1 //===- X86LegalizerInfo.cpp --------------------------------------*- C++ -*-==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 /// This file implements the targeting of the Machinelegalizer class for X86.
11 /// \todo This should be generated by TableGen.
12 //===----------------------------------------------------------------------===//
14 #include "X86LegalizerInfo.h"
15 #include "X86Subtarget.h"
16 #include "X86TargetMachine.h"
17 #include "llvm/CodeGen/TargetOpcodes.h"
18 #include "llvm/CodeGen/ValueTypes.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/Type.h"
23 using namespace TargetOpcode
;
24 using namespace LegalizeActions
;
26 /// FIXME: The following static functions are SizeChangeStrategy functions
27 /// that are meant to temporarily mimic the behaviour of the old legalization
28 /// based on doubling/halving non-legal types as closely as possible. This is
29 /// not entirly possible as only legalizing the types that are exactly a power
30 /// of 2 times the size of the legal types would require specifying all those
32 /// In practice, not specifying those isn't a problem, and the below functions
33 /// should disappear quickly as we add support for legalizing non-power-of-2
34 /// sized types further.
36 addAndInterleaveWithUnsupported(LegalizerInfo::SizeAndActionsVec
&result
,
37 const LegalizerInfo::SizeAndActionsVec
&v
) {
38 for (unsigned i
= 0; i
< v
.size(); ++i
) {
39 result
.push_back(v
[i
]);
40 if (i
+ 1 < v
[i
].first
&& i
+ 1 < v
.size() &&
41 v
[i
+ 1].first
!= v
[i
].first
+ 1)
42 result
.push_back({v
[i
].first
+ 1, Unsupported
});
46 static LegalizerInfo::SizeAndActionsVec
47 widen_1(const LegalizerInfo::SizeAndActionsVec
&v
) {
48 assert(v
.size() >= 1);
49 assert(v
[0].first
> 1);
50 LegalizerInfo::SizeAndActionsVec result
= {{1, WidenScalar
},
52 addAndInterleaveWithUnsupported(result
, v
);
53 auto Largest
= result
.back().first
;
54 result
.push_back({Largest
+ 1, Unsupported
});
58 X86LegalizerInfo::X86LegalizerInfo(const X86Subtarget
&STI
,
59 const X86TargetMachine
&TM
)
60 : Subtarget(STI
), TM(TM
) {
62 setLegalizerInfo32bit();
63 setLegalizerInfo64bit();
64 setLegalizerInfoSSE1();
65 setLegalizerInfoSSE2();
66 setLegalizerInfoSSE41();
67 setLegalizerInfoAVX();
68 setLegalizerInfoAVX2();
69 setLegalizerInfoAVX512();
70 setLegalizerInfoAVX512DQ();
71 setLegalizerInfoAVX512BW();
73 setLegalizeScalarToDifferentSizeStrategy(G_PHI
, 0, widen_1
);
74 for (unsigned BinOp
: {G_SUB
, G_MUL
, G_AND
, G_OR
, G_XOR
})
75 setLegalizeScalarToDifferentSizeStrategy(BinOp
, 0, widen_1
);
76 for (unsigned MemOp
: {G_LOAD
, G_STORE
})
77 setLegalizeScalarToDifferentSizeStrategy(MemOp
, 0,
78 narrowToSmallerAndWidenToSmallest
);
79 setLegalizeScalarToDifferentSizeStrategy(
80 G_GEP
, 1, widenToLargerTypesUnsupportedOtherwise
);
81 setLegalizeScalarToDifferentSizeStrategy(
82 G_CONSTANT
, 0, widenToLargerTypesAndNarrowToLargest
);
85 verify(*STI
.getInstrInfo());
88 void X86LegalizerInfo::setLegalizerInfo32bit() {
90 const LLT p0
= LLT::pointer(0, TM
.getPointerSizeInBits(0));
91 const LLT s1
= LLT::scalar(1);
92 const LLT s8
= LLT::scalar(8);
93 const LLT s16
= LLT::scalar(16);
94 const LLT s32
= LLT::scalar(32);
95 const LLT s64
= LLT::scalar(64);
96 const LLT s128
= LLT::scalar(128);
98 for (auto Ty
: {p0
, s1
, s8
, s16
, s32
})
99 setAction({G_IMPLICIT_DEF
, Ty
}, Legal
);
101 for (auto Ty
: {s8
, s16
, s32
, p0
})
102 setAction({G_PHI
, Ty
}, Legal
);
104 for (unsigned BinOp
: {G_ADD
, G_SUB
, G_MUL
, G_AND
, G_OR
, G_XOR
})
105 for (auto Ty
: {s8
, s16
, s32
})
106 setAction({BinOp
, Ty
}, Legal
);
108 for (unsigned Op
: {G_UADDE
}) {
109 setAction({Op
, s32
}, Legal
);
110 setAction({Op
, 1, s1
}, Legal
);
113 for (unsigned MemOp
: {G_LOAD
, G_STORE
}) {
114 for (auto Ty
: {s8
, s16
, s32
, p0
})
115 setAction({MemOp
, Ty
}, Legal
);
117 // And everything's fine in addrspace 0.
118 setAction({MemOp
, 1, p0
}, Legal
);
122 setAction({G_FRAME_INDEX
, p0
}, Legal
);
123 setAction({G_GLOBAL_VALUE
, p0
}, Legal
);
125 setAction({G_GEP
, p0
}, Legal
);
126 setAction({G_GEP
, 1, s32
}, Legal
);
128 if (!Subtarget
.is64Bit()) {
129 getActionDefinitionsBuilder(G_PTRTOINT
)
130 .legalForCartesianProduct({s1
, s8
, s16
, s32
}, {p0
})
132 .widenScalarToNextPow2(0, /*Min*/ 8);
133 getActionDefinitionsBuilder(G_INTTOPTR
).legalFor({{p0
, s32
}});
136 getActionDefinitionsBuilder({G_SHL
, G_LSHR
, G_ASHR
, G_SDIV
})
137 .legalFor({s8
, s16
, s32
})
138 .clampScalar(0, s8
, s32
);
142 setAction({G_BRCOND
, s1
}, Legal
);
145 for (auto Ty
: {s8
, s16
, s32
, p0
})
146 setAction({TargetOpcode::G_CONSTANT
, Ty
}, Legal
);
149 for (auto Ty
: {s8
, s16
, s32
}) {
150 setAction({G_ZEXT
, Ty
}, Legal
);
151 setAction({G_SEXT
, Ty
}, Legal
);
152 setAction({G_ANYEXT
, Ty
}, Legal
);
154 setAction({G_ANYEXT
, s128
}, Legal
);
157 setAction({G_ICMP
, s1
}, Legal
);
159 for (auto Ty
: {s8
, s16
, s32
, p0
})
160 setAction({G_ICMP
, 1, Ty
}, Legal
);
163 for (const auto &Ty
: {s16
, s32
, s64
}) {
164 setAction({G_MERGE_VALUES
, Ty
}, Legal
);
165 setAction({G_UNMERGE_VALUES
, 1, Ty
}, Legal
);
167 for (const auto &Ty
: {s8
, s16
, s32
}) {
168 setAction({G_MERGE_VALUES
, 1, Ty
}, Legal
);
169 setAction({G_UNMERGE_VALUES
, Ty
}, Legal
);
173 void X86LegalizerInfo::setLegalizerInfo64bit() {
175 if (!Subtarget
.is64Bit())
178 const LLT p0
= LLT::pointer(0, TM
.getPointerSizeInBits(0));
179 const LLT s1
= LLT::scalar(1);
180 const LLT s8
= LLT::scalar(8);
181 const LLT s16
= LLT::scalar(16);
182 const LLT s32
= LLT::scalar(32);
183 const LLT s64
= LLT::scalar(64);
184 const LLT s128
= LLT::scalar(128);
186 setAction({G_IMPLICIT_DEF
, s64
}, Legal
);
187 // Need to have that, as tryFoldImplicitDef will create this pattern:
188 // s128 = EXTEND (G_IMPLICIT_DEF s32/s64) -> s128 = G_IMPLICIT_DEF
189 setAction({G_IMPLICIT_DEF
, s128
}, Legal
);
191 setAction({G_PHI
, s64
}, Legal
);
193 for (unsigned BinOp
: {G_ADD
, G_SUB
, G_MUL
, G_AND
, G_OR
, G_XOR
})
194 setAction({BinOp
, s64
}, Legal
);
196 for (unsigned MemOp
: {G_LOAD
, G_STORE
})
197 setAction({MemOp
, s64
}, Legal
);
200 setAction({G_GEP
, 1, s64
}, Legal
);
201 getActionDefinitionsBuilder(G_PTRTOINT
)
202 .legalForCartesianProduct({s1
, s8
, s16
, s32
, s64
}, {p0
})
204 .widenScalarToNextPow2(0, /*Min*/ 8);
205 getActionDefinitionsBuilder(G_INTTOPTR
).legalFor({{p0
, s64
}});
208 setAction({TargetOpcode::G_CONSTANT
, s64
}, Legal
);
211 for (unsigned extOp
: {G_ZEXT
, G_SEXT
, G_ANYEXT
}) {
212 setAction({extOp
, s64
}, Legal
);
215 getActionDefinitionsBuilder(G_SITOFP
)
216 .legalForCartesianProduct({s32
, s64
})
217 .clampScalar(1, s32
, s64
)
218 .widenScalarToNextPow2(1)
219 .clampScalar(0, s32
, s64
)
220 .widenScalarToNextPow2(0);
222 getActionDefinitionsBuilder(G_FPTOSI
)
223 .legalForCartesianProduct({s32
, s64
})
224 .clampScalar(1, s32
, s64
)
225 .widenScalarToNextPow2(0)
226 .clampScalar(0, s32
, s64
)
227 .widenScalarToNextPow2(1);
230 setAction({G_ICMP
, 1, s64
}, Legal
);
232 getActionDefinitionsBuilder(G_FCMP
)
233 .legalForCartesianProduct({s8
}, {s32
, s64
})
234 .clampScalar(0, s8
, s8
)
235 .clampScalar(1, s32
, s64
)
236 .widenScalarToNextPow2(1);
239 getActionDefinitionsBuilder({G_SHL
, G_LSHR
, G_ASHR
, G_SDIV
})
240 .legalFor({s8
, s16
, s32
, s64
})
241 .clampScalar(0, s8
, s64
);
244 setAction({G_MERGE_VALUES
, s128
}, Legal
);
245 setAction({G_UNMERGE_VALUES
, 1, s128
}, Legal
);
246 setAction({G_MERGE_VALUES
, 1, s128
}, Legal
);
247 setAction({G_UNMERGE_VALUES
, s128
}, Legal
);
250 void X86LegalizerInfo::setLegalizerInfoSSE1() {
251 if (!Subtarget
.hasSSE1())
254 const LLT s32
= LLT::scalar(32);
255 const LLT s64
= LLT::scalar(64);
256 const LLT v4s32
= LLT::vector(4, 32);
257 const LLT v2s64
= LLT::vector(2, 64);
259 for (unsigned BinOp
: {G_FADD
, G_FSUB
, G_FMUL
, G_FDIV
})
260 for (auto Ty
: {s32
, v4s32
})
261 setAction({BinOp
, Ty
}, Legal
);
263 for (unsigned MemOp
: {G_LOAD
, G_STORE
})
264 for (auto Ty
: {v4s32
, v2s64
})
265 setAction({MemOp
, Ty
}, Legal
);
268 setAction({TargetOpcode::G_FCONSTANT
, s32
}, Legal
);
271 for (const auto &Ty
: {v4s32
, v2s64
}) {
272 setAction({G_MERGE_VALUES
, Ty
}, Legal
);
273 setAction({G_UNMERGE_VALUES
, 1, Ty
}, Legal
);
275 setAction({G_MERGE_VALUES
, 1, s64
}, Legal
);
276 setAction({G_UNMERGE_VALUES
, s64
}, Legal
);
279 void X86LegalizerInfo::setLegalizerInfoSSE2() {
280 if (!Subtarget
.hasSSE2())
283 const LLT s32
= LLT::scalar(32);
284 const LLT s64
= LLT::scalar(64);
285 const LLT v16s8
= LLT::vector(16, 8);
286 const LLT v8s16
= LLT::vector(8, 16);
287 const LLT v4s32
= LLT::vector(4, 32);
288 const LLT v2s64
= LLT::vector(2, 64);
290 const LLT v32s8
= LLT::vector(32, 8);
291 const LLT v16s16
= LLT::vector(16, 16);
292 const LLT v8s32
= LLT::vector(8, 32);
293 const LLT v4s64
= LLT::vector(4, 64);
295 for (unsigned BinOp
: {G_FADD
, G_FSUB
, G_FMUL
, G_FDIV
})
296 for (auto Ty
: {s64
, v2s64
})
297 setAction({BinOp
, Ty
}, Legal
);
299 for (unsigned BinOp
: {G_ADD
, G_SUB
})
300 for (auto Ty
: {v16s8
, v8s16
, v4s32
, v2s64
})
301 setAction({BinOp
, Ty
}, Legal
);
303 setAction({G_MUL
, v8s16
}, Legal
);
305 setAction({G_FPEXT
, s64
}, Legal
);
306 setAction({G_FPEXT
, 1, s32
}, Legal
);
308 setAction({G_FPTRUNC
, s32
}, Legal
);
309 setAction({G_FPTRUNC
, 1, s64
}, Legal
);
312 setAction({TargetOpcode::G_FCONSTANT
, s64
}, Legal
);
315 for (const auto &Ty
:
316 {v16s8
, v32s8
, v8s16
, v16s16
, v4s32
, v8s32
, v2s64
, v4s64
}) {
317 setAction({G_MERGE_VALUES
, Ty
}, Legal
);
318 setAction({G_UNMERGE_VALUES
, 1, Ty
}, Legal
);
320 for (const auto &Ty
: {v16s8
, v8s16
, v4s32
, v2s64
}) {
321 setAction({G_MERGE_VALUES
, 1, Ty
}, Legal
);
322 setAction({G_UNMERGE_VALUES
, Ty
}, Legal
);
326 void X86LegalizerInfo::setLegalizerInfoSSE41() {
327 if (!Subtarget
.hasSSE41())
330 const LLT v4s32
= LLT::vector(4, 32);
332 setAction({G_MUL
, v4s32
}, Legal
);
335 void X86LegalizerInfo::setLegalizerInfoAVX() {
336 if (!Subtarget
.hasAVX())
339 const LLT v16s8
= LLT::vector(16, 8);
340 const LLT v8s16
= LLT::vector(8, 16);
341 const LLT v4s32
= LLT::vector(4, 32);
342 const LLT v2s64
= LLT::vector(2, 64);
344 const LLT v32s8
= LLT::vector(32, 8);
345 const LLT v64s8
= LLT::vector(64, 8);
346 const LLT v16s16
= LLT::vector(16, 16);
347 const LLT v32s16
= LLT::vector(32, 16);
348 const LLT v8s32
= LLT::vector(8, 32);
349 const LLT v16s32
= LLT::vector(16, 32);
350 const LLT v4s64
= LLT::vector(4, 64);
351 const LLT v8s64
= LLT::vector(8, 64);
353 for (unsigned MemOp
: {G_LOAD
, G_STORE
})
354 for (auto Ty
: {v8s32
, v4s64
})
355 setAction({MemOp
, Ty
}, Legal
);
357 for (auto Ty
: {v32s8
, v16s16
, v8s32
, v4s64
}) {
358 setAction({G_INSERT
, Ty
}, Legal
);
359 setAction({G_EXTRACT
, 1, Ty
}, Legal
);
361 for (auto Ty
: {v16s8
, v8s16
, v4s32
, v2s64
}) {
362 setAction({G_INSERT
, 1, Ty
}, Legal
);
363 setAction({G_EXTRACT
, Ty
}, Legal
);
366 for (const auto &Ty
:
367 {v32s8
, v64s8
, v16s16
, v32s16
, v8s32
, v16s32
, v4s64
, v8s64
}) {
368 setAction({G_MERGE_VALUES
, Ty
}, Legal
);
369 setAction({G_UNMERGE_VALUES
, 1, Ty
}, Legal
);
371 for (const auto &Ty
:
372 {v16s8
, v32s8
, v8s16
, v16s16
, v4s32
, v8s32
, v2s64
, v4s64
}) {
373 setAction({G_MERGE_VALUES
, 1, Ty
}, Legal
);
374 setAction({G_UNMERGE_VALUES
, Ty
}, Legal
);
378 void X86LegalizerInfo::setLegalizerInfoAVX2() {
379 if (!Subtarget
.hasAVX2())
382 const LLT v32s8
= LLT::vector(32, 8);
383 const LLT v16s16
= LLT::vector(16, 16);
384 const LLT v8s32
= LLT::vector(8, 32);
385 const LLT v4s64
= LLT::vector(4, 64);
387 const LLT v64s8
= LLT::vector(64, 8);
388 const LLT v32s16
= LLT::vector(32, 16);
389 const LLT v16s32
= LLT::vector(16, 32);
390 const LLT v8s64
= LLT::vector(8, 64);
392 for (unsigned BinOp
: {G_ADD
, G_SUB
})
393 for (auto Ty
: {v32s8
, v16s16
, v8s32
, v4s64
})
394 setAction({BinOp
, Ty
}, Legal
);
396 for (auto Ty
: {v16s16
, v8s32
})
397 setAction({G_MUL
, Ty
}, Legal
);
400 for (const auto &Ty
: {v64s8
, v32s16
, v16s32
, v8s64
}) {
401 setAction({G_MERGE_VALUES
, Ty
}, Legal
);
402 setAction({G_UNMERGE_VALUES
, 1, Ty
}, Legal
);
404 for (const auto &Ty
: {v32s8
, v16s16
, v8s32
, v4s64
}) {
405 setAction({G_MERGE_VALUES
, 1, Ty
}, Legal
);
406 setAction({G_UNMERGE_VALUES
, Ty
}, Legal
);
410 void X86LegalizerInfo::setLegalizerInfoAVX512() {
411 if (!Subtarget
.hasAVX512())
414 const LLT v16s8
= LLT::vector(16, 8);
415 const LLT v8s16
= LLT::vector(8, 16);
416 const LLT v4s32
= LLT::vector(4, 32);
417 const LLT v2s64
= LLT::vector(2, 64);
419 const LLT v32s8
= LLT::vector(32, 8);
420 const LLT v16s16
= LLT::vector(16, 16);
421 const LLT v8s32
= LLT::vector(8, 32);
422 const LLT v4s64
= LLT::vector(4, 64);
424 const LLT v64s8
= LLT::vector(64, 8);
425 const LLT v32s16
= LLT::vector(32, 16);
426 const LLT v16s32
= LLT::vector(16, 32);
427 const LLT v8s64
= LLT::vector(8, 64);
429 for (unsigned BinOp
: {G_ADD
, G_SUB
})
430 for (auto Ty
: {v16s32
, v8s64
})
431 setAction({BinOp
, Ty
}, Legal
);
433 setAction({G_MUL
, v16s32
}, Legal
);
435 for (unsigned MemOp
: {G_LOAD
, G_STORE
})
436 for (auto Ty
: {v16s32
, v8s64
})
437 setAction({MemOp
, Ty
}, Legal
);
439 for (auto Ty
: {v64s8
, v32s16
, v16s32
, v8s64
}) {
440 setAction({G_INSERT
, Ty
}, Legal
);
441 setAction({G_EXTRACT
, 1, Ty
}, Legal
);
443 for (auto Ty
: {v32s8
, v16s16
, v8s32
, v4s64
, v16s8
, v8s16
, v4s32
, v2s64
}) {
444 setAction({G_INSERT
, 1, Ty
}, Legal
);
445 setAction({G_EXTRACT
, Ty
}, Legal
);
448 /************ VLX *******************/
449 if (!Subtarget
.hasVLX())
452 for (auto Ty
: {v4s32
, v8s32
})
453 setAction({G_MUL
, Ty
}, Legal
);
456 void X86LegalizerInfo::setLegalizerInfoAVX512DQ() {
457 if (!(Subtarget
.hasAVX512() && Subtarget
.hasDQI()))
460 const LLT v8s64
= LLT::vector(8, 64);
462 setAction({G_MUL
, v8s64
}, Legal
);
464 /************ VLX *******************/
465 if (!Subtarget
.hasVLX())
468 const LLT v2s64
= LLT::vector(2, 64);
469 const LLT v4s64
= LLT::vector(4, 64);
471 for (auto Ty
: {v2s64
, v4s64
})
472 setAction({G_MUL
, Ty
}, Legal
);
475 void X86LegalizerInfo::setLegalizerInfoAVX512BW() {
476 if (!(Subtarget
.hasAVX512() && Subtarget
.hasBWI()))
479 const LLT v64s8
= LLT::vector(64, 8);
480 const LLT v32s16
= LLT::vector(32, 16);
482 for (unsigned BinOp
: {G_ADD
, G_SUB
})
483 for (auto Ty
: {v64s8
, v32s16
})
484 setAction({BinOp
, Ty
}, Legal
);
486 setAction({G_MUL
, v32s16
}, Legal
);
488 /************ VLX *******************/
489 if (!Subtarget
.hasVLX())
492 const LLT v8s16
= LLT::vector(8, 16);
493 const LLT v16s16
= LLT::vector(16, 16);
495 for (auto Ty
: {v8s16
, v16s16
})
496 setAction({G_MUL
, Ty
}, Legal
);