1 //===- X86RegisterInfo.td - Describe the X86 Register File --*- tablegen -*-==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file describes the X86 Register file, defining the registers themselves,
11 // aliases between the registers, and the register classes built out of the
14 //===----------------------------------------------------------------------===//
16 class X86Reg<string n, bits<16> Enc, list<Register> subregs = []> : Register<n> {
17 let Namespace = "X86";
19 let SubRegs = subregs;
22 // Subregister indices.
23 let Namespace = "X86" in {
24 def sub_8bit : SubRegIndex<8>;
25 def sub_8bit_hi : SubRegIndex<8, 8>;
26 def sub_8bit_hi_phony : SubRegIndex<8, 8>;
27 def sub_16bit : SubRegIndex<16>;
28 def sub_16bit_hi : SubRegIndex<16, 16>;
29 def sub_32bit : SubRegIndex<32>;
30 def sub_xmm : SubRegIndex<128>;
31 def sub_ymm : SubRegIndex<256>;
34 //===----------------------------------------------------------------------===//
35 // Register definitions...
38 // In the register alias definitions below, we define which registers alias
39 // which others. We only specify which registers the small registers alias,
40 // because the register file generator is smart enough to figure out that
41 // AL aliases AX if we tell it that AX aliased AL (for example).
43 // Dwarf numbering is different for 32-bit and 64-bit, and there are
44 // variations by target as well. Currently the first entry is for X86-64,
45 // second - for EH on X86-32/Darwin and third is 'generic' one (X86-32/Linux
46 // and debug information on X86-32/Darwin)
50 def AL : X86Reg<"al", 0>;
51 def DL : X86Reg<"dl", 2>;
52 def CL : X86Reg<"cl", 1>;
53 def BL : X86Reg<"bl", 3>;
55 // High registers. On x86-64, these cannot be used in any instruction
57 def AH : X86Reg<"ah", 4>;
58 def DH : X86Reg<"dh", 6>;
59 def CH : X86Reg<"ch", 5>;
60 def BH : X86Reg<"bh", 7>;
62 // X86-64 only, requires REX.
63 let CostPerUse = 1 in {
64 def SIL : X86Reg<"sil", 6>;
65 def DIL : X86Reg<"dil", 7>;
66 def BPL : X86Reg<"bpl", 5>;
67 def SPL : X86Reg<"spl", 4>;
68 def R8B : X86Reg<"r8b", 8>;
69 def R9B : X86Reg<"r9b", 9>;
70 def R10B : X86Reg<"r10b", 10>;
71 def R11B : X86Reg<"r11b", 11>;
72 def R12B : X86Reg<"r12b", 12>;
73 def R13B : X86Reg<"r13b", 13>;
74 def R14B : X86Reg<"r14b", 14>;
75 def R15B : X86Reg<"r15b", 15>;
78 let isArtificial = 1 in {
79 // High byte of the low 16 bits of the super-register:
80 def SIH : X86Reg<"", -1>;
81 def DIH : X86Reg<"", -1>;
82 def BPH : X86Reg<"", -1>;
83 def SPH : X86Reg<"", -1>;
84 def R8BH : X86Reg<"", -1>;
85 def R9BH : X86Reg<"", -1>;
86 def R10BH : X86Reg<"", -1>;
87 def R11BH : X86Reg<"", -1>;
88 def R12BH : X86Reg<"", -1>;
89 def R13BH : X86Reg<"", -1>;
90 def R14BH : X86Reg<"", -1>;
91 def R15BH : X86Reg<"", -1>;
92 // High word of the low 32 bits of the super-register:
93 def HAX : X86Reg<"", -1>;
94 def HDX : X86Reg<"", -1>;
95 def HCX : X86Reg<"", -1>;
96 def HBX : X86Reg<"", -1>;
97 def HSI : X86Reg<"", -1>;
98 def HDI : X86Reg<"", -1>;
99 def HBP : X86Reg<"", -1>;
100 def HSP : X86Reg<"", -1>;
101 def HIP : X86Reg<"", -1>;
102 def R8WH : X86Reg<"", -1>;
103 def R9WH : X86Reg<"", -1>;
104 def R10WH : X86Reg<"", -1>;
105 def R11WH : X86Reg<"", -1>;
106 def R12WH : X86Reg<"", -1>;
107 def R13WH : X86Reg<"", -1>;
108 def R14WH : X86Reg<"", -1>;
109 def R15WH : X86Reg<"", -1>;
113 let SubRegIndices = [sub_8bit, sub_8bit_hi], CoveredBySubRegs = 1 in {
114 def AX : X86Reg<"ax", 0, [AL,AH]>;
115 def DX : X86Reg<"dx", 2, [DL,DH]>;
116 def CX : X86Reg<"cx", 1, [CL,CH]>;
117 def BX : X86Reg<"bx", 3, [BL,BH]>;
119 let SubRegIndices = [sub_8bit, sub_8bit_hi_phony], CoveredBySubRegs = 1 in {
120 def SI : X86Reg<"si", 6, [SIL,SIH]>;
121 def DI : X86Reg<"di", 7, [DIL,DIH]>;
122 def BP : X86Reg<"bp", 5, [BPL,BPH]>;
123 def SP : X86Reg<"sp", 4, [SPL,SPH]>;
125 def IP : X86Reg<"ip", 0>;
127 // X86-64 only, requires REX.
128 let SubRegIndices = [sub_8bit, sub_8bit_hi_phony], CostPerUse = 1,
129 CoveredBySubRegs = 1 in {
130 def R8W : X86Reg<"r8w", 8, [R8B,R8BH]>;
131 def R9W : X86Reg<"r9w", 9, [R9B,R9BH]>;
132 def R10W : X86Reg<"r10w", 10, [R10B,R10BH]>;
133 def R11W : X86Reg<"r11w", 11, [R11B,R11BH]>;
134 def R12W : X86Reg<"r12w", 12, [R12B,R12BH]>;
135 def R13W : X86Reg<"r13w", 13, [R13B,R13BH]>;
136 def R14W : X86Reg<"r14w", 14, [R14B,R14BH]>;
137 def R15W : X86Reg<"r15w", 15, [R15B,R15BH]>;
141 let SubRegIndices = [sub_16bit, sub_16bit_hi], CoveredBySubRegs = 1 in {
142 def EAX : X86Reg<"eax", 0, [AX, HAX]>, DwarfRegNum<[-2, 0, 0]>;
143 def EDX : X86Reg<"edx", 2, [DX, HDX]>, DwarfRegNum<[-2, 2, 2]>;
144 def ECX : X86Reg<"ecx", 1, [CX, HCX]>, DwarfRegNum<[-2, 1, 1]>;
145 def EBX : X86Reg<"ebx", 3, [BX, HBX]>, DwarfRegNum<[-2, 3, 3]>;
146 def ESI : X86Reg<"esi", 6, [SI, HSI]>, DwarfRegNum<[-2, 6, 6]>;
147 def EDI : X86Reg<"edi", 7, [DI, HDI]>, DwarfRegNum<[-2, 7, 7]>;
148 def EBP : X86Reg<"ebp", 5, [BP, HBP]>, DwarfRegNum<[-2, 4, 5]>;
149 def ESP : X86Reg<"esp", 4, [SP, HSP]>, DwarfRegNum<[-2, 5, 4]>;
150 def EIP : X86Reg<"eip", 0, [IP, HIP]>, DwarfRegNum<[-2, 8, 8]>;
153 // X86-64 only, requires REX
154 let SubRegIndices = [sub_16bit, sub_16bit_hi], CostPerUse = 1,
155 CoveredBySubRegs = 1 in {
156 def R8D : X86Reg<"r8d", 8, [R8W,R8WH]>;
157 def R9D : X86Reg<"r9d", 9, [R9W,R9WH]>;
158 def R10D : X86Reg<"r10d", 10, [R10W,R10WH]>;
159 def R11D : X86Reg<"r11d", 11, [R11W,R11WH]>;
160 def R12D : X86Reg<"r12d", 12, [R12W,R12WH]>;
161 def R13D : X86Reg<"r13d", 13, [R13W,R13WH]>;
162 def R14D : X86Reg<"r14d", 14, [R14W,R14WH]>;
163 def R15D : X86Reg<"r15d", 15, [R15W,R15WH]>;
166 // 64-bit registers, X86-64 only
167 let SubRegIndices = [sub_32bit] in {
168 def RAX : X86Reg<"rax", 0, [EAX]>, DwarfRegNum<[0, -2, -2]>;
169 def RDX : X86Reg<"rdx", 2, [EDX]>, DwarfRegNum<[1, -2, -2]>;
170 def RCX : X86Reg<"rcx", 1, [ECX]>, DwarfRegNum<[2, -2, -2]>;
171 def RBX : X86Reg<"rbx", 3, [EBX]>, DwarfRegNum<[3, -2, -2]>;
172 def RSI : X86Reg<"rsi", 6, [ESI]>, DwarfRegNum<[4, -2, -2]>;
173 def RDI : X86Reg<"rdi", 7, [EDI]>, DwarfRegNum<[5, -2, -2]>;
174 def RBP : X86Reg<"rbp", 5, [EBP]>, DwarfRegNum<[6, -2, -2]>;
175 def RSP : X86Reg<"rsp", 4, [ESP]>, DwarfRegNum<[7, -2, -2]>;
177 // These also require REX.
178 let CostPerUse = 1 in {
179 def R8 : X86Reg<"r8", 8, [R8D]>, DwarfRegNum<[ 8, -2, -2]>;
180 def R9 : X86Reg<"r9", 9, [R9D]>, DwarfRegNum<[ 9, -2, -2]>;
181 def R10 : X86Reg<"r10", 10, [R10D]>, DwarfRegNum<[10, -2, -2]>;
182 def R11 : X86Reg<"r11", 11, [R11D]>, DwarfRegNum<[11, -2, -2]>;
183 def R12 : X86Reg<"r12", 12, [R12D]>, DwarfRegNum<[12, -2, -2]>;
184 def R13 : X86Reg<"r13", 13, [R13D]>, DwarfRegNum<[13, -2, -2]>;
185 def R14 : X86Reg<"r14", 14, [R14D]>, DwarfRegNum<[14, -2, -2]>;
186 def R15 : X86Reg<"r15", 15, [R15D]>, DwarfRegNum<[15, -2, -2]>;
187 def RIP : X86Reg<"rip", 0, [EIP]>, DwarfRegNum<[16, -2, -2]>;
190 // MMX Registers. These are actually aliased to ST0 .. ST7
191 def MM0 : X86Reg<"mm0", 0>, DwarfRegNum<[41, 29, 29]>;
192 def MM1 : X86Reg<"mm1", 1>, DwarfRegNum<[42, 30, 30]>;
193 def MM2 : X86Reg<"mm2", 2>, DwarfRegNum<[43, 31, 31]>;
194 def MM3 : X86Reg<"mm3", 3>, DwarfRegNum<[44, 32, 32]>;
195 def MM4 : X86Reg<"mm4", 4>, DwarfRegNum<[45, 33, 33]>;
196 def MM5 : X86Reg<"mm5", 5>, DwarfRegNum<[46, 34, 34]>;
197 def MM6 : X86Reg<"mm6", 6>, DwarfRegNum<[47, 35, 35]>;
198 def MM7 : X86Reg<"mm7", 7>, DwarfRegNum<[48, 36, 36]>;
200 // Pseudo Floating Point registers
201 def FP0 : X86Reg<"fp0", 0>;
202 def FP1 : X86Reg<"fp1", 0>;
203 def FP2 : X86Reg<"fp2", 0>;
204 def FP3 : X86Reg<"fp3", 0>;
205 def FP4 : X86Reg<"fp4", 0>;
206 def FP5 : X86Reg<"fp5", 0>;
207 def FP6 : X86Reg<"fp6", 0>;
208 def FP7 : X86Reg<"fp7", 0>;
210 // XMM Registers, used by the various SSE instruction set extensions.
211 def XMM0: X86Reg<"xmm0", 0>, DwarfRegNum<[17, 21, 21]>;
212 def XMM1: X86Reg<"xmm1", 1>, DwarfRegNum<[18, 22, 22]>;
213 def XMM2: X86Reg<"xmm2", 2>, DwarfRegNum<[19, 23, 23]>;
214 def XMM3: X86Reg<"xmm3", 3>, DwarfRegNum<[20, 24, 24]>;
215 def XMM4: X86Reg<"xmm4", 4>, DwarfRegNum<[21, 25, 25]>;
216 def XMM5: X86Reg<"xmm5", 5>, DwarfRegNum<[22, 26, 26]>;
217 def XMM6: X86Reg<"xmm6", 6>, DwarfRegNum<[23, 27, 27]>;
218 def XMM7: X86Reg<"xmm7", 7>, DwarfRegNum<[24, 28, 28]>;
221 let CostPerUse = 1 in {
222 def XMM8: X86Reg<"xmm8", 8>, DwarfRegNum<[25, -2, -2]>;
223 def XMM9: X86Reg<"xmm9", 9>, DwarfRegNum<[26, -2, -2]>;
224 def XMM10: X86Reg<"xmm10", 10>, DwarfRegNum<[27, -2, -2]>;
225 def XMM11: X86Reg<"xmm11", 11>, DwarfRegNum<[28, -2, -2]>;
226 def XMM12: X86Reg<"xmm12", 12>, DwarfRegNum<[29, -2, -2]>;
227 def XMM13: X86Reg<"xmm13", 13>, DwarfRegNum<[30, -2, -2]>;
228 def XMM14: X86Reg<"xmm14", 14>, DwarfRegNum<[31, -2, -2]>;
229 def XMM15: X86Reg<"xmm15", 15>, DwarfRegNum<[32, -2, -2]>;
231 def XMM16: X86Reg<"xmm16", 16>, DwarfRegNum<[67, -2, -2]>;
232 def XMM17: X86Reg<"xmm17", 17>, DwarfRegNum<[68, -2, -2]>;
233 def XMM18: X86Reg<"xmm18", 18>, DwarfRegNum<[69, -2, -2]>;
234 def XMM19: X86Reg<"xmm19", 19>, DwarfRegNum<[70, -2, -2]>;
235 def XMM20: X86Reg<"xmm20", 20>, DwarfRegNum<[71, -2, -2]>;
236 def XMM21: X86Reg<"xmm21", 21>, DwarfRegNum<[72, -2, -2]>;
237 def XMM22: X86Reg<"xmm22", 22>, DwarfRegNum<[73, -2, -2]>;
238 def XMM23: X86Reg<"xmm23", 23>, DwarfRegNum<[74, -2, -2]>;
239 def XMM24: X86Reg<"xmm24", 24>, DwarfRegNum<[75, -2, -2]>;
240 def XMM25: X86Reg<"xmm25", 25>, DwarfRegNum<[76, -2, -2]>;
241 def XMM26: X86Reg<"xmm26", 26>, DwarfRegNum<[77, -2, -2]>;
242 def XMM27: X86Reg<"xmm27", 27>, DwarfRegNum<[78, -2, -2]>;
243 def XMM28: X86Reg<"xmm28", 28>, DwarfRegNum<[79, -2, -2]>;
244 def XMM29: X86Reg<"xmm29", 29>, DwarfRegNum<[80, -2, -2]>;
245 def XMM30: X86Reg<"xmm30", 30>, DwarfRegNum<[81, -2, -2]>;
246 def XMM31: X86Reg<"xmm31", 31>, DwarfRegNum<[82, -2, -2]>;
250 // YMM0-15 registers, used by AVX instructions and
251 // YMM16-31 registers, used by AVX-512 instructions.
252 let SubRegIndices = [sub_xmm] in {
253 foreach Index = 0-31 in {
254 def YMM#Index : X86Reg<"ymm"#Index, Index, [!cast<X86Reg>("XMM"#Index)]>,
255 DwarfRegAlias<!cast<X86Reg>("XMM"#Index)>;
259 // ZMM Registers, used by AVX-512 instructions.
260 let SubRegIndices = [sub_ymm] in {
261 foreach Index = 0-31 in {
262 def ZMM#Index : X86Reg<"zmm"#Index, Index, [!cast<X86Reg>("YMM"#Index)]>,
263 DwarfRegAlias<!cast<X86Reg>("XMM"#Index)>;
267 // Mask Registers, used by AVX-512 instructions.
268 def K0 : X86Reg<"k0", 0>, DwarfRegNum<[118, 93, 93]>;
269 def K1 : X86Reg<"k1", 1>, DwarfRegNum<[119, 94, 94]>;
270 def K2 : X86Reg<"k2", 2>, DwarfRegNum<[120, 95, 95]>;
271 def K3 : X86Reg<"k3", 3>, DwarfRegNum<[121, 96, 96]>;
272 def K4 : X86Reg<"k4", 4>, DwarfRegNum<[122, 97, 97]>;
273 def K5 : X86Reg<"k5", 5>, DwarfRegNum<[123, 98, 98]>;
274 def K6 : X86Reg<"k6", 6>, DwarfRegNum<[124, 99, 99]>;
275 def K7 : X86Reg<"k7", 7>, DwarfRegNum<[125, 100, 100]>;
277 // Floating point stack registers. These don't map one-to-one to the FP
278 // pseudo registers, but we still mark them as aliasing FP registers. That
279 // way both kinds can be live without exceeding the stack depth. ST registers
280 // are only live around inline assembly.
281 def ST0 : X86Reg<"st(0)", 0>, DwarfRegNum<[33, 12, 11]>;
282 def ST1 : X86Reg<"st(1)", 1>, DwarfRegNum<[34, 13, 12]>;
283 def ST2 : X86Reg<"st(2)", 2>, DwarfRegNum<[35, 14, 13]>;
284 def ST3 : X86Reg<"st(3)", 3>, DwarfRegNum<[36, 15, 14]>;
285 def ST4 : X86Reg<"st(4)", 4>, DwarfRegNum<[37, 16, 15]>;
286 def ST5 : X86Reg<"st(5)", 5>, DwarfRegNum<[38, 17, 16]>;
287 def ST6 : X86Reg<"st(6)", 6>, DwarfRegNum<[39, 18, 17]>;
288 def ST7 : X86Reg<"st(7)", 7>, DwarfRegNum<[40, 19, 18]>;
290 // Floating-point status word
291 def FPSW : X86Reg<"fpsw", 0>;
293 // Status flags register.
295 // Note that some flags that are commonly thought of as part of the status
296 // flags register are modeled separately. Typically this is due to instructions
297 // reading and updating those flags independently of all the others. We don't
298 // want to create false dependencies between these instructions and so we use
299 // a separate register to model them.
300 def EFLAGS : X86Reg<"flags", 0>;
302 // The direction flag.
303 def DF : X86Reg<"dirflag", 0>;
307 def CS : X86Reg<"cs", 1>;
308 def DS : X86Reg<"ds", 3>;
309 def SS : X86Reg<"ss", 2>;
310 def ES : X86Reg<"es", 0>;
311 def FS : X86Reg<"fs", 4>;
312 def GS : X86Reg<"gs", 5>;
315 def DR0 : X86Reg<"dr0", 0>;
316 def DR1 : X86Reg<"dr1", 1>;
317 def DR2 : X86Reg<"dr2", 2>;
318 def DR3 : X86Reg<"dr3", 3>;
319 def DR4 : X86Reg<"dr4", 4>;
320 def DR5 : X86Reg<"dr5", 5>;
321 def DR6 : X86Reg<"dr6", 6>;
322 def DR7 : X86Reg<"dr7", 7>;
323 def DR8 : X86Reg<"dr8", 8>;
324 def DR9 : X86Reg<"dr9", 9>;
325 def DR10 : X86Reg<"dr10", 10>;
326 def DR11 : X86Reg<"dr11", 11>;
327 def DR12 : X86Reg<"dr12", 12>;
328 def DR13 : X86Reg<"dr13", 13>;
329 def DR14 : X86Reg<"dr14", 14>;
330 def DR15 : X86Reg<"dr15", 15>;
333 def CR0 : X86Reg<"cr0", 0>;
334 def CR1 : X86Reg<"cr1", 1>;
335 def CR2 : X86Reg<"cr2", 2>;
336 def CR3 : X86Reg<"cr3", 3>;
337 def CR4 : X86Reg<"cr4", 4>;
338 def CR5 : X86Reg<"cr5", 5>;
339 def CR6 : X86Reg<"cr6", 6>;
340 def CR7 : X86Reg<"cr7", 7>;
341 def CR8 : X86Reg<"cr8", 8>;
342 def CR9 : X86Reg<"cr9", 9>;
343 def CR10 : X86Reg<"cr10", 10>;
344 def CR11 : X86Reg<"cr11", 11>;
345 def CR12 : X86Reg<"cr12", 12>;
346 def CR13 : X86Reg<"cr13", 13>;
347 def CR14 : X86Reg<"cr14", 14>;
348 def CR15 : X86Reg<"cr15", 15>;
350 // Pseudo index registers
351 def EIZ : X86Reg<"eiz", 4>;
352 def RIZ : X86Reg<"riz", 4>;
354 // Bound registers, used in MPX instructions
355 def BND0 : X86Reg<"bnd0", 0>;
356 def BND1 : X86Reg<"bnd1", 1>;
357 def BND2 : X86Reg<"bnd2", 2>;
358 def BND3 : X86Reg<"bnd3", 3>;
360 // CET registers - Shadow Stack Pointer
361 def SSP : X86Reg<"ssp", 0>;
363 //===----------------------------------------------------------------------===//
364 // Register Class Definitions... now that we have all of the pieces, define the
365 // top-level register classes. The order specified in the register list is
366 // implicitly defined to be the register allocation order.
369 // List call-clobbered registers before callee-save registers. RBX, RBP, (and
370 // R12, R13, R14, and R15 for X86-64) are callee-save registers.
371 // In 64-mode, there are 12 additional i8 registers, SIL, DIL, BPL, SPL, and
373 // Allocate R12 and R13 last, as these require an extra byte when
374 // encoded in x86_64 instructions.
375 // FIXME: Allow AH, CH, DH, BH to be used as general-purpose registers in
376 // 64-bit mode. The main complication is that they cannot be encoded in an
377 // instruction requiring a REX prefix, while SIL, DIL, BPL, R8D, etc.
378 // require a REX prefix. For example, "addb %ah, %dil" and "movzbl %ah, %r8d"
379 // cannot be encoded.
380 def GR8 : RegisterClass<"X86", [i8], 8,
381 (add AL, CL, DL, AH, CH, DH, BL, BH, SIL, DIL, BPL, SPL,
382 R8B, R9B, R10B, R11B, R14B, R15B, R12B, R13B)> {
383 let AltOrders = [(sub GR8, AH, BH, CH, DH)];
384 let AltOrderSelect = [{
385 return MF.getSubtarget<X86Subtarget>().is64Bit();
389 let isAllocatable = 0 in
390 def GRH8 : RegisterClass<"X86", [i8], 8,
391 (add SIH, DIH, BPH, SPH, R8BH, R9BH, R10BH, R11BH,
392 R12BH, R13BH, R14BH, R15BH)>;
394 def GR16 : RegisterClass<"X86", [i16], 16,
395 (add AX, CX, DX, SI, DI, BX, BP, SP,
396 R8W, R9W, R10W, R11W, R14W, R15W, R12W, R13W)>;
398 let isAllocatable = 0 in
399 def GRH16 : RegisterClass<"X86", [i16], 16,
400 (add HAX, HCX, HDX, HSI, HDI, HBX, HBP, HSP, HIP,
401 R8WH, R9WH, R10WH, R11WH, R12WH, R13WH, R14WH,
404 def GR32 : RegisterClass<"X86", [i32], 32,
405 (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP,
406 R8D, R9D, R10D, R11D, R14D, R15D, R12D, R13D)>;
408 // GR64 - 64-bit GPRs. This oddly includes RIP, which isn't accurate, since
409 // RIP isn't really a register and it can't be used anywhere except in an
410 // address, but it doesn't cause trouble.
411 // FIXME: it *does* cause trouble - CheckBaseRegAndIndexReg() has extra
412 // tests because of the inclusion of RIP in this register class.
413 def GR64 : RegisterClass<"X86", [i64], 64,
414 (add RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
415 RBX, R14, R15, R12, R13, RBP, RSP, RIP)>;
417 // Segment registers for use by MOV instructions (and others) that have a
418 // segment register as one operand. Always contain a 16-bit segment
420 def SEGMENT_REG : RegisterClass<"X86", [i16], 16, (add CS, DS, SS, ES, FS, GS)>;
423 def DEBUG_REG : RegisterClass<"X86", [i32], 32, (sequence "DR%u", 0, 15)>;
425 // Control registers.
426 def CONTROL_REG : RegisterClass<"X86", [i64], 64, (sequence "CR%u", 0, 15)>;
428 // GR8_ABCD_L, GR8_ABCD_H, GR16_ABCD, GR32_ABCD, GR64_ABCD - Subclasses of
429 // GR8, GR16, GR32, and GR64 which contain just the "a" "b", "c", and "d"
430 // registers. On x86-32, GR16_ABCD and GR32_ABCD are classes for registers
431 // that support 8-bit subreg operations. On x86-64, GR16_ABCD, GR32_ABCD,
432 // and GR64_ABCD are classes for registers that support 8-bit h-register
434 def GR8_ABCD_L : RegisterClass<"X86", [i8], 8, (add AL, CL, DL, BL)>;
435 def GR8_ABCD_H : RegisterClass<"X86", [i8], 8, (add AH, CH, DH, BH)>;
436 def GR16_ABCD : RegisterClass<"X86", [i16], 16, (add AX, CX, DX, BX)>;
437 def GR32_ABCD : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX, EBX)>;
438 def GR64_ABCD : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RBX)>;
439 def GR32_TC : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX)>;
440 def GR64_TC : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RSI, RDI,
442 def GR64_TCW64 : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX,
443 R8, R9, R10, R11, RIP)>;
445 // GR8_NOREX - GR8 registers which do not require a REX prefix.
446 def GR8_NOREX : RegisterClass<"X86", [i8], 8,
447 (add AL, CL, DL, AH, CH, DH, BL, BH)> {
448 let AltOrders = [(sub GR8_NOREX, AH, BH, CH, DH)];
449 let AltOrderSelect = [{
450 return MF.getSubtarget<X86Subtarget>().is64Bit();
453 // GR16_NOREX - GR16 registers which do not require a REX prefix.
454 def GR16_NOREX : RegisterClass<"X86", [i16], 16,
455 (add AX, CX, DX, SI, DI, BX, BP, SP)>;
456 // GR32_NOREX - GR32 registers which do not require a REX prefix.
457 def GR32_NOREX : RegisterClass<"X86", [i32], 32,
458 (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP)>;
459 // GR64_NOREX - GR64 registers which do not require a REX prefix.
460 def GR64_NOREX : RegisterClass<"X86", [i64], 64,
461 (add RAX, RCX, RDX, RSI, RDI, RBX, RBP, RSP, RIP)>;
463 // GR32_NOSP - GR32 registers except ESP.
464 def GR32_NOSP : RegisterClass<"X86", [i32], 32, (sub GR32, ESP)>;
466 // GR64_NOSP - GR64 registers except RSP (and RIP).
467 def GR64_NOSP : RegisterClass<"X86", [i64], 64, (sub GR64, RSP, RIP)>;
469 // GR32_NOREX_NOSP - GR32 registers which do not require a REX prefix except
471 def GR32_NOREX_NOSP : RegisterClass<"X86", [i32], 32,
472 (and GR32_NOREX, GR32_NOSP)>;
474 // GR64_NOREX_NOSP - GR64_NOREX registers except RSP.
475 def GR64_NOREX_NOSP : RegisterClass<"X86", [i64], 64,
476 (and GR64_NOREX, GR64_NOSP)>;
478 // Register classes used for ABIs that use 32-bit address accesses,
479 // while using the whole x84_64 ISA.
481 // In such cases, it is fine to use RIP as we are sure the 32 high
482 // bits are not set. We do not need variants for NOSP as RIP is not
484 // RIP is not spilled anywhere for now, so stick to 32-bit alignment
485 // to save on memory space.
486 // FIXME: We could allow all 64bit registers, but we would need
487 // something to check that the 32 high bits are not set,
488 // which we do not have right now.
489 def LOW32_ADDR_ACCESS : RegisterClass<"X86", [i32], 32, (add GR32, RIP)>;
491 // When RBP is used as a base pointer in a 32-bit addresses environement,
492 // this is also safe to use the full register to access addresses.
493 // Since RBP will never be spilled, stick to a 32 alignment to save
494 // on memory consumption.
495 def LOW32_ADDR_ACCESS_RBP : RegisterClass<"X86", [i32], 32,
496 (add LOW32_ADDR_ACCESS, RBP)>;
498 // A class to support the 'A' assembler constraint: [ER]AX then [ER]DX.
499 def GR32_AD : RegisterClass<"X86", [i32], 32, (add EAX, EDX)>;
500 def GR64_AD : RegisterClass<"X86", [i64], 64, (add RAX, RDX)>;
502 // Classes to support the 64-bit assembler constraint tied to a fixed
503 // register in 32-bit mode. The second register is always the next in
504 // the list. Wrap around causes an error.
505 def GR32_DC : RegisterClass<"X86", [i32], 32, (add EDX, ECX)>;
506 def GR32_CB : RegisterClass<"X86", [i32], 32, (add ECX, EBX)>;
507 def GR32_BSI : RegisterClass<"X86", [i32], 32, (add EBX, ESI)>;
508 def GR32_SIDI : RegisterClass<"X86", [i32], 32, (add ESI, EDI)>;
509 def GR32_DIBP : RegisterClass<"X86", [i32], 32, (add EDI, EBP)>;
510 def GR32_BPSP : RegisterClass<"X86", [i32], 32, (add EBP, ESP)>;
512 // Scalar SSE2 floating point registers.
513 def FR32 : RegisterClass<"X86", [f32], 32, (sequence "XMM%u", 0, 15)>;
515 def FR64 : RegisterClass<"X86", [f64], 64, (add FR32)>;
518 // FIXME: This sets up the floating point register files as though they are f64
519 // values, though they really are f80 values. This will cause us to spill
520 // values as 64-bit quantities instead of 80-bit quantities, which is much much
521 // faster on common hardware. In reality, this should be controlled by a
522 // command line option or something.
524 def RFP32 : RegisterClass<"X86",[f32], 32, (sequence "FP%u", 0, 6)>;
525 def RFP64 : RegisterClass<"X86",[f64], 32, (add RFP32)>;
526 def RFP80 : RegisterClass<"X86",[f80], 32, (add RFP32)>;
528 // Floating point stack registers (these are not allocatable by the
529 // register allocator - the floating point stackifier is responsible
530 // for transforming FPn allocations to STn registers)
531 def RST : RegisterClass<"X86", [f80, f64, f32], 32, (sequence "ST%u", 0, 7)> {
532 let isAllocatable = 0;
535 // Generic vector registers: VR64 and VR128.
536 // Ensure that float types are declared first - only float is legal on SSE1.
537 def VR64: RegisterClass<"X86", [x86mmx], 64, (sequence "MM%u", 0, 7)>;
538 def VR128 : RegisterClass<"X86", [v4f32, v2f64, v16i8, v8i16, v4i32, v2i64, f128],
540 def VR256 : RegisterClass<"X86", [v8f32, v4f64, v32i8, v16i16, v8i32, v4i64],
541 256, (sequence "YMM%u", 0, 15)>;
543 // Special classes that help the assembly parser choose some alternate
544 // instructions to favor 2-byte VEX encodings.
545 def VR128L : RegisterClass<"X86", [v4f32, v2f64, v16i8, v8i16, v4i32, v2i64, f128],
546 128, (sequence "XMM%u", 0, 7)>;
547 def VR128H : RegisterClass<"X86", [v4f32, v2f64, v16i8, v8i16, v4i32, v2i64, f128],
548 128, (sequence "XMM%u", 8, 15)>;
549 def VR256L : RegisterClass<"X86", [v8f32, v4f64, v32i8, v16i16, v8i32, v4i64],
550 256, (sequence "YMM%u", 0, 7)>;
551 def VR256H : RegisterClass<"X86", [v8f32, v4f64, v32i8, v16i16, v8i32, v4i64],
552 256, (sequence "YMM%u", 8, 15)>;
554 // Status flags registers.
555 def CCR : RegisterClass<"X86", [i32], 32, (add EFLAGS)> {
556 let CopyCost = -1; // Don't allow copying of status registers.
557 let isAllocatable = 0;
559 def FPCCR : RegisterClass<"X86", [i16], 16, (add FPSW)> {
560 let CopyCost = -1; // Don't allow copying of status registers.
561 let isAllocatable = 0;
563 def DFCCR : RegisterClass<"X86", [i32], 32, (add DF)> {
564 let CopyCost = -1; // Don't allow copying of status registers.
565 let isAllocatable = 0;
568 // AVX-512 vector/mask registers.
569 def VR512 : RegisterClass<"X86", [v16f32, v8f64, v64i8, v32i16, v16i32, v8i64],
570 512, (sequence "ZMM%u", 0, 31)>;
572 // Scalar AVX-512 floating point registers.
573 def FR32X : RegisterClass<"X86", [f32], 32, (sequence "XMM%u", 0, 31)>;
575 def FR64X : RegisterClass<"X86", [f64], 64, (add FR32X)>;
577 // Extended VR128 and VR256 for AVX-512 instructions
578 def VR128X : RegisterClass<"X86", [v4f32, v2f64, v16i8, v8i16, v4i32, v2i64, f128],
580 def VR256X : RegisterClass<"X86", [v8f32, v4f64, v32i8, v16i16, v8i32, v4i64],
581 256, (sequence "YMM%u", 0, 31)>;
584 def VK1 : RegisterClass<"X86", [v1i1], 16, (sequence "K%u", 0, 7)> {let Size = 16;}
585 def VK2 : RegisterClass<"X86", [v2i1], 16, (add VK1)> {let Size = 16;}
586 def VK4 : RegisterClass<"X86", [v4i1], 16, (add VK2)> {let Size = 16;}
587 def VK8 : RegisterClass<"X86", [v8i1], 16, (add VK4)> {let Size = 16;}
588 def VK16 : RegisterClass<"X86", [v16i1], 16, (add VK8)> {let Size = 16;}
589 def VK32 : RegisterClass<"X86", [v32i1], 32, (add VK16)> {let Size = 32;}
590 def VK64 : RegisterClass<"X86", [v64i1], 64, (add VK32)> {let Size = 64;}
592 def VK1WM : RegisterClass<"X86", [v1i1], 16, (sub VK1, K0)> {let Size = 16;}
593 def VK2WM : RegisterClass<"X86", [v2i1], 16, (sub VK2, K0)> {let Size = 16;}
594 def VK4WM : RegisterClass<"X86", [v4i1], 16, (sub VK4, K0)> {let Size = 16;}
595 def VK8WM : RegisterClass<"X86", [v8i1], 16, (sub VK8, K0)> {let Size = 16;}
596 def VK16WM : RegisterClass<"X86", [v16i1], 16, (add VK8WM)> {let Size = 16;}
597 def VK32WM : RegisterClass<"X86", [v32i1], 32, (add VK16WM)> {let Size = 32;}
598 def VK64WM : RegisterClass<"X86", [v64i1], 64, (add VK32WM)> {let Size = 64;}
601 def BNDR : RegisterClass<"X86", [v2i64], 128, (sequence "BND%u", 0, 3)>;