1 //===-- X86InstrCMovSetCC.td - Conditional Move and SetCC --*- tablegen -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file describes the X86 conditional move and set on condition
13 //===----------------------------------------------------------------------===//
17 multiclass CMOV<bits<8> opc, string Mnemonic, X86FoldableSchedWrite Sched,
19 let Uses = [EFLAGS], Predicates = [HasCMov], Constraints = "$src1 = $dst",
20 isCommutable = 1, SchedRW = [Sched] in {
22 : I<opc, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
23 !strconcat(Mnemonic, "{w}\t{$src2, $dst|$dst, $src2}"),
25 (X86cmov GR16:$src1, GR16:$src2, CondNode, EFLAGS))]>,
28 : I<opc, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
29 !strconcat(Mnemonic, "{l}\t{$src2, $dst|$dst, $src2}"),
31 (X86cmov GR32:$src1, GR32:$src2, CondNode, EFLAGS))]>,
34 :RI<opc, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
35 !strconcat(Mnemonic, "{q}\t{$src2, $dst|$dst, $src2}"),
37 (X86cmov GR64:$src1, GR64:$src2, CondNode, EFLAGS))]>, TB;
40 let Uses = [EFLAGS], Predicates = [HasCMov], Constraints = "$src1 = $dst",
41 SchedRW = [Sched.Folded, ReadAfterLd] in {
43 : I<opc, MRMSrcMem, (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2),
44 !strconcat(Mnemonic, "{w}\t{$src2, $dst|$dst, $src2}"),
45 [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2),
46 CondNode, EFLAGS))]>, TB, OpSize16;
48 : I<opc, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2),
49 !strconcat(Mnemonic, "{l}\t{$src2, $dst|$dst, $src2}"),
50 [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2),
51 CondNode, EFLAGS))]>, TB, OpSize32;
53 :RI<opc, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
54 !strconcat(Mnemonic, "{q}\t{$src2, $dst|$dst, $src2}"),
55 [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
56 CondNode, EFLAGS))]>, TB;
57 } // Uses = [EFLAGS], Predicates = [HasCMov], Constraints = "$src1 = $dst"
62 defm CMOVO : CMOV<0x40, "cmovo" , WriteCMOV, X86_COND_O>;
63 defm CMOVNO : CMOV<0x41, "cmovno", WriteCMOV, X86_COND_NO>;
64 defm CMOVB : CMOV<0x42, "cmovb" , WriteCMOV, X86_COND_B>;
65 defm CMOVAE : CMOV<0x43, "cmovae", WriteCMOV, X86_COND_AE>;
66 defm CMOVE : CMOV<0x44, "cmove" , WriteCMOV, X86_COND_E>;
67 defm CMOVNE : CMOV<0x45, "cmovne", WriteCMOV, X86_COND_NE>;
68 defm CMOVBE : CMOV<0x46, "cmovbe", WriteCMOV2, X86_COND_BE>;
69 defm CMOVA : CMOV<0x47, "cmova" , WriteCMOV2, X86_COND_A>;
70 defm CMOVS : CMOV<0x48, "cmovs" , WriteCMOV, X86_COND_S>;
71 defm CMOVNS : CMOV<0x49, "cmovns", WriteCMOV, X86_COND_NS>;
72 defm CMOVP : CMOV<0x4A, "cmovp" , WriteCMOV, X86_COND_P>;
73 defm CMOVNP : CMOV<0x4B, "cmovnp", WriteCMOV, X86_COND_NP>;
74 defm CMOVL : CMOV<0x4C, "cmovl" , WriteCMOV, X86_COND_L>;
75 defm CMOVGE : CMOV<0x4D, "cmovge", WriteCMOV, X86_COND_GE>;
76 defm CMOVLE : CMOV<0x4E, "cmovle", WriteCMOV, X86_COND_LE>;
77 defm CMOVG : CMOV<0x4F, "cmovg" , WriteCMOV, X86_COND_G>;
80 // SetCC instructions.
81 multiclass SETCC<bits<8> opc, string Mnemonic, PatLeaf OpNode> {
82 let Uses = [EFLAGS] in {
83 def r : I<opc, MRMXr, (outs GR8:$dst), (ins),
84 !strconcat(Mnemonic, "\t$dst"),
85 [(set GR8:$dst, (X86setcc OpNode, EFLAGS))]>,
86 TB, Sched<[WriteSETCC]>;
87 def m : I<opc, MRMXm, (outs), (ins i8mem:$dst),
88 !strconcat(Mnemonic, "\t$dst"),
89 [(store (X86setcc OpNode, EFLAGS), addr:$dst)]>,
90 TB, Sched<[WriteSETCCStore]>;
94 defm SETO : SETCC<0x90, "seto", X86_COND_O>; // is overflow bit set
95 defm SETNO : SETCC<0x91, "setno", X86_COND_NO>; // is overflow bit not set
96 defm SETB : SETCC<0x92, "setb", X86_COND_B>; // unsigned less than
97 defm SETAE : SETCC<0x93, "setae", X86_COND_AE>; // unsigned greater or equal
98 defm SETE : SETCC<0x94, "sete", X86_COND_E>; // equal to
99 defm SETNE : SETCC<0x95, "setne", X86_COND_NE>; // not equal to
100 defm SETBE : SETCC<0x96, "setbe", X86_COND_BE>; // unsigned less than or equal
101 defm SETA : SETCC<0x97, "seta", X86_COND_A>; // unsigned greater than
102 defm SETS : SETCC<0x98, "sets", X86_COND_S>; // is signed bit set
103 defm SETNS : SETCC<0x99, "setns", X86_COND_NS>; // is not signed
104 defm SETP : SETCC<0x9A, "setp", X86_COND_P>; // is parity bit set
105 defm SETNP : SETCC<0x9B, "setnp", X86_COND_NP>; // is parity bit not set
106 defm SETL : SETCC<0x9C, "setl", X86_COND_L>; // signed less than
107 defm SETGE : SETCC<0x9D, "setge", X86_COND_GE>; // signed greater or equal
108 defm SETLE : SETCC<0x9E, "setle", X86_COND_LE>; // signed less than or equal
109 defm SETG : SETCC<0x9F, "setg", X86_COND_G>; // signed greater than
111 // SALC is an undocumented instruction. Information for this instruction can be found
112 // here http://www.rcollins.org/secrets/opcodes/SALC.html
114 let Uses = [EFLAGS], Defs = [AL], SchedRW = [WriteALU] in {
115 def SALC : I<0xD6, RawFrm, (outs), (ins), "salc", []>, Requires<[Not64BitMode]>;