1 //===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file declares the X86 specific subclass of TargetSubtargetInfo.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_LIB_TARGET_X86_X86SUBTARGET_H
15 #define LLVM_LIB_TARGET_X86_X86SUBTARGET_H
17 #include "X86FrameLowering.h"
18 #include "X86ISelLowering.h"
19 #include "X86InstrInfo.h"
20 #include "X86SelectionDAGInfo.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
24 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
25 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/Target/TargetMachine.h"
33 #define GET_SUBTARGETINFO_HEADER
34 #include "X86GenSubtargetInfo.inc"
40 /// The X86 backend supports a number of different styles of PIC.
45 StubPIC
, // Used on i386-darwin in pic mode.
46 GOT
, // Used on 32 bit elf on when in pic mode.
47 RIPRel
, // Used on X86-64 when in pic mode.
48 None
// Set when not in pic mode.
51 } // end namespace PICStyles
53 class X86Subtarget final
: public X86GenSubtargetInfo
{
55 enum X86ProcFamilyEnum
{
74 NoSSE
, SSE1
, SSE2
, SSE3
, SSSE3
, SSE41
, SSE42
, AVX
, AVX2
, AVX512F
78 NoThreeDNow
, MMX
, ThreeDNow
, ThreeDNowA
81 /// X86 processor family: Intel Atom, and others
82 X86ProcFamilyEnum X86ProcFamily
= Others
;
84 /// Which PIC style to use
85 PICStyles::Style PICStyle
;
87 const TargetMachine
&TM
;
89 /// SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or none supported.
90 X86SSEEnum X86SSELevel
= NoSSE
;
92 /// MMX, 3DNow, 3DNow Athlon, or none supported.
93 X863DNowEnum X863DNowLevel
= NoThreeDNow
;
95 /// True if the processor supports X87 instructions.
98 /// True if this processor has NOPL instruction
99 /// (generally pentium pro+).
100 bool HasNOPL
= false;
102 /// True if this processor has conditional move instructions
103 /// (generally pentium pro+).
104 bool HasCMov
= false;
106 /// True if the processor supports X86-64 instructions.
107 bool HasX86_64
= false;
109 /// True if the processor supports POPCNT.
110 bool HasPOPCNT
= false;
112 /// True if the processor supports SSE4A instructions.
113 bool HasSSE4A
= false;
115 /// Target has AES instructions
117 bool HasVAES
= false;
119 /// Target has FXSAVE/FXRESTOR instructions
120 bool HasFXSR
= false;
122 /// Target has XSAVE instructions
123 bool HasXSAVE
= false;
125 /// Target has XSAVEOPT instructions
126 bool HasXSAVEOPT
= false;
128 /// Target has XSAVEC instructions
129 bool HasXSAVEC
= false;
131 /// Target has XSAVES instructions
132 bool HasXSAVES
= false;
134 /// Target has carry-less multiplication
135 bool HasPCLMUL
= false;
136 bool HasVPCLMULQDQ
= false;
138 /// Target has Galois Field Arithmetic instructions
139 bool HasGFNI
= false;
141 /// Target has 3-operand fused multiply-add
144 /// Target has 4-operand fused multiply-add
145 bool HasFMA4
= false;
147 /// Target has XOP instructions
150 /// Target has TBM instructions.
153 /// Target has LWP instructions
156 /// True if the processor has the MOVBE instruction.
157 bool HasMOVBE
= false;
159 /// True if the processor has the RDRAND instruction.
160 bool HasRDRAND
= false;
162 /// Processor has 16-bit floating point conversion instructions.
163 bool HasF16C
= false;
165 /// Processor has FS/GS base insturctions.
166 bool HasFSGSBase
= false;
168 /// Processor has LZCNT instruction.
169 bool HasLZCNT
= false;
171 /// Processor has BMI1 instructions.
174 /// Processor has BMI2 instructions.
175 bool HasBMI2
= false;
177 /// Processor has VBMI instructions.
178 bool HasVBMI
= false;
180 /// Processor has VBMI2 instructions.
181 bool HasVBMI2
= false;
183 /// Processor has Integer Fused Multiply Add
184 bool HasIFMA
= false;
186 /// Processor has RTM instructions.
189 /// Processor has ADX instructions.
192 /// Processor has SHA instructions.
195 /// Processor has PRFCHW instructions.
196 bool HasPRFCHW
= false;
198 /// Processor has RDSEED instructions.
199 bool HasRDSEED
= false;
201 /// Processor has LAHF/SAHF instructions.
202 bool HasLAHFSAHF
= false;
204 /// Processor has MONITORX/MWAITX instructions.
205 bool HasMWAITX
= false;
207 /// Processor has Cache Line Zero instruction
208 bool HasCLZERO
= false;
210 /// Processor has Cache Line Demote instruction
211 bool HasCLDEMOTE
= false;
213 /// Processor has MOVDIRI instruction (direct store integer).
214 bool HasMOVDIRI
= false;
216 /// Processor has MOVDIR64B instruction (direct store 64 bytes).
217 bool HasMOVDIR64B
= false;
219 /// Processor has ptwrite instruction.
220 bool HasPTWRITE
= false;
222 /// Processor has Prefetch with intent to Write instruction
223 bool HasPREFETCHWT1
= false;
225 /// True if SHLD instructions are slow.
226 bool IsSHLDSlow
= false;
228 /// True if the PMULLD instruction is slow compared to PMULLW/PMULHW and
230 bool IsPMULLDSlow
= false;
232 /// True if unaligned memory accesses of 16-bytes are slow.
233 bool IsUAMem16Slow
= false;
235 /// True if unaligned memory accesses of 32-bytes are slow.
236 bool IsUAMem32Slow
= false;
238 /// True if SSE operations can have unaligned memory operands.
239 /// This may require setting a configuration bit in the processor.
240 bool HasSSEUnalignedMem
= false;
242 /// True if this processor has the CMPXCHG16B instruction;
243 /// this is true for most x86-64 chips, but not the first AMD chips.
244 bool HasCmpxchg16b
= false;
246 /// True if the LEA instruction should be used for adjusting
247 /// the stack pointer. This is an optimization for Intel Atom processors.
248 bool UseLeaForSP
= false;
250 /// True if POPCNT instruction has a false dependency on the destination register.
251 bool HasPOPCNTFalseDeps
= false;
253 /// True if LZCNT/TZCNT instructions have a false dependency on the destination register.
254 bool HasLZCNTFalseDeps
= false;
256 /// True if its preferable to combine to a single shuffle using a variable
257 /// mask over multiple fixed shuffles.
258 bool HasFastVariableShuffle
= false;
260 /// True if there is no performance penalty to writing only the lower parts
261 /// of a YMM or ZMM register without clearing the upper part.
262 bool HasFastPartialYMMorZMMWrite
= false;
264 /// True if there is no performance penalty for writing NOPs with up to
266 bool HasFast11ByteNOP
= false;
268 /// True if there is no performance penalty for writing NOPs with up to
270 bool HasFast15ByteNOP
= false;
272 /// True if gather is reasonably fast. This is true for Skylake client and
273 /// all AVX-512 CPUs.
274 bool HasFastGather
= false;
276 /// True if hardware SQRTSS instruction is at least as fast (latency) as
277 /// RSQRTSS followed by a Newton-Raphson iteration.
278 bool HasFastScalarFSQRT
= false;
280 /// True if hardware SQRTPS/VSQRTPS instructions are at least as fast
281 /// (throughput) as RSQRTPS/VRSQRTPS followed by a Newton-Raphson iteration.
282 bool HasFastVectorFSQRT
= false;
284 /// True if 8-bit divisions are significantly faster than
285 /// 32-bit divisions and should be used when possible.
286 bool HasSlowDivide32
= false;
288 /// True if 32-bit divides are significantly faster than
289 /// 64-bit divisions and should be used when possible.
290 bool HasSlowDivide64
= false;
292 /// True if LZCNT instruction is fast.
293 bool HasFastLZCNT
= false;
295 /// True if SHLD based rotate is fast.
296 bool HasFastSHLDRotate
= false;
298 /// True if the processor supports macrofusion.
299 bool HasMacroFusion
= false;
301 /// True if the processor has enhanced REP MOVSB/STOSB.
302 bool HasERMSB
= false;
304 /// True if the short functions should be padded to prevent
305 /// a stall when returning too early.
306 bool PadShortFunctions
= false;
308 /// True if two memory operand instructions should use a temporary register
310 bool SlowTwoMemOps
= false;
312 /// True if the LEA instruction inputs have to be ready at address generation
314 bool LEAUsesAG
= false;
316 /// True if the LEA instruction with certain arguments is slow
317 bool SlowLEA
= false;
319 /// True if the LEA instruction has all three source operands: base, index,
320 /// and offset or if the LEA instruction uses base and index registers where
321 /// the base is EBP, RBP,or R13
322 bool Slow3OpsLEA
= false;
324 /// True if INC and DEC instructions are slow when writing to flags
325 bool SlowIncDec
= false;
327 /// Processor has AVX-512 PreFetch Instructions
330 /// Processor has AVX-512 Exponential and Reciprocal Instructions
333 /// Processor has AVX-512 Conflict Detection Instructions
336 /// Processor has AVX-512 population count Instructions
337 bool HasVPOPCNTDQ
= false;
339 /// Processor has AVX-512 Doubleword and Quadword instructions
342 /// Processor has AVX-512 Byte and Word instructions
345 /// Processor has AVX-512 Vector Length eXtenstions
348 /// Processor has PKU extenstions
351 /// Processor has AVX-512 Vector Neural Network Instructions
352 bool HasVNNI
= false;
354 /// Processor has AVX-512 Bit Algorithms instructions
355 bool HasBITALG
= false;
357 /// Processor supports MPX - Memory Protection Extensions
360 /// Processor supports CET SHSTK - Control-Flow Enforcement Technology
361 /// using Shadow Stack
362 bool HasSHSTK
= false;
364 /// Processor supports Invalidate Process-Context Identifier
365 bool HasINVPCID
= false;
367 /// Processor has Software Guard Extensions
370 /// Processor supports Flush Cache Line instruction
371 bool HasCLFLUSHOPT
= false;
373 /// Processor supports Cache Line Write Back instruction
374 bool HasCLWB
= false;
376 /// Processor supports Write Back No Invalidate instruction
377 bool HasWBNOINVD
= false;
379 /// Processor support RDPID instruction
380 bool HasRDPID
= false;
382 /// Processor supports WaitPKG instructions
383 bool HasWAITPKG
= false;
385 /// Processor supports PCONFIG instruction
386 bool HasPCONFIG
= false;
388 /// Use a retpoline thunk rather than indirect calls to block speculative
390 bool UseRetpolineIndirectCalls
= false;
392 /// Use a retpoline thunk or remove any indirect branch to block speculative
394 bool UseRetpolineIndirectBranches
= false;
396 /// Deprecated flag, query `UseRetpolineIndirectCalls` and
397 /// `UseRetpolineIndirectBranches` instead.
398 bool DeprecatedUseRetpoline
= false;
400 /// When using a retpoline thunk, call an externally provided thunk rather
401 /// than emitting one inside the compiler.
402 bool UseRetpolineExternalThunk
= false;
404 /// Use software floating point for code generation.
405 bool UseSoftFloat
= false;
407 /// The minimum alignment known to hold of the stack frame on
408 /// entry to the function and which must be maintained by every function.
409 unsigned stackAlignment
= 4;
411 /// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops.
413 // FIXME: this is a known good value for Yonah. How about others?
414 unsigned MaxInlineSizeThreshold
= 128;
416 /// Indicates target prefers 256 bit instructions.
417 bool Prefer256Bit
= false;
419 /// What processor and OS we're targeting.
422 /// GlobalISel related APIs.
423 std::unique_ptr
<CallLowering
> CallLoweringInfo
;
424 std::unique_ptr
<LegalizerInfo
> Legalizer
;
425 std::unique_ptr
<RegisterBankInfo
> RegBankInfo
;
426 std::unique_ptr
<InstructionSelector
> InstSelector
;
429 /// Override the stack alignment.
430 unsigned StackAlignOverride
;
432 /// Preferred vector width from function attribute.
433 unsigned PreferVectorWidthOverride
;
435 /// Resolved preferred vector width from function attribute and subtarget
437 unsigned PreferVectorWidth
= UINT32_MAX
;
439 /// Required vector width from function attribute.
440 unsigned RequiredVectorWidth
;
442 /// True if compiling for 64-bit, false for 16-bit or 32-bit.
445 /// True if compiling for 32-bit, false for 16-bit or 64-bit.
448 /// True if compiling for 16-bit, false for 32-bit or 64-bit.
451 /// Contains the Overhead of gather\scatter instructions
452 int GatherOverhead
= 1024;
453 int ScatterOverhead
= 1024;
455 X86SelectionDAGInfo TSInfo
;
456 // Ordering here is important. X86InstrInfo initializes X86RegisterInfo which
457 // X86TargetLowering needs.
458 X86InstrInfo InstrInfo
;
459 X86TargetLowering TLInfo
;
460 X86FrameLowering FrameLowering
;
463 /// This constructor initializes the data members to match that
464 /// of the specified triple.
466 X86Subtarget(const Triple
&TT
, StringRef CPU
, StringRef FS
,
467 const X86TargetMachine
&TM
, unsigned StackAlignOverride
,
468 unsigned PreferVectorWidthOverride
,
469 unsigned RequiredVectorWidth
);
471 const X86TargetLowering
*getTargetLowering() const override
{
475 const X86InstrInfo
*getInstrInfo() const override
{ return &InstrInfo
; }
477 const X86FrameLowering
*getFrameLowering() const override
{
478 return &FrameLowering
;
481 const X86SelectionDAGInfo
*getSelectionDAGInfo() const override
{
485 const X86RegisterInfo
*getRegisterInfo() const override
{
486 return &getInstrInfo()->getRegisterInfo();
489 /// Returns the minimum alignment known to hold of the
490 /// stack frame on entry to the function and which must be maintained by every
491 /// function for this subtarget.
492 unsigned getStackAlignment() const { return stackAlignment
; }
494 /// Returns the maximum memset / memcpy size
495 /// that still makes it profitable to inline the call.
496 unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold
; }
498 /// ParseSubtargetFeatures - Parses features string setting specified
499 /// subtarget options. Definition of function is auto generated by tblgen.
500 void ParseSubtargetFeatures(StringRef CPU
, StringRef FS
);
502 /// Methods used by Global ISel
503 const CallLowering
*getCallLowering() const override
;
504 const InstructionSelector
*getInstructionSelector() const override
;
505 const LegalizerInfo
*getLegalizerInfo() const override
;
506 const RegisterBankInfo
*getRegBankInfo() const override
;
509 /// Initialize the full set of dependencies so we can use an initializer
510 /// list for X86Subtarget.
511 X86Subtarget
&initializeSubtargetDependencies(StringRef CPU
, StringRef FS
);
512 void initSubtargetFeatures(StringRef CPU
, StringRef FS
);
515 /// Is this x86_64? (disregarding specific ABI / programming model)
516 bool is64Bit() const {
520 bool is32Bit() const {
524 bool is16Bit() const {
528 /// Is this x86_64 with the ILP32 programming model (x32 ABI)?
529 bool isTarget64BitILP32() const {
530 return In64BitMode
&& (TargetTriple
.getEnvironment() == Triple::GNUX32
||
531 TargetTriple
.isOSNaCl());
534 /// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)?
535 bool isTarget64BitLP64() const {
536 return In64BitMode
&& (TargetTriple
.getEnvironment() != Triple::GNUX32
&&
537 !TargetTriple
.isOSNaCl());
540 PICStyles::Style
getPICStyle() const { return PICStyle
; }
541 void setPICStyle(PICStyles::Style Style
) { PICStyle
= Style
; }
543 bool hasX87() const { return HasX87
; }
544 bool hasNOPL() const { return HasNOPL
; }
545 // SSE codegen depends on cmovs, and all SSE1+ processors support them.
546 // All 64-bit processors support cmov.
547 bool hasCMov() const { return HasCMov
|| X86SSELevel
>= SSE1
|| is64Bit(); }
548 bool hasSSE1() const { return X86SSELevel
>= SSE1
; }
549 bool hasSSE2() const { return X86SSELevel
>= SSE2
; }
550 bool hasSSE3() const { return X86SSELevel
>= SSE3
; }
551 bool hasSSSE3() const { return X86SSELevel
>= SSSE3
; }
552 bool hasSSE41() const { return X86SSELevel
>= SSE41
; }
553 bool hasSSE42() const { return X86SSELevel
>= SSE42
; }
554 bool hasAVX() const { return X86SSELevel
>= AVX
; }
555 bool hasAVX2() const { return X86SSELevel
>= AVX2
; }
556 bool hasAVX512() const { return X86SSELevel
>= AVX512F
; }
557 bool hasInt256() const { return hasAVX2(); }
558 bool hasSSE4A() const { return HasSSE4A
; }
559 bool hasMMX() const { return X863DNowLevel
>= MMX
; }
560 bool has3DNow() const { return X863DNowLevel
>= ThreeDNow
; }
561 bool has3DNowA() const { return X863DNowLevel
>= ThreeDNowA
; }
562 bool hasPOPCNT() const { return HasPOPCNT
; }
563 bool hasAES() const { return HasAES
; }
564 bool hasVAES() const { return HasVAES
; }
565 bool hasFXSR() const { return HasFXSR
; }
566 bool hasXSAVE() const { return HasXSAVE
; }
567 bool hasXSAVEOPT() const { return HasXSAVEOPT
; }
568 bool hasXSAVEC() const { return HasXSAVEC
; }
569 bool hasXSAVES() const { return HasXSAVES
; }
570 bool hasPCLMUL() const { return HasPCLMUL
; }
571 bool hasVPCLMULQDQ() const { return HasVPCLMULQDQ
; }
572 bool hasGFNI() const { return HasGFNI
; }
573 // Prefer FMA4 to FMA - its better for commutation/memory folding and
574 // has equal or better performance on all supported targets.
575 bool hasFMA() const { return HasFMA
; }
576 bool hasFMA4() const { return HasFMA4
; }
577 bool hasAnyFMA() const { return hasFMA() || hasFMA4(); }
578 bool hasXOP() const { return HasXOP
; }
579 bool hasTBM() const { return HasTBM
; }
580 bool hasLWP() const { return HasLWP
; }
581 bool hasMOVBE() const { return HasMOVBE
; }
582 bool hasRDRAND() const { return HasRDRAND
; }
583 bool hasF16C() const { return HasF16C
; }
584 bool hasFSGSBase() const { return HasFSGSBase
; }
585 bool hasLZCNT() const { return HasLZCNT
; }
586 bool hasBMI() const { return HasBMI
; }
587 bool hasBMI2() const { return HasBMI2
; }
588 bool hasVBMI() const { return HasVBMI
; }
589 bool hasVBMI2() const { return HasVBMI2
; }
590 bool hasIFMA() const { return HasIFMA
; }
591 bool hasRTM() const { return HasRTM
; }
592 bool hasADX() const { return HasADX
; }
593 bool hasSHA() const { return HasSHA
; }
594 bool hasPRFCHW() const { return HasPRFCHW
|| HasPREFETCHWT1
; }
595 bool hasPREFETCHWT1() const { return HasPREFETCHWT1
; }
596 bool hasSSEPrefetch() const {
597 // We implicitly enable these when we have a write prefix supporting cache
598 // level OR if we have prfchw, but don't already have a read prefetch from
600 return hasSSE1() || (hasPRFCHW() && !has3DNow()) || hasPREFETCHWT1();
602 bool hasRDSEED() const { return HasRDSEED
; }
603 bool hasLAHFSAHF() const { return HasLAHFSAHF
; }
604 bool hasMWAITX() const { return HasMWAITX
; }
605 bool hasCLZERO() const { return HasCLZERO
; }
606 bool hasCLDEMOTE() const { return HasCLDEMOTE
; }
607 bool hasMOVDIRI() const { return HasMOVDIRI
; }
608 bool hasMOVDIR64B() const { return HasMOVDIR64B
; }
609 bool hasPTWRITE() const { return HasPTWRITE
; }
610 bool isSHLDSlow() const { return IsSHLDSlow
; }
611 bool isPMULLDSlow() const { return IsPMULLDSlow
; }
612 bool isUnalignedMem16Slow() const { return IsUAMem16Slow
; }
613 bool isUnalignedMem32Slow() const { return IsUAMem32Slow
; }
614 int getGatherOverhead() const { return GatherOverhead
; }
615 int getScatterOverhead() const { return ScatterOverhead
; }
616 bool hasSSEUnalignedMem() const { return HasSSEUnalignedMem
; }
617 bool hasCmpxchg16b() const { return HasCmpxchg16b
; }
618 bool useLeaForSP() const { return UseLeaForSP
; }
619 bool hasPOPCNTFalseDeps() const { return HasPOPCNTFalseDeps
; }
620 bool hasLZCNTFalseDeps() const { return HasLZCNTFalseDeps
; }
621 bool hasFastVariableShuffle() const {
622 return HasFastVariableShuffle
;
624 bool hasFastPartialYMMorZMMWrite() const {
625 return HasFastPartialYMMorZMMWrite
;
627 bool hasFastGather() const { return HasFastGather
; }
628 bool hasFastScalarFSQRT() const { return HasFastScalarFSQRT
; }
629 bool hasFastVectorFSQRT() const { return HasFastVectorFSQRT
; }
630 bool hasFastLZCNT() const { return HasFastLZCNT
; }
631 bool hasFastSHLDRotate() const { return HasFastSHLDRotate
; }
632 bool hasMacroFusion() const { return HasMacroFusion
; }
633 bool hasERMSB() const { return HasERMSB
; }
634 bool hasSlowDivide32() const { return HasSlowDivide32
; }
635 bool hasSlowDivide64() const { return HasSlowDivide64
; }
636 bool padShortFunctions() const { return PadShortFunctions
; }
637 bool slowTwoMemOps() const { return SlowTwoMemOps
; }
638 bool LEAusesAG() const { return LEAUsesAG
; }
639 bool slowLEA() const { return SlowLEA
; }
640 bool slow3OpsLEA() const { return Slow3OpsLEA
; }
641 bool slowIncDec() const { return SlowIncDec
; }
642 bool hasCDI() const { return HasCDI
; }
643 bool hasVPOPCNTDQ() const { return HasVPOPCNTDQ
; }
644 bool hasPFI() const { return HasPFI
; }
645 bool hasERI() const { return HasERI
; }
646 bool hasDQI() const { return HasDQI
; }
647 bool hasBWI() const { return HasBWI
; }
648 bool hasVLX() const { return HasVLX
; }
649 bool hasPKU() const { return HasPKU
; }
650 bool hasVNNI() const { return HasVNNI
; }
651 bool hasBITALG() const { return HasBITALG
; }
652 bool hasMPX() const { return HasMPX
; }
653 bool hasSHSTK() const { return HasSHSTK
; }
654 bool hasCLFLUSHOPT() const { return HasCLFLUSHOPT
; }
655 bool hasCLWB() const { return HasCLWB
; }
656 bool hasWBNOINVD() const { return HasWBNOINVD
; }
657 bool hasRDPID() const { return HasRDPID
; }
658 bool hasWAITPKG() const { return HasWAITPKG
; }
659 bool hasPCONFIG() const { return HasPCONFIG
; }
660 bool hasSGX() const { return HasSGX
; }
661 bool hasINVPCID() const { return HasINVPCID
; }
662 bool useRetpolineIndirectCalls() const { return UseRetpolineIndirectCalls
; }
663 bool useRetpolineIndirectBranches() const {
664 return UseRetpolineIndirectBranches
;
666 bool useRetpolineExternalThunk() const { return UseRetpolineExternalThunk
; }
668 unsigned getPreferVectorWidth() const { return PreferVectorWidth
; }
669 unsigned getRequiredVectorWidth() const { return RequiredVectorWidth
; }
671 // Helper functions to determine when we should allow widening to 512-bit
673 // TODO: Currently we're always allowing widening on CPUs without VLX,
674 // because for many cases we don't have a better option.
675 bool canExtendTo512DQ() const {
676 return hasAVX512() && (!hasVLX() || getPreferVectorWidth() >= 512);
678 bool canExtendTo512BW() const {
679 return hasBWI() && canExtendTo512DQ();
682 // If there are no 512-bit vectors and we prefer not to use 512-bit registers,
683 // disable them in the legalizer.
684 bool useAVX512Regs() const {
685 return hasAVX512() && (canExtendTo512DQ() || RequiredVectorWidth
> 256);
688 bool useBWIRegs() const {
689 return hasBWI() && useAVX512Regs();
692 bool isXRaySupported() const override
{ return is64Bit(); }
694 X86ProcFamilyEnum
getProcFamily() const { return X86ProcFamily
; }
696 /// TODO: to be removed later and replaced with suitable properties
697 bool isAtom() const { return X86ProcFamily
== IntelAtom
; }
698 bool isSLM() const { return X86ProcFamily
== IntelSLM
; }
700 return X86ProcFamily
== IntelGLM
||
701 X86ProcFamily
== IntelGLP
||
702 X86ProcFamily
== IntelTRM
;
704 bool useSoftFloat() const { return UseSoftFloat
; }
706 /// Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
707 /// no-sse2). There isn't any reason to disable it if the target processor
709 bool hasMFence() const { return hasSSE2() || is64Bit(); }
711 const Triple
&getTargetTriple() const { return TargetTriple
; }
713 bool isTargetDarwin() const { return TargetTriple
.isOSDarwin(); }
714 bool isTargetFreeBSD() const { return TargetTriple
.isOSFreeBSD(); }
715 bool isTargetDragonFly() const { return TargetTriple
.isOSDragonFly(); }
716 bool isTargetSolaris() const { return TargetTriple
.isOSSolaris(); }
717 bool isTargetPS4() const { return TargetTriple
.isPS4CPU(); }
719 bool isTargetELF() const { return TargetTriple
.isOSBinFormatELF(); }
720 bool isTargetCOFF() const { return TargetTriple
.isOSBinFormatCOFF(); }
721 bool isTargetMachO() const { return TargetTriple
.isOSBinFormatMachO(); }
723 bool isTargetLinux() const { return TargetTriple
.isOSLinux(); }
724 bool isTargetKFreeBSD() const { return TargetTriple
.isOSKFreeBSD(); }
725 bool isTargetGlibc() const { return TargetTriple
.isOSGlibc(); }
726 bool isTargetAndroid() const { return TargetTriple
.isAndroid(); }
727 bool isTargetNaCl() const { return TargetTriple
.isOSNaCl(); }
728 bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); }
729 bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); }
730 bool isTargetMCU() const { return TargetTriple
.isOSIAMCU(); }
731 bool isTargetFuchsia() const { return TargetTriple
.isOSFuchsia(); }
733 bool isTargetWindowsMSVC() const {
734 return TargetTriple
.isWindowsMSVCEnvironment();
737 bool isTargetKnownWindowsMSVC() const {
738 return TargetTriple
.isKnownWindowsMSVCEnvironment();
741 bool isTargetWindowsCoreCLR() const {
742 return TargetTriple
.isWindowsCoreCLREnvironment();
745 bool isTargetWindowsCygwin() const {
746 return TargetTriple
.isWindowsCygwinEnvironment();
749 bool isTargetWindowsGNU() const {
750 return TargetTriple
.isWindowsGNUEnvironment();
753 bool isTargetWindowsItanium() const {
754 return TargetTriple
.isWindowsItaniumEnvironment();
757 bool isTargetCygMing() const { return TargetTriple
.isOSCygMing(); }
759 bool isOSWindows() const { return TargetTriple
.isOSWindows(); }
761 bool isTargetWin64() const { return In64BitMode
&& isOSWindows(); }
763 bool isTargetWin32() const { return !In64BitMode
&& isOSWindows(); }
765 bool isPICStyleGOT() const { return PICStyle
== PICStyles::GOT
; }
766 bool isPICStyleRIPRel() const { return PICStyle
== PICStyles::RIPRel
; }
768 bool isPICStyleStubPIC() const {
769 return PICStyle
== PICStyles::StubPIC
;
772 bool isPositionIndependent() const { return TM
.isPositionIndependent(); }
774 bool isCallingConvWin64(CallingConv::ID CC
) const {
776 // On Win64, all these conventions just use the default convention.
778 case CallingConv::Fast
:
779 case CallingConv::Swift
:
780 case CallingConv::X86_FastCall
:
781 case CallingConv::X86_StdCall
:
782 case CallingConv::X86_ThisCall
:
783 case CallingConv::X86_VectorCall
:
784 case CallingConv::Intel_OCL_BI
:
785 return isTargetWin64();
786 // This convention allows using the Win64 convention on other targets.
787 case CallingConv::Win64
:
789 // This convention allows using the SysV convention on Windows targets.
790 case CallingConv::X86_64_SysV
:
792 // Otherwise, who knows what this is.
798 /// Classify a global variable reference for the current subtarget according
799 /// to how we should reference it in a non-pcrel context.
800 unsigned char classifyLocalReference(const GlobalValue
*GV
) const;
802 unsigned char classifyGlobalReference(const GlobalValue
*GV
,
803 const Module
&M
) const;
804 unsigned char classifyGlobalReference(const GlobalValue
*GV
) const;
806 /// Classify a global function reference for the current subtarget.
807 unsigned char classifyGlobalFunctionReference(const GlobalValue
*GV
,
808 const Module
&M
) const;
809 unsigned char classifyGlobalFunctionReference(const GlobalValue
*GV
) const;
811 /// Classify a blockaddress reference for the current subtarget according to
812 /// how we should reference it in a non-pcrel context.
813 unsigned char classifyBlockAddressReference() const;
815 /// Return true if the subtarget allows calls to immediate address.
816 bool isLegalToCallImmediateAddr() const;
818 /// If we are using retpolines, we need to expand indirectbr to avoid it
819 /// lowering to an actual indirect jump.
820 bool enableIndirectBrExpand() const override
{
821 return useRetpolineIndirectBranches();
824 /// Enable the MachineScheduler pass for all X86 subtargets.
825 bool enableMachineScheduler() const override
{ return true; }
827 // TODO: Update the regression tests and return true.
828 bool supportPrintSchedInfo() const override
{ return false; }
830 bool enableEarlyIfConversion() const override
;
832 AntiDepBreakMode
getAntiDepBreakMode() const override
{
833 return TargetSubtargetInfo::ANTIDEP_CRITICAL
;
836 bool enableAdvancedRASplitCost() const override
{ return true; }
839 } // end namespace llvm
841 #endif // LLVM_LIB_TARGET_X86_X86SUBTARGET_H