSDNode>(N.getOperand(0));
2034 Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
2035 if (!CR || CR->getUnsignedMax().uge(1ull << VT.getSizeInBits()))
2036 return false;
2038 // Okay, we can use a narrow reference.
2039 Op = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(N), VT,
2040 GA->getOffset(), GA->getTargetFlags());
2041 return true;
2044 bool X86DAGToDAGISel::tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
2045 SDValue &Base, SDValue &Scale,
2046 SDValue &Index, SDValue &Disp,
2047 SDValue &Segment) {
2048 if (!ISD::isNON_EXTLoad(N.getNode()) ||
2049 !IsProfitableToFold(N, P, Root) ||
2050 !IsLegalToFold(N, P, Root, OptLevel))
2051 return false;
2053 return selectAddr(N.getNode(),
2054 N.getOperand(1), Base, Scale, Index, Disp, Segment);
2057 bool X86DAGToDAGISel::tryFoldVecLoad(SDNode *Root, SDNode *P, SDValue N,
2058 SDValue &Base, SDValue &Scale,
2059 SDValue &Index, SDValue &Disp,
2060 SDValue &Segment) {
2061 if (!ISD::isNON_EXTLoad(N.getNode()) ||
2062 useNonTemporalLoad(cast<LoadSDNode>(N)) ||
2063 !IsProfitableToFold(N, P, Root) ||
2064 !IsLegalToFold(N, P, Root, OptLevel))
2065 return false;
2067 return selectAddr(N.getNode(),
2068 N.getOperand(1), Base, Scale, Index, Disp, Segment);
2071 /// Return an SDNode that returns the value of the global base register.
2072 /// Output instructions required to initialize the global base register,
2073 /// if necessary.
2074 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
2075 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
2076 auto &DL = MF->getDataLayout();
2077 return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode();
2080 bool X86DAGToDAGISel::isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const {
2081 if (N->getOpcode() == ISD::TRUNCATE)
2082 N = N->getOperand(0).getNode();
2083 if (N->getOpcode() != X86ISD::Wrapper)
2084 return false;
2086 auto *GA = dyn_cast<GlobalAddressSDNode>(N->getOperand(0));
2087 if (!GA)
2088 return false;
2090 Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
2091 return CR && CR->getSignedMin().sge(-1ull << Width) &&
2092 CR->getSignedMax().slt(1ull << Width);
2095 /// Test whether the given X86ISD::CMP node has any uses which require the SF
2096 /// or OF bits to be accurate.
2097 static bool hasNoSignedComparisonUses(SDNode *N) {
2098 // Examine each user of the node.
2099 for (SDNode::use_iterator UI = N->use_begin(),
2100 UE = N->use_end(); UI != UE; ++UI) {
2101 // Only examine CopyToReg uses.
2102 if (UI->getOpcode() != ISD::CopyToReg)
2103 return false;
2104 // Only examine CopyToReg uses that copy to EFLAGS.
2105 if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
2106 X86::EFLAGS)
2107 return false;
2108 // Examine each user of the CopyToReg use.
2109 for (SDNode::use_iterator FlagUI = UI->use_begin(),
2110 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
2111 // Only examine the Flag result.
2112 if (FlagUI.getUse().getResNo() != 1) continue;
2113 // Anything unusual: assume conservatively.
2114 if (!FlagUI->isMachineOpcode()) return false;
2115 // Examine the opcode of the user.
2116 switch (FlagUI->getMachineOpcode()) {
2117 // These comparisons don't treat the most significant bit specially.
2118 case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
2119 case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
2120 case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
2121 case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
2122 case X86::JA_1: case X86::JAE_1: case X86::JB_1: case X86::JBE_1:
2123 case X86::JE_1: case X86::JNE_1: case X86::JP_1: case X86::JNP_1:
2124 case X86::CMOVA16rr: case X86::CMOVA16rm:
2125 case X86::CMOVA32rr: case X86::CMOVA32rm:
2126 case X86::CMOVA64rr: case X86::CMOVA64rm:
2127 case X86::CMOVAE16rr: case X86::CMOVAE16rm:
2128 case X86::CMOVAE32rr: case X86::CMOVAE32rm:
2129 case X86::CMOVAE64rr: case X86::CMOVAE64rm:
2130 case X86::CMOVB16rr: case X86::CMOVB16rm:
2131 case X86::CMOVB32rr: case X86::CMOVB32rm:
2132 case X86::CMOVB64rr: case X86::CMOVB64rm:
2133 case X86::CMOVBE16rr: case X86::CMOVBE16rm:
2134 case X86::CMOVBE32rr: case X86::CMOVBE32rm:
2135 case X86::CMOVBE64rr: case X86::CMOVBE64rm:
2136 case X86::CMOVE16rr: case X86::CMOVE16rm:
2137 case X86::CMOVE32rr: case X86::CMOVE32rm:
2138 case X86::CMOVE64rr: case X86::CMOVE64rm:
2139 case X86::CMOVNE16rr: case X86::CMOVNE16rm:
2140 case X86::CMOVNE32rr: case X86::CMOVNE32rm:
2141 case X86::CMOVNE64rr: case X86::CMOVNE64rm:
2142 case X86::CMOVNP16rr: case X86::CMOVNP16rm:
2143 case X86::CMOVNP32rr: case X86::CMOVNP32rm:
2144 case X86::CMOVNP64rr: case X86::CMOVNP64rm:
2145 case X86::CMOVP16rr: case X86::CMOVP16rm:
2146 case X86::CMOVP32rr: case X86::CMOVP32rm:
2147 case X86::CMOVP64rr: case X86::CMOVP64rm:
2148 continue;
2149 // Anything else: assume conservatively.
2150 default: return false;
2154 return true;
2157 /// Test whether the given node which sets flags has any uses which require the
2158 /// CF flag to be accurate.
2159 static bool hasNoCarryFlagUses(SDNode *N) {
2160 // Examine each user of the node.
2161 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE;
2162 ++UI) {
2163 // Only check things that use the flags.
2164 if (UI.getUse().getResNo() != 1)
2165 continue;
2166 // Only examine CopyToReg uses.
2167 if (UI->getOpcode() != ISD::CopyToReg)
2168 return false;
2169 // Only examine CopyToReg uses that copy to EFLAGS.
2170 if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
2171 return false;
2172 // Examine each user of the CopyToReg use.
2173 for (SDNode::use_iterator FlagUI = UI->use_begin(), FlagUE = UI->use_end();
2174 FlagUI != FlagUE; ++FlagUI) {
2175 // Only examine the Flag result.
2176 if (FlagUI.getUse().getResNo() != 1)
2177 continue;
2178 // Anything unusual: assume conservatively.
2179 if (!FlagUI->isMachineOpcode())
2180 return false;
2181 // Examine the opcode of the user.
2182 switch (FlagUI->getMachineOpcode()) {
2183 // Comparisons which don't examine the CF flag.
2184 case X86::SETOr: case X86::SETNOr: case X86::SETEr: case X86::SETNEr:
2185 case X86::SETSr: case X86::SETNSr: case X86::SETPr: case X86::SETNPr:
2186 case X86::SETLr: case X86::SETGEr: case X86::SETLEr: case X86::SETGr:
2187 case X86::JO_1: case X86::JNO_1: case X86::JE_1: case X86::JNE_1:
2188 case X86::JS_1: case X86::JNS_1: case X86::JP_1: case X86::JNP_1:
2189 case X86::JL_1: case X86::JGE_1: case X86::JLE_1: case X86::JG_1:
2190 case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr:
2191 case X86::CMOVO16rm: case X86::CMOVO32rm: case X86::CMOVO64rm:
2192 case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr:
2193 case X86::CMOVNO16rm: case X86::CMOVNO32rm: case X86::CMOVNO64rm:
2194 case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr:
2195 case X86::CMOVE16rm: case X86::CMOVE32rm: case X86::CMOVE64rm:
2196 case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
2197 case X86::CMOVNE16rm: case X86::CMOVNE32rm: case X86::CMOVNE64rm:
2198 case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr:
2199 case X86::CMOVS16rm: case X86::CMOVS32rm: case X86::CMOVS64rm:
2200 case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
2201 case X86::CMOVNS16rm: case X86::CMOVNS32rm: case X86::CMOVNS64rm:
2202 case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr:
2203 case X86::CMOVP16rm: case X86::CMOVP32rm: case X86::CMOVP64rm:
2204 case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
2205 case X86::CMOVNP16rm: case X86::CMOVNP32rm: case X86::CMOVNP64rm:
2206 case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr:
2207 case X86::CMOVL16rm: case X86::CMOVL32rm: case X86::CMOVL64rm:
2208 case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
2209 case X86::CMOVGE16rm: case X86::CMOVGE32rm: case X86::CMOVGE64rm:
2210 case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
2211 case X86::CMOVLE16rm: case X86::CMOVLE32rm: case X86::CMOVLE64rm:
2212 case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr:
2213 case X86::CMOVG16rm: case X86::CMOVG32rm: case X86::CMOVG64rm:
2214 continue;
2215 // Anything else: assume conservatively.
2216 default:
2217 return false;
2221 return true;
2224 /// Check whether or not the chain ending in StoreNode is suitable for doing
2225 /// the {load; op; store} to modify transformation.
2226 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
2227 SDValue StoredVal, SelectionDAG *CurDAG,
2228 unsigned LoadOpNo,
2229 LoadSDNode *&LoadNode,
2230 SDValue &InputChain) {
2231 // Is the stored value result 0 of the operation?
2232 if (StoredVal.getResNo() != 0) return false;
2234 // Are there other uses of the operation other than the store?
2235 if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
2237 // Is the store non-extending and non-indexed?
2238 if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
2239 return false;
2241 SDValue Load = StoredVal->getOperand(LoadOpNo);
2242 // Is the stored value a non-extending and non-indexed load?
2243 if (!ISD::isNormalLoad(Load.getNode())) return false;
2245 // Return LoadNode by reference.
2246 LoadNode = cast<LoadSDNode>(Load);
2248 // Is store the only read of the loaded value?
2249 if (!Load.hasOneUse())
2250 return false;
2252 // Is the address of the store the same as the load?
2253 if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
2254 LoadNode->getOffset() != StoreNode->getOffset())
2255 return false;
2257 bool FoundLoad = false;
2258 SmallVector<SDValue, 4> ChainOps;
2259 SmallVector<const SDNode *, 4> LoopWorklist;
2260 SmallPtrSet<const SDNode *, 16> Visited;
2261 const unsigned int Max = 1024;
2263 // Visualization of Load-Op-Store fusion:
2264 // -------------------------
2265 // Legend:
2266 // *-lines = Chain operand dependencies.
2267 // |-lines = Normal operand dependencies.
2268 // Dependencies flow down and right. n-suffix references multiple nodes.
2270 // C Xn C
2271 // * * *
2272 // * * *
2273 // Xn A-LD Yn TF Yn
2274 // * * \ | * |
2275 // * * \ | * |
2276 // * * \ | => A--LD_OP_ST
2277 // * * \| \
2278 // TF OP \
2279 // * | \ Zn
2280 // * | \
2281 // A-ST Zn
2284 // This merge induced dependences from: #1: Xn -> LD, OP, Zn
2285 // #2: Yn -> LD
2286 // #3: ST -> Zn
2288 // Ensure the transform is safe by checking for the dual
2289 // dependencies to make sure we do not induce a loop.
2291 // As LD is a predecessor to both OP and ST we can do this by checking:
2292 // a). if LD is a predecessor to a member of Xn or Yn.
2293 // b). if a Zn is a predecessor to ST.
2295 // However, (b) can only occur through being a chain predecessor to
2296 // ST, which is the same as Zn being a member or predecessor of Xn,
2297 // which is a subset of LD being a predecessor of Xn. So it's
2298 // subsumed by check (a).
2300 SDValue Chain = StoreNode->getChain();
2302 // Gather X elements in ChainOps.
2303 if (Chain == Load.getValue(1)) {
2304 FoundLoad = true;
2305 ChainOps.push_back(Load.getOperand(0));
2306 } else if (Chain.getOpcode() == ISD::TokenFactor) {
2307 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
2308 SDValue Op = Chain.getOperand(i);
2309 if (Op == Load.getValue(1)) {
2310 FoundLoad = true;
2311 // Drop Load, but keep its chain. No cycle check necessary.
2312 ChainOps.push_back(Load.getOperand(0));
2313 continue;
2315 LoopWorklist.push_back(Op.getNode());
2316 ChainOps.push_back(Op);
2320 if (!FoundLoad)
2321 return false;
2323 // Worklist is currently Xn. Add Yn to worklist.
2324 for (SDValue Op : StoredVal->ops())
2325 if (Op.getNode() != LoadNode)
2326 LoopWorklist.push_back(Op.getNode());
2328 // Check (a) if Load is a predecessor to Xn + Yn
2329 if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
2330 true))
2331 return false;
2333 InputChain =
2334 CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ChainOps);
2335 return true;
2338 // Change a chain of {load; op; store} of the same value into a simple op
2339 // through memory of that value, if the uses of the modified value and its
2340 // address are suitable.
2342 // The tablegen pattern memory operand pattern is currently not able to match
2343 // the case where the EFLAGS on the original operation are used.
2345 // To move this to tablegen, we'll need to improve tablegen to allow flags to
2346 // be transferred from a node in the pattern to the result node, probably with
2347 // a new keyword. For example, we have this
2348 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2349 // [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2350 // (implicit EFLAGS)]>;
2351 // but maybe need something like this
2352 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2353 // [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2354 // (transferrable EFLAGS)]>;
2356 // Until then, we manually fold these and instruction select the operation
2357 // here.
2358 bool X86DAGToDAGISel::foldLoadStoreIntoMemOperand(SDNode *Node) {
2359 StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
2360 SDValue StoredVal = StoreNode->getOperand(1);
2361 unsigned Opc = StoredVal->getOpcode();
2363 // Before we try to select anything, make sure this is memory operand size
2364 // and opcode we can handle. Note that this must match the code below that
2365 // actually lowers the opcodes.
2366 EVT MemVT = StoreNode->getMemoryVT();
2367 if (MemVT != MVT::i64 && MemVT != MVT::i32 && MemVT != MVT::i16 &&
2368 MemVT != MVT::i8)
2369 return false;
2371 bool IsCommutable = false;
2372 switch (Opc) {
2373 default:
2374 return false;
2375 case X86ISD::INC:
2376 case X86ISD::DEC:
2377 case X86ISD::SUB:
2378 case X86ISD::SBB:
2379 break;
2380 case X86ISD::ADD:
2381 case X86ISD::ADC:
2382 case X86ISD::AND:
2383 case X86ISD::OR:
2384 case X86ISD::XOR:
2385 IsCommutable = true;
2386 break;
2389 unsigned LoadOpNo = 0;
2390 LoadSDNode *LoadNode = nullptr;
2391 SDValue InputChain;
2392 if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
2393 LoadNode, InputChain)) {
2394 if (!IsCommutable)
2395 return false;
2397 // This operation is commutable, try the other operand.
2398 LoadOpNo = 1;
2399 if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
2400 LoadNode, InputChain))
2401 return false;
2404 SDValue Base, Scale, Index, Disp, Segment;
2405 if (!selectAddr(LoadNode, LoadNode->getBasePtr(), Base, Scale, Index, Disp,
2406 Segment))
2407 return false;
2409 auto SelectOpcode = [&](unsigned Opc64, unsigned Opc32, unsigned Opc16,
2410 unsigned Opc8) {
2411 switch (MemVT.getSimpleVT().SimpleTy) {
2412 case MVT::i64:
2413 return Opc64;
2414 case MVT::i32:
2415 return Opc32;
2416 case MVT::i16:
2417 return Opc16;
2418 case MVT::i8:
2419 return Opc8;
2420 default:
2421 llvm_unreachable("Invalid size!");
2425 MachineSDNode *Result;
2426 switch (Opc) {
2427 case X86ISD::INC:
2428 case X86ISD::DEC: {
2429 unsigned NewOpc =
2430 Opc == X86ISD::INC
2431 ? SelectOpcode(X86::INC64m, X86::INC32m, X86::INC16m, X86::INC8m)
2432 : SelectOpcode(X86::DEC64m, X86::DEC32m, X86::DEC16m, X86::DEC8m);
2433 const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
2434 Result =
2435 CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other, Ops);
2436 break;
2438 case X86ISD::ADD:
2439 case X86ISD::ADC:
2440 case X86ISD::SUB:
2441 case X86ISD::SBB:
2442 case X86ISD::AND:
2443 case X86ISD::OR:
2444 case X86ISD::XOR: {
2445 auto SelectRegOpcode = [SelectOpcode](unsigned Opc) {
2446 switch (Opc) {
2447 case X86ISD::ADD:
2448 return SelectOpcode(X86::ADD64mr, X86::ADD32mr, X86::ADD16mr,
2449 X86::ADD8mr);
2450 case X86ISD::ADC:
2451 return SelectOpcode(X86::ADC64mr, X86::ADC32mr, X86::ADC16mr,
2452 X86::ADC8mr);
2453 case X86ISD::SUB:
2454 return SelectOpcode(X86::SUB64mr, X86::SUB32mr, X86::SUB16mr,
2455 X86::SUB8mr);
2456 case X86ISD::SBB:
2457 return SelectOpcode(X86::SBB64mr, X86::SBB32mr, X86::SBB16mr,
2458 X86::SBB8mr);
2459 case X86ISD::AND:
2460 return SelectOpcode(X86::AND64mr, X86::AND32mr, X86::AND16mr,
2461 X86::AND8mr);
2462 case X86ISD::OR:
2463 return SelectOpcode(X86::OR64mr, X86::OR32mr, X86::OR16mr, X86::OR8mr);
2464 case X86ISD::XOR:
2465 return SelectOpcode(X86::XOR64mr, X86::XOR32mr, X86::XOR16mr,
2466 X86::XOR8mr);
2467 default:
2468 llvm_unreachable("Invalid opcode!");
2471 auto SelectImm8Opcode = [SelectOpcode](unsigned Opc) {
2472 switch (Opc) {
2473 case X86ISD::ADD:
2474 return SelectOpcode(X86::ADD64mi8, X86::ADD32mi8, X86::ADD16mi8, 0);
2475 case X86ISD::ADC:
2476 return SelectOpcode(X86::ADC64mi8, X86::ADC32mi8, X86::ADC16mi8, 0);
2477 case X86ISD::SUB:
2478 return SelectOpcode(X86::SUB64mi8, X86::SUB32mi8, X86::SUB16mi8, 0);
2479 case X86ISD::SBB:
2480 return SelectOpcode(X86::SBB64mi8, X86::SBB32mi8, X86::SBB16mi8, 0);
2481 case X86ISD::AND:
2482 return SelectOpcode(X86::AND64mi8, X86::AND32mi8, X86::AND16mi8, 0);
2483 case X86ISD::OR:
2484 return SelectOpcode(X86::OR64mi8, X86::OR32mi8, X86::OR16mi8, 0);
2485 case X86ISD::XOR:
2486 return SelectOpcode(X86::XOR64mi8, X86::XOR32mi8, X86::XOR16mi8, 0);
2487 default:
2488 llvm_unreachable("Invalid opcode!");
2491 auto SelectImmOpcode = [SelectOpcode](unsigned Opc) {
2492 switch (Opc) {
2493 case X86ISD::ADD:
2494 return SelectOpcode(X86::ADD64mi32, X86::ADD32mi, X86::ADD16mi,
2495 X86::ADD8mi);
2496 case X86ISD::ADC:
2497 return SelectOpcode(X86::ADC64mi32, X86::ADC32mi, X86::ADC16mi,
2498 X86::ADC8mi);
2499 case X86ISD::SUB:
2500 return SelectOpcode(X86::SUB64mi32, X86::SUB32mi, X86::SUB16mi,
2501 X86::SUB8mi);
2502 case X86ISD::SBB:
2503 return SelectOpcode(X86::SBB64mi32, X86::SBB32mi, X86::SBB16mi,
2504 X86::SBB8mi);
2505 case X86ISD::AND:
2506 return SelectOpcode(X86::AND64mi32, X86::AND32mi, X86::AND16mi,
2507 X86::AND8mi);
2508 case X86ISD::OR:
2509 return SelectOpcode(X86::OR64mi32, X86::OR32mi, X86::OR16mi,
2510 X86::OR8mi);
2511 case X86ISD::XOR:
2512 return SelectOpcode(X86::XOR64mi32, X86::XOR32mi, X86::XOR16mi,
2513 X86::XOR8mi);
2514 default:
2515 llvm_unreachable("Invalid opcode!");
2519 unsigned NewOpc = SelectRegOpcode(Opc);
2520 SDValue Operand = StoredVal->getOperand(1-LoadOpNo);
2522 // See if the operand is a constant that we can fold into an immediate
2523 // operand.
2524 if (auto *OperandC = dyn_cast<ConstantSDNode>(Operand)) {
2525 auto OperandV = OperandC->getAPIntValue();
2527 // Check if we can shrink the operand enough to fit in an immediate (or
2528 // fit into a smaller immediate) by negating it and switching the
2529 // operation.
2530 if ((Opc == X86ISD::ADD || Opc == X86ISD::SUB) &&
2531 ((MemVT != MVT::i8 && OperandV.getMinSignedBits() > 8 &&
2532 (-OperandV).getMinSignedBits() <= 8) ||
2533 (MemVT == MVT::i64 && OperandV.getMinSignedBits() > 32 &&
2534 (-OperandV).getMinSignedBits() <= 32)) &&
2535 hasNoCarryFlagUses(StoredVal.getNode())) {
2536 OperandV = -OperandV;
2537 Opc = Opc == X86ISD::ADD ? X86ISD::SUB : X86ISD::ADD;
2540 // First try to fit this into an Imm8 operand. If it doesn't fit, then try
2541 // the larger immediate operand.
2542 if (MemVT != MVT::i8 && OperandV.getMinSignedBits() <= 8) {
2543 Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
2544 NewOpc = SelectImm8Opcode(Opc);
2545 } else if (OperandV.getActiveBits() <= MemVT.getSizeInBits() &&
2546 (MemVT != MVT::i64 || OperandV.getMinSignedBits() <= 32)) {
2547 Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
2548 NewOpc = SelectImmOpcode(Opc);
2552 if (Opc == X86ISD::ADC || Opc == X86ISD::SBB) {
2553 SDValue CopyTo =
2554 CurDAG->getCopyToReg(InputChain, SDLoc(Node), X86::EFLAGS,
2555 StoredVal.getOperand(2), SDValue());
2557 const SDValue Ops[] = {Base, Scale, Index, Disp,
2558 Segment, Operand, CopyTo, CopyTo.getValue(1)};
2559 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
2560 Ops);
2561 } else {
2562 const SDValue Ops[] = {Base, Scale, Index, Disp,
2563 Segment, Operand, InputChain};
2564 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
2565 Ops);
2567 break;
2569 default:
2570 llvm_unreachable("Invalid opcode!");
2573 MachineMemOperand *MemOps[] = {StoreNode->getMemOperand(),
2574 LoadNode->getMemOperand()};
2575 CurDAG->setNodeMemRefs(Result, MemOps);
2577 // Update Load Chain uses as well.
2578 ReplaceUses(SDValue(LoadNode, 1), SDValue(Result, 1));
2579 ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
2580 ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
2581 CurDAG->RemoveDeadNode(Node);
2582 return true;
2585 // See if this is an (X >> C1) & C2 that we can match to BEXTR/BEXTRI.
2586 bool X86DAGToDAGISel::matchBEXTRFromAnd(SDNode *Node) {
2587 MVT NVT = Node->getSimpleValueType(0);
2588 SDLoc dl(Node);
2590 SDValue N0 = Node->getOperand(0);
2591 SDValue N1 = Node->getOperand(1);
2593 if (!Subtarget->hasBMI() && !Subtarget->hasTBM())
2594 return false;
2596 // Must have a shift right.
2597 if (N0->getOpcode() != ISD::SRL && N0->getOpcode() != ISD::SRA)
2598 return false;
2600 // Shift can't have additional users.
2601 if (!N0->hasOneUse())
2602 return false;
2604 // Only supported for 32 and 64 bits.
2605 if (NVT != MVT::i32 && NVT != MVT::i64)
2606 return false;
2608 // Shift amount and RHS of and must be constant.
2609 ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(N1);
2610 ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
2611 if (!MaskCst || !ShiftCst)
2612 return false;
2614 // And RHS must be a mask.
2615 uint64_t Mask = MaskCst->getZExtValue();
2616 if (!isMask_64(Mask))
2617 return false;
2619 uint64_t Shift = ShiftCst->getZExtValue();
2620 uint64_t MaskSize = countPopulation(Mask);
2622 // Don't interfere with something that can be handled by extracting AH.
2623 // TODO: If we are able to fold a load, BEXTR might still be better than AH.
2624 if (Shift == 8 && MaskSize == 8)
2625 return false;
2627 // Make sure we are only using bits that were in the original value, not
2628 // shifted in.
2629 if (Shift + MaskSize > NVT.getSizeInBits())
2630 return false;
2632 // Create a BEXTR node and run it through selection.
2633 SDValue C = CurDAG->getConstant(Shift | (MaskSize << 8), dl, NVT);
2634 SDValue New = CurDAG->getNode(X86ISD::BEXTR, dl, NVT,
2635 N0->getOperand(0), C);
2636 ReplaceNode(Node, New.getNode());
2637 SelectCode(New.getNode());
2638 return true;
2641 // Emit a PCMISTR(I/M) instruction.
2642 MachineSDNode *X86DAGToDAGISel::emitPCMPISTR(unsigned ROpc, unsigned MOpc,
2643 bool MayFoldLoad, const SDLoc &dl,
2644 MVT VT, SDNode *Node) {
2645 SDValue N0 = Node->getOperand(0);
2646 SDValue N1 = Node->getOperand(1);
2647 SDValue Imm = Node->getOperand(2);
2648 const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
2649 Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
2651 // If there is a load, it will be behind a bitcast. We don't need to check
2652 // alignment on this load.
2653 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2654 if (MayFoldLoad && N1->getOpcode() == ISD::BITCAST && N1->hasOneUse() &&
2655 tryFoldVecLoad(Node, N1.getNode(), N1.getOperand(0), Tmp0, Tmp1, Tmp2,
2656 Tmp3, Tmp4)) {
2657 SDValue Load = N1.getOperand(0);
2658 SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
2659 Load.getOperand(0) };
2660 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other);
2661 MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2662 // Update the chain.
2663 ReplaceUses(Load.getValue(1), SDValue(CNode, 2));
2664 // Record the mem-refs
2665 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(Load)->getMemOperand()});
2666 return CNode;
2669 SDValue Ops[] = { N0, N1, Imm };
2670 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32);
2671 MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
2672 return CNode;
2675 // Emit a PCMESTR(I/M) instruction. Also return the Glue result in case we need
2676 // to emit a second instruction after this one. This is needed since we have two
2677 // copyToReg nodes glued before this and we need to continue that glue through.
2678 MachineSDNode *X86DAGToDAGISel::emitPCMPESTR(unsigned ROpc, unsigned MOpc,
2679 bool MayFoldLoad, const SDLoc &dl,
2680 MVT VT, SDNode *Node,
2681 SDValue &InFlag) {
2682 SDValue N0 = Node->getOperand(0);
2683 SDValue N2 = Node->getOperand(2);
2684 SDValue Imm = Node->getOperand(4);
2685 const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
2686 Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
2688 // If there is a load, it will be behind a bitcast. We don't need to check
2689 // alignment on this load.
2690 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2691 if (MayFoldLoad && N2->getOpcode() == ISD::BITCAST && N2->hasOneUse() &&
2692 tryFoldVecLoad(Node, N2.getNode(), N2.getOperand(0), Tmp0, Tmp1, Tmp2,
2693 Tmp3, Tmp4)) {
2694 SDValue Load = N2.getOperand(0);
2695 SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
2696 Load.getOperand(0), InFlag };
2697 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other, MVT::Glue);
2698 MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2699 InFlag = SDValue(CNode, 3);
2700 // Update the chain.
2701 ReplaceUses(Load.getValue(1), SDValue(CNode, 2));
2702 // Record the mem-refs
2703 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(Load)->getMemOperand()});
2704 return CNode;
2707 SDValue Ops[] = { N0, N2, Imm, InFlag };
2708 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Glue);
2709 MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
2710 InFlag = SDValue(CNode, 2);
2711 return CNode;
2714 bool X86DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
2715 EVT VT = N->getValueType(0);
2717 // Only handle scalar shifts.
2718 if (VT.isVector())
2719 return false;
2721 // Narrower shifts only mask to 5 bits in hardware.
2722 unsigned Size = VT == MVT::i64 ? 64 : 32;
2724 SDValue OrigShiftAmt = N->getOperand(1);
2725 SDValue ShiftAmt = OrigShiftAmt;
2726 SDLoc DL(N);
2728 // Skip over a truncate of the shift amount.
2729 if (ShiftAmt->getOpcode() == ISD::TRUNCATE)
2730 ShiftAmt = ShiftAmt->getOperand(0);
2732 // Special case to avoid messing up a BZHI pattern.
2733 // Look for (srl (shl X, (size - y)), (size - y)
2734 if (Subtarget->hasBMI2() && (VT == MVT::i32 || VT == MVT::i64) &&
2735 N->getOpcode() == ISD::SRL && N->getOperand(0).getOpcode() == ISD::SHL &&
2736 // Shift amounts the same?
2737 N->getOperand(1) == N->getOperand(0).getOperand(1) &&
2738 // Shift amounts size - y?
2739 ShiftAmt.getOpcode() == ISD::SUB &&
2740 isa<ConstantSDNode>(ShiftAmt.getOperand(0)) &&
2741 cast<ConstantSDNode>(ShiftAmt.getOperand(0))->getZExtValue() == Size)
2742 return false;
2744 SDValue NewShiftAmt;
2745 if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) {
2746 SDValue Add0 = ShiftAmt->getOperand(0);
2747 SDValue Add1 = ShiftAmt->getOperand(1);
2748 // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X
2749 // to avoid the ADD/SUB.
2750 if (isa<ConstantSDNode>(Add1) &&
2751 cast<ConstantSDNode>(Add1)->getZExtValue() % Size == 0) {
2752 NewShiftAmt = Add0;
2753 // If we are shifting by N-X where N == 0 mod Size, then just shift by -X to
2754 // generate a NEG instead of a SUB of a constant.
2755 } else if (ShiftAmt->getOpcode() == ISD::SUB &&
2756 isa<ConstantSDNode>(Add0) &&
2757 cast<ConstantSDNode>(Add0)->getZExtValue() != 0 &&
2758 cast<ConstantSDNode>(Add0)->getZExtValue() % Size == 0) {
2759 // Insert a negate op.
2760 // TODO: This isn't guaranteed to replace the sub if there is a logic cone
2761 // that uses it that's not a shift.
2762 EVT SubVT = ShiftAmt.getValueType();
2763 SDValue Zero = CurDAG->getConstant(0, DL, SubVT);
2764 SDValue Neg = CurDAG->getNode(ISD::SUB, DL, SubVT, Zero, Add1);
2765 NewShiftAmt = Neg;
2767 // Insert these operands into a valid topological order so they can
2768 // get selected independently.
2769 insertDAGNode(*CurDAG, OrigShiftAmt, Zero);
2770 insertDAGNode(*CurDAG, OrigShiftAmt, Neg);
2771 } else
2772 return false;
2773 } else
2774 return false;
2776 if (NewShiftAmt.getValueType() != MVT::i8) {
2777 // Need to truncate the shift amount.
2778 NewShiftAmt = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NewShiftAmt);
2779 // Add to a correct topological ordering.
2780 insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
2783 // Insert a new mask to keep the shift amount legal. This should be removed
2784 // by isel patterns.
2785 NewShiftAmt = CurDAG->getNode(ISD::AND, DL, MVT::i8, NewShiftAmt,
2786 CurDAG->getConstant(Size - 1, DL, MVT::i8));
2787 // Place in a correct topological ordering.
2788 insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
2790 SDNode *UpdatedNode = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
2791 NewShiftAmt);
2792 if (UpdatedNode != N) {
2793 // If we found an existing node, we should replace ourselves with that node
2794 // and wait for it to be selected after its other users.
2795 ReplaceNode(N, UpdatedNode);
2796 return true;
2799 // If the original shift amount is now dead, delete it so that we don't run
2800 // it through isel.
2801 if (OrigShiftAmt.getNode()->use_empty())
2802 CurDAG->RemoveDeadNode(OrigShiftAmt.getNode());
2804 // Now that we've optimized the shift amount, defer to normal isel to get
2805 // load folding and legacy vs BMI2 selection without repeating it here.
2806 SelectCode(N);
2807 return true;
2810 /// If the high bits of an 'and' operand are known zero, try setting the
2811 /// high bits of an 'and' constant operand to produce a smaller encoding by
2812 /// creating a small, sign-extended negative immediate rather than a large
2813 /// positive one. This reverses a transform in SimplifyDemandedBits that
2814 /// shrinks mask constants by clearing bits. There is also a possibility that
2815 /// the 'and' mask can be made -1, so the 'and' itself is unnecessary. In that
2816 /// case, just replace the 'and'. Return 'true' if the node is replaced.
2817 bool X86DAGToDAGISel::shrinkAndImmediate(SDNode *And) {
2818 // i8 is unshrinkable, i16 should be promoted to i32, and vector ops don't
2819 // have immediate operands.
2820 MVT VT = And->getSimpleValueType(0);
2821 if (VT != MVT::i32 && VT != MVT::i64)
2822 return false;
2824 auto *And1C = dyn_cast<ConstantSDNode>(And->getOperand(1));
2825 if (!And1C)
2826 return false;
2828 // Bail out if the mask constant is already negative. It's can't shrink more.
2829 // If the upper 32 bits of a 64 bit mask are all zeros, we have special isel
2830 // patterns to use a 32-bit and instead of a 64-bit and by relying on the
2831 // implicit zeroing of 32 bit ops. So we should check if the lower 32 bits
2832 // are negative too.
2833 APInt MaskVal = And1C->getAPIntValue();
2834 unsigned MaskLZ = MaskVal.countLeadingZeros();
2835 if (!MaskLZ || (VT == MVT::i64 && MaskLZ == 32))
2836 return false;
2838 // Don't extend into the upper 32 bits of a 64 bit mask.
2839 if (VT == MVT::i64 && MaskLZ >= 32) {
2840 MaskLZ -= 32;
2841 MaskVal = MaskVal.trunc(32);
2844 SDValue And0 = And->getOperand(0);
2845 APInt HighZeros = APInt::getHighBitsSet(MaskVal.getBitWidth(), MaskLZ);
2846 APInt NegMaskVal = MaskVal | HighZeros;
2848 // If a negative constant would not allow a smaller encoding, there's no need
2849 // to continue. Only change the constant when we know it's a win.
2850 unsigned MinWidth = NegMaskVal.getMinSignedBits();
2851 if (MinWidth > 32 || (MinWidth > 8 && MaskVal.getMinSignedBits() <= 32))
2852 return false;
2854 // Extend masks if we truncated above.
2855 if (VT == MVT::i64 && MaskVal.getBitWidth() < 64) {
2856 NegMaskVal = NegMaskVal.zext(64);
2857 HighZeros = HighZeros.zext(64);
2860 // The variable operand must be all zeros in the top bits to allow using the
2861 // new, negative constant as the mask.
2862 if (!CurDAG->MaskedValueIsZero(And0, HighZeros))
2863 return false;
2865 // Check if the mask is -1. In that case, this is an unnecessary instruction
2866 // that escaped earlier analysis.
2867 if (NegMaskVal.isAllOnesValue()) {
2868 ReplaceNode(And, And0.getNode());
2869 return true;
2872 // A negative mask allows a smaller encoding. Create a new 'and' node.
2873 SDValue NewMask = CurDAG->getConstant(NegMaskVal, SDLoc(And), VT);
2874 SDValue NewAnd = CurDAG->getNode(ISD::AND, SDLoc(And), VT, And0, NewMask);
2875 ReplaceNode(And, NewAnd.getNode());
2876 SelectCode(NewAnd.getNode());
2877 return true;
2880 void X86DAGToDAGISel::Select(SDNode *Node) {
2881 MVT NVT = Node->getSimpleValueType(0);
2882 unsigned Opcode = Node->getOpcode();
2883 SDLoc dl(Node);
2885 if (Node->isMachineOpcode()) {
2886 LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
2887 Node->setNodeId(-1);
2888 return; // Already selected.
2891 switch (Opcode) {
2892 default: break;
2893 case ISD::BRIND: {
2894 if (Subtarget->isTargetNaCl())
2895 // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We
2896 // leave the instruction alone.
2897 break;
2898 if (Subtarget->isTarget64BitILP32()) {
2899 // Converts a 32-bit register to a 64-bit, zero-extended version of
2900 // it. This is needed because x86-64 can do many things, but jmp %r32
2901 // ain't one of them.
2902 const SDValue &Target = Node->getOperand(1);
2903 assert(Target.getSimpleValueType() == llvm::MVT::i32);
2904 SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, EVT(MVT::i64));
2905 SDValue Brind = CurDAG->getNode(ISD::BRIND, dl, MVT::Other,
2906 Node->getOperand(0), ZextTarget);
2907 ReplaceNode(Node, Brind.getNode());
2908 SelectCode(ZextTarget.getNode());
2909 SelectCode(Brind.getNode());
2910 return;
2912 break;
2914 case X86ISD::GlobalBaseReg:
2915 ReplaceNode(Node, getGlobalBaseReg());
2916 return;
2918 case ISD::BITCAST:
2919 // Just drop all 128/256/512-bit bitcasts.
2920 if (NVT.is512BitVector() || NVT.is256BitVector() || NVT.is128BitVector() ||
2921 NVT == MVT::f128) {
2922 ReplaceUses(SDValue(Node, 0), Node->getOperand(0));
2923 CurDAG->RemoveDeadNode(Node);
2924 return;
2926 break;
2928 case X86ISD::SELECT:
2929 case X86ISD::SHRUNKBLEND: {
2930 // SHRUNKBLEND selects like a regular VSELECT. Same with X86ISD::SELECT.
2931 SDValue VSelect = CurDAG->getNode(
2932 ISD::VSELECT, SDLoc(Node), Node->getValueType(0), Node->getOperand(0),
2933 Node->getOperand(1), Node->getOperand(2));
2934 ReplaceNode(Node, VSelect.getNode());
2935 SelectCode(VSelect.getNode());
2936 // We already called ReplaceUses.
2937 return;
2940 case ISD::SRL:
2941 case ISD::SRA:
2942 case ISD::SHL:
2943 if (tryShiftAmountMod(Node))
2944 return;
2945 break;
2947 case ISD::AND:
2948 if (matchBEXTRFromAnd(Node))
2949 return;
2950 if (AndImmShrink && shrinkAndImmediate(Node))
2951 return;
2953 LLVM_FALLTHROUGH;
2954 case ISD::OR:
2955 case ISD::XOR: {
2957 // For operations of the form (x << C1) op C2, check if we can use a smaller
2958 // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
2959 SDValue N0 = Node->getOperand(0);
2960 SDValue N1 = Node->getOperand(1);
2962 if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
2963 break;
2965 // i8 is unshrinkable, i16 should be promoted to i32.
2966 if (NVT != MVT::i32 && NVT != MVT::i64)
2967 break;
2969 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
2970 ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
2971 if (!Cst || !ShlCst)
2972 break;
2974 int64_t Val = Cst->getSExtValue();
2975 uint64_t ShlVal = ShlCst->getZExtValue();
2977 // Make sure that we don't change the operation by removing bits.
2978 // This only matters for OR and XOR, AND is unaffected.
2979 uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1;
2980 if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
2981 break;
2983 unsigned ShlOp, AddOp, Op;
2984 MVT CstVT = NVT;
2986 // Check the minimum bitwidth for the new constant.
2987 // TODO: AND32ri is the same as AND64ri32 with zext imm.
2988 // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
2989 // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
2990 if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
2991 CstVT = MVT::i8;
2992 else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
2993 CstVT = MVT::i32;
2995 // Bail if there is no smaller encoding.
2996 if (NVT == CstVT)
2997 break;
2999 switch (NVT.SimpleTy) {
3000 default: llvm_unreachable("Unsupported VT!");
3001 case MVT::i32:
3002 assert(CstVT == MVT::i8);
3003 ShlOp = X86::SHL32ri;
3004 AddOp = X86::ADD32rr;
3006 switch (Opcode) {
3007 default: llvm_unreachable("Impossible opcode");
3008 case ISD::AND: Op = X86::AND32ri8; break;
3009 case ISD::OR: Op = X86::OR32ri8; break;
3010 case ISD::XOR: Op = X86::XOR32ri8; break;
3012 break;
3013 case MVT::i64:
3014 assert(CstVT == MVT::i8 || CstVT == MVT::i32);
3015 ShlOp = X86::SHL64ri;
3016 AddOp = X86::ADD64rr;
3018 switch (Opcode) {
3019 default: llvm_unreachable("Impossible opcode");
3020 case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
3021 case ISD::OR: Op = CstVT==MVT::i8? X86::OR64ri8 : X86::OR64ri32; break;
3022 case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
3024 break;
3027 // Emit the smaller op and the shift.
3028 SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, dl, CstVT);
3029 SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
3030 if (ShlVal == 1)
3031 CurDAG->SelectNodeTo(Node, AddOp, NVT, SDValue(New, 0),
3032 SDValue(New, 0));
3033 else
3034 CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
3035 getI8Imm(ShlVal, dl));
3036 return;
3038 case X86ISD::UMUL8:
3039 case X86ISD::SMUL8: {
3040 SDValue N0 = Node->getOperand(0);
3041 SDValue N1 = Node->getOperand(1);
3043 unsigned Opc = (Opcode == X86ISD::SMUL8 ? X86::IMUL8r : X86::MUL8r);
3045 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::AL,
3046 N0, SDValue()).getValue(1);
3048 SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32);
3049 SDValue Ops[] = {N1, InFlag};
3050 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
3052 ReplaceNode(Node, CNode);
3053 return;
3056 case X86ISD::UMUL: {
3057 SDValue N0 = Node->getOperand(0);
3058 SDValue N1 = Node->getOperand(1);
3060 unsigned LoReg, Opc;
3061 switch (NVT.SimpleTy) {
3062 default: llvm_unreachable("Unsupported VT!");
3063 // MVT::i8 is handled by X86ISD::UMUL8.
3064 case MVT::i16: LoReg = X86::AX; Opc = X86::MUL16r; break;
3065 case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
3066 case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
3069 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
3070 N0, SDValue()).getValue(1);
3072 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
3073 SDValue Ops[] = {N1, InFlag};
3074 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
3076 ReplaceNode(Node, CNode);
3077 return;
3080 case ISD::SMUL_LOHI:
3081 case ISD::UMUL_LOHI: {
3082 SDValue N0 = Node->getOperand(0);
3083 SDValue N1 = Node->getOperand(1);
3085 unsigned Opc, MOpc;
3086 bool isSigned = Opcode == ISD::SMUL_LOHI;
3087 bool hasBMI2 = Subtarget->hasBMI2();
3088 if (!isSigned) {
3089 switch (NVT.SimpleTy) {
3090 default: llvm_unreachable("Unsupported VT!");
3091 case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r;
3092 MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break;
3093 case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r;
3094 MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break;
3096 } else {
3097 switch (NVT.SimpleTy) {
3098 default: llvm_unreachable("Unsupported VT!");
3099 case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
3100 case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
3104 unsigned SrcReg, LoReg, HiReg;
3105 switch (Opc) {
3106 default: llvm_unreachable("Unknown MUL opcode!");
3107 case X86::IMUL32r:
3108 case X86::MUL32r:
3109 SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
3110 break;
3111 case X86::IMUL64r:
3112 case X86::MUL64r:
3113 SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
3114 break;
3115 case X86::MULX32rr:
3116 SrcReg = X86::EDX; LoReg = HiReg = 0;
3117 break;
3118 case X86::MULX64rr:
3119 SrcReg = X86::RDX; LoReg = HiReg = 0;
3120 break;
3123 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3124 bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
3125 // Multiply is commmutative.
3126 if (!foldedLoad) {
3127 foldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
3128 if (foldedLoad)
3129 std::swap(N0, N1);
3132 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
3133 N0, SDValue()).getValue(1);
3134 SDValue ResHi, ResLo;
3136 if (foldedLoad) {
3137 SDValue Chain;
3138 MachineSDNode *CNode = nullptr;
3139 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
3140 InFlag };
3141 if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) {
3142 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue);
3143 CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3144 ResHi = SDValue(CNode, 0);
3145 ResLo = SDValue(CNode, 1);
3146 Chain = SDValue(CNode, 2);
3147 InFlag = SDValue(CNode, 3);
3148 } else {
3149 SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
3150 CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3151 Chain = SDValue(CNode, 0);
3152 InFlag = SDValue(CNode, 1);
3155 // Update the chain.
3156 ReplaceUses(N1.getValue(1), Chain);
3157 // Record the mem-refs
3158 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
3159 } else {
3160 SDValue Ops[] = { N1, InFlag };
3161 if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) {
3162 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue);
3163 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
3164 ResHi = SDValue(CNode, 0);
3165 ResLo = SDValue(CNode, 1);
3166 InFlag = SDValue(CNode, 2);
3167 } else {
3168 SDVTList VTs = CurDAG->getVTList(MVT::Glue);
3169 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
3170 InFlag = SDValue(CNode, 0);
3174 // Copy the low half of the result, if it is needed.
3175 if (!SDValue(Node, 0).use_empty()) {
3176 if (!ResLo.getNode()) {
3177 assert(LoReg && "Register for low half is not defined!");
3178 ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT,
3179 InFlag);
3180 InFlag = ResLo.getValue(2);
3182 ReplaceUses(SDValue(Node, 0), ResLo);
3183 LLVM_DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG);
3184 dbgs() << '\n');
3186 // Copy the high half of the result, if it is needed.
3187 if (!SDValue(Node, 1).use_empty()) {
3188 if (!ResHi.getNode()) {
3189 assert(HiReg && "Register for high half is not defined!");
3190 ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT,
3191 InFlag);
3192 InFlag = ResHi.getValue(2);
3194 ReplaceUses(SDValue(Node, 1), ResHi);
3195 LLVM_DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG);
3196 dbgs() << '\n');
3199 CurDAG->RemoveDeadNode(Node);
3200 return;
3203 case ISD::SDIVREM:
3204 case ISD::UDIVREM:
3205 case X86ISD::SDIVREM8_SEXT_HREG:
3206 case X86ISD::UDIVREM8_ZEXT_HREG: {
3207 SDValue N0 = Node->getOperand(0);
3208 SDValue N1 = Node->getOperand(1);
3210 unsigned Opc, MOpc;
3211 bool isSigned = (Opcode == ISD::SDIVREM ||
3212 Opcode == X86ISD::SDIVREM8_SEXT_HREG);
3213 if (!isSigned) {
3214 switch (NVT.SimpleTy) {
3215 default: llvm_unreachable("Unsupported VT!");
3216 case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break;
3217 case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
3218 case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
3219 case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
3221 } else {
3222 switch (NVT.SimpleTy) {
3223 default: llvm_unreachable("Unsupported VT!");
3224 case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
3225 case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
3226 case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
3227 case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
3231 unsigned LoReg, HiReg, ClrReg;
3232 unsigned SExtOpcode;
3233 switch (NVT.SimpleTy) {
3234 default: llvm_unreachable("Unsupported VT!");
3235 case MVT::i8:
3236 LoReg = X86::AL; ClrReg = HiReg = X86::AH;
3237 SExtOpcode = X86::CBW;
3238 break;
3239 case MVT::i16:
3240 LoReg = X86::AX; HiReg = X86::DX;
3241 ClrReg = X86::DX;
3242 SExtOpcode = X86::CWD;
3243 break;
3244 case MVT::i32:
3245 LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
3246 SExtOpcode = X86::CDQ;
3247 break;
3248 case MVT::i64:
3249 LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
3250 SExtOpcode = X86::CQO;
3251 break;
3254 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3255 bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
3256 bool signBitIsZero = CurDAG->SignBitIsZero(N0);
3258 SDValue InFlag;
3259 if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
3260 // Special case for div8, just use a move with zero extension to AX to
3261 // clear the upper 8 bits (AH).
3262 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
3263 if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3264 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
3265 Move =
3266 SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
3267 MVT::Other, Ops), 0);
3268 Chain = Move.getValue(1);
3269 ReplaceUses(N0.getValue(1), Chain);
3270 } else {
3271 Move =
3272 SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
3273 Chain = CurDAG->getEntryNode();
3275 Chain = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
3276 InFlag = Chain.getValue(1);
3277 } else {
3278 InFlag =
3279 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
3280 LoReg, N0, SDValue()).getValue(1);
3281 if (isSigned && !signBitIsZero) {
3282 // Sign extend the low part into the high part.
3283 InFlag =
3284 SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
3285 } else {
3286 // Zero out the high part, effectively zero extending the input.
3287 SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0);
3288 switch (NVT.SimpleTy) {
3289 case MVT::i16:
3290 ClrNode =
3291 SDValue(CurDAG->getMachineNode(
3292 TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
3293 CurDAG->getTargetConstant(X86::sub_16bit, dl,
3294 MVT::i32)),
3296 break;
3297 case MVT::i32:
3298 break;
3299 case MVT::i64:
3300 ClrNode =
3301 SDValue(CurDAG->getMachineNode(
3302 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
3303 CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode,
3304 CurDAG->getTargetConstant(X86::sub_32bit, dl,
3305 MVT::i32)),
3307 break;
3308 default:
3309 llvm_unreachable("Unexpected division source");
3312 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
3313 ClrNode, InFlag).getValue(1);
3317 if (foldedLoad) {
3318 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
3319 InFlag };
3320 MachineSDNode *CNode =
3321 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
3322 InFlag = SDValue(CNode, 1);
3323 // Update the chain.
3324 ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
3325 // Record the mem-refs
3326 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
3327 } else {
3328 InFlag =
3329 SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
3332 // Prevent use of AH in a REX instruction by explicitly copying it to
3333 // an ABCD_L register.
3335 // The current assumption of the register allocator is that isel
3336 // won't generate explicit references to the GR8_ABCD_H registers. If
3337 // the allocator and/or the backend get enhanced to be more robust in
3338 // that regard, this can be, and should be, removed.
3339 if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
3340 SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
3341 unsigned AHExtOpcode =
3342 isSigned ? X86::MOVSX32rr8_NOREX : X86::MOVZX32rr8_NOREX;
3344 SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
3345 MVT::Glue, AHCopy, InFlag);
3346 SDValue Result(RNode, 0);
3347 InFlag = SDValue(RNode, 1);
3349 if (Opcode == X86ISD::UDIVREM8_ZEXT_HREG ||
3350 Opcode == X86ISD::SDIVREM8_SEXT_HREG) {
3351 assert(Node->getValueType(1) == MVT::i32 && "Unexpected result type!");
3352 } else {
3353 Result =
3354 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);
3356 ReplaceUses(SDValue(Node, 1), Result);
3357 LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
3358 dbgs() << '\n');
3360 // Copy the division (low) result, if it is needed.
3361 if (!SDValue(Node, 0).use_empty()) {
3362 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
3363 LoReg, NVT, InFlag);
3364 InFlag = Result.getValue(2);
3365 ReplaceUses(SDValue(Node, 0), Result);
3366 LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
3367 dbgs() << '\n');
3369 // Copy the remainder (high) result, if it is needed.
3370 if (!SDValue(Node, 1).use_empty()) {
3371 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
3372 HiReg, NVT, InFlag);
3373 InFlag = Result.getValue(2);
3374 ReplaceUses(SDValue(Node, 1), Result);
3375 LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
3376 dbgs() << '\n');
3378 CurDAG->RemoveDeadNode(Node);
3379 return;
3382 case X86ISD::CMP: {
3383 SDValue N0 = Node->getOperand(0);
3384 SDValue N1 = Node->getOperand(1);
3386 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
3387 hasNoSignedComparisonUses(Node))
3388 N0 = N0.getOperand(0);
3390 // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
3391 // use a smaller encoding.
3392 // Look past the truncate if CMP is the only use of it.
3393 if (N0.getOpcode() == ISD::AND &&
3394 N0.getNode()->hasOneUse() &&
3395 N0.getValueType() != MVT::i8 &&
3396 X86::isZeroNode(N1)) {
3397 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3398 if (!C) break;
3399 uint64_t Mask = C->getZExtValue();
3401 MVT VT;
3402 int SubRegOp;
3403 unsigned Op;
3405 if (isUInt<8>(Mask) &&
3406 (!(Mask & 0x80) || hasNoSignedComparisonUses(Node))) {
3407 // For example, convert "testl %eax, $8" to "testb %al, $8"
3408 VT = MVT::i8;
3409 SubRegOp = X86::sub_8bit;
3410 Op = X86::TEST8ri;
3411 } else if (OptForMinSize && isUInt<16>(Mask) &&
3412 (!(Mask & 0x8000) || hasNoSignedComparisonUses(Node))) {
3413 // For example, "testl %eax, $32776" to "testw %ax, $32776".
3414 // NOTE: We only want to form TESTW instructions if optimizing for
3415 // min size. Otherwise we only save one byte and possibly get a length
3416 // changing prefix penalty in the decoders.
3417 VT = MVT::i16;
3418 SubRegOp = X86::sub_16bit;
3419 Op = X86::TEST16ri;
3420 } else if (isUInt<32>(Mask) && N0.getValueType() != MVT::i16 &&
3421 (!(Mask & 0x80000000) || hasNoSignedComparisonUses(Node))) {
3422 // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
3423 // NOTE: We only want to run that transform if N0 is 32 or 64 bits.
3424 // Otherwize, we find ourselves in a position where we have to do
3425 // promotion. If previous passes did not promote the and, we assume
3426 // they had a good reason not to and do not promote here.
3427 VT = MVT::i32;
3428 SubRegOp = X86::sub_32bit;
3429 Op = X86::TEST32ri;
3430 } else {
3431 // No eligible transformation was found.
3432 break;
3435 SDValue Imm = CurDAG->getTargetConstant(Mask, dl, VT);
3436 SDValue Reg = N0.getOperand(0);
3438 // Extract the subregister if necessary.
3439 if (N0.getValueType() != VT)
3440 Reg = CurDAG->getTargetExtractSubreg(SubRegOp, dl, VT, Reg);
3442 // Emit a testl or testw.
3443 SDNode *NewNode = CurDAG->getMachineNode(Op, dl, MVT::i32, Reg, Imm);
3444 // Replace CMP with TEST.
3445 ReplaceNode(Node, NewNode);
3446 return;
3448 break;
3450 case X86ISD::PCMPISTR: {
3451 if (!Subtarget->hasSSE42())
3452 break;
3454 bool NeedIndex = !SDValue(Node, 0).use_empty();
3455 bool NeedMask = !SDValue(Node, 1).use_empty();
3456 // We can't fold a load if we are going to make two instructions.
3457 bool MayFoldLoad = !NeedIndex || !NeedMask;
3459 MachineSDNode *CNode;
3460 if (NeedMask) {
3461 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrr : X86::PCMPISTRMrr;
3462 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrm : X86::PCMPISTRMrm;
3463 CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node);
3464 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
3466 if (NeedIndex || !NeedMask) {
3467 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr : X86::PCMPISTRIrr;
3468 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrm : X86::PCMPISTRIrm;
3469 CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node);
3470 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
3473 // Connect the flag usage to the last instruction created.
3474 ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
3475 CurDAG->RemoveDeadNode(Node);
3476 return;
3478 case X86ISD::PCMPESTR: {
3479 if (!Subtarget->hasSSE42())
3480 break;
3482 // Copy the two implicit register inputs.
3483 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EAX,
3484 Node->getOperand(1),
3485 SDValue()).getValue(1);
3486 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX,
3487 Node->getOperand(3), InFlag).getValue(1);
3489 bool NeedIndex = !SDValue(Node, 0).use_empty();
3490 bool NeedMask = !SDValue(Node, 1).use_empty();
3491 // We can't fold a load if we are going to make two instructions.
3492 bool MayFoldLoad = !NeedIndex || !NeedMask;
3494 MachineSDNode *CNode;
3495 if (NeedMask) {
3496 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrr : X86::PCMPESTRMrr;
3497 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrm : X86::PCMPESTRMrm;
3498 CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node,
3499 InFlag);
3500 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
3502 if (NeedIndex || !NeedMask) {
3503 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr : X86::PCMPESTRIrr;
3504 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrm : X86::PCMPESTRIrm;
3505 CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node, InFlag);
3506 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
3508 // Connect the flag usage to the last instruction created.
3509 ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
3510 CurDAG->RemoveDeadNode(Node);
3511 return;
3514 case ISD::STORE:
3515 if (foldLoadStoreIntoMemOperand(Node))
3516 return;
3517 break;
3520 SelectCode(Node);
3523 bool X86DAGToDAGISel::
3524 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
3525 std::vector<SDValue> &OutOps) {
3526 SDValue Op0, Op1, Op2, Op3, Op4;
3527 switch (ConstraintID) {
3528 default:
3529 llvm_unreachable("Unexpected asm memory constraint");
3530 case InlineAsm::Constraint_i:
3531 // FIXME: It seems strange that 'i' is needed here since it's supposed to
3532 // be an immediate and not a memory constraint.
3533 LLVM_FALLTHROUGH;
3534 case InlineAsm::Constraint_o: // offsetable ??
3535 case InlineAsm::Constraint_v: // not offsetable ??
3536 case InlineAsm::Constraint_m: // memory
3537 case InlineAsm::Constraint_X:
3538 if (!selectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
3539 return true;
3540 break;
3543 OutOps.push_back(Op0);
3544 OutOps.push_back(Op1);
3545 OutOps.push_back(Op2);
3546 OutOps.push_back(Op3);
3547 OutOps.push_back(Op4);
3548 return false;
3551 /// This pass converts a legalized DAG into a X86-specific DAG,
3552 /// ready for instruction scheduling.
3553 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
3554 CodeGenOpt::Level OptLevel) {
3555 return new X86DAGToDAGISel(TM, OptLevel);