1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/PseudoSourceValue.h"
29 #include "llvm/CodeGen/ScheduleDAG.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/raw_ostream.h"
42 #define DEBUG_TYPE "ppc-instr-info"
44 #define GET_INSTRMAP_INFO
45 #define GET_INSTRINFO_CTOR_DTOR
46 #include "PPCGenInstrInfo.inc"
48 STATISTIC(NumStoreSPILLVSRRCAsVec
,
49 "Number of spillvsrrc spilled to stack as vec");
50 STATISTIC(NumStoreSPILLVSRRCAsGpr
,
51 "Number of spillvsrrc spilled to stack as gpr");
52 STATISTIC(NumGPRtoVSRSpill
, "Number of gpr spills to spillvsrrc");
53 STATISTIC(CmpIselsConverted
,
54 "Number of ISELs that depend on comparison of constants converted");
55 STATISTIC(MissedConvertibleImmediateInstrs
,
56 "Number of compare-immediate instructions fed by constants");
57 STATISTIC(NumRcRotatesConvertedToRcAnd
,
58 "Number of record-form rotates converted to record-form andi");
61 opt
<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden
,
62 cl::desc("Disable analysis for CTR loops"));
64 static cl::opt
<bool> DisableCmpOpt("disable-ppc-cmp-opt",
65 cl::desc("Disable compare instruction optimization"), cl::Hidden
);
67 static cl::opt
<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden
,
73 cl::desc("Use the old (incorrect) instruction latency calculation"));
75 // Index into the OpcodesForSpill array.
85 SOK_VectorFloat8Spill
,
86 SOK_VectorFloat4Spill
,
94 SOK_LastOpcodeSpill
// This must be last on the enum.
97 // Pin the vtable to this file.
98 void PPCInstrInfo::anchor() {}
100 PPCInstrInfo::PPCInstrInfo(PPCSubtarget
&STI
)
101 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN
, PPC::ADJCALLSTACKUP
,
102 /* CatchRetOpcode */ -1,
103 STI
.isPPC64() ? PPC::BLR8
: PPC::BLR
),
104 Subtarget(STI
), RI(STI
.getTargetMachine()) {}
106 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
107 /// this target when scheduling the DAG.
108 ScheduleHazardRecognizer
*
109 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo
*STI
,
110 const ScheduleDAG
*DAG
) const {
112 static_cast<const PPCSubtarget
*>(STI
)->getDarwinDirective();
113 if (Directive
== PPC::DIR_440
|| Directive
== PPC::DIR_A2
||
114 Directive
== PPC::DIR_E500mc
|| Directive
== PPC::DIR_E5500
) {
115 const InstrItineraryData
*II
=
116 static_cast<const PPCSubtarget
*>(STI
)->getInstrItineraryData();
117 return new ScoreboardHazardRecognizer(II
, DAG
);
120 return TargetInstrInfo::CreateTargetHazardRecognizer(STI
, DAG
);
123 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
124 /// to use for this target when scheduling the DAG.
125 ScheduleHazardRecognizer
*
126 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData
*II
,
127 const ScheduleDAG
*DAG
) const {
129 DAG
->MF
.getSubtarget
<PPCSubtarget
>().getDarwinDirective();
131 // FIXME: Leaving this as-is until we have POWER9 scheduling info
132 if (Directive
== PPC::DIR_PWR7
|| Directive
== PPC::DIR_PWR8
)
133 return new PPCDispatchGroupSBHazardRecognizer(II
, DAG
);
135 // Most subtargets use a PPC970 recognizer.
136 if (Directive
!= PPC::DIR_440
&& Directive
!= PPC::DIR_A2
&&
137 Directive
!= PPC::DIR_E500mc
&& Directive
!= PPC::DIR_E5500
) {
138 assert(DAG
->TII
&& "No InstrInfo?");
140 return new PPCHazardRecognizer970(*DAG
);
143 return new ScoreboardHazardRecognizer(II
, DAG
);
146 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData
*ItinData
,
147 const MachineInstr
&MI
,
148 unsigned *PredCost
) const {
149 if (!ItinData
|| UseOldLatencyCalc
)
150 return PPCGenInstrInfo::getInstrLatency(ItinData
, MI
, PredCost
);
152 // The default implementation of getInstrLatency calls getStageLatency, but
153 // getStageLatency does not do the right thing for us. While we have
154 // itinerary, most cores are fully pipelined, and so the itineraries only
155 // express the first part of the pipeline, not every stage. Instead, we need
156 // to use the listed output operand cycle number (using operand 0 here, which
159 unsigned Latency
= 1;
160 unsigned DefClass
= MI
.getDesc().getSchedClass();
161 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
162 const MachineOperand
&MO
= MI
.getOperand(i
);
163 if (!MO
.isReg() || !MO
.isDef() || MO
.isImplicit())
166 int Cycle
= ItinData
->getOperandCycle(DefClass
, i
);
170 Latency
= std::max(Latency
, (unsigned) Cycle
);
176 int PPCInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
177 const MachineInstr
&DefMI
, unsigned DefIdx
,
178 const MachineInstr
&UseMI
,
179 unsigned UseIdx
) const {
180 int Latency
= PPCGenInstrInfo::getOperandLatency(ItinData
, DefMI
, DefIdx
,
183 if (!DefMI
.getParent())
186 const MachineOperand
&DefMO
= DefMI
.getOperand(DefIdx
);
187 unsigned Reg
= DefMO
.getReg();
190 if (TargetRegisterInfo::isVirtualRegister(Reg
)) {
191 const MachineRegisterInfo
*MRI
=
192 &DefMI
.getParent()->getParent()->getRegInfo();
193 IsRegCR
= MRI
->getRegClass(Reg
)->hasSuperClassEq(&PPC::CRRCRegClass
) ||
194 MRI
->getRegClass(Reg
)->hasSuperClassEq(&PPC::CRBITRCRegClass
);
196 IsRegCR
= PPC::CRRCRegClass
.contains(Reg
) ||
197 PPC::CRBITRCRegClass
.contains(Reg
);
200 if (UseMI
.isBranch() && IsRegCR
) {
202 Latency
= getInstrLatency(ItinData
, DefMI
);
204 // On some cores, there is an additional delay between writing to a condition
205 // register, and using it from a branch.
206 unsigned Directive
= Subtarget
.getDarwinDirective();
220 // FIXME: Is this needed for POWER9?
229 // This function does not list all associative and commutative operations, but
230 // only those worth feeding through the machine combiner in an attempt to
231 // reduce the critical path. Mostly, this means floating-point operations,
232 // because they have high latencies (compared to other operations, such and
233 // and/or, which are also associative and commutative, but have low latencies).
234 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr
&Inst
) const {
235 switch (Inst
.getOpcode()) {
268 bool PPCInstrInfo::getMachineCombinerPatterns(
270 SmallVectorImpl
<MachineCombinerPattern
> &Patterns
) const {
271 // Using the machine combiner in this way is potentially expensive, so
272 // restrict to when aggressive optimizations are desired.
273 if (Subtarget
.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive
)
276 // FP reassociation is only legal when we don't need strict IEEE semantics.
277 if (!Root
.getParent()->getParent()->getTarget().Options
.UnsafeFPMath
)
280 return TargetInstrInfo::getMachineCombinerPatterns(Root
, Patterns
);
283 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
284 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr
&MI
,
285 unsigned &SrcReg
, unsigned &DstReg
,
286 unsigned &SubIdx
) const {
287 switch (MI
.getOpcode()) {
288 default: return false;
291 case PPC::EXTSW_32_64
:
292 SrcReg
= MI
.getOperand(1).getReg();
293 DstReg
= MI
.getOperand(0).getReg();
294 SubIdx
= PPC::sub_32
;
299 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr
&MI
,
300 int &FrameIndex
) const {
301 unsigned Opcode
= MI
.getOpcode();
302 const unsigned *OpcodesForSpill
= getLoadOpcodesForSpillArray();
303 const unsigned *End
= OpcodesForSpill
+ SOK_LastOpcodeSpill
;
305 if (End
!= std::find(OpcodesForSpill
, End
, Opcode
)) {
306 // Check for the operands added by addFrameReference (the immediate is the
307 // offset which defaults to 0).
308 if (MI
.getOperand(1).isImm() && !MI
.getOperand(1).getImm() &&
309 MI
.getOperand(2).isFI()) {
310 FrameIndex
= MI
.getOperand(2).getIndex();
311 return MI
.getOperand(0).getReg();
317 // For opcodes with the ReMaterializable flag set, this function is called to
318 // verify the instruction is really rematable.
319 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr
&MI
,
320 AliasAnalysis
*AA
) const {
321 switch (MI
.getOpcode()) {
323 // This function should only be called for opcodes with the ReMaterializable
325 llvm_unreachable("Unknown rematerializable operation!");
332 case PPC::ADDIStocHA
:
334 case PPC::LOAD_STACK_GUARD
:
341 case PPC::V_SETALLONESB
:
342 case PPC::V_SETALLONESH
:
343 case PPC::V_SETALLONES
:
351 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr
&MI
,
352 int &FrameIndex
) const {
353 unsigned Opcode
= MI
.getOpcode();
354 const unsigned *OpcodesForSpill
= getStoreOpcodesForSpillArray();
355 const unsigned *End
= OpcodesForSpill
+ SOK_LastOpcodeSpill
;
357 if (End
!= std::find(OpcodesForSpill
, End
, Opcode
)) {
358 if (MI
.getOperand(1).isImm() && !MI
.getOperand(1).getImm() &&
359 MI
.getOperand(2).isFI()) {
360 FrameIndex
= MI
.getOperand(2).getIndex();
361 return MI
.getOperand(0).getReg();
367 MachineInstr
*PPCInstrInfo::commuteInstructionImpl(MachineInstr
&MI
, bool NewMI
,
369 unsigned OpIdx2
) const {
370 MachineFunction
&MF
= *MI
.getParent()->getParent();
372 // Normal instructions can be commuted the obvious way.
373 if (MI
.getOpcode() != PPC::RLWIMI
&& MI
.getOpcode() != PPC::RLWIMIo
)
374 return TargetInstrInfo::commuteInstructionImpl(MI
, NewMI
, OpIdx1
, OpIdx2
);
375 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
376 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
377 // changing the relative order of the mask operands might change what happens
378 // to the high-bits of the mask (and, thus, the result).
380 // Cannot commute if it has a non-zero rotate count.
381 if (MI
.getOperand(3).getImm() != 0)
384 // If we have a zero rotate count, we have:
386 // Op0 = (Op1 & ~M) | (Op2 & M)
388 // M = mask((ME+1)&31, (MB-1)&31)
389 // Op0 = (Op2 & ~M) | (Op1 & M)
392 assert(((OpIdx1
== 1 && OpIdx2
== 2) || (OpIdx1
== 2 && OpIdx2
== 1)) &&
393 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
394 Register Reg0
= MI
.getOperand(0).getReg();
395 Register Reg1
= MI
.getOperand(1).getReg();
396 Register Reg2
= MI
.getOperand(2).getReg();
397 unsigned SubReg1
= MI
.getOperand(1).getSubReg();
398 unsigned SubReg2
= MI
.getOperand(2).getSubReg();
399 bool Reg1IsKill
= MI
.getOperand(1).isKill();
400 bool Reg2IsKill
= MI
.getOperand(2).isKill();
401 bool ChangeReg0
= false;
402 // If machine instrs are no longer in two-address forms, update
403 // destination register as well.
405 // Must be two address instruction!
406 assert(MI
.getDesc().getOperandConstraint(0, MCOI::TIED_TO
) &&
407 "Expecting a two-address instruction!");
408 assert(MI
.getOperand(0).getSubReg() == SubReg1
&& "Tied subreg mismatch");
414 unsigned MB
= MI
.getOperand(4).getImm();
415 unsigned ME
= MI
.getOperand(5).getImm();
417 // We can't commute a trivial mask (there is no way to represent an all-zero
419 if (MB
== 0 && ME
== 31)
423 // Create a new instruction.
424 Register Reg0
= ChangeReg0
? Reg2
: MI
.getOperand(0).getReg();
425 bool Reg0IsDead
= MI
.getOperand(0).isDead();
426 return BuildMI(MF
, MI
.getDebugLoc(), MI
.getDesc())
427 .addReg(Reg0
, RegState::Define
| getDeadRegState(Reg0IsDead
))
428 .addReg(Reg2
, getKillRegState(Reg2IsKill
))
429 .addReg(Reg1
, getKillRegState(Reg1IsKill
))
430 .addImm((ME
+ 1) & 31)
431 .addImm((MB
- 1) & 31);
435 MI
.getOperand(0).setReg(Reg2
);
436 MI
.getOperand(0).setSubReg(SubReg2
);
438 MI
.getOperand(2).setReg(Reg1
);
439 MI
.getOperand(1).setReg(Reg2
);
440 MI
.getOperand(2).setSubReg(SubReg1
);
441 MI
.getOperand(1).setSubReg(SubReg2
);
442 MI
.getOperand(2).setIsKill(Reg1IsKill
);
443 MI
.getOperand(1).setIsKill(Reg2IsKill
);
445 // Swap the mask around.
446 MI
.getOperand(4).setImm((ME
+ 1) & 31);
447 MI
.getOperand(5).setImm((MB
- 1) & 31);
451 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr
&MI
, unsigned &SrcOpIdx1
,
452 unsigned &SrcOpIdx2
) const {
453 // For VSX A-Type FMA instructions, it is the first two operands that can be
454 // commuted, however, because the non-encoded tied input operand is listed
455 // first, the operands to swap are actually the second and third.
457 int AltOpc
= PPC::getAltVSXFMAOpcode(MI
.getOpcode());
459 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
461 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
463 return fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
, 2, 3);
466 void PPCInstrInfo::insertNoop(MachineBasicBlock
&MBB
,
467 MachineBasicBlock::iterator MI
) const {
468 // This function is used for scheduling, and the nop wanted here is the type
469 // that terminates dispatch groups on the POWER cores.
470 unsigned Directive
= Subtarget
.getDarwinDirective();
473 default: Opcode
= PPC::NOP
; break;
474 case PPC::DIR_PWR6
: Opcode
= PPC::NOP_GT_PWR6
; break;
475 case PPC::DIR_PWR7
: Opcode
= PPC::NOP_GT_PWR7
; break;
476 case PPC::DIR_PWR8
: Opcode
= PPC::NOP_GT_PWR7
; break; /* FIXME: Update when P8 InstrScheduling model is ready */
477 // FIXME: Update when POWER9 scheduling model is ready.
478 case PPC::DIR_PWR9
: Opcode
= PPC::NOP_GT_PWR7
; break;
482 BuildMI(MBB
, MI
, DL
, get(Opcode
));
485 /// Return the noop instruction to use for a noop.
486 void PPCInstrInfo::getNoop(MCInst
&NopInst
) const {
487 NopInst
.setOpcode(PPC::NOP
);
491 // Note: If the condition register is set to CTR or CTR8 then this is a
492 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
493 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock
&MBB
,
494 MachineBasicBlock
*&TBB
,
495 MachineBasicBlock
*&FBB
,
496 SmallVectorImpl
<MachineOperand
> &Cond
,
497 bool AllowModify
) const {
498 bool isPPC64
= Subtarget
.isPPC64();
500 // If the block has no terminators, it just falls into the block after it.
501 MachineBasicBlock::iterator I
= MBB
.getLastNonDebugInstr();
505 if (!isUnpredicatedTerminator(*I
))
509 // If the BB ends with an unconditional branch to the fallthrough BB,
510 // we eliminate the branch instruction.
511 if (I
->getOpcode() == PPC::B
&&
512 MBB
.isLayoutSuccessor(I
->getOperand(0).getMBB())) {
513 I
->eraseFromParent();
515 // We update iterator after deleting the last branch.
516 I
= MBB
.getLastNonDebugInstr();
517 if (I
== MBB
.end() || !isUnpredicatedTerminator(*I
))
522 // Get the last instruction in the block.
523 MachineInstr
&LastInst
= *I
;
525 // If there is only one terminator instruction, process it.
526 if (I
== MBB
.begin() || !isUnpredicatedTerminator(*--I
)) {
527 if (LastInst
.getOpcode() == PPC::B
) {
528 if (!LastInst
.getOperand(0).isMBB())
530 TBB
= LastInst
.getOperand(0).getMBB();
532 } else if (LastInst
.getOpcode() == PPC::BCC
) {
533 if (!LastInst
.getOperand(2).isMBB())
535 // Block ends with fall-through condbranch.
536 TBB
= LastInst
.getOperand(2).getMBB();
537 Cond
.push_back(LastInst
.getOperand(0));
538 Cond
.push_back(LastInst
.getOperand(1));
540 } else if (LastInst
.getOpcode() == PPC::BC
) {
541 if (!LastInst
.getOperand(1).isMBB())
543 // Block ends with fall-through condbranch.
544 TBB
= LastInst
.getOperand(1).getMBB();
545 Cond
.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET
));
546 Cond
.push_back(LastInst
.getOperand(0));
548 } else if (LastInst
.getOpcode() == PPC::BCn
) {
549 if (!LastInst
.getOperand(1).isMBB())
551 // Block ends with fall-through condbranch.
552 TBB
= LastInst
.getOperand(1).getMBB();
553 Cond
.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET
));
554 Cond
.push_back(LastInst
.getOperand(0));
556 } else if (LastInst
.getOpcode() == PPC::BDNZ8
||
557 LastInst
.getOpcode() == PPC::BDNZ
) {
558 if (!LastInst
.getOperand(0).isMBB())
560 if (DisableCTRLoopAnal
)
562 TBB
= LastInst
.getOperand(0).getMBB();
563 Cond
.push_back(MachineOperand::CreateImm(1));
564 Cond
.push_back(MachineOperand::CreateReg(isPPC64
? PPC::CTR8
: PPC::CTR
,
567 } else if (LastInst
.getOpcode() == PPC::BDZ8
||
568 LastInst
.getOpcode() == PPC::BDZ
) {
569 if (!LastInst
.getOperand(0).isMBB())
571 if (DisableCTRLoopAnal
)
573 TBB
= LastInst
.getOperand(0).getMBB();
574 Cond
.push_back(MachineOperand::CreateImm(0));
575 Cond
.push_back(MachineOperand::CreateReg(isPPC64
? PPC::CTR8
: PPC::CTR
,
580 // Otherwise, don't know what this is.
584 // Get the instruction before it if it's a terminator.
585 MachineInstr
&SecondLastInst
= *I
;
587 // If there are three terminators, we don't know what sort of block this is.
588 if (I
!= MBB
.begin() && isUnpredicatedTerminator(*--I
))
591 // If the block ends with PPC::B and PPC:BCC, handle it.
592 if (SecondLastInst
.getOpcode() == PPC::BCC
&&
593 LastInst
.getOpcode() == PPC::B
) {
594 if (!SecondLastInst
.getOperand(2).isMBB() ||
595 !LastInst
.getOperand(0).isMBB())
597 TBB
= SecondLastInst
.getOperand(2).getMBB();
598 Cond
.push_back(SecondLastInst
.getOperand(0));
599 Cond
.push_back(SecondLastInst
.getOperand(1));
600 FBB
= LastInst
.getOperand(0).getMBB();
602 } else if (SecondLastInst
.getOpcode() == PPC::BC
&&
603 LastInst
.getOpcode() == PPC::B
) {
604 if (!SecondLastInst
.getOperand(1).isMBB() ||
605 !LastInst
.getOperand(0).isMBB())
607 TBB
= SecondLastInst
.getOperand(1).getMBB();
608 Cond
.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET
));
609 Cond
.push_back(SecondLastInst
.getOperand(0));
610 FBB
= LastInst
.getOperand(0).getMBB();
612 } else if (SecondLastInst
.getOpcode() == PPC::BCn
&&
613 LastInst
.getOpcode() == PPC::B
) {
614 if (!SecondLastInst
.getOperand(1).isMBB() ||
615 !LastInst
.getOperand(0).isMBB())
617 TBB
= SecondLastInst
.getOperand(1).getMBB();
618 Cond
.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET
));
619 Cond
.push_back(SecondLastInst
.getOperand(0));
620 FBB
= LastInst
.getOperand(0).getMBB();
622 } else if ((SecondLastInst
.getOpcode() == PPC::BDNZ8
||
623 SecondLastInst
.getOpcode() == PPC::BDNZ
) &&
624 LastInst
.getOpcode() == PPC::B
) {
625 if (!SecondLastInst
.getOperand(0).isMBB() ||
626 !LastInst
.getOperand(0).isMBB())
628 if (DisableCTRLoopAnal
)
630 TBB
= SecondLastInst
.getOperand(0).getMBB();
631 Cond
.push_back(MachineOperand::CreateImm(1));
632 Cond
.push_back(MachineOperand::CreateReg(isPPC64
? PPC::CTR8
: PPC::CTR
,
634 FBB
= LastInst
.getOperand(0).getMBB();
636 } else if ((SecondLastInst
.getOpcode() == PPC::BDZ8
||
637 SecondLastInst
.getOpcode() == PPC::BDZ
) &&
638 LastInst
.getOpcode() == PPC::B
) {
639 if (!SecondLastInst
.getOperand(0).isMBB() ||
640 !LastInst
.getOperand(0).isMBB())
642 if (DisableCTRLoopAnal
)
644 TBB
= SecondLastInst
.getOperand(0).getMBB();
645 Cond
.push_back(MachineOperand::CreateImm(0));
646 Cond
.push_back(MachineOperand::CreateReg(isPPC64
? PPC::CTR8
: PPC::CTR
,
648 FBB
= LastInst
.getOperand(0).getMBB();
652 // If the block ends with two PPC:Bs, handle it. The second one is not
653 // executed, so remove it.
654 if (SecondLastInst
.getOpcode() == PPC::B
&& LastInst
.getOpcode() == PPC::B
) {
655 if (!SecondLastInst
.getOperand(0).isMBB())
657 TBB
= SecondLastInst
.getOperand(0).getMBB();
660 I
->eraseFromParent();
664 // Otherwise, can't handle this.
668 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock
&MBB
,
669 int *BytesRemoved
) const {
670 assert(!BytesRemoved
&& "code size not handled");
672 MachineBasicBlock::iterator I
= MBB
.getLastNonDebugInstr();
676 if (I
->getOpcode() != PPC::B
&& I
->getOpcode() != PPC::BCC
&&
677 I
->getOpcode() != PPC::BC
&& I
->getOpcode() != PPC::BCn
&&
678 I
->getOpcode() != PPC::BDNZ8
&& I
->getOpcode() != PPC::BDNZ
&&
679 I
->getOpcode() != PPC::BDZ8
&& I
->getOpcode() != PPC::BDZ
)
682 // Remove the branch.
683 I
->eraseFromParent();
687 if (I
== MBB
.begin()) return 1;
689 if (I
->getOpcode() != PPC::BCC
&&
690 I
->getOpcode() != PPC::BC
&& I
->getOpcode() != PPC::BCn
&&
691 I
->getOpcode() != PPC::BDNZ8
&& I
->getOpcode() != PPC::BDNZ
&&
692 I
->getOpcode() != PPC::BDZ8
&& I
->getOpcode() != PPC::BDZ
)
695 // Remove the branch.
696 I
->eraseFromParent();
700 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock
&MBB
,
701 MachineBasicBlock
*TBB
,
702 MachineBasicBlock
*FBB
,
703 ArrayRef
<MachineOperand
> Cond
,
705 int *BytesAdded
) const {
706 // Shouldn't be a fall through.
707 assert(TBB
&& "insertBranch must not be told to insert a fallthrough");
708 assert((Cond
.size() == 2 || Cond
.size() == 0) &&
709 "PPC branch conditions have two components!");
710 assert(!BytesAdded
&& "code size not handled");
712 bool isPPC64
= Subtarget
.isPPC64();
716 if (Cond
.empty()) // Unconditional branch
717 BuildMI(&MBB
, DL
, get(PPC::B
)).addMBB(TBB
);
718 else if (Cond
[1].getReg() == PPC::CTR
|| Cond
[1].getReg() == PPC::CTR8
)
719 BuildMI(&MBB
, DL
, get(Cond
[0].getImm() ?
720 (isPPC64
? PPC::BDNZ8
: PPC::BDNZ
) :
721 (isPPC64
? PPC::BDZ8
: PPC::BDZ
))).addMBB(TBB
);
722 else if (Cond
[0].getImm() == PPC::PRED_BIT_SET
)
723 BuildMI(&MBB
, DL
, get(PPC::BC
)).add(Cond
[1]).addMBB(TBB
);
724 else if (Cond
[0].getImm() == PPC::PRED_BIT_UNSET
)
725 BuildMI(&MBB
, DL
, get(PPC::BCn
)).add(Cond
[1]).addMBB(TBB
);
726 else // Conditional branch
727 BuildMI(&MBB
, DL
, get(PPC::BCC
))
728 .addImm(Cond
[0].getImm())
734 // Two-way Conditional Branch.
735 if (Cond
[1].getReg() == PPC::CTR
|| Cond
[1].getReg() == PPC::CTR8
)
736 BuildMI(&MBB
, DL
, get(Cond
[0].getImm() ?
737 (isPPC64
? PPC::BDNZ8
: PPC::BDNZ
) :
738 (isPPC64
? PPC::BDZ8
: PPC::BDZ
))).addMBB(TBB
);
739 else if (Cond
[0].getImm() == PPC::PRED_BIT_SET
)
740 BuildMI(&MBB
, DL
, get(PPC::BC
)).add(Cond
[1]).addMBB(TBB
);
741 else if (Cond
[0].getImm() == PPC::PRED_BIT_UNSET
)
742 BuildMI(&MBB
, DL
, get(PPC::BCn
)).add(Cond
[1]).addMBB(TBB
);
744 BuildMI(&MBB
, DL
, get(PPC::BCC
))
745 .addImm(Cond
[0].getImm())
748 BuildMI(&MBB
, DL
, get(PPC::B
)).addMBB(FBB
);
753 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock
&MBB
,
754 ArrayRef
<MachineOperand
> Cond
,
755 unsigned TrueReg
, unsigned FalseReg
,
756 int &CondCycles
, int &TrueCycles
, int &FalseCycles
) const {
757 if (Cond
.size() != 2)
760 // If this is really a bdnz-like condition, then it cannot be turned into a
762 if (Cond
[1].getReg() == PPC::CTR
|| Cond
[1].getReg() == PPC::CTR8
)
765 // Check register classes.
766 const MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
767 const TargetRegisterClass
*RC
=
768 RI
.getCommonSubClass(MRI
.getRegClass(TrueReg
), MRI
.getRegClass(FalseReg
));
772 // isel is for regular integer GPRs only.
773 if (!PPC::GPRCRegClass
.hasSubClassEq(RC
) &&
774 !PPC::GPRC_NOR0RegClass
.hasSubClassEq(RC
) &&
775 !PPC::G8RCRegClass
.hasSubClassEq(RC
) &&
776 !PPC::G8RC_NOX0RegClass
.hasSubClassEq(RC
))
779 // FIXME: These numbers are for the A2, how well they work for other cores is
780 // an open question. On the A2, the isel instruction has a 2-cycle latency
781 // but single-cycle throughput. These numbers are used in combination with
782 // the MispredictPenalty setting from the active SchedMachineModel.
790 void PPCInstrInfo::insertSelect(MachineBasicBlock
&MBB
,
791 MachineBasicBlock::iterator MI
,
792 const DebugLoc
&dl
, unsigned DestReg
,
793 ArrayRef
<MachineOperand
> Cond
, unsigned TrueReg
,
794 unsigned FalseReg
) const {
795 assert(Cond
.size() == 2 &&
796 "PPC branch conditions have two components!");
798 // Get the register classes.
799 MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
800 const TargetRegisterClass
*RC
=
801 RI
.getCommonSubClass(MRI
.getRegClass(TrueReg
), MRI
.getRegClass(FalseReg
));
802 assert(RC
&& "TrueReg and FalseReg must have overlapping register classes");
804 bool Is64Bit
= PPC::G8RCRegClass
.hasSubClassEq(RC
) ||
805 PPC::G8RC_NOX0RegClass
.hasSubClassEq(RC
);
807 PPC::GPRCRegClass
.hasSubClassEq(RC
) ||
808 PPC::GPRC_NOR0RegClass
.hasSubClassEq(RC
)) &&
809 "isel is for regular integer GPRs only");
811 unsigned OpCode
= Is64Bit
? PPC::ISEL8
: PPC::ISEL
;
812 auto SelectPred
= static_cast<PPC::Predicate
>(Cond
[0].getImm());
815 bool SwapOps
= false;
816 switch (SelectPred
) {
818 case PPC::PRED_EQ_MINUS
:
819 case PPC::PRED_EQ_PLUS
:
820 SubIdx
= PPC::sub_eq
; SwapOps
= false; break;
822 case PPC::PRED_NE_MINUS
:
823 case PPC::PRED_NE_PLUS
:
824 SubIdx
= PPC::sub_eq
; SwapOps
= true; break;
826 case PPC::PRED_LT_MINUS
:
827 case PPC::PRED_LT_PLUS
:
828 SubIdx
= PPC::sub_lt
; SwapOps
= false; break;
830 case PPC::PRED_GE_MINUS
:
831 case PPC::PRED_GE_PLUS
:
832 SubIdx
= PPC::sub_lt
; SwapOps
= true; break;
834 case PPC::PRED_GT_MINUS
:
835 case PPC::PRED_GT_PLUS
:
836 SubIdx
= PPC::sub_gt
; SwapOps
= false; break;
838 case PPC::PRED_LE_MINUS
:
839 case PPC::PRED_LE_PLUS
:
840 SubIdx
= PPC::sub_gt
; SwapOps
= true; break;
842 case PPC::PRED_UN_MINUS
:
843 case PPC::PRED_UN_PLUS
:
844 SubIdx
= PPC::sub_un
; SwapOps
= false; break;
846 case PPC::PRED_NU_MINUS
:
847 case PPC::PRED_NU_PLUS
:
848 SubIdx
= PPC::sub_un
; SwapOps
= true; break;
849 case PPC::PRED_BIT_SET
: SubIdx
= 0; SwapOps
= false; break;
850 case PPC::PRED_BIT_UNSET
: SubIdx
= 0; SwapOps
= true; break;
853 unsigned FirstReg
= SwapOps
? FalseReg
: TrueReg
,
854 SecondReg
= SwapOps
? TrueReg
: FalseReg
;
856 // The first input register of isel cannot be r0. If it is a member
857 // of a register class that can be r0, then copy it first (the
858 // register allocator should eliminate the copy).
859 if (MRI
.getRegClass(FirstReg
)->contains(PPC::R0
) ||
860 MRI
.getRegClass(FirstReg
)->contains(PPC::X0
)) {
861 const TargetRegisterClass
*FirstRC
=
862 MRI
.getRegClass(FirstReg
)->contains(PPC::X0
) ?
863 &PPC::G8RC_NOX0RegClass
: &PPC::GPRC_NOR0RegClass
;
864 unsigned OldFirstReg
= FirstReg
;
865 FirstReg
= MRI
.createVirtualRegister(FirstRC
);
866 BuildMI(MBB
, MI
, dl
, get(TargetOpcode::COPY
), FirstReg
)
867 .addReg(OldFirstReg
);
870 BuildMI(MBB
, MI
, dl
, get(OpCode
), DestReg
)
871 .addReg(FirstReg
).addReg(SecondReg
)
872 .addReg(Cond
[1].getReg(), 0, SubIdx
);
875 static unsigned getCRBitValue(unsigned CRBit
) {
877 if (CRBit
== PPC::CR0LT
|| CRBit
== PPC::CR1LT
||
878 CRBit
== PPC::CR2LT
|| CRBit
== PPC::CR3LT
||
879 CRBit
== PPC::CR4LT
|| CRBit
== PPC::CR5LT
||
880 CRBit
== PPC::CR6LT
|| CRBit
== PPC::CR7LT
)
882 if (CRBit
== PPC::CR0GT
|| CRBit
== PPC::CR1GT
||
883 CRBit
== PPC::CR2GT
|| CRBit
== PPC::CR3GT
||
884 CRBit
== PPC::CR4GT
|| CRBit
== PPC::CR5GT
||
885 CRBit
== PPC::CR6GT
|| CRBit
== PPC::CR7GT
)
887 if (CRBit
== PPC::CR0EQ
|| CRBit
== PPC::CR1EQ
||
888 CRBit
== PPC::CR2EQ
|| CRBit
== PPC::CR3EQ
||
889 CRBit
== PPC::CR4EQ
|| CRBit
== PPC::CR5EQ
||
890 CRBit
== PPC::CR6EQ
|| CRBit
== PPC::CR7EQ
)
892 if (CRBit
== PPC::CR0UN
|| CRBit
== PPC::CR1UN
||
893 CRBit
== PPC::CR2UN
|| CRBit
== PPC::CR3UN
||
894 CRBit
== PPC::CR4UN
|| CRBit
== PPC::CR5UN
||
895 CRBit
== PPC::CR6UN
|| CRBit
== PPC::CR7UN
)
898 assert(Ret
!= 4 && "Invalid CR bit register");
902 void PPCInstrInfo::copyPhysReg(MachineBasicBlock
&MBB
,
903 MachineBasicBlock::iterator I
,
904 const DebugLoc
&DL
, unsigned DestReg
,
905 unsigned SrcReg
, bool KillSrc
) const {
906 // We can end up with self copies and similar things as a result of VSX copy
907 // legalization. Promote them here.
908 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
909 if (PPC::F8RCRegClass
.contains(DestReg
) &&
910 PPC::VSRCRegClass
.contains(SrcReg
)) {
912 TRI
->getMatchingSuperReg(DestReg
, PPC::sub_64
, &PPC::VSRCRegClass
);
914 if (VSXSelfCopyCrash
&& SrcReg
== SuperReg
)
915 llvm_unreachable("nop VSX copy");
918 } else if (PPC::F8RCRegClass
.contains(SrcReg
) &&
919 PPC::VSRCRegClass
.contains(DestReg
)) {
921 TRI
->getMatchingSuperReg(SrcReg
, PPC::sub_64
, &PPC::VSRCRegClass
);
923 if (VSXSelfCopyCrash
&& DestReg
== SuperReg
)
924 llvm_unreachable("nop VSX copy");
929 // Different class register copy
930 if (PPC::CRBITRCRegClass
.contains(SrcReg
) &&
931 PPC::GPRCRegClass
.contains(DestReg
)) {
932 unsigned CRReg
= getCRFromCRBit(SrcReg
);
933 BuildMI(MBB
, I
, DL
, get(PPC::MFOCRF
), DestReg
).addReg(CRReg
);
934 getKillRegState(KillSrc
);
935 // Rotate the CR bit in the CR fields to be the least significant bit and
936 // then mask with 0x1 (MB = ME = 31).
937 BuildMI(MBB
, I
, DL
, get(PPC::RLWINM
), DestReg
)
938 .addReg(DestReg
, RegState::Kill
)
939 .addImm(TRI
->getEncodingValue(CRReg
) * 4 + (4 - getCRBitValue(SrcReg
)))
943 } else if (PPC::CRRCRegClass
.contains(SrcReg
) &&
944 PPC::G8RCRegClass
.contains(DestReg
)) {
945 BuildMI(MBB
, I
, DL
, get(PPC::MFOCRF8
), DestReg
).addReg(SrcReg
);
946 getKillRegState(KillSrc
);
948 } else if (PPC::CRRCRegClass
.contains(SrcReg
) &&
949 PPC::GPRCRegClass
.contains(DestReg
)) {
950 BuildMI(MBB
, I
, DL
, get(PPC::MFOCRF
), DestReg
).addReg(SrcReg
);
951 getKillRegState(KillSrc
);
953 } else if (PPC::G8RCRegClass
.contains(SrcReg
) &&
954 PPC::VSFRCRegClass
.contains(DestReg
)) {
955 assert(Subtarget
.hasDirectMove() &&
956 "Subtarget doesn't support directmove, don't know how to copy.");
957 BuildMI(MBB
, I
, DL
, get(PPC::MTVSRD
), DestReg
).addReg(SrcReg
);
959 getKillRegState(KillSrc
);
961 } else if (PPC::VSFRCRegClass
.contains(SrcReg
) &&
962 PPC::G8RCRegClass
.contains(DestReg
)) {
963 assert(Subtarget
.hasDirectMove() &&
964 "Subtarget doesn't support directmove, don't know how to copy.");
965 BuildMI(MBB
, I
, DL
, get(PPC::MFVSRD
), DestReg
).addReg(SrcReg
);
966 getKillRegState(KillSrc
);
968 } else if (PPC::SPERCRegClass
.contains(SrcReg
) &&
969 PPC::SPE4RCRegClass
.contains(DestReg
)) {
970 BuildMI(MBB
, I
, DL
, get(PPC::EFSCFD
), DestReg
).addReg(SrcReg
);
971 getKillRegState(KillSrc
);
973 } else if (PPC::SPE4RCRegClass
.contains(SrcReg
) &&
974 PPC::SPERCRegClass
.contains(DestReg
)) {
975 BuildMI(MBB
, I
, DL
, get(PPC::EFDCFS
), DestReg
).addReg(SrcReg
);
976 getKillRegState(KillSrc
);
981 if (PPC::GPRCRegClass
.contains(DestReg
, SrcReg
))
983 else if (PPC::G8RCRegClass
.contains(DestReg
, SrcReg
))
985 else if (PPC::F4RCRegClass
.contains(DestReg
, SrcReg
))
987 else if (PPC::CRRCRegClass
.contains(DestReg
, SrcReg
))
989 else if (PPC::VRRCRegClass
.contains(DestReg
, SrcReg
))
991 else if (PPC::VSRCRegClass
.contains(DestReg
, SrcReg
))
992 // There are two different ways this can be done:
993 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
994 // issue in VSU pipeline 0.
995 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
996 // can go to either pipeline.
997 // We'll always use xxlor here, because in practically all cases where
998 // copies are generated, they are close enough to some use that the
999 // lower-latency form is preferable.
1001 else if (PPC::VSFRCRegClass
.contains(DestReg
, SrcReg
) ||
1002 PPC::VSSRCRegClass
.contains(DestReg
, SrcReg
))
1003 Opc
= (Subtarget
.hasP9Vector()) ? PPC::XSCPSGNDP
: PPC::XXLORf
;
1004 else if (PPC::QFRCRegClass
.contains(DestReg
, SrcReg
))
1006 else if (PPC::QSRCRegClass
.contains(DestReg
, SrcReg
))
1008 else if (PPC::QBRCRegClass
.contains(DestReg
, SrcReg
))
1010 else if (PPC::CRBITRCRegClass
.contains(DestReg
, SrcReg
))
1012 else if (PPC::SPERCRegClass
.contains(DestReg
, SrcReg
))
1015 llvm_unreachable("Impossible reg-to-reg copy");
1017 const MCInstrDesc
&MCID
= get(Opc
);
1018 if (MCID
.getNumOperands() == 3)
1019 BuildMI(MBB
, I
, DL
, MCID
, DestReg
)
1020 .addReg(SrcReg
).addReg(SrcReg
, getKillRegState(KillSrc
));
1022 BuildMI(MBB
, I
, DL
, MCID
, DestReg
).addReg(SrcReg
, getKillRegState(KillSrc
));
1025 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg
,
1026 const TargetRegisterClass
*RC
)
1028 const unsigned *OpcodesForSpill
= getStoreOpcodesForSpillArray();
1029 int OpcodeIndex
= 0;
1031 if (RC
!= nullptr) {
1032 if (PPC::GPRCRegClass
.hasSubClassEq(RC
) ||
1033 PPC::GPRC_NOR0RegClass
.hasSubClassEq(RC
)) {
1034 OpcodeIndex
= SOK_Int4Spill
;
1035 } else if (PPC::G8RCRegClass
.hasSubClassEq(RC
) ||
1036 PPC::G8RC_NOX0RegClass
.hasSubClassEq(RC
)) {
1037 OpcodeIndex
= SOK_Int8Spill
;
1038 } else if (PPC::F8RCRegClass
.hasSubClassEq(RC
)) {
1039 OpcodeIndex
= SOK_Float8Spill
;
1040 } else if (PPC::F4RCRegClass
.hasSubClassEq(RC
)) {
1041 OpcodeIndex
= SOK_Float4Spill
;
1042 } else if (PPC::SPERCRegClass
.hasSubClassEq(RC
)) {
1043 OpcodeIndex
= SOK_SPESpill
;
1044 } else if (PPC::SPE4RCRegClass
.hasSubClassEq(RC
)) {
1045 OpcodeIndex
= SOK_SPE4Spill
;
1046 } else if (PPC::CRRCRegClass
.hasSubClassEq(RC
)) {
1047 OpcodeIndex
= SOK_CRSpill
;
1048 } else if (PPC::CRBITRCRegClass
.hasSubClassEq(RC
)) {
1049 OpcodeIndex
= SOK_CRBitSpill
;
1050 } else if (PPC::VRRCRegClass
.hasSubClassEq(RC
)) {
1051 OpcodeIndex
= SOK_VRVectorSpill
;
1052 } else if (PPC::VSRCRegClass
.hasSubClassEq(RC
)) {
1053 OpcodeIndex
= SOK_VSXVectorSpill
;
1054 } else if (PPC::VSFRCRegClass
.hasSubClassEq(RC
)) {
1055 OpcodeIndex
= SOK_VectorFloat8Spill
;
1056 } else if (PPC::VSSRCRegClass
.hasSubClassEq(RC
)) {
1057 OpcodeIndex
= SOK_VectorFloat4Spill
;
1058 } else if (PPC::VRSAVERCRegClass
.hasSubClassEq(RC
)) {
1059 OpcodeIndex
= SOK_VRSaveSpill
;
1060 } else if (PPC::QFRCRegClass
.hasSubClassEq(RC
)) {
1061 OpcodeIndex
= SOK_QuadFloat8Spill
;
1062 } else if (PPC::QSRCRegClass
.hasSubClassEq(RC
)) {
1063 OpcodeIndex
= SOK_QuadFloat4Spill
;
1064 } else if (PPC::QBRCRegClass
.hasSubClassEq(RC
)) {
1065 OpcodeIndex
= SOK_QuadBitSpill
;
1066 } else if (PPC::SPILLTOVSRRCRegClass
.hasSubClassEq(RC
)) {
1067 OpcodeIndex
= SOK_SpillToVSR
;
1069 llvm_unreachable("Unknown regclass!");
1072 if (PPC::GPRCRegClass
.contains(Reg
) ||
1073 PPC::GPRC_NOR0RegClass
.contains(Reg
)) {
1074 OpcodeIndex
= SOK_Int4Spill
;
1075 } else if (PPC::G8RCRegClass
.contains(Reg
) ||
1076 PPC::G8RC_NOX0RegClass
.contains(Reg
)) {
1077 OpcodeIndex
= SOK_Int8Spill
;
1078 } else if (PPC::F8RCRegClass
.contains(Reg
)) {
1079 OpcodeIndex
= SOK_Float8Spill
;
1080 } else if (PPC::F4RCRegClass
.contains(Reg
)) {
1081 OpcodeIndex
= SOK_Float4Spill
;
1082 } else if (PPC::SPERCRegClass
.contains(Reg
)) {
1083 OpcodeIndex
= SOK_SPESpill
;
1084 } else if (PPC::SPE4RCRegClass
.contains(Reg
)) {
1085 OpcodeIndex
= SOK_SPE4Spill
;
1086 } else if (PPC::CRRCRegClass
.contains(Reg
)) {
1087 OpcodeIndex
= SOK_CRSpill
;
1088 } else if (PPC::CRBITRCRegClass
.contains(Reg
)) {
1089 OpcodeIndex
= SOK_CRBitSpill
;
1090 } else if (PPC::VRRCRegClass
.contains(Reg
)) {
1091 OpcodeIndex
= SOK_VRVectorSpill
;
1092 } else if (PPC::VSRCRegClass
.contains(Reg
)) {
1093 OpcodeIndex
= SOK_VSXVectorSpill
;
1094 } else if (PPC::VSFRCRegClass
.contains(Reg
)) {
1095 OpcodeIndex
= SOK_VectorFloat8Spill
;
1096 } else if (PPC::VSSRCRegClass
.contains(Reg
)) {
1097 OpcodeIndex
= SOK_VectorFloat4Spill
;
1098 } else if (PPC::VRSAVERCRegClass
.contains(Reg
)) {
1099 OpcodeIndex
= SOK_VRSaveSpill
;
1100 } else if (PPC::QFRCRegClass
.contains(Reg
)) {
1101 OpcodeIndex
= SOK_QuadFloat8Spill
;
1102 } else if (PPC::QSRCRegClass
.contains(Reg
)) {
1103 OpcodeIndex
= SOK_QuadFloat4Spill
;
1104 } else if (PPC::QBRCRegClass
.contains(Reg
)) {
1105 OpcodeIndex
= SOK_QuadBitSpill
;
1106 } else if (PPC::SPILLTOVSRRCRegClass
.contains(Reg
)) {
1107 OpcodeIndex
= SOK_SpillToVSR
;
1109 llvm_unreachable("Unknown regclass!");
1112 return OpcodesForSpill
[OpcodeIndex
];
1116 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg
,
1117 const TargetRegisterClass
*RC
) const {
1118 const unsigned *OpcodesForSpill
= getLoadOpcodesForSpillArray();
1119 int OpcodeIndex
= 0;
1121 if (RC
!= nullptr) {
1122 if (PPC::GPRCRegClass
.hasSubClassEq(RC
) ||
1123 PPC::GPRC_NOR0RegClass
.hasSubClassEq(RC
)) {
1124 OpcodeIndex
= SOK_Int4Spill
;
1125 } else if (PPC::G8RCRegClass
.hasSubClassEq(RC
) ||
1126 PPC::G8RC_NOX0RegClass
.hasSubClassEq(RC
)) {
1127 OpcodeIndex
= SOK_Int8Spill
;
1128 } else if (PPC::F8RCRegClass
.hasSubClassEq(RC
)) {
1129 OpcodeIndex
= SOK_Float8Spill
;
1130 } else if (PPC::F4RCRegClass
.hasSubClassEq(RC
)) {
1131 OpcodeIndex
= SOK_Float4Spill
;
1132 } else if (PPC::SPERCRegClass
.hasSubClassEq(RC
)) {
1133 OpcodeIndex
= SOK_SPESpill
;
1134 } else if (PPC::SPE4RCRegClass
.hasSubClassEq(RC
)) {
1135 OpcodeIndex
= SOK_SPE4Spill
;
1136 } else if (PPC::CRRCRegClass
.hasSubClassEq(RC
)) {
1137 OpcodeIndex
= SOK_CRSpill
;
1138 } else if (PPC::CRBITRCRegClass
.hasSubClassEq(RC
)) {
1139 OpcodeIndex
= SOK_CRBitSpill
;
1140 } else if (PPC::VRRCRegClass
.hasSubClassEq(RC
)) {
1141 OpcodeIndex
= SOK_VRVectorSpill
;
1142 } else if (PPC::VSRCRegClass
.hasSubClassEq(RC
)) {
1143 OpcodeIndex
= SOK_VSXVectorSpill
;
1144 } else if (PPC::VSFRCRegClass
.hasSubClassEq(RC
)) {
1145 OpcodeIndex
= SOK_VectorFloat8Spill
;
1146 } else if (PPC::VSSRCRegClass
.hasSubClassEq(RC
)) {
1147 OpcodeIndex
= SOK_VectorFloat4Spill
;
1148 } else if (PPC::VRSAVERCRegClass
.hasSubClassEq(RC
)) {
1149 OpcodeIndex
= SOK_VRSaveSpill
;
1150 } else if (PPC::QFRCRegClass
.hasSubClassEq(RC
)) {
1151 OpcodeIndex
= SOK_QuadFloat8Spill
;
1152 } else if (PPC::QSRCRegClass
.hasSubClassEq(RC
)) {
1153 OpcodeIndex
= SOK_QuadFloat4Spill
;
1154 } else if (PPC::QBRCRegClass
.hasSubClassEq(RC
)) {
1155 OpcodeIndex
= SOK_QuadBitSpill
;
1156 } else if (PPC::SPILLTOVSRRCRegClass
.hasSubClassEq(RC
)) {
1157 OpcodeIndex
= SOK_SpillToVSR
;
1159 llvm_unreachable("Unknown regclass!");
1162 if (PPC::GPRCRegClass
.contains(Reg
) ||
1163 PPC::GPRC_NOR0RegClass
.contains(Reg
)) {
1164 OpcodeIndex
= SOK_Int4Spill
;
1165 } else if (PPC::G8RCRegClass
.contains(Reg
) ||
1166 PPC::G8RC_NOX0RegClass
.contains(Reg
)) {
1167 OpcodeIndex
= SOK_Int8Spill
;
1168 } else if (PPC::F8RCRegClass
.contains(Reg
)) {
1169 OpcodeIndex
= SOK_Float8Spill
;
1170 } else if (PPC::F4RCRegClass
.contains(Reg
)) {
1171 OpcodeIndex
= SOK_Float4Spill
;
1172 } else if (PPC::SPERCRegClass
.contains(Reg
)) {
1173 OpcodeIndex
= SOK_SPESpill
;
1174 } else if (PPC::SPE4RCRegClass
.contains(Reg
)) {
1175 OpcodeIndex
= SOK_SPE4Spill
;
1176 } else if (PPC::CRRCRegClass
.contains(Reg
)) {
1177 OpcodeIndex
= SOK_CRSpill
;
1178 } else if (PPC::CRBITRCRegClass
.contains(Reg
)) {
1179 OpcodeIndex
= SOK_CRBitSpill
;
1180 } else if (PPC::VRRCRegClass
.contains(Reg
)) {
1181 OpcodeIndex
= SOK_VRVectorSpill
;
1182 } else if (PPC::VSRCRegClass
.contains(Reg
)) {
1183 OpcodeIndex
= SOK_VSXVectorSpill
;
1184 } else if (PPC::VSFRCRegClass
.contains(Reg
)) {
1185 OpcodeIndex
= SOK_VectorFloat8Spill
;
1186 } else if (PPC::VSSRCRegClass
.contains(Reg
)) {
1187 OpcodeIndex
= SOK_VectorFloat4Spill
;
1188 } else if (PPC::VRSAVERCRegClass
.contains(Reg
)) {
1189 OpcodeIndex
= SOK_VRSaveSpill
;
1190 } else if (PPC::QFRCRegClass
.contains(Reg
)) {
1191 OpcodeIndex
= SOK_QuadFloat8Spill
;
1192 } else if (PPC::QSRCRegClass
.contains(Reg
)) {
1193 OpcodeIndex
= SOK_QuadFloat4Spill
;
1194 } else if (PPC::QBRCRegClass
.contains(Reg
)) {
1195 OpcodeIndex
= SOK_QuadBitSpill
;
1196 } else if (PPC::SPILLTOVSRRCRegClass
.contains(Reg
)) {
1197 OpcodeIndex
= SOK_SpillToVSR
;
1199 llvm_unreachable("Unknown regclass!");
1202 return OpcodesForSpill
[OpcodeIndex
];
1205 void PPCInstrInfo::StoreRegToStackSlot(
1206 MachineFunction
&MF
, unsigned SrcReg
, bool isKill
, int FrameIdx
,
1207 const TargetRegisterClass
*RC
,
1208 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
1209 unsigned Opcode
= getStoreOpcodeForSpill(PPC::NoRegister
, RC
);
1212 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
1213 FuncInfo
->setHasSpills();
1215 NewMIs
.push_back(addFrameReference(
1216 BuildMI(MF
, DL
, get(Opcode
)).addReg(SrcReg
, getKillRegState(isKill
)),
1219 if (PPC::CRRCRegClass
.hasSubClassEq(RC
) ||
1220 PPC::CRBITRCRegClass
.hasSubClassEq(RC
))
1221 FuncInfo
->setSpillsCR();
1223 if (PPC::VRSAVERCRegClass
.hasSubClassEq(RC
))
1224 FuncInfo
->setSpillsVRSAVE();
1226 if (isXFormMemOp(Opcode
))
1227 FuncInfo
->setHasNonRISpills();
1230 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock
&MBB
,
1231 MachineBasicBlock::iterator MI
,
1232 unsigned SrcReg
, bool isKill
,
1234 const TargetRegisterClass
*RC
,
1235 const TargetRegisterInfo
*TRI
) const {
1236 MachineFunction
&MF
= *MBB
.getParent();
1237 SmallVector
<MachineInstr
*, 4> NewMIs
;
1239 // We need to avoid a situation in which the value from a VRRC register is
1240 // spilled using an Altivec instruction and reloaded into a VSRC register
1241 // using a VSX instruction. The issue with this is that the VSX
1242 // load/store instructions swap the doublewords in the vector and the Altivec
1243 // ones don't. The register classes on the spill/reload may be different if
1244 // the register is defined using an Altivec instruction and is then used by a
1248 StoreRegToStackSlot(MF
, SrcReg
, isKill
, FrameIdx
, RC
, NewMIs
);
1250 for (unsigned i
= 0, e
= NewMIs
.size(); i
!= e
; ++i
)
1251 MBB
.insert(MI
, NewMIs
[i
]);
1253 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1254 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
1255 MachinePointerInfo::getFixedStack(MF
, FrameIdx
),
1256 MachineMemOperand::MOStore
, MFI
.getObjectSize(FrameIdx
),
1257 MFI
.getObjectAlignment(FrameIdx
));
1258 NewMIs
.back()->addMemOperand(MF
, MMO
);
1261 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction
&MF
, const DebugLoc
&DL
,
1262 unsigned DestReg
, int FrameIdx
,
1263 const TargetRegisterClass
*RC
,
1264 SmallVectorImpl
<MachineInstr
*> &NewMIs
)
1266 unsigned Opcode
= getLoadOpcodeForSpill(PPC::NoRegister
, RC
);
1267 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(Opcode
), DestReg
),
1269 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
1271 if (PPC::CRRCRegClass
.hasSubClassEq(RC
) ||
1272 PPC::CRBITRCRegClass
.hasSubClassEq(RC
))
1273 FuncInfo
->setSpillsCR();
1275 if (PPC::VRSAVERCRegClass
.hasSubClassEq(RC
))
1276 FuncInfo
->setSpillsVRSAVE();
1278 if (isXFormMemOp(Opcode
))
1279 FuncInfo
->setHasNonRISpills();
1283 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock
&MBB
,
1284 MachineBasicBlock::iterator MI
,
1285 unsigned DestReg
, int FrameIdx
,
1286 const TargetRegisterClass
*RC
,
1287 const TargetRegisterInfo
*TRI
) const {
1288 MachineFunction
&MF
= *MBB
.getParent();
1289 SmallVector
<MachineInstr
*, 4> NewMIs
;
1291 if (MI
!= MBB
.end()) DL
= MI
->getDebugLoc();
1293 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
1294 FuncInfo
->setHasSpills();
1296 // We need to avoid a situation in which the value from a VRRC register is
1297 // spilled using an Altivec instruction and reloaded into a VSRC register
1298 // using a VSX instruction. The issue with this is that the VSX
1299 // load/store instructions swap the doublewords in the vector and the Altivec
1300 // ones don't. The register classes on the spill/reload may be different if
1301 // the register is defined using an Altivec instruction and is then used by a
1303 if (Subtarget
.hasVSX() && RC
== &PPC::VRRCRegClass
)
1304 RC
= &PPC::VSRCRegClass
;
1306 LoadRegFromStackSlot(MF
, DL
, DestReg
, FrameIdx
, RC
, NewMIs
);
1308 for (unsigned i
= 0, e
= NewMIs
.size(); i
!= e
; ++i
)
1309 MBB
.insert(MI
, NewMIs
[i
]);
1311 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1312 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
1313 MachinePointerInfo::getFixedStack(MF
, FrameIdx
),
1314 MachineMemOperand::MOLoad
, MFI
.getObjectSize(FrameIdx
),
1315 MFI
.getObjectAlignment(FrameIdx
));
1316 NewMIs
.back()->addMemOperand(MF
, MMO
);
1320 reverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
) const {
1321 assert(Cond
.size() == 2 && "Invalid PPC branch opcode!");
1322 if (Cond
[1].getReg() == PPC::CTR8
|| Cond
[1].getReg() == PPC::CTR
)
1323 Cond
[0].setImm(Cond
[0].getImm() == 0 ? 1 : 0);
1325 // Leave the CR# the same, but invert the condition.
1326 Cond
[0].setImm(PPC::InvertPredicate((PPC::Predicate
)Cond
[0].getImm()));
1330 bool PPCInstrInfo::FoldImmediate(MachineInstr
&UseMI
, MachineInstr
&DefMI
,
1331 unsigned Reg
, MachineRegisterInfo
*MRI
) const {
1332 // For some instructions, it is legal to fold ZERO into the RA register field.
1333 // A zero immediate should always be loaded with a single li.
1334 unsigned DefOpc
= DefMI
.getOpcode();
1335 if (DefOpc
!= PPC::LI
&& DefOpc
!= PPC::LI8
)
1337 if (!DefMI
.getOperand(1).isImm())
1339 if (DefMI
.getOperand(1).getImm() != 0)
1342 // Note that we cannot here invert the arguments of an isel in order to fold
1343 // a ZERO into what is presented as the second argument. All we have here
1344 // is the condition bit, and that might come from a CR-logical bit operation.
1346 const MCInstrDesc
&UseMCID
= UseMI
.getDesc();
1348 // Only fold into real machine instructions.
1349 if (UseMCID
.isPseudo())
1353 for (UseIdx
= 0; UseIdx
< UseMI
.getNumOperands(); ++UseIdx
)
1354 if (UseMI
.getOperand(UseIdx
).isReg() &&
1355 UseMI
.getOperand(UseIdx
).getReg() == Reg
)
1358 assert(UseIdx
< UseMI
.getNumOperands() && "Cannot find Reg in UseMI");
1359 assert(UseIdx
< UseMCID
.getNumOperands() && "No operand description for Reg");
1361 const MCOperandInfo
*UseInfo
= &UseMCID
.OpInfo
[UseIdx
];
1363 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1364 // register (which might also be specified as a pointer class kind).
1365 if (UseInfo
->isLookupPtrRegClass()) {
1366 if (UseInfo
->RegClass
/* Kind */ != 1)
1369 if (UseInfo
->RegClass
!= PPC::GPRC_NOR0RegClassID
&&
1370 UseInfo
->RegClass
!= PPC::G8RC_NOX0RegClassID
)
1374 // Make sure this is not tied to an output register (or otherwise
1375 // constrained). This is true for ST?UX registers, for example, which
1376 // are tied to their output registers.
1377 if (UseInfo
->Constraints
!= 0)
1381 if (UseInfo
->isLookupPtrRegClass()) {
1382 bool isPPC64
= Subtarget
.isPPC64();
1383 ZeroReg
= isPPC64
? PPC::ZERO8
: PPC::ZERO
;
1385 ZeroReg
= UseInfo
->RegClass
== PPC::G8RC_NOX0RegClassID
?
1386 PPC::ZERO8
: PPC::ZERO
;
1389 bool DeleteDef
= MRI
->hasOneNonDBGUse(Reg
);
1390 UseMI
.getOperand(UseIdx
).setReg(ZeroReg
);
1393 DefMI
.eraseFromParent();
1398 static bool MBBDefinesCTR(MachineBasicBlock
&MBB
) {
1399 for (MachineBasicBlock::iterator I
= MBB
.begin(), IE
= MBB
.end();
1401 if (I
->definesRegister(PPC::CTR
) || I
->definesRegister(PPC::CTR8
))
1406 // We should make sure that, if we're going to predicate both sides of a
1407 // condition (a diamond), that both sides don't define the counter register. We
1408 // can predicate counter-decrement-based branches, but while that predicates
1409 // the branching, it does not predicate the counter decrement. If we tried to
1410 // merge the triangle into one predicated block, we'd decrement the counter
1412 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock
&TMBB
,
1413 unsigned NumT
, unsigned ExtraT
,
1414 MachineBasicBlock
&FMBB
,
1415 unsigned NumF
, unsigned ExtraF
,
1416 BranchProbability Probability
) const {
1417 return !(MBBDefinesCTR(TMBB
) && MBBDefinesCTR(FMBB
));
1421 bool PPCInstrInfo::isPredicated(const MachineInstr
&MI
) const {
1422 // The predicated branches are identified by their type, not really by the
1423 // explicit presence of a predicate. Furthermore, some of them can be
1424 // predicated more than once. Because if conversion won't try to predicate
1425 // any instruction which already claims to be predicated (by returning true
1426 // here), always return false. In doing so, we let isPredicable() be the
1427 // final word on whether not the instruction can be (further) predicated.
1432 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr
&MI
) const {
1433 if (!MI
.isTerminator())
1436 // Conditional branch is a special case.
1437 if (MI
.isBranch() && !MI
.isBarrier())
1440 return !isPredicated(MI
);
1443 bool PPCInstrInfo::PredicateInstruction(MachineInstr
&MI
,
1444 ArrayRef
<MachineOperand
> Pred
) const {
1445 unsigned OpC
= MI
.getOpcode();
1446 if (OpC
== PPC::BLR
|| OpC
== PPC::BLR8
) {
1447 if (Pred
[1].getReg() == PPC::CTR8
|| Pred
[1].getReg() == PPC::CTR
) {
1448 bool isPPC64
= Subtarget
.isPPC64();
1449 MI
.setDesc(get(Pred
[0].getImm() ? (isPPC64
? PPC::BDNZLR8
: PPC::BDNZLR
)
1450 : (isPPC64
? PPC::BDZLR8
: PPC::BDZLR
)));
1451 } else if (Pred
[0].getImm() == PPC::PRED_BIT_SET
) {
1452 MI
.setDesc(get(PPC::BCLR
));
1453 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
).add(Pred
[1]);
1454 } else if (Pred
[0].getImm() == PPC::PRED_BIT_UNSET
) {
1455 MI
.setDesc(get(PPC::BCLRn
));
1456 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
).add(Pred
[1]);
1458 MI
.setDesc(get(PPC::BCCLR
));
1459 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1460 .addImm(Pred
[0].getImm())
1465 } else if (OpC
== PPC::B
) {
1466 if (Pred
[1].getReg() == PPC::CTR8
|| Pred
[1].getReg() == PPC::CTR
) {
1467 bool isPPC64
= Subtarget
.isPPC64();
1468 MI
.setDesc(get(Pred
[0].getImm() ? (isPPC64
? PPC::BDNZ8
: PPC::BDNZ
)
1469 : (isPPC64
? PPC::BDZ8
: PPC::BDZ
)));
1470 } else if (Pred
[0].getImm() == PPC::PRED_BIT_SET
) {
1471 MachineBasicBlock
*MBB
= MI
.getOperand(0).getMBB();
1472 MI
.RemoveOperand(0);
1474 MI
.setDesc(get(PPC::BC
));
1475 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1478 } else if (Pred
[0].getImm() == PPC::PRED_BIT_UNSET
) {
1479 MachineBasicBlock
*MBB
= MI
.getOperand(0).getMBB();
1480 MI
.RemoveOperand(0);
1482 MI
.setDesc(get(PPC::BCn
));
1483 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1487 MachineBasicBlock
*MBB
= MI
.getOperand(0).getMBB();
1488 MI
.RemoveOperand(0);
1490 MI
.setDesc(get(PPC::BCC
));
1491 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1492 .addImm(Pred
[0].getImm())
1498 } else if (OpC
== PPC::BCTR
|| OpC
== PPC::BCTR8
|| OpC
== PPC::BCTRL
||
1499 OpC
== PPC::BCTRL8
) {
1500 if (Pred
[1].getReg() == PPC::CTR8
|| Pred
[1].getReg() == PPC::CTR
)
1501 llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1503 bool setLR
= OpC
== PPC::BCTRL
|| OpC
== PPC::BCTRL8
;
1504 bool isPPC64
= Subtarget
.isPPC64();
1506 if (Pred
[0].getImm() == PPC::PRED_BIT_SET
) {
1507 MI
.setDesc(get(isPPC64
? (setLR
? PPC::BCCTRL8
: PPC::BCCTR8
)
1508 : (setLR
? PPC::BCCTRL
: PPC::BCCTR
)));
1509 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
).add(Pred
[1]);
1511 } else if (Pred
[0].getImm() == PPC::PRED_BIT_UNSET
) {
1512 MI
.setDesc(get(isPPC64
? (setLR
? PPC::BCCTRL8n
: PPC::BCCTR8n
)
1513 : (setLR
? PPC::BCCTRLn
: PPC::BCCTRn
)));
1514 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
).add(Pred
[1]);
1518 MI
.setDesc(get(isPPC64
? (setLR
? PPC::BCCCTRL8
: PPC::BCCCTR8
)
1519 : (setLR
? PPC::BCCCTRL
: PPC::BCCCTR
)));
1520 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1521 .addImm(Pred
[0].getImm())
1529 bool PPCInstrInfo::SubsumesPredicate(ArrayRef
<MachineOperand
> Pred1
,
1530 ArrayRef
<MachineOperand
> Pred2
) const {
1531 assert(Pred1
.size() == 2 && "Invalid PPC first predicate");
1532 assert(Pred2
.size() == 2 && "Invalid PPC second predicate");
1534 if (Pred1
[1].getReg() == PPC::CTR8
|| Pred1
[1].getReg() == PPC::CTR
)
1536 if (Pred2
[1].getReg() == PPC::CTR8
|| Pred2
[1].getReg() == PPC::CTR
)
1539 // P1 can only subsume P2 if they test the same condition register.
1540 if (Pred1
[1].getReg() != Pred2
[1].getReg())
1543 PPC::Predicate P1
= (PPC::Predicate
) Pred1
[0].getImm();
1544 PPC::Predicate P2
= (PPC::Predicate
) Pred2
[0].getImm();
1549 // Does P1 subsume P2, e.g. GE subsumes GT.
1550 if (P1
== PPC::PRED_LE
&&
1551 (P2
== PPC::PRED_LT
|| P2
== PPC::PRED_EQ
))
1553 if (P1
== PPC::PRED_GE
&&
1554 (P2
== PPC::PRED_GT
|| P2
== PPC::PRED_EQ
))
1560 bool PPCInstrInfo::DefinesPredicate(MachineInstr
&MI
,
1561 std::vector
<MachineOperand
> &Pred
) const {
1562 // Note: At the present time, the contents of Pred from this function is
1563 // unused by IfConversion. This implementation follows ARM by pushing the
1564 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1565 // predicate, instructions defining CTR or CTR8 are also included as
1566 // predicate-defining instructions.
1568 const TargetRegisterClass
*RCs
[] =
1569 { &PPC::CRRCRegClass
, &PPC::CRBITRCRegClass
,
1570 &PPC::CTRRCRegClass
, &PPC::CTRRC8RegClass
};
1573 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1574 const MachineOperand
&MO
= MI
.getOperand(i
);
1575 for (unsigned c
= 0; c
< array_lengthof(RCs
) && !Found
; ++c
) {
1576 const TargetRegisterClass
*RC
= RCs
[c
];
1578 if (MO
.isDef() && RC
->contains(MO
.getReg())) {
1582 } else if (MO
.isRegMask()) {
1583 for (TargetRegisterClass::iterator I
= RC
->begin(),
1584 IE
= RC
->end(); I
!= IE
; ++I
)
1585 if (MO
.clobbersPhysReg(*I
)) {
1596 bool PPCInstrInfo::isPredicable(const MachineInstr
&MI
) const {
1597 unsigned OpC
= MI
.getOpcode();
1612 bool PPCInstrInfo::analyzeCompare(const MachineInstr
&MI
, unsigned &SrcReg
,
1613 unsigned &SrcReg2
, int &Mask
,
1615 unsigned Opc
= MI
.getOpcode();
1618 default: return false;
1623 SrcReg
= MI
.getOperand(1).getReg();
1625 Value
= MI
.getOperand(2).getImm();
1634 SrcReg
= MI
.getOperand(1).getReg();
1635 SrcReg2
= MI
.getOperand(2).getReg();
1642 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr
&CmpInstr
, unsigned SrcReg
,
1643 unsigned SrcReg2
, int Mask
, int Value
,
1644 const MachineRegisterInfo
*MRI
) const {
1648 int OpC
= CmpInstr
.getOpcode();
1649 unsigned CRReg
= CmpInstr
.getOperand(0).getReg();
1651 // FP record forms set CR1 based on the exception status bits, not a
1652 // comparison with zero.
1653 if (OpC
== PPC::FCMPUS
|| OpC
== PPC::FCMPUD
)
1656 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
1657 // The record forms set the condition register based on a signed comparison
1658 // with zero (so says the ISA manual). This is not as straightforward as it
1659 // seems, however, because this is always a 64-bit comparison on PPC64, even
1660 // for instructions that are 32-bit in nature (like slw for example).
1661 // So, on PPC32, for unsigned comparisons, we can use the record forms only
1662 // for equality checks (as those don't depend on the sign). On PPC64,
1663 // we are restricted to equality for unsigned 64-bit comparisons and for
1664 // signed 32-bit comparisons the applicability is more restricted.
1665 bool isPPC64
= Subtarget
.isPPC64();
1666 bool is32BitSignedCompare
= OpC
== PPC::CMPWI
|| OpC
== PPC::CMPW
;
1667 bool is32BitUnsignedCompare
= OpC
== PPC::CMPLWI
|| OpC
== PPC::CMPLW
;
1668 bool is64BitUnsignedCompare
= OpC
== PPC::CMPLDI
|| OpC
== PPC::CMPLD
;
1670 // Look through copies unless that gets us to a physical register.
1671 unsigned ActualSrc
= TRI
->lookThruCopyLike(SrcReg
, MRI
);
1672 if (TargetRegisterInfo::isVirtualRegister(ActualSrc
))
1675 // Get the unique definition of SrcReg.
1676 MachineInstr
*MI
= MRI
->getUniqueVRegDef(SrcReg
);
1677 if (!MI
) return false;
1679 bool equalityOnly
= false;
1682 if (is32BitSignedCompare
) {
1683 // We can perform this optimization only if MI is sign-extending.
1684 if (isSignExtended(*MI
))
1688 } else if (is32BitUnsignedCompare
) {
1689 // We can perform this optimization, equality only, if MI is
1691 if (isZeroExtended(*MI
)) {
1693 equalityOnly
= true;
1697 equalityOnly
= is64BitUnsignedCompare
;
1699 equalityOnly
= is32BitUnsignedCompare
;
1702 // We need to check the uses of the condition register in order to reject
1703 // non-equality comparisons.
1704 for (MachineRegisterInfo::use_instr_iterator
1705 I
= MRI
->use_instr_begin(CRReg
), IE
= MRI
->use_instr_end();
1707 MachineInstr
*UseMI
= &*I
;
1708 if (UseMI
->getOpcode() == PPC::BCC
) {
1709 PPC::Predicate Pred
= (PPC::Predicate
)UseMI
->getOperand(0).getImm();
1710 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
1711 // We ignore hint bits when checking for non-equality comparisons.
1712 if (PredCond
!= PPC::PRED_EQ
&& PredCond
!= PPC::PRED_NE
)
1714 } else if (UseMI
->getOpcode() == PPC::ISEL
||
1715 UseMI
->getOpcode() == PPC::ISEL8
) {
1716 unsigned SubIdx
= UseMI
->getOperand(3).getSubReg();
1717 if (SubIdx
!= PPC::sub_eq
)
1724 MachineBasicBlock::iterator I
= CmpInstr
;
1726 // Scan forward to find the first use of the compare.
1727 for (MachineBasicBlock::iterator EL
= CmpInstr
.getParent()->end(); I
!= EL
;
1729 bool FoundUse
= false;
1730 for (MachineRegisterInfo::use_instr_iterator
1731 J
= MRI
->use_instr_begin(CRReg
), JE
= MRI
->use_instr_end();
1742 SmallVector
<std::pair
<MachineOperand
*, PPC::Predicate
>, 4> PredsToUpdate
;
1743 SmallVector
<std::pair
<MachineOperand
*, unsigned>, 4> SubRegsToUpdate
;
1745 // There are two possible candidates which can be changed to set CR[01].
1746 // One is MI, the other is a SUB instruction.
1747 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1748 MachineInstr
*Sub
= nullptr;
1750 // MI is not a candidate for CMPrr.
1752 // FIXME: Conservatively refuse to convert an instruction which isn't in the
1753 // same BB as the comparison. This is to allow the check below to avoid calls
1754 // (and other explicit clobbers); instead we should really check for these
1755 // more explicitly (in at least a few predecessors).
1756 else if (MI
->getParent() != CmpInstr
.getParent())
1758 else if (Value
!= 0) {
1759 // The record-form instructions set CR bit based on signed comparison
1760 // against 0. We try to convert a compare against 1 or -1 into a compare
1761 // against 0 to exploit record-form instructions. For example, we change
1762 // the condition "greater than -1" into "greater than or equal to 0"
1763 // and "less than 1" into "less than or equal to 0".
1765 // Since we optimize comparison based on a specific branch condition,
1766 // we don't optimize if condition code is used by more than once.
1767 if (equalityOnly
|| !MRI
->hasOneUse(CRReg
))
1770 MachineInstr
*UseMI
= &*MRI
->use_instr_begin(CRReg
);
1771 if (UseMI
->getOpcode() != PPC::BCC
)
1774 PPC::Predicate Pred
= (PPC::Predicate
)UseMI
->getOperand(0).getImm();
1775 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
1776 unsigned PredHint
= PPC::getPredicateHint(Pred
);
1777 int16_t Immed
= (int16_t)Value
;
1779 // When modifying the condition in the predicate, we propagate hint bits
1780 // from the original predicate to the new one.
1781 if (Immed
== -1 && PredCond
== PPC::PRED_GT
)
1782 // We convert "greater than -1" into "greater than or equal to 0",
1783 // since we are assuming signed comparison by !equalityOnly
1784 Pred
= PPC::getPredicate(PPC::PRED_GE
, PredHint
);
1785 else if (Immed
== -1 && PredCond
== PPC::PRED_LE
)
1786 // We convert "less than or equal to -1" into "less than 0".
1787 Pred
= PPC::getPredicate(PPC::PRED_LT
, PredHint
);
1788 else if (Immed
== 1 && PredCond
== PPC::PRED_LT
)
1789 // We convert "less than 1" into "less than or equal to 0".
1790 Pred
= PPC::getPredicate(PPC::PRED_LE
, PredHint
);
1791 else if (Immed
== 1 && PredCond
== PPC::PRED_GE
)
1792 // We convert "greater than or equal to 1" into "greater than 0".
1793 Pred
= PPC::getPredicate(PPC::PRED_GT
, PredHint
);
1797 PredsToUpdate
.push_back(std::make_pair(&(UseMI
->getOperand(0)), Pred
));
1803 // Get ready to iterate backward from CmpInstr.
1804 MachineBasicBlock::iterator E
= MI
, B
= CmpInstr
.getParent()->begin();
1806 for (; I
!= E
&& !noSub
; --I
) {
1807 const MachineInstr
&Instr
= *I
;
1808 unsigned IOpC
= Instr
.getOpcode();
1810 if (&*I
!= &CmpInstr
&& (Instr
.modifiesRegister(PPC::CR0
, TRI
) ||
1811 Instr
.readsRegister(PPC::CR0
, TRI
)))
1812 // This instruction modifies or uses the record condition register after
1813 // the one we want to change. While we could do this transformation, it
1814 // would likely not be profitable. This transformation removes one
1815 // instruction, and so even forcing RA to generate one move probably
1816 // makes it unprofitable.
1819 // Check whether CmpInstr can be made redundant by the current instruction.
1820 if ((OpC
== PPC::CMPW
|| OpC
== PPC::CMPLW
||
1821 OpC
== PPC::CMPD
|| OpC
== PPC::CMPLD
) &&
1822 (IOpC
== PPC::SUBF
|| IOpC
== PPC::SUBF8
) &&
1823 ((Instr
.getOperand(1).getReg() == SrcReg
&&
1824 Instr
.getOperand(2).getReg() == SrcReg2
) ||
1825 (Instr
.getOperand(1).getReg() == SrcReg2
&&
1826 Instr
.getOperand(2).getReg() == SrcReg
))) {
1832 // The 'and' is below the comparison instruction.
1836 // Return false if no candidates exist.
1840 // The single candidate is called MI.
1844 int MIOpC
= MI
->getOpcode();
1845 if (MIOpC
== PPC::ANDIo
|| MIOpC
== PPC::ANDIo8
||
1846 MIOpC
== PPC::ANDISo
|| MIOpC
== PPC::ANDISo8
)
1849 NewOpC
= PPC::getRecordFormOpcode(MIOpC
);
1850 if (NewOpC
== -1 && PPC::getNonRecordFormOpcode(MIOpC
) != -1)
1854 // FIXME: On the non-embedded POWER architectures, only some of the record
1855 // forms are fast, and we should use only the fast ones.
1857 // The defining instruction has a record form (or is already a record
1858 // form). It is possible, however, that we'll need to reverse the condition
1859 // code of the users.
1863 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1864 // needs to be updated to be based on SUB. Push the condition code
1865 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the
1866 // condition code of these operands will be modified.
1867 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
1868 // comparison against 0, which may modify predicate.
1869 bool ShouldSwap
= false;
1870 if (Sub
&& Value
== 0) {
1871 ShouldSwap
= SrcReg2
!= 0 && Sub
->getOperand(1).getReg() == SrcReg2
&&
1872 Sub
->getOperand(2).getReg() == SrcReg
;
1874 // The operands to subf are the opposite of sub, so only in the fixed-point
1875 // case, invert the order.
1876 ShouldSwap
= !ShouldSwap
;
1880 for (MachineRegisterInfo::use_instr_iterator
1881 I
= MRI
->use_instr_begin(CRReg
), IE
= MRI
->use_instr_end();
1883 MachineInstr
*UseMI
= &*I
;
1884 if (UseMI
->getOpcode() == PPC::BCC
) {
1885 PPC::Predicate Pred
= (PPC::Predicate
) UseMI
->getOperand(0).getImm();
1886 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
1887 assert((!equalityOnly
||
1888 PredCond
== PPC::PRED_EQ
|| PredCond
== PPC::PRED_NE
) &&
1889 "Invalid predicate for equality-only optimization");
1890 (void)PredCond
; // To suppress warning in release build.
1891 PredsToUpdate
.push_back(std::make_pair(&(UseMI
->getOperand(0)),
1892 PPC::getSwappedPredicate(Pred
)));
1893 } else if (UseMI
->getOpcode() == PPC::ISEL
||
1894 UseMI
->getOpcode() == PPC::ISEL8
) {
1895 unsigned NewSubReg
= UseMI
->getOperand(3).getSubReg();
1896 assert((!equalityOnly
|| NewSubReg
== PPC::sub_eq
) &&
1897 "Invalid CR bit for equality-only optimization");
1899 if (NewSubReg
== PPC::sub_lt
)
1900 NewSubReg
= PPC::sub_gt
;
1901 else if (NewSubReg
== PPC::sub_gt
)
1902 NewSubReg
= PPC::sub_lt
;
1904 SubRegsToUpdate
.push_back(std::make_pair(&(UseMI
->getOperand(3)),
1906 } else // We need to abort on a user we don't understand.
1909 assert(!(Value
!= 0 && ShouldSwap
) &&
1910 "Non-zero immediate support and ShouldSwap"
1911 "may conflict in updating predicate");
1913 // Create a new virtual register to hold the value of the CR set by the
1914 // record-form instruction. If the instruction was not previously in
1915 // record form, then set the kill flag on the CR.
1916 CmpInstr
.eraseFromParent();
1918 MachineBasicBlock::iterator MII
= MI
;
1919 BuildMI(*MI
->getParent(), std::next(MII
), MI
->getDebugLoc(),
1920 get(TargetOpcode::COPY
), CRReg
)
1921 .addReg(PPC::CR0
, MIOpC
!= NewOpC
? RegState::Kill
: 0);
1923 // Even if CR0 register were dead before, it is alive now since the
1924 // instruction we just built uses it.
1925 MI
->clearRegisterDeads(PPC::CR0
);
1927 if (MIOpC
!= NewOpC
) {
1928 // We need to be careful here: we're replacing one instruction with
1929 // another, and we need to make sure that we get all of the right
1930 // implicit uses and defs. On the other hand, the caller may be holding
1931 // an iterator to this instruction, and so we can't delete it (this is
1932 // specifically the case if this is the instruction directly after the
1935 // Rotates are expensive instructions. If we're emitting a record-form
1936 // rotate that can just be an andi/andis, we should just emit that.
1937 if (MIOpC
== PPC::RLWINM
|| MIOpC
== PPC::RLWINM8
) {
1938 unsigned GPRRes
= MI
->getOperand(0).getReg();
1939 int64_t SH
= MI
->getOperand(2).getImm();
1940 int64_t MB
= MI
->getOperand(3).getImm();
1941 int64_t ME
= MI
->getOperand(4).getImm();
1942 // We can only do this if both the start and end of the mask are in the
1944 bool MBInLoHWord
= MB
>= 16;
1945 bool MEInLoHWord
= ME
>= 16;
1946 uint64_t Mask
= ~0LLU;
1948 if (MB
<= ME
&& MBInLoHWord
== MEInLoHWord
&& SH
== 0) {
1949 Mask
= ((1LLU << (32 - MB
)) - 1) & ~((1LLU << (31 - ME
)) - 1);
1950 // The mask value needs to shift right 16 if we're emitting andis.
1951 Mask
>>= MBInLoHWord
? 0 : 16;
1952 NewOpC
= MIOpC
== PPC::RLWINM
?
1953 (MBInLoHWord
? PPC::ANDIo
: PPC::ANDISo
) :
1954 (MBInLoHWord
? PPC::ANDIo8
:PPC::ANDISo8
);
1955 } else if (MRI
->use_empty(GPRRes
) && (ME
== 31) &&
1956 (ME
- MB
+ 1 == SH
) && (MB
>= 16)) {
1957 // If we are rotating by the exact number of bits as are in the mask
1958 // and the mask is in the least significant bits of the register,
1959 // that's just an andis. (as long as the GPR result has no uses).
1960 Mask
= ((1LLU << 32) - 1) & ~((1LLU << (32 - SH
)) - 1);
1962 NewOpC
= MIOpC
== PPC::RLWINM
? PPC::ANDISo
:PPC::ANDISo8
;
1964 // If we've set the mask, we can transform.
1965 if (Mask
!= ~0LLU) {
1966 MI
->RemoveOperand(4);
1967 MI
->RemoveOperand(3);
1968 MI
->getOperand(2).setImm(Mask
);
1969 NumRcRotatesConvertedToRcAnd
++;
1971 } else if (MIOpC
== PPC::RLDICL
&& MI
->getOperand(2).getImm() == 0) {
1972 int64_t MB
= MI
->getOperand(3).getImm();
1974 uint64_t Mask
= (1LLU << (63 - MB
+ 1)) - 1;
1975 NewOpC
= PPC::ANDIo8
;
1976 MI
->RemoveOperand(3);
1977 MI
->getOperand(2).setImm(Mask
);
1978 NumRcRotatesConvertedToRcAnd
++;
1982 const MCInstrDesc
&NewDesc
= get(NewOpC
);
1983 MI
->setDesc(NewDesc
);
1985 if (NewDesc
.ImplicitDefs
)
1986 for (const MCPhysReg
*ImpDefs
= NewDesc
.getImplicitDefs();
1987 *ImpDefs
; ++ImpDefs
)
1988 if (!MI
->definesRegister(*ImpDefs
))
1989 MI
->addOperand(*MI
->getParent()->getParent(),
1990 MachineOperand::CreateReg(*ImpDefs
, true, true));
1991 if (NewDesc
.ImplicitUses
)
1992 for (const MCPhysReg
*ImpUses
= NewDesc
.getImplicitUses();
1993 *ImpUses
; ++ImpUses
)
1994 if (!MI
->readsRegister(*ImpUses
))
1995 MI
->addOperand(*MI
->getParent()->getParent(),
1996 MachineOperand::CreateReg(*ImpUses
, false, true));
1998 assert(MI
->definesRegister(PPC::CR0
) &&
1999 "Record-form instruction does not define cr0?");
2001 // Modify the condition code of operands in OperandsToUpdate.
2002 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2003 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2004 for (unsigned i
= 0, e
= PredsToUpdate
.size(); i
< e
; i
++)
2005 PredsToUpdate
[i
].first
->setImm(PredsToUpdate
[i
].second
);
2007 for (unsigned i
= 0, e
= SubRegsToUpdate
.size(); i
< e
; i
++)
2008 SubRegsToUpdate
[i
].first
->setSubReg(SubRegsToUpdate
[i
].second
);
2013 /// GetInstSize - Return the number of bytes of code the specified
2014 /// instruction may be. This returns the maximum number of bytes.
2016 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr
&MI
) const {
2017 unsigned Opcode
= MI
.getOpcode();
2019 if (Opcode
== PPC::INLINEASM
|| Opcode
== PPC::INLINEASM_BR
) {
2020 const MachineFunction
*MF
= MI
.getParent()->getParent();
2021 const char *AsmStr
= MI
.getOperand(0).getSymbolName();
2022 return getInlineAsmLength(AsmStr
, *MF
->getTarget().getMCAsmInfo());
2023 } else if (Opcode
== TargetOpcode::STACKMAP
) {
2024 StackMapOpers
Opers(&MI
);
2025 return Opers
.getNumPatchBytes();
2026 } else if (Opcode
== TargetOpcode::PATCHPOINT
) {
2027 PatchPointOpers
Opers(&MI
);
2028 return Opers
.getNumPatchBytes();
2030 return get(Opcode
).getSize();
2034 std::pair
<unsigned, unsigned>
2035 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF
) const {
2036 const unsigned Mask
= PPCII::MO_ACCESS_MASK
;
2037 return std::make_pair(TF
& Mask
, TF
& ~Mask
);
2040 ArrayRef
<std::pair
<unsigned, const char *>>
2041 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2042 using namespace PPCII
;
2043 static const std::pair
<unsigned, const char *> TargetFlags
[] = {
2046 {MO_TPREL_LO
, "ppc-tprel-lo"},
2047 {MO_TPREL_HA
, "ppc-tprel-ha"},
2048 {MO_DTPREL_LO
, "ppc-dtprel-lo"},
2049 {MO_TLSLD_LO
, "ppc-tlsld-lo"},
2050 {MO_TOC_LO
, "ppc-toc-lo"},
2051 {MO_TLS
, "ppc-tls"}};
2052 return makeArrayRef(TargetFlags
);
2055 ArrayRef
<std::pair
<unsigned, const char *>>
2056 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2057 using namespace PPCII
;
2058 static const std::pair
<unsigned, const char *> TargetFlags
[] = {
2059 {MO_PLT
, "ppc-plt"},
2060 {MO_PIC_FLAG
, "ppc-pic"},
2061 {MO_NLP_FLAG
, "ppc-nlp"},
2062 {MO_NLP_HIDDEN_FLAG
, "ppc-nlp-hidden"}};
2063 return makeArrayRef(TargetFlags
);
2066 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2067 // The VSX versions have the advantage of a full 64-register target whereas
2068 // the FP ones have the advantage of lower latency and higher throughput. So
2069 // what we are after is using the faster instructions in low register pressure
2070 // situations and using the larger register file in high register pressure
2072 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr
&MI
) const {
2073 unsigned UpperOpcode
, LowerOpcode
;
2074 switch (MI
.getOpcode()) {
2075 case PPC::DFLOADf32
:
2076 UpperOpcode
= PPC::LXSSP
;
2077 LowerOpcode
= PPC::LFS
;
2079 case PPC::DFLOADf64
:
2080 UpperOpcode
= PPC::LXSD
;
2081 LowerOpcode
= PPC::LFD
;
2083 case PPC::DFSTOREf32
:
2084 UpperOpcode
= PPC::STXSSP
;
2085 LowerOpcode
= PPC::STFS
;
2087 case PPC::DFSTOREf64
:
2088 UpperOpcode
= PPC::STXSD
;
2089 LowerOpcode
= PPC::STFD
;
2091 case PPC::XFLOADf32
:
2092 UpperOpcode
= PPC::LXSSPX
;
2093 LowerOpcode
= PPC::LFSX
;
2095 case PPC::XFLOADf64
:
2096 UpperOpcode
= PPC::LXSDX
;
2097 LowerOpcode
= PPC::LFDX
;
2099 case PPC::XFSTOREf32
:
2100 UpperOpcode
= PPC::STXSSPX
;
2101 LowerOpcode
= PPC::STFSX
;
2103 case PPC::XFSTOREf64
:
2104 UpperOpcode
= PPC::STXSDX
;
2105 LowerOpcode
= PPC::STFDX
;
2108 UpperOpcode
= PPC::LXSIWAX
;
2109 LowerOpcode
= PPC::LFIWAX
;
2112 UpperOpcode
= PPC::LXSIWZX
;
2113 LowerOpcode
= PPC::LFIWZX
;
2116 UpperOpcode
= PPC::STXSIWX
;
2117 LowerOpcode
= PPC::STFIWX
;
2120 llvm_unreachable("Unknown Operation!");
2123 unsigned TargetReg
= MI
.getOperand(0).getReg();
2125 if ((TargetReg
>= PPC::F0
&& TargetReg
<= PPC::F31
) ||
2126 (TargetReg
>= PPC::VSL0
&& TargetReg
<= PPC::VSL31
))
2127 Opcode
= LowerOpcode
;
2129 Opcode
= UpperOpcode
;
2130 MI
.setDesc(get(Opcode
));
2134 static bool isAnImmediateOperand(const MachineOperand
&MO
) {
2135 return MO
.isCPI() || MO
.isGlobal() || MO
.isImm();
2138 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr
&MI
) const {
2139 auto &MBB
= *MI
.getParent();
2140 auto DL
= MI
.getDebugLoc();
2142 switch (MI
.getOpcode()) {
2143 case TargetOpcode::LOAD_STACK_GUARD
: {
2144 assert(Subtarget
.isTargetLinux() &&
2145 "Only Linux target is expected to contain LOAD_STACK_GUARD");
2146 const int64_t Offset
= Subtarget
.isPPC64() ? -0x7010 : -0x7008;
2147 const unsigned Reg
= Subtarget
.isPPC64() ? PPC::X13
: PPC::R2
;
2148 MI
.setDesc(get(Subtarget
.isPPC64() ? PPC::LD
: PPC::LWZ
));
2149 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
2154 case PPC::DFLOADf32
:
2155 case PPC::DFLOADf64
:
2156 case PPC::DFSTOREf32
:
2157 case PPC::DFSTOREf64
: {
2158 assert(Subtarget
.hasP9Vector() &&
2159 "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2160 assert(MI
.getOperand(2).isReg() &&
2161 isAnImmediateOperand(MI
.getOperand(1)) &&
2162 "D-form op must have register and immediate operands");
2163 return expandVSXMemPseudo(MI
);
2165 case PPC::XFLOADf32
:
2166 case PPC::XFSTOREf32
:
2170 assert(Subtarget
.hasP8Vector() &&
2171 "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2172 assert(MI
.getOperand(2).isReg() && MI
.getOperand(1).isReg() &&
2173 "X-form op must have register and register operands");
2174 return expandVSXMemPseudo(MI
);
2176 case PPC::XFLOADf64
:
2177 case PPC::XFSTOREf64
: {
2178 assert(Subtarget
.hasVSX() &&
2179 "Invalid X-Form Pseudo-ops on target that has no VSX.");
2180 assert(MI
.getOperand(2).isReg() && MI
.getOperand(1).isReg() &&
2181 "X-form op must have register and register operands");
2182 return expandVSXMemPseudo(MI
);
2184 case PPC::SPILLTOVSR_LD
: {
2185 unsigned TargetReg
= MI
.getOperand(0).getReg();
2186 if (PPC::VSFRCRegClass
.contains(TargetReg
)) {
2187 MI
.setDesc(get(PPC::DFLOADf64
));
2188 return expandPostRAPseudo(MI
);
2191 MI
.setDesc(get(PPC::LD
));
2194 case PPC::SPILLTOVSR_ST
: {
2195 unsigned SrcReg
= MI
.getOperand(0).getReg();
2196 if (PPC::VSFRCRegClass
.contains(SrcReg
)) {
2197 NumStoreSPILLVSRRCAsVec
++;
2198 MI
.setDesc(get(PPC::DFSTOREf64
));
2199 return expandPostRAPseudo(MI
);
2201 NumStoreSPILLVSRRCAsGpr
++;
2202 MI
.setDesc(get(PPC::STD
));
2206 case PPC::SPILLTOVSR_LDX
: {
2207 unsigned TargetReg
= MI
.getOperand(0).getReg();
2208 if (PPC::VSFRCRegClass
.contains(TargetReg
))
2209 MI
.setDesc(get(PPC::LXSDX
));
2211 MI
.setDesc(get(PPC::LDX
));
2214 case PPC::SPILLTOVSR_STX
: {
2215 unsigned SrcReg
= MI
.getOperand(0).getReg();
2216 if (PPC::VSFRCRegClass
.contains(SrcReg
)) {
2217 NumStoreSPILLVSRRCAsVec
++;
2218 MI
.setDesc(get(PPC::STXSDX
));
2220 NumStoreSPILLVSRRCAsGpr
++;
2221 MI
.setDesc(get(PPC::STDX
));
2226 case PPC::CFENCE8
: {
2227 auto Val
= MI
.getOperand(0).getReg();
2228 BuildMI(MBB
, MI
, DL
, get(PPC::CMPD
), PPC::CR7
).addReg(Val
).addReg(Val
);
2229 BuildMI(MBB
, MI
, DL
, get(PPC::CTRL_DEP
))
2230 .addImm(PPC::PRED_NE_MINUS
)
2233 MI
.setDesc(get(PPC::ISYNC
));
2234 MI
.RemoveOperand(0);
2241 // Essentially a compile-time implementation of a compare->isel sequence.
2242 // It takes two constants to compare, along with the true/false registers
2243 // and the comparison type (as a subreg to a CR field) and returns one
2244 // of the true/false registers, depending on the comparison results.
2245 static unsigned selectReg(int64_t Imm1
, int64_t Imm2
, unsigned CompareOpc
,
2246 unsigned TrueReg
, unsigned FalseReg
,
2247 unsigned CRSubReg
) {
2248 // Signed comparisons. The immediates are assumed to be sign-extended.
2249 if (CompareOpc
== PPC::CMPWI
|| CompareOpc
== PPC::CMPDI
) {
2251 default: llvm_unreachable("Unknown integer comparison type.");
2253 return Imm1
< Imm2
? TrueReg
: FalseReg
;
2255 return Imm1
> Imm2
? TrueReg
: FalseReg
;
2257 return Imm1
== Imm2
? TrueReg
: FalseReg
;
2260 // Unsigned comparisons.
2261 else if (CompareOpc
== PPC::CMPLWI
|| CompareOpc
== PPC::CMPLDI
) {
2263 default: llvm_unreachable("Unknown integer comparison type.");
2265 return (uint64_t)Imm1
< (uint64_t)Imm2
? TrueReg
: FalseReg
;
2267 return (uint64_t)Imm1
> (uint64_t)Imm2
? TrueReg
: FalseReg
;
2269 return Imm1
== Imm2
? TrueReg
: FalseReg
;
2272 return PPC::NoRegister
;
2275 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr
&MI
,
2277 int64_t Imm
) const {
2278 assert(MI
.getOperand(OpNo
).isReg() && "Operand must be a REG");
2279 // Replace the REG with the Immediate.
2280 unsigned InUseReg
= MI
.getOperand(OpNo
).getReg();
2281 MI
.getOperand(OpNo
).ChangeToImmediate(Imm
);
2283 if (empty(MI
.implicit_operands()))
2286 // We need to make sure that the MI didn't have any implicit use
2287 // of this REG any more.
2288 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2289 int UseOpIdx
= MI
.findRegisterUseOperandIdx(InUseReg
, false, TRI
);
2290 if (UseOpIdx
>= 0) {
2291 MachineOperand
&MO
= MI
.getOperand(UseOpIdx
);
2292 if (MO
.isImplicit())
2293 // The operands must always be in the following order:
2294 // - explicit reg defs,
2295 // - other explicit operands (reg uses, immediates, etc.),
2296 // - implicit reg defs
2297 // - implicit reg uses
2298 // Therefore, removing the implicit operand won't change the explicit
2300 MI
.RemoveOperand(UseOpIdx
);
2304 // Replace an instruction with one that materializes a constant (and sets
2305 // CR0 if the original instruction was a record-form instruction).
2306 void PPCInstrInfo::replaceInstrWithLI(MachineInstr
&MI
,
2307 const LoadImmediateInfo
&LII
) const {
2308 // Remove existing operands.
2309 int OperandToKeep
= LII
.SetCR
? 1 : 0;
2310 for (int i
= MI
.getNumOperands() - 1; i
> OperandToKeep
; i
--)
2311 MI
.RemoveOperand(i
);
2313 // Replace the instruction.
2315 MI
.setDesc(get(LII
.Is64Bit
? PPC::ANDIo8
: PPC::ANDIo
));
2316 // Set the immediate.
2317 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
2318 .addImm(LII
.Imm
).addReg(PPC::CR0
, RegState::ImplicitDefine
);
2322 MI
.setDesc(get(LII
.Is64Bit
? PPC::LI8
: PPC::LI
));
2324 // Set the immediate.
2325 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
2329 MachineInstr
*PPCInstrInfo::getForwardingDefMI(
2331 unsigned &OpNoForForwarding
,
2332 bool &SeenIntermediateUse
) const {
2333 OpNoForForwarding
= ~0U;
2334 MachineInstr
*DefMI
= nullptr;
2335 MachineRegisterInfo
*MRI
= &MI
.getParent()->getParent()->getRegInfo();
2336 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2337 // If we're in SSA, get the defs through the MRI. Otherwise, only look
2338 // within the basic block to see if the register is defined using an LI/LI8.
2340 for (int i
= 1, e
= MI
.getNumOperands(); i
< e
; i
++) {
2341 if (!MI
.getOperand(i
).isReg())
2343 unsigned Reg
= MI
.getOperand(i
).getReg();
2344 if (!TargetRegisterInfo::isVirtualRegister(Reg
))
2346 unsigned TrueReg
= TRI
->lookThruCopyLike(Reg
, MRI
);
2347 if (TargetRegisterInfo::isVirtualRegister(TrueReg
)) {
2348 DefMI
= MRI
->getVRegDef(TrueReg
);
2349 if (DefMI
->getOpcode() == PPC::LI
|| DefMI
->getOpcode() == PPC::LI8
) {
2350 OpNoForForwarding
= i
;
2356 // Looking back through the definition for each operand could be expensive,
2357 // so exit early if this isn't an instruction that either has an immediate
2358 // form or is already an immediate form that we can handle.
2360 unsigned Opc
= MI
.getOpcode();
2361 bool ConvertibleImmForm
=
2362 Opc
== PPC::CMPWI
|| Opc
== PPC::CMPLWI
||
2363 Opc
== PPC::CMPDI
|| Opc
== PPC::CMPLDI
||
2364 Opc
== PPC::ADDI
|| Opc
== PPC::ADDI8
||
2365 Opc
== PPC::ORI
|| Opc
== PPC::ORI8
||
2366 Opc
== PPC::XORI
|| Opc
== PPC::XORI8
||
2367 Opc
== PPC::RLDICL
|| Opc
== PPC::RLDICLo
||
2368 Opc
== PPC::RLDICL_32
|| Opc
== PPC::RLDICL_32_64
||
2369 Opc
== PPC::RLWINM
|| Opc
== PPC::RLWINMo
||
2370 Opc
== PPC::RLWINM8
|| Opc
== PPC::RLWINM8o
;
2371 if (!instrHasImmForm(MI
, III
, true) && !ConvertibleImmForm
)
2374 // Don't convert or %X, %Y, %Y since that's just a register move.
2375 if ((Opc
== PPC::OR
|| Opc
== PPC::OR8
) &&
2376 MI
.getOperand(1).getReg() == MI
.getOperand(2).getReg())
2378 for (int i
= 1, e
= MI
.getNumOperands(); i
< e
; i
++) {
2379 MachineOperand
&MO
= MI
.getOperand(i
);
2380 SeenIntermediateUse
= false;
2381 if (MO
.isReg() && MO
.isUse() && !MO
.isImplicit()) {
2382 MachineBasicBlock::reverse_iterator E
= MI
.getParent()->rend(), It
= MI
;
2384 unsigned Reg
= MI
.getOperand(i
).getReg();
2386 // Is this register defined by some form of add-immediate (including
2387 // load-immediate) within this basic block?
2388 for ( ; It
!= E
; ++It
) {
2389 if (It
->modifiesRegister(Reg
, &getRegisterInfo())) {
2390 switch (It
->getOpcode()) {
2397 OpNoForForwarding
= i
;
2401 } else if (It
->readsRegister(Reg
, &getRegisterInfo()))
2402 // If we see another use of this reg between the def and the MI,
2403 // we want to flat it so the def isn't deleted.
2404 SeenIntermediateUse
= true;
2409 return OpNoForForwarding
== ~0U ? nullptr : DefMI
;
2412 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2413 static const unsigned OpcodesForSpill
[2][SOK_LastOpcodeSpill
] = {
2415 {PPC::STW
, PPC::STD
, PPC::STFD
, PPC::STFS
, PPC::SPILL_CR
,
2416 PPC::SPILL_CRBIT
, PPC::STVX
, PPC::STXVD2X
, PPC::STXSDX
, PPC::STXSSPX
,
2417 PPC::SPILL_VRSAVE
, PPC::QVSTFDX
, PPC::QVSTFSXs
, PPC::QVSTFDXb
,
2418 PPC::SPILLTOVSR_ST
, PPC::EVSTDD
, PPC::SPESTW
},
2420 {PPC::STW
, PPC::STD
, PPC::STFD
, PPC::STFS
, PPC::SPILL_CR
,
2421 PPC::SPILL_CRBIT
, PPC::STVX
, PPC::STXV
, PPC::DFSTOREf64
, PPC::DFSTOREf32
,
2422 PPC::SPILL_VRSAVE
, PPC::QVSTFDX
, PPC::QVSTFSXs
, PPC::QVSTFDXb
,
2423 PPC::SPILLTOVSR_ST
}};
2425 return OpcodesForSpill
[(Subtarget
.hasP9Vector()) ? 1 : 0];
2428 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2429 static const unsigned OpcodesForSpill
[2][SOK_LastOpcodeSpill
] = {
2431 {PPC::LWZ
, PPC::LD
, PPC::LFD
, PPC::LFS
, PPC::RESTORE_CR
,
2432 PPC::RESTORE_CRBIT
, PPC::LVX
, PPC::LXVD2X
, PPC::LXSDX
, PPC::LXSSPX
,
2433 PPC::RESTORE_VRSAVE
, PPC::QVLFDX
, PPC::QVLFSXs
, PPC::QVLFDXb
,
2434 PPC::SPILLTOVSR_LD
, PPC::EVLDD
, PPC::SPELWZ
},
2436 {PPC::LWZ
, PPC::LD
, PPC::LFD
, PPC::LFS
, PPC::RESTORE_CR
,
2437 PPC::RESTORE_CRBIT
, PPC::LVX
, PPC::LXV
, PPC::DFLOADf64
, PPC::DFLOADf32
,
2438 PPC::RESTORE_VRSAVE
, PPC::QVLFDX
, PPC::QVLFSXs
, PPC::QVLFDXb
,
2439 PPC::SPILLTOVSR_LD
}};
2441 return OpcodesForSpill
[(Subtarget
.hasP9Vector()) ? 1 : 0];
2444 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr
&StartMI
, MachineInstr
&EndMI
,
2445 unsigned RegNo
) const {
2446 const MachineRegisterInfo
&MRI
=
2447 StartMI
.getParent()->getParent()->getRegInfo();
2451 // Instructions between [StartMI, EndMI] should be in same basic block.
2452 assert((StartMI
.getParent() == EndMI
.getParent()) &&
2453 "Instructions are not in same basic block");
2455 bool IsKillSet
= false;
2457 auto clearOperandKillInfo
= [=] (MachineInstr
&MI
, unsigned Index
) {
2458 MachineOperand
&MO
= MI
.getOperand(Index
);
2459 if (MO
.isReg() && MO
.isUse() && MO
.isKill() &&
2460 getRegisterInfo().regsOverlap(MO
.getReg(), RegNo
))
2461 MO
.setIsKill(false);
2464 // Set killed flag for EndMI.
2465 // No need to do anything if EndMI defines RegNo.
2467 EndMI
.findRegisterUseOperandIdx(RegNo
, false, &getRegisterInfo());
2468 if (UseIndex
!= -1) {
2469 EndMI
.getOperand(UseIndex
).setIsKill(true);
2471 // Clear killed flag for other EndMI operands related to RegNo. In some
2472 // upexpected cases, killed may be set multiple times for same register
2473 // operand in same MI.
2474 for (int i
= 0, e
= EndMI
.getNumOperands(); i
!= e
; ++i
)
2476 clearOperandKillInfo(EndMI
, i
);
2479 // Walking the inst in reverse order (EndMI -> StartMI].
2480 MachineBasicBlock::reverse_iterator It
= EndMI
;
2481 MachineBasicBlock::reverse_iterator E
= EndMI
.getParent()->rend();
2482 // EndMI has been handled above, skip it here.
2484 MachineOperand
*MO
= nullptr;
2485 for (; It
!= E
; ++It
) {
2486 // Skip insturctions which could not be a def/use of RegNo.
2487 if (It
->isDebugInstr() || It
->isPosition())
2490 // Clear killed flag for all It operands related to RegNo. In some
2491 // upexpected cases, killed may be set multiple times for same register
2492 // operand in same MI.
2493 for (int i
= 0, e
= It
->getNumOperands(); i
!= e
; ++i
)
2494 clearOperandKillInfo(*It
, i
);
2496 // If killed is not set, set killed for its last use or set dead for its def
2499 if ((MO
= It
->findRegisterUseOperand(RegNo
, false, &getRegisterInfo()))) {
2500 // Use found, set it killed.
2502 MO
->setIsKill(true);
2504 } else if ((MO
= It
->findRegisterDefOperand(RegNo
, false, true,
2505 &getRegisterInfo()))) {
2506 // No use found, set dead for its def.
2507 assert(&*It
== &StartMI
&& "No new def between StartMI and EndMI.");
2508 MO
->setIsDead(true);
2513 if ((&*It
) == &StartMI
)
2516 // Ensure RegMo liveness is killed after EndMI.
2517 assert((IsKillSet
|| (MO
&& MO
->isDead())) &&
2518 "RegNo should be killed or dead");
2521 // If this instruction has an immediate form and one of its operands is a
2522 // result of a load-immediate or an add-immediate, convert it to
2523 // the immediate form if the constant is in range.
2524 bool PPCInstrInfo::convertToImmediateForm(MachineInstr
&MI
,
2525 MachineInstr
**KilledDef
) const {
2526 MachineFunction
*MF
= MI
.getParent()->getParent();
2527 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
2528 bool PostRA
= !MRI
->isSSA();
2529 bool SeenIntermediateUse
= true;
2530 unsigned ForwardingOperand
= ~0U;
2531 MachineInstr
*DefMI
= getForwardingDefMI(MI
, ForwardingOperand
,
2532 SeenIntermediateUse
);
2535 assert(ForwardingOperand
< MI
.getNumOperands() &&
2536 "The forwarding operand needs to be valid at this point");
2537 bool IsForwardingOperandKilled
= MI
.getOperand(ForwardingOperand
).isKill();
2538 bool KillFwdDefMI
= !SeenIntermediateUse
&& IsForwardingOperandKilled
;
2539 unsigned ForwardingOperandReg
= MI
.getOperand(ForwardingOperand
).getReg();
2540 if (KilledDef
&& KillFwdDefMI
)
2544 bool HasImmForm
= instrHasImmForm(MI
, III
, PostRA
);
2545 // If this is a reg+reg instruction that has a reg+imm form,
2546 // and one of the operands is produced by an add-immediate,
2547 // try to convert it.
2549 transformToImmFormFedByAdd(MI
, III
, ForwardingOperand
, *DefMI
,
2553 if ((DefMI
->getOpcode() != PPC::LI
&& DefMI
->getOpcode() != PPC::LI8
) ||
2554 !DefMI
->getOperand(1).isImm())
2557 int64_t Immediate
= DefMI
->getOperand(1).getImm();
2558 // Sign-extend to 64-bits.
2559 int64_t SExtImm
= ((uint64_t)Immediate
& ~0x7FFFuLL
) != 0 ?
2560 (Immediate
| 0xFFFFFFFFFFFF0000) : Immediate
;
2562 // If this is a reg+reg instruction that has a reg+imm form,
2563 // and one of the operands is produced by LI, convert it now.
2565 return transformToImmFormFedByLI(MI
, III
, ForwardingOperand
, *DefMI
, SExtImm
);
2567 bool ReplaceWithLI
= false;
2568 bool Is64BitLI
= false;
2571 unsigned Opc
= MI
.getOpcode();
2573 default: return false;
2575 // FIXME: Any branches conditional on such a comparison can be made
2576 // unconditional. At this time, this happens too infrequently to be worth
2577 // the implementation effort, but if that ever changes, we could convert
2578 // such a pattern here.
2583 // Doing this post-RA would require dataflow analysis to reliably find uses
2584 // of the CR register set by the compare.
2585 // No need to fixup killed/dead flag since this transformation is only valid
2589 // If a compare-immediate is fed by an immediate and is itself an input of
2590 // an ISEL (the most common case) into a COPY of the correct register.
2591 bool Changed
= false;
2592 unsigned DefReg
= MI
.getOperand(0).getReg();
2593 int64_t Comparand
= MI
.getOperand(2).getImm();
2594 int64_t SExtComparand
= ((uint64_t)Comparand
& ~0x7FFFuLL
) != 0 ?
2595 (Comparand
| 0xFFFFFFFFFFFF0000) : Comparand
;
2597 for (auto &CompareUseMI
: MRI
->use_instructions(DefReg
)) {
2598 unsigned UseOpc
= CompareUseMI
.getOpcode();
2599 if (UseOpc
!= PPC::ISEL
&& UseOpc
!= PPC::ISEL8
)
2601 unsigned CRSubReg
= CompareUseMI
.getOperand(3).getSubReg();
2602 unsigned TrueReg
= CompareUseMI
.getOperand(1).getReg();
2603 unsigned FalseReg
= CompareUseMI
.getOperand(2).getReg();
2604 unsigned RegToCopy
= selectReg(SExtImm
, SExtComparand
, Opc
, TrueReg
,
2605 FalseReg
, CRSubReg
);
2606 if (RegToCopy
== PPC::NoRegister
)
2608 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
2609 if (RegToCopy
== PPC::ZERO
|| RegToCopy
== PPC::ZERO8
) {
2610 CompareUseMI
.setDesc(get(UseOpc
== PPC::ISEL8
? PPC::LI8
: PPC::LI
));
2611 replaceInstrOperandWithImm(CompareUseMI
, 1, 0);
2612 CompareUseMI
.RemoveOperand(3);
2613 CompareUseMI
.RemoveOperand(2);
2617 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
2618 LLVM_DEBUG(DefMI
->dump(); MI
.dump(); CompareUseMI
.dump());
2619 LLVM_DEBUG(dbgs() << "Is converted to:\n");
2620 // Convert to copy and remove unneeded operands.
2621 CompareUseMI
.setDesc(get(PPC::COPY
));
2622 CompareUseMI
.RemoveOperand(3);
2623 CompareUseMI
.RemoveOperand(RegToCopy
== TrueReg
? 2 : 1);
2624 CmpIselsConverted
++;
2626 LLVM_DEBUG(CompareUseMI
.dump());
2630 // This may end up incremented multiple times since this function is called
2631 // during a fixed-point transformation, but it is only meant to indicate the
2632 // presence of this opportunity.
2633 MissedConvertibleImmediateInstrs
++;
2637 // Immediate forms - may simply be convertable to an LI.
2640 // Does the sum fit in a 16-bit signed field?
2641 int64_t Addend
= MI
.getOperand(2).getImm();
2642 if (isInt
<16>(Addend
+ SExtImm
)) {
2643 ReplaceWithLI
= true;
2644 Is64BitLI
= Opc
== PPC::ADDI8
;
2645 NewImm
= Addend
+ SExtImm
;
2652 case PPC::RLDICL_32
:
2653 case PPC::RLDICL_32_64
: {
2654 // Use APInt's rotate function.
2655 int64_t SH
= MI
.getOperand(2).getImm();
2656 int64_t MB
= MI
.getOperand(3).getImm();
2657 APInt
InVal((Opc
== PPC::RLDICL
|| Opc
== PPC::RLDICLo
) ?
2658 64 : 32, SExtImm
, true);
2659 InVal
= InVal
.rotl(SH
);
2660 uint64_t Mask
= (1LLU << (63 - MB
+ 1)) - 1;
2662 // Can't replace negative values with an LI as that will sign-extend
2663 // and not clear the left bits. If we're setting the CR bit, we will use
2664 // ANDIo which won't sign extend, so that's safe.
2665 if (isUInt
<15>(InVal
.getSExtValue()) ||
2666 (Opc
== PPC::RLDICLo
&& isUInt
<16>(InVal
.getSExtValue()))) {
2667 ReplaceWithLI
= true;
2668 Is64BitLI
= Opc
!= PPC::RLDICL_32
;
2669 NewImm
= InVal
.getSExtValue();
2670 SetCR
= Opc
== PPC::RLDICLo
;
2678 case PPC::RLWINM8o
: {
2679 int64_t SH
= MI
.getOperand(2).getImm();
2680 int64_t MB
= MI
.getOperand(3).getImm();
2681 int64_t ME
= MI
.getOperand(4).getImm();
2682 APInt
InVal(32, SExtImm
, true);
2683 InVal
= InVal
.rotl(SH
);
2684 // Set the bits ( MB + 32 ) to ( ME + 32 ).
2685 uint64_t Mask
= ((1LLU << (32 - MB
)) - 1) & ~((1LLU << (31 - ME
)) - 1);
2687 // Can't replace negative values with an LI as that will sign-extend
2688 // and not clear the left bits. If we're setting the CR bit, we will use
2689 // ANDIo which won't sign extend, so that's safe.
2690 bool ValueFits
= isUInt
<15>(InVal
.getSExtValue());
2691 ValueFits
|= ((Opc
== PPC::RLWINMo
|| Opc
== PPC::RLWINM8o
) &&
2692 isUInt
<16>(InVal
.getSExtValue()));
2694 ReplaceWithLI
= true;
2695 Is64BitLI
= Opc
== PPC::RLWINM8
|| Opc
== PPC::RLWINM8o
;
2696 NewImm
= InVal
.getSExtValue();
2697 SetCR
= Opc
== PPC::RLWINMo
|| Opc
== PPC::RLWINM8o
;
2706 int64_t LogicalImm
= MI
.getOperand(2).getImm();
2708 if (Opc
== PPC::ORI
|| Opc
== PPC::ORI8
)
2709 Result
= LogicalImm
| SExtImm
;
2711 Result
= LogicalImm
^ SExtImm
;
2712 if (isInt
<16>(Result
)) {
2713 ReplaceWithLI
= true;
2714 Is64BitLI
= Opc
== PPC::ORI8
|| Opc
== PPC::XORI8
;
2722 if (ReplaceWithLI
) {
2723 // We need to be careful with CR-setting instructions we're replacing.
2725 // We don't know anything about uses when we're out of SSA, so only
2726 // replace if the new immediate will be reproduced.
2727 bool ImmChanged
= (SExtImm
& NewImm
) != NewImm
;
2728 if (PostRA
&& ImmChanged
)
2732 // If the defining load-immediate has no other uses, we can just replace
2733 // the immediate with the new immediate.
2734 if (MRI
->hasOneUse(DefMI
->getOperand(0).getReg()))
2735 DefMI
->getOperand(1).setImm(NewImm
);
2737 // If we're not using the GPR result of the CR-setting instruction, we
2738 // just need to and with zero/non-zero depending on the new immediate.
2739 else if (MRI
->use_empty(MI
.getOperand(0).getReg())) {
2741 assert(Immediate
&& "Transformation converted zero to non-zero?");
2745 else if (ImmChanged
)
2750 LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
2751 LLVM_DEBUG(MI
.dump());
2752 LLVM_DEBUG(dbgs() << "Fed by:\n");
2753 LLVM_DEBUG(DefMI
->dump());
2754 LoadImmediateInfo LII
;
2756 LII
.Is64Bit
= Is64BitLI
;
2758 // If we're setting the CR, the original load-immediate must be kept (as an
2759 // operand to ANDIo/ANDI8o).
2760 if (KilledDef
&& SetCR
)
2761 *KilledDef
= nullptr;
2762 replaceInstrWithLI(MI
, LII
);
2764 // Fixup killed/dead flag after transformation.
2766 // ForwardingOperandReg = LI imm1
2767 // y = op2 imm2, ForwardingOperandReg(killed)
2768 if (IsForwardingOperandKilled
)
2769 fixupIsDeadOrKill(*DefMI
, MI
, ForwardingOperandReg
);
2771 LLVM_DEBUG(dbgs() << "With:\n");
2772 LLVM_DEBUG(MI
.dump());
2778 bool PPCInstrInfo::instrHasImmForm(const MachineInstr
&MI
,
2779 ImmInstrInfo
&III
, bool PostRA
) const {
2780 unsigned Opc
= MI
.getOpcode();
2781 // The vast majority of the instructions would need their operand 2 replaced
2782 // with an immediate when switching to the reg+imm form. A marked exception
2783 // are the update form loads/stores for which a constant operand 2 would need
2784 // to turn into a displacement and move operand 1 to the operand 2 position.
2786 III
.OpNoForForwarding
= 2;
2788 III
.ImmMustBeMultipleOf
= 1;
2789 III
.TruncateImmTo
= 0;
2790 III
.IsSummingOperands
= false;
2792 default: return false;
2795 III
.SignedImm
= true;
2796 III
.ZeroIsSpecialOrig
= 0;
2797 III
.ZeroIsSpecialNew
= 1;
2798 III
.IsCommutative
= true;
2799 III
.IsSummingOperands
= true;
2800 III
.ImmOpcode
= Opc
== PPC::ADD4
? PPC::ADDI
: PPC::ADDI8
;
2804 III
.SignedImm
= true;
2805 III
.ZeroIsSpecialOrig
= 0;
2806 III
.ZeroIsSpecialNew
= 0;
2807 III
.IsCommutative
= true;
2808 III
.IsSummingOperands
= true;
2809 III
.ImmOpcode
= Opc
== PPC::ADDC
? PPC::ADDIC
: PPC::ADDIC8
;
2812 III
.SignedImm
= true;
2813 III
.ZeroIsSpecialOrig
= 0;
2814 III
.ZeroIsSpecialNew
= 0;
2815 III
.IsCommutative
= true;
2816 III
.IsSummingOperands
= true;
2817 III
.ImmOpcode
= PPC::ADDICo
;
2821 III
.SignedImm
= true;
2822 III
.ZeroIsSpecialOrig
= 0;
2823 III
.ZeroIsSpecialNew
= 0;
2824 III
.IsCommutative
= false;
2825 III
.ImmOpcode
= Opc
== PPC::SUBFC
? PPC::SUBFIC
: PPC::SUBFIC8
;
2829 III
.SignedImm
= true;
2830 III
.ZeroIsSpecialOrig
= 0;
2831 III
.ZeroIsSpecialNew
= 0;
2832 III
.IsCommutative
= false;
2833 III
.ImmOpcode
= Opc
== PPC::CMPW
? PPC::CMPWI
: PPC::CMPDI
;
2837 III
.SignedImm
= false;
2838 III
.ZeroIsSpecialOrig
= 0;
2839 III
.ZeroIsSpecialNew
= 0;
2840 III
.IsCommutative
= false;
2841 III
.ImmOpcode
= Opc
== PPC::CMPLW
? PPC::CMPLWI
: PPC::CMPLDI
;
2849 III
.SignedImm
= false;
2850 III
.ZeroIsSpecialOrig
= 0;
2851 III
.ZeroIsSpecialNew
= 0;
2852 III
.IsCommutative
= true;
2854 default: llvm_unreachable("Unknown opcode");
2855 case PPC::ANDo
: III
.ImmOpcode
= PPC::ANDIo
; break;
2856 case PPC::AND8o
: III
.ImmOpcode
= PPC::ANDIo8
; break;
2857 case PPC::OR
: III
.ImmOpcode
= PPC::ORI
; break;
2858 case PPC::OR8
: III
.ImmOpcode
= PPC::ORI8
; break;
2859 case PPC::XOR
: III
.ImmOpcode
= PPC::XORI
; break;
2860 case PPC::XOR8
: III
.ImmOpcode
= PPC::XORI8
; break;
2877 III
.SignedImm
= false;
2878 III
.ZeroIsSpecialOrig
= 0;
2879 III
.ZeroIsSpecialNew
= 0;
2880 III
.IsCommutative
= false;
2881 // This isn't actually true, but the instructions ignore any of the
2882 // upper bits, so any immediate loaded with an LI is acceptable.
2883 // This does not apply to shift right algebraic because a value
2884 // out of range will produce a -1/0.
2886 if (Opc
== PPC::RLWNM
|| Opc
== PPC::RLWNM8
||
2887 Opc
== PPC::RLWNMo
|| Opc
== PPC::RLWNM8o
)
2888 III
.TruncateImmTo
= 5;
2890 III
.TruncateImmTo
= 6;
2892 default: llvm_unreachable("Unknown opcode");
2893 case PPC::RLWNM
: III
.ImmOpcode
= PPC::RLWINM
; break;
2894 case PPC::RLWNM8
: III
.ImmOpcode
= PPC::RLWINM8
; break;
2895 case PPC::RLWNMo
: III
.ImmOpcode
= PPC::RLWINMo
; break;
2896 case PPC::RLWNM8o
: III
.ImmOpcode
= PPC::RLWINM8o
; break;
2897 case PPC::SLW
: III
.ImmOpcode
= PPC::RLWINM
; break;
2898 case PPC::SLW8
: III
.ImmOpcode
= PPC::RLWINM8
; break;
2899 case PPC::SLWo
: III
.ImmOpcode
= PPC::RLWINMo
; break;
2900 case PPC::SLW8o
: III
.ImmOpcode
= PPC::RLWINM8o
; break;
2901 case PPC::SRW
: III
.ImmOpcode
= PPC::RLWINM
; break;
2902 case PPC::SRW8
: III
.ImmOpcode
= PPC::RLWINM8
; break;
2903 case PPC::SRWo
: III
.ImmOpcode
= PPC::RLWINMo
; break;
2904 case PPC::SRW8o
: III
.ImmOpcode
= PPC::RLWINM8o
; break;
2907 III
.TruncateImmTo
= 0;
2908 III
.ImmOpcode
= PPC::SRAWI
;
2912 III
.TruncateImmTo
= 0;
2913 III
.ImmOpcode
= PPC::SRAWIo
;
2927 III
.SignedImm
= false;
2928 III
.ZeroIsSpecialOrig
= 0;
2929 III
.ZeroIsSpecialNew
= 0;
2930 III
.IsCommutative
= false;
2931 // This isn't actually true, but the instructions ignore any of the
2932 // upper bits, so any immediate loaded with an LI is acceptable.
2933 // This does not apply to shift right algebraic because a value
2934 // out of range will produce a -1/0.
2936 if (Opc
== PPC::RLDCL
|| Opc
== PPC::RLDCLo
||
2937 Opc
== PPC::RLDCR
|| Opc
== PPC::RLDCRo
)
2938 III
.TruncateImmTo
= 6;
2940 III
.TruncateImmTo
= 7;
2942 default: llvm_unreachable("Unknown opcode");
2943 case PPC::RLDCL
: III
.ImmOpcode
= PPC::RLDICL
; break;
2944 case PPC::RLDCLo
: III
.ImmOpcode
= PPC::RLDICLo
; break;
2945 case PPC::RLDCR
: III
.ImmOpcode
= PPC::RLDICR
; break;
2946 case PPC::RLDCRo
: III
.ImmOpcode
= PPC::RLDICRo
; break;
2947 case PPC::SLD
: III
.ImmOpcode
= PPC::RLDICR
; break;
2948 case PPC::SLDo
: III
.ImmOpcode
= PPC::RLDICRo
; break;
2949 case PPC::SRD
: III
.ImmOpcode
= PPC::RLDICL
; break;
2950 case PPC::SRDo
: III
.ImmOpcode
= PPC::RLDICLo
; break;
2953 III
.TruncateImmTo
= 0;
2954 III
.ImmOpcode
= PPC::SRADI
;
2958 III
.TruncateImmTo
= 0;
2959 III
.ImmOpcode
= PPC::SRADIo
;
2963 // Loads and stores:
2985 III
.SignedImm
= true;
2986 III
.ZeroIsSpecialOrig
= 1;
2987 III
.ZeroIsSpecialNew
= 2;
2988 III
.IsCommutative
= true;
2989 III
.IsSummingOperands
= true;
2991 III
.OpNoForForwarding
= 2;
2993 default: llvm_unreachable("Unknown opcode");
2994 case PPC::LBZX
: III
.ImmOpcode
= PPC::LBZ
; break;
2995 case PPC::LBZX8
: III
.ImmOpcode
= PPC::LBZ8
; break;
2996 case PPC::LHZX
: III
.ImmOpcode
= PPC::LHZ
; break;
2997 case PPC::LHZX8
: III
.ImmOpcode
= PPC::LHZ8
; break;
2998 case PPC::LHAX
: III
.ImmOpcode
= PPC::LHA
; break;
2999 case PPC::LHAX8
: III
.ImmOpcode
= PPC::LHA8
; break;
3000 case PPC::LWZX
: III
.ImmOpcode
= PPC::LWZ
; break;
3001 case PPC::LWZX8
: III
.ImmOpcode
= PPC::LWZ8
; break;
3003 III
.ImmOpcode
= PPC::LWA
;
3004 III
.ImmMustBeMultipleOf
= 4;
3006 case PPC::LDX
: III
.ImmOpcode
= PPC::LD
; III
.ImmMustBeMultipleOf
= 4; break;
3007 case PPC::LFSX
: III
.ImmOpcode
= PPC::LFS
; break;
3008 case PPC::LFDX
: III
.ImmOpcode
= PPC::LFD
; break;
3009 case PPC::STBX
: III
.ImmOpcode
= PPC::STB
; break;
3010 case PPC::STBX8
: III
.ImmOpcode
= PPC::STB8
; break;
3011 case PPC::STHX
: III
.ImmOpcode
= PPC::STH
; break;
3012 case PPC::STHX8
: III
.ImmOpcode
= PPC::STH8
; break;
3013 case PPC::STWX
: III
.ImmOpcode
= PPC::STW
; break;
3014 case PPC::STWX8
: III
.ImmOpcode
= PPC::STW8
; break;
3016 III
.ImmOpcode
= PPC::STD
;
3017 III
.ImmMustBeMultipleOf
= 4;
3019 case PPC::STFSX
: III
.ImmOpcode
= PPC::STFS
; break;
3020 case PPC::STFDX
: III
.ImmOpcode
= PPC::STFD
; break;
3043 III
.SignedImm
= true;
3044 III
.ZeroIsSpecialOrig
= 2;
3045 III
.ZeroIsSpecialNew
= 3;
3046 III
.IsCommutative
= false;
3047 III
.IsSummingOperands
= true;
3049 III
.OpNoForForwarding
= 3;
3051 default: llvm_unreachable("Unknown opcode");
3052 case PPC::LBZUX
: III
.ImmOpcode
= PPC::LBZU
; break;
3053 case PPC::LBZUX8
: III
.ImmOpcode
= PPC::LBZU8
; break;
3054 case PPC::LHZUX
: III
.ImmOpcode
= PPC::LHZU
; break;
3055 case PPC::LHZUX8
: III
.ImmOpcode
= PPC::LHZU8
; break;
3056 case PPC::LHAUX
: III
.ImmOpcode
= PPC::LHAU
; break;
3057 case PPC::LHAUX8
: III
.ImmOpcode
= PPC::LHAU8
; break;
3058 case PPC::LWZUX
: III
.ImmOpcode
= PPC::LWZU
; break;
3059 case PPC::LWZUX8
: III
.ImmOpcode
= PPC::LWZU8
; break;
3061 III
.ImmOpcode
= PPC::LDU
;
3062 III
.ImmMustBeMultipleOf
= 4;
3064 case PPC::LFSUX
: III
.ImmOpcode
= PPC::LFSU
; break;
3065 case PPC::LFDUX
: III
.ImmOpcode
= PPC::LFDU
; break;
3066 case PPC::STBUX
: III
.ImmOpcode
= PPC::STBU
; break;
3067 case PPC::STBUX8
: III
.ImmOpcode
= PPC::STBU8
; break;
3068 case PPC::STHUX
: III
.ImmOpcode
= PPC::STHU
; break;
3069 case PPC::STHUX8
: III
.ImmOpcode
= PPC::STHU8
; break;
3070 case PPC::STWUX
: III
.ImmOpcode
= PPC::STWU
; break;
3071 case PPC::STWUX8
: III
.ImmOpcode
= PPC::STWU8
; break;
3073 III
.ImmOpcode
= PPC::STDU
;
3074 III
.ImmMustBeMultipleOf
= 4;
3076 case PPC::STFSUX
: III
.ImmOpcode
= PPC::STFSU
; break;
3077 case PPC::STFDUX
: III
.ImmOpcode
= PPC::STFDU
; break;
3080 // Power9 and up only. For some of these, the X-Form version has access to all
3081 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
3082 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
3083 // into or stored from is one of the VR registers.
3090 case PPC::XFLOADf32
:
3091 case PPC::XFLOADf64
:
3092 case PPC::XFSTOREf32
:
3093 case PPC::XFSTOREf64
:
3094 if (!Subtarget
.hasP9Vector())
3096 III
.SignedImm
= true;
3097 III
.ZeroIsSpecialOrig
= 1;
3098 III
.ZeroIsSpecialNew
= 2;
3099 III
.IsCommutative
= true;
3100 III
.IsSummingOperands
= true;
3102 III
.OpNoForForwarding
= 2;
3103 III
.ImmMustBeMultipleOf
= 4;
3105 default: llvm_unreachable("Unknown opcode");
3107 III
.ImmOpcode
= PPC::LXV
;
3108 III
.ImmMustBeMultipleOf
= 16;
3112 if (isVFRegister(MI
.getOperand(0).getReg()))
3113 III
.ImmOpcode
= PPC::LXSSP
;
3115 III
.ImmOpcode
= PPC::LFS
;
3116 III
.ImmMustBeMultipleOf
= 1;
3121 case PPC::XFLOADf32
:
3122 III
.ImmOpcode
= PPC::DFLOADf32
;
3126 if (isVFRegister(MI
.getOperand(0).getReg()))
3127 III
.ImmOpcode
= PPC::LXSD
;
3129 III
.ImmOpcode
= PPC::LFD
;
3130 III
.ImmMustBeMultipleOf
= 1;
3135 case PPC::XFLOADf64
:
3136 III
.ImmOpcode
= PPC::DFLOADf64
;
3139 III
.ImmOpcode
= PPC::STXV
;
3140 III
.ImmMustBeMultipleOf
= 16;
3144 if (isVFRegister(MI
.getOperand(0).getReg()))
3145 III
.ImmOpcode
= PPC::STXSSP
;
3147 III
.ImmOpcode
= PPC::STFS
;
3148 III
.ImmMustBeMultipleOf
= 1;
3153 case PPC::XFSTOREf32
:
3154 III
.ImmOpcode
= PPC::DFSTOREf32
;
3158 if (isVFRegister(MI
.getOperand(0).getReg()))
3159 III
.ImmOpcode
= PPC::STXSD
;
3161 III
.ImmOpcode
= PPC::STFD
;
3162 III
.ImmMustBeMultipleOf
= 1;
3167 case PPC::XFSTOREf64
:
3168 III
.ImmOpcode
= PPC::DFSTOREf64
;
3176 // Utility function for swaping two arbitrary operands of an instruction.
3177 static void swapMIOperands(MachineInstr
&MI
, unsigned Op1
, unsigned Op2
) {
3178 assert(Op1
!= Op2
&& "Cannot swap operand with itself.");
3180 unsigned MaxOp
= std::max(Op1
, Op2
);
3181 unsigned MinOp
= std::min(Op1
, Op2
);
3182 MachineOperand MOp1
= MI
.getOperand(MinOp
);
3183 MachineOperand MOp2
= MI
.getOperand(MaxOp
);
3184 MI
.RemoveOperand(std::max(Op1
, Op2
));
3185 MI
.RemoveOperand(std::min(Op1
, Op2
));
3187 // If the operands we are swapping are the two at the end (the common case)
3188 // we can just remove both and add them in the opposite order.
3189 if (MaxOp
- MinOp
== 1 && MI
.getNumOperands() == MinOp
) {
3190 MI
.addOperand(MOp2
);
3191 MI
.addOperand(MOp1
);
3193 // Store all operands in a temporary vector, remove them and re-add in the
3195 SmallVector
<MachineOperand
, 2> MOps
;
3196 unsigned TotalOps
= MI
.getNumOperands() + 2; // We've already removed 2 ops.
3197 for (unsigned i
= MI
.getNumOperands() - 1; i
>= MinOp
; i
--) {
3198 MOps
.push_back(MI
.getOperand(i
));
3199 MI
.RemoveOperand(i
);
3201 // MOp2 needs to be added next.
3202 MI
.addOperand(MOp2
);
3203 // Now add the rest.
3204 for (unsigned i
= MI
.getNumOperands(); i
< TotalOps
; i
++) {
3206 MI
.addOperand(MOp1
);
3208 MI
.addOperand(MOps
.back());
3215 // Check if the 'MI' that has the index OpNoForForwarding
3216 // meets the requirement described in the ImmInstrInfo.
3217 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr
&MI
,
3218 const ImmInstrInfo
&III
,
3219 unsigned OpNoForForwarding
3221 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3222 // would not work pre-RA, we can only do the check post RA.
3223 MachineRegisterInfo
&MRI
= MI
.getParent()->getParent()->getRegInfo();
3227 // Cannot do the transform if MI isn't summing the operands.
3228 if (!III
.IsSummingOperands
)
3231 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3232 if (!III
.ZeroIsSpecialOrig
)
3235 // We cannot do the transform if the operand we are trying to replace
3236 // isn't the same as the operand the instruction allows.
3237 if (OpNoForForwarding
!= III
.OpNoForForwarding
)
3240 // Check if the instruction we are trying to transform really has
3241 // the special zero register as its operand.
3242 if (MI
.getOperand(III
.ZeroIsSpecialOrig
).getReg() != PPC::ZERO
&&
3243 MI
.getOperand(III
.ZeroIsSpecialOrig
).getReg() != PPC::ZERO8
)
3246 // This machine instruction is convertible if it is,
3247 // 1. summing the operands.
3248 // 2. one of the operands is special zero register.
3249 // 3. the operand we are trying to replace is allowed by the MI.
3253 // Check if the DefMI is the add inst and set the ImmMO and RegMO
3255 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr
&DefMI
,
3256 const ImmInstrInfo
&III
,
3257 MachineOperand
*&ImmMO
,
3258 MachineOperand
*&RegMO
) const {
3259 unsigned Opc
= DefMI
.getOpcode();
3260 if (Opc
!= PPC::ADDItocL
&& Opc
!= PPC::ADDI
&& Opc
!= PPC::ADDI8
)
3263 assert(DefMI
.getNumOperands() >= 3 &&
3264 "Add inst must have at least three operands");
3265 RegMO
= &DefMI
.getOperand(1);
3266 ImmMO
= &DefMI
.getOperand(2);
3268 // This DefMI is elgible for forwarding if it is:
3270 // 2. one of the operands is Imm/CPI/Global.
3271 return isAnImmediateOperand(*ImmMO
);
3274 bool PPCInstrInfo::isRegElgibleForForwarding(
3275 const MachineOperand
&RegMO
, const MachineInstr
&DefMI
,
3276 const MachineInstr
&MI
, bool KillDefMI
,
3277 bool &IsFwdFeederRegKilled
) const {
3280 // z = lfdx 0, x -> z = lfd imm(y)
3281 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3282 // of "y" between the DEF of "x" and "z".
3283 // The query is only valid post RA.
3284 const MachineRegisterInfo
&MRI
= MI
.getParent()->getParent()->getRegInfo();
3288 unsigned Reg
= RegMO
.getReg();
3290 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3291 MachineBasicBlock::const_reverse_iterator It
= MI
;
3292 MachineBasicBlock::const_reverse_iterator E
= MI
.getParent()->rend();
3294 for (; It
!= E
; ++It
) {
3295 if (It
->modifiesRegister(Reg
, &getRegisterInfo()) && (&*It
) != &DefMI
)
3297 else if (It
->killsRegister(Reg
, &getRegisterInfo()) && (&*It
) != &DefMI
)
3298 IsFwdFeederRegKilled
= true;
3299 // Made it to DefMI without encountering a clobber.
3300 if ((&*It
) == &DefMI
)
3303 assert((&*It
) == &DefMI
&& "DefMI is missing");
3305 // If DefMI also defines the register to be forwarded, we can only forward it
3306 // if DefMI is being erased.
3307 if (DefMI
.modifiesRegister(Reg
, &getRegisterInfo()))
3313 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand
&ImmMO
,
3314 const MachineInstr
&DefMI
,
3315 const ImmInstrInfo
&III
,
3316 int64_t &Imm
) const {
3317 assert(isAnImmediateOperand(ImmMO
) && "ImmMO is NOT an immediate");
3318 if (DefMI
.getOpcode() == PPC::ADDItocL
) {
3319 // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3320 // However, we know that, it is 16-bit width, and has the alignment of 4.
3321 // Check if the instruction met the requirement.
3322 if (III
.ImmMustBeMultipleOf
> 4 ||
3323 III
.TruncateImmTo
|| III
.ImmWidth
!= 16)
3326 // Going from XForm to DForm loads means that the displacement needs to be
3327 // not just an immediate but also a multiple of 4, or 16 depending on the
3328 // load. A DForm load cannot be represented if it is a multiple of say 2.
3329 // XForm loads do not have this restriction.
3330 if (ImmMO
.isGlobal() &&
3331 ImmMO
.getGlobal()->getAlignment() < III
.ImmMustBeMultipleOf
)
3337 if (ImmMO
.isImm()) {
3338 // It is Imm, we need to check if the Imm fit the range.
3339 int64_t Immediate
= ImmMO
.getImm();
3340 // Sign-extend to 64-bits.
3341 Imm
= ((uint64_t)Immediate
& ~0x7FFFuLL
) != 0 ?
3342 (Immediate
| 0xFFFFFFFFFFFF0000) : Immediate
;
3344 if (Imm
% III
.ImmMustBeMultipleOf
)
3346 if (III
.TruncateImmTo
)
3347 Imm
&= ((1 << III
.TruncateImmTo
) - 1);
3348 if (III
.SignedImm
) {
3349 APInt
ActualValue(64, Imm
, true);
3350 if (!ActualValue
.isSignedIntN(III
.ImmWidth
))
3353 uint64_t UnsignedMax
= (1 << III
.ImmWidth
) - 1;
3354 if ((uint64_t)Imm
> UnsignedMax
)
3361 // This ImmMO is forwarded if it meets the requriement describle
3366 // If an X-Form instruction is fed by an add-immediate and one of its operands
3367 // is the literal zero, attempt to forward the source of the add-immediate to
3368 // the corresponding D-Form instruction with the displacement coming from
3369 // the immediate being added.
3370 bool PPCInstrInfo::transformToImmFormFedByAdd(
3371 MachineInstr
&MI
, const ImmInstrInfo
&III
, unsigned OpNoForForwarding
,
3372 MachineInstr
&DefMI
, bool KillDefMI
) const {
3375 // x = addi reg, imm <----- DefMI
3376 // y = op 0 , x <----- MI
3378 // OpNoForForwarding
3379 // Check if the MI meet the requirement described in the III.
3380 if (!isUseMIElgibleForForwarding(MI
, III
, OpNoForForwarding
))
3383 // Check if the DefMI meet the requirement
3384 // described in the III. If yes, set the ImmMO and RegMO accordingly.
3385 MachineOperand
*ImmMO
= nullptr;
3386 MachineOperand
*RegMO
= nullptr;
3387 if (!isDefMIElgibleForForwarding(DefMI
, III
, ImmMO
, RegMO
))
3389 assert(ImmMO
&& RegMO
&& "Imm and Reg operand must have been set");
3391 // As we get the Imm operand now, we need to check if the ImmMO meet
3392 // the requirement described in the III. If yes set the Imm.
3394 if (!isImmElgibleForForwarding(*ImmMO
, DefMI
, III
, Imm
))
3397 bool IsFwdFeederRegKilled
= false;
3398 // Check if the RegMO can be forwarded to MI.
3399 if (!isRegElgibleForForwarding(*RegMO
, DefMI
, MI
, KillDefMI
,
3400 IsFwdFeederRegKilled
))
3403 // Get killed info in case fixup needed after transformation.
3404 unsigned ForwardKilledOperandReg
= ~0U;
3405 MachineRegisterInfo
&MRI
= MI
.getParent()->getParent()->getRegInfo();
3406 bool PostRA
= !MRI
.isSSA();
3407 if (PostRA
&& MI
.getOperand(OpNoForForwarding
).isKill())
3408 ForwardKilledOperandReg
= MI
.getOperand(OpNoForForwarding
).getReg();
3410 // We know that, the MI and DefMI both meet the pattern, and
3411 // the Imm also meet the requirement with the new Imm-form.
3412 // It is safe to do the transformation now.
3413 LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
3414 LLVM_DEBUG(MI
.dump());
3415 LLVM_DEBUG(dbgs() << "Fed by:\n");
3416 LLVM_DEBUG(DefMI
.dump());
3418 // Update the base reg first.
3419 MI
.getOperand(III
.OpNoForForwarding
).ChangeToRegister(RegMO
->getReg(),
3423 // Then, update the imm.
3424 if (ImmMO
->isImm()) {
3425 // If the ImmMO is Imm, change the operand that has ZERO to that Imm
3427 replaceInstrOperandWithImm(MI
, III
.ZeroIsSpecialOrig
, Imm
);
3430 // Otherwise, it is Constant Pool Index(CPI) or Global,
3431 // which is relocation in fact. We need to replace the special zero
3432 // register with ImmMO.
3433 // Before that, we need to fixup the target flags for imm.
3434 // For some reason, we miss to set the flag for the ImmMO if it is CPI.
3435 if (DefMI
.getOpcode() == PPC::ADDItocL
)
3436 ImmMO
->setTargetFlags(PPCII::MO_TOC_LO
);
3438 // MI didn't have the interface such as MI.setOperand(i) though
3439 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
3440 // ImmMO, we need to remove ZERO operand and all the operands behind it,
3441 // and, add the ImmMO, then, move back all the operands behind ZERO.
3442 SmallVector
<MachineOperand
, 2> MOps
;
3443 for (unsigned i
= MI
.getNumOperands() - 1; i
>= III
.ZeroIsSpecialOrig
; i
--) {
3444 MOps
.push_back(MI
.getOperand(i
));
3445 MI
.RemoveOperand(i
);
3448 // Remove the last MO in the list, which is ZERO operand in fact.
3450 // Add the imm operand.
3451 MI
.addOperand(*ImmMO
);
3452 // Now add the rest back.
3453 for (auto &MO
: MOps
)
3457 // Update the opcode.
3458 MI
.setDesc(get(III
.ImmOpcode
));
3460 // Fix up killed/dead flag after transformation.
3462 // x = ADD KilledFwdFeederReg, imm
3463 // n = opn KilledFwdFeederReg(killed), regn
3466 // x = ADD reg(killed), imm
3468 if (IsFwdFeederRegKilled
|| RegMO
->isKill())
3469 fixupIsDeadOrKill(DefMI
, MI
, RegMO
->getReg());
3471 // ForwardKilledOperandReg = ADD reg, imm
3472 // y = XOP 0, ForwardKilledOperandReg(killed)
3473 if (ForwardKilledOperandReg
!= ~0U)
3474 fixupIsDeadOrKill(DefMI
, MI
, ForwardKilledOperandReg
);
3476 LLVM_DEBUG(dbgs() << "With:\n");
3477 LLVM_DEBUG(MI
.dump());
3482 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr
&MI
,
3483 const ImmInstrInfo
&III
,
3484 unsigned ConstantOpNo
,
3485 MachineInstr
&DefMI
,
3486 int64_t Imm
) const {
3487 MachineRegisterInfo
&MRI
= MI
.getParent()->getParent()->getRegInfo();
3488 bool PostRA
= !MRI
.isSSA();
3489 // Exit early if we can't convert this.
3490 if ((ConstantOpNo
!= III
.OpNoForForwarding
) && !III
.IsCommutative
)
3492 if (Imm
% III
.ImmMustBeMultipleOf
)
3494 if (III
.TruncateImmTo
)
3495 Imm
&= ((1 << III
.TruncateImmTo
) - 1);
3496 if (III
.SignedImm
) {
3497 APInt
ActualValue(64, Imm
, true);
3498 if (!ActualValue
.isSignedIntN(III
.ImmWidth
))
3501 uint64_t UnsignedMax
= (1 << III
.ImmWidth
) - 1;
3502 if ((uint64_t)Imm
> UnsignedMax
)
3506 // If we're post-RA, the instructions don't agree on whether register zero is
3507 // special, we can transform this as long as the register operand that will
3508 // end up in the location where zero is special isn't R0.
3509 if (PostRA
&& III
.ZeroIsSpecialOrig
!= III
.ZeroIsSpecialNew
) {
3510 unsigned PosForOrigZero
= III
.ZeroIsSpecialOrig
? III
.ZeroIsSpecialOrig
:
3511 III
.ZeroIsSpecialNew
+ 1;
3512 unsigned OrigZeroReg
= MI
.getOperand(PosForOrigZero
).getReg();
3513 unsigned NewZeroReg
= MI
.getOperand(III
.ZeroIsSpecialNew
).getReg();
3514 // If R0 is in the operand where zero is special for the new instruction,
3515 // it is unsafe to transform if the constant operand isn't that operand.
3516 if ((NewZeroReg
== PPC::R0
|| NewZeroReg
== PPC::X0
) &&
3517 ConstantOpNo
!= III
.ZeroIsSpecialNew
)
3519 if ((OrigZeroReg
== PPC::R0
|| OrigZeroReg
== PPC::X0
) &&
3520 ConstantOpNo
!= PosForOrigZero
)
3524 // Get killed info in case fixup needed after transformation.
3525 unsigned ForwardKilledOperandReg
= ~0U;
3526 if (PostRA
&& MI
.getOperand(ConstantOpNo
).isKill())
3527 ForwardKilledOperandReg
= MI
.getOperand(ConstantOpNo
).getReg();
3529 unsigned Opc
= MI
.getOpcode();
3530 bool SpecialShift32
=
3531 Opc
== PPC::SLW
|| Opc
== PPC::SLWo
|| Opc
== PPC::SRW
|| Opc
== PPC::SRWo
;
3532 bool SpecialShift64
=
3533 Opc
== PPC::SLD
|| Opc
== PPC::SLDo
|| Opc
== PPC::SRD
|| Opc
== PPC::SRDo
;
3534 bool SetCR
= Opc
== PPC::SLWo
|| Opc
== PPC::SRWo
||
3535 Opc
== PPC::SLDo
|| Opc
== PPC::SRDo
;
3537 Opc
== PPC::SRW
|| Opc
== PPC::SRWo
|| Opc
== PPC::SRD
|| Opc
== PPC::SRDo
;
3539 MI
.setDesc(get(III
.ImmOpcode
));
3540 if (ConstantOpNo
== III
.OpNoForForwarding
) {
3541 // Converting shifts to immediate form is a bit tricky since they may do
3542 // one of three things:
3543 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
3544 // 2. If the shift amount is zero, the result is unchanged (save for maybe
3546 // 3. If the shift amount is in [1, OpSize), it's just a shift
3547 if (SpecialShift32
|| SpecialShift64
) {
3548 LoadImmediateInfo LII
;
3551 LII
.Is64Bit
= SpecialShift64
;
3552 uint64_t ShAmt
= Imm
& (SpecialShift32
? 0x1F : 0x3F);
3553 if (Imm
& (SpecialShift32
? 0x20 : 0x40))
3554 replaceInstrWithLI(MI
, LII
);
3555 // Shifts by zero don't change the value. If we don't need to set CR0,
3556 // just convert this to a COPY. Can't do this post-RA since we've already
3557 // cleaned up the copies.
3558 else if (!SetCR
&& ShAmt
== 0 && !PostRA
) {
3559 MI
.RemoveOperand(2);
3560 MI
.setDesc(get(PPC::COPY
));
3562 // The 32 bit and 64 bit instructions are quite different.
3563 if (SpecialShift32
) {
3564 // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31).
3565 uint64_t SH
= RightShift
? 32 - ShAmt
: ShAmt
;
3566 uint64_t MB
= RightShift
? ShAmt
: 0;
3567 uint64_t ME
= RightShift
? 31 : 31 - ShAmt
;
3568 replaceInstrOperandWithImm(MI
, III
.OpNoForForwarding
, SH
);
3569 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
).addImm(MB
)
3572 // Left shifts use (N, 63-N), right shifts use (64-N, N).
3573 uint64_t SH
= RightShift
? 64 - ShAmt
: ShAmt
;
3574 uint64_t ME
= RightShift
? ShAmt
: 63 - ShAmt
;
3575 replaceInstrOperandWithImm(MI
, III
.OpNoForForwarding
, SH
);
3576 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
).addImm(ME
);
3580 replaceInstrOperandWithImm(MI
, ConstantOpNo
, Imm
);
3582 // Convert commutative instructions (switch the operands and convert the
3583 // desired one to an immediate.
3584 else if (III
.IsCommutative
) {
3585 replaceInstrOperandWithImm(MI
, ConstantOpNo
, Imm
);
3586 swapMIOperands(MI
, ConstantOpNo
, III
.OpNoForForwarding
);
3588 llvm_unreachable("Should have exited early!");
3590 // For instructions for which the constant register replaces a different
3591 // operand than where the immediate goes, we need to swap them.
3592 if (III
.OpNoForForwarding
!= III
.ImmOpNo
)
3593 swapMIOperands(MI
, III
.OpNoForForwarding
, III
.ImmOpNo
);
3595 // If the special R0/X0 register index are different for original instruction
3596 // and new instruction, we need to fix up the register class in new
3598 if (!PostRA
&& III
.ZeroIsSpecialOrig
!= III
.ZeroIsSpecialNew
) {
3599 if (III
.ZeroIsSpecialNew
) {
3600 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
3601 // need to fix up register class.
3602 unsigned RegToModify
= MI
.getOperand(III
.ZeroIsSpecialNew
).getReg();
3603 if (TargetRegisterInfo::isVirtualRegister(RegToModify
)) {
3604 const TargetRegisterClass
*NewRC
=
3605 MRI
.getRegClass(RegToModify
)->hasSuperClassEq(&PPC::GPRCRegClass
) ?
3606 &PPC::GPRC_and_GPRC_NOR0RegClass
: &PPC::G8RC_and_G8RC_NOX0RegClass
;
3607 MRI
.setRegClass(RegToModify
, NewRC
);
3612 // Fix up killed/dead flag after transformation.
3614 // ForwardKilledOperandReg = LI imm
3615 // y = XOP reg, ForwardKilledOperandReg(killed)
3616 if (ForwardKilledOperandReg
!= ~0U)
3617 fixupIsDeadOrKill(DefMI
, MI
, ForwardKilledOperandReg
);
3621 const TargetRegisterClass
*
3622 PPCInstrInfo::updatedRC(const TargetRegisterClass
*RC
) const {
3623 if (Subtarget
.hasVSX() && RC
== &PPC::VRRCRegClass
)
3624 return &PPC::VSRCRegClass
;
3628 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode
) {
3629 return PPC::getRecordFormOpcode(Opcode
);
3632 // This function returns true if the machine instruction
3633 // always outputs a value by sign-extending a 32 bit value,
3634 // i.e. 0 to 31-th bits are same as 32-th bit.
3635 static bool isSignExtendingOp(const MachineInstr
&MI
) {
3636 int Opcode
= MI
.getOpcode();
3637 if (Opcode
== PPC::LI
|| Opcode
== PPC::LI8
||
3638 Opcode
== PPC::LIS
|| Opcode
== PPC::LIS8
||
3639 Opcode
== PPC::SRAW
|| Opcode
== PPC::SRAWo
||
3640 Opcode
== PPC::SRAWI
|| Opcode
== PPC::SRAWIo
||
3641 Opcode
== PPC::LWA
|| Opcode
== PPC::LWAX
||
3642 Opcode
== PPC::LWA_32
|| Opcode
== PPC::LWAX_32
||
3643 Opcode
== PPC::LHA
|| Opcode
== PPC::LHAX
||
3644 Opcode
== PPC::LHA8
|| Opcode
== PPC::LHAX8
||
3645 Opcode
== PPC::LBZ
|| Opcode
== PPC::LBZX
||
3646 Opcode
== PPC::LBZ8
|| Opcode
== PPC::LBZX8
||
3647 Opcode
== PPC::LBZU
|| Opcode
== PPC::LBZUX
||
3648 Opcode
== PPC::LBZU8
|| Opcode
== PPC::LBZUX8
||
3649 Opcode
== PPC::LHZ
|| Opcode
== PPC::LHZX
||
3650 Opcode
== PPC::LHZ8
|| Opcode
== PPC::LHZX8
||
3651 Opcode
== PPC::LHZU
|| Opcode
== PPC::LHZUX
||
3652 Opcode
== PPC::LHZU8
|| Opcode
== PPC::LHZUX8
||
3653 Opcode
== PPC::EXTSB
|| Opcode
== PPC::EXTSBo
||
3654 Opcode
== PPC::EXTSH
|| Opcode
== PPC::EXTSHo
||
3655 Opcode
== PPC::EXTSB8
|| Opcode
== PPC::EXTSH8
||
3656 Opcode
== PPC::EXTSW
|| Opcode
== PPC::EXTSWo
||
3657 Opcode
== PPC::SETB
|| Opcode
== PPC::SETB8
||
3658 Opcode
== PPC::EXTSH8_32_64
|| Opcode
== PPC::EXTSW_32_64
||
3659 Opcode
== PPC::EXTSB8_32_64
)
3662 if (Opcode
== PPC::RLDICL
&& MI
.getOperand(3).getImm() >= 33)
3665 if ((Opcode
== PPC::RLWINM
|| Opcode
== PPC::RLWINMo
||
3666 Opcode
== PPC::RLWNM
|| Opcode
== PPC::RLWNMo
) &&
3667 MI
.getOperand(3).getImm() > 0 &&
3668 MI
.getOperand(3).getImm() <= MI
.getOperand(4).getImm())
3674 // This function returns true if the machine instruction
3675 // always outputs zeros in higher 32 bits.
3676 static bool isZeroExtendingOp(const MachineInstr
&MI
) {
3677 int Opcode
= MI
.getOpcode();
3678 // The 16-bit immediate is sign-extended in li/lis.
3679 // If the most significant bit is zero, all higher bits are zero.
3680 if (Opcode
== PPC::LI
|| Opcode
== PPC::LI8
||
3681 Opcode
== PPC::LIS
|| Opcode
== PPC::LIS8
) {
3682 int64_t Imm
= MI
.getOperand(1).getImm();
3683 if (((uint64_t)Imm
& ~0x7FFFuLL
) == 0)
3687 // We have some variations of rotate-and-mask instructions
3688 // that clear higher 32-bits.
3689 if ((Opcode
== PPC::RLDICL
|| Opcode
== PPC::RLDICLo
||
3690 Opcode
== PPC::RLDCL
|| Opcode
== PPC::RLDCLo
||
3691 Opcode
== PPC::RLDICL_32_64
) &&
3692 MI
.getOperand(3).getImm() >= 32)
3695 if ((Opcode
== PPC::RLDIC
|| Opcode
== PPC::RLDICo
) &&
3696 MI
.getOperand(3).getImm() >= 32 &&
3697 MI
.getOperand(3).getImm() <= 63 - MI
.getOperand(2).getImm())
3700 if ((Opcode
== PPC::RLWINM
|| Opcode
== PPC::RLWINMo
||
3701 Opcode
== PPC::RLWNM
|| Opcode
== PPC::RLWNMo
||
3702 Opcode
== PPC::RLWINM8
|| Opcode
== PPC::RLWNM8
) &&
3703 MI
.getOperand(3).getImm() <= MI
.getOperand(4).getImm())
3706 // There are other instructions that clear higher 32-bits.
3707 if (Opcode
== PPC::CNTLZW
|| Opcode
== PPC::CNTLZWo
||
3708 Opcode
== PPC::CNTTZW
|| Opcode
== PPC::CNTTZWo
||
3709 Opcode
== PPC::CNTLZW8
|| Opcode
== PPC::CNTTZW8
||
3710 Opcode
== PPC::CNTLZD
|| Opcode
== PPC::CNTLZDo
||
3711 Opcode
== PPC::CNTTZD
|| Opcode
== PPC::CNTTZDo
||
3712 Opcode
== PPC::POPCNTD
|| Opcode
== PPC::POPCNTW
||
3713 Opcode
== PPC::SLW
|| Opcode
== PPC::SLWo
||
3714 Opcode
== PPC::SRW
|| Opcode
== PPC::SRWo
||
3715 Opcode
== PPC::SLW8
|| Opcode
== PPC::SRW8
||
3716 Opcode
== PPC::SLWI
|| Opcode
== PPC::SLWIo
||
3717 Opcode
== PPC::SRWI
|| Opcode
== PPC::SRWIo
||
3718 Opcode
== PPC::LWZ
|| Opcode
== PPC::LWZX
||
3719 Opcode
== PPC::LWZU
|| Opcode
== PPC::LWZUX
||
3720 Opcode
== PPC::LWBRX
|| Opcode
== PPC::LHBRX
||
3721 Opcode
== PPC::LHZ
|| Opcode
== PPC::LHZX
||
3722 Opcode
== PPC::LHZU
|| Opcode
== PPC::LHZUX
||
3723 Opcode
== PPC::LBZ
|| Opcode
== PPC::LBZX
||
3724 Opcode
== PPC::LBZU
|| Opcode
== PPC::LBZUX
||
3725 Opcode
== PPC::LWZ8
|| Opcode
== PPC::LWZX8
||
3726 Opcode
== PPC::LWZU8
|| Opcode
== PPC::LWZUX8
||
3727 Opcode
== PPC::LWBRX8
|| Opcode
== PPC::LHBRX8
||
3728 Opcode
== PPC::LHZ8
|| Opcode
== PPC::LHZX8
||
3729 Opcode
== PPC::LHZU8
|| Opcode
== PPC::LHZUX8
||
3730 Opcode
== PPC::LBZ8
|| Opcode
== PPC::LBZX8
||
3731 Opcode
== PPC::LBZU8
|| Opcode
== PPC::LBZUX8
||
3732 Opcode
== PPC::ANDIo
|| Opcode
== PPC::ANDISo
||
3733 Opcode
== PPC::ROTRWI
|| Opcode
== PPC::ROTRWIo
||
3734 Opcode
== PPC::EXTLWI
|| Opcode
== PPC::EXTLWIo
||
3735 Opcode
== PPC::MFVSRWZ
)
3741 // This function returns true if the input MachineInstr is a TOC save
3743 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr
&MI
) const {
3744 if (!MI
.getOperand(1).isImm() || !MI
.getOperand(2).isReg())
3746 unsigned TOCSaveOffset
= Subtarget
.getFrameLowering()->getTOCSaveOffset();
3747 unsigned StackOffset
= MI
.getOperand(1).getImm();
3748 unsigned StackReg
= MI
.getOperand(2).getReg();
3749 if (StackReg
== PPC::X1
&& StackOffset
== TOCSaveOffset
)
3755 // We limit the max depth to track incoming values of PHIs or binary ops
3756 // (e.g. AND) to avoid excessive cost.
3757 const unsigned MAX_DEPTH
= 1;
3760 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr
&MI
, bool SignExt
,
3761 const unsigned Depth
) const {
3762 const MachineFunction
*MF
= MI
.getParent()->getParent();
3763 const MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
3765 // If we know this instruction returns sign- or zero-extended result,
3767 if (SignExt
? isSignExtendingOp(MI
):
3768 isZeroExtendingOp(MI
))
3771 switch (MI
.getOpcode()) {
3773 unsigned SrcReg
= MI
.getOperand(1).getReg();
3775 // In both ELFv1 and v2 ABI, method parameters and the return value
3776 // are sign- or zero-extended.
3777 if (MF
->getSubtarget
<PPCSubtarget
>().isSVR4ABI()) {
3778 const PPCFunctionInfo
*FuncInfo
= MF
->getInfo
<PPCFunctionInfo
>();
3779 // We check the ZExt/SExt flags for a method parameter.
3780 if (MI
.getParent()->getBasicBlock() ==
3781 &MF
->getFunction().getEntryBlock()) {
3782 unsigned VReg
= MI
.getOperand(0).getReg();
3783 if (MF
->getRegInfo().isLiveIn(VReg
))
3784 return SignExt
? FuncInfo
->isLiveInSExt(VReg
) :
3785 FuncInfo
->isLiveInZExt(VReg
);
3788 // For a method return value, we check the ZExt/SExt flags in attribute.
3789 // We assume the following code sequence for method call.
3790 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
3791 // BL8_NOP @func,...
3792 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
3793 // %5 = COPY %x3; G8RC:%5
3794 if (SrcReg
== PPC::X3
) {
3795 const MachineBasicBlock
*MBB
= MI
.getParent();
3796 MachineBasicBlock::const_instr_iterator II
=
3797 MachineBasicBlock::const_instr_iterator(&MI
);
3798 if (II
!= MBB
->instr_begin() &&
3799 (--II
)->getOpcode() == PPC::ADJCALLSTACKUP
) {
3800 const MachineInstr
&CallMI
= *(--II
);
3801 if (CallMI
.isCall() && CallMI
.getOperand(0).isGlobal()) {
3802 const Function
*CalleeFn
=
3803 dyn_cast
<Function
>(CallMI
.getOperand(0).getGlobal());
3806 const IntegerType
*IntTy
=
3807 dyn_cast
<IntegerType
>(CalleeFn
->getReturnType());
3808 const AttributeSet
&Attrs
=
3809 CalleeFn
->getAttributes().getRetAttributes();
3810 if (IntTy
&& IntTy
->getBitWidth() <= 32)
3811 return Attrs
.hasAttribute(SignExt
? Attribute::SExt
:
3818 // If this is a copy from another register, we recursively check source.
3819 if (!TargetRegisterInfo::isVirtualRegister(SrcReg
))
3821 const MachineInstr
*SrcMI
= MRI
->getVRegDef(SrcReg
);
3823 return isSignOrZeroExtended(*SrcMI
, SignExt
, Depth
);
3840 // logical operation with 16-bit immediate does not change the upper bits.
3841 // So, we track the operand register as we do for register copy.
3842 unsigned SrcReg
= MI
.getOperand(1).getReg();
3843 if (!TargetRegisterInfo::isVirtualRegister(SrcReg
))
3845 const MachineInstr
*SrcMI
= MRI
->getVRegDef(SrcReg
);
3847 return isSignOrZeroExtended(*SrcMI
, SignExt
, Depth
);
3852 // If all incoming values are sign-/zero-extended,
3853 // the output of OR, ISEL or PHI is also sign-/zero-extended.
3858 if (Depth
>= MAX_DEPTH
)
3861 // The input registers for PHI are operand 1, 3, ...
3862 // The input registers for others are operand 1 and 2.
3863 unsigned E
= 3, D
= 1;
3864 if (MI
.getOpcode() == PPC::PHI
) {
3865 E
= MI
.getNumOperands();
3869 for (unsigned I
= 1; I
!= E
; I
+= D
) {
3870 if (MI
.getOperand(I
).isReg()) {
3871 unsigned SrcReg
= MI
.getOperand(I
).getReg();
3872 if (!TargetRegisterInfo::isVirtualRegister(SrcReg
))
3874 const MachineInstr
*SrcMI
= MRI
->getVRegDef(SrcReg
);
3875 if (SrcMI
== NULL
|| !isSignOrZeroExtended(*SrcMI
, SignExt
, Depth
+1))
3884 // If at least one of the incoming values of an AND is zero extended
3885 // then the output is also zero-extended. If both of the incoming values
3886 // are sign-extended then the output is also sign extended.
3889 if (Depth
>= MAX_DEPTH
)
3892 assert(MI
.getOperand(1).isReg() && MI
.getOperand(2).isReg());
3894 unsigned SrcReg1
= MI
.getOperand(1).getReg();
3895 unsigned SrcReg2
= MI
.getOperand(2).getReg();
3897 if (!TargetRegisterInfo::isVirtualRegister(SrcReg1
) ||
3898 !TargetRegisterInfo::isVirtualRegister(SrcReg2
))
3901 const MachineInstr
*MISrc1
= MRI
->getVRegDef(SrcReg1
);
3902 const MachineInstr
*MISrc2
= MRI
->getVRegDef(SrcReg2
);
3903 if (!MISrc1
|| !MISrc2
)
3907 return isSignOrZeroExtended(*MISrc1
, SignExt
, Depth
+1) &&
3908 isSignOrZeroExtended(*MISrc2
, SignExt
, Depth
+1);
3910 return isSignOrZeroExtended(*MISrc1
, SignExt
, Depth
+1) ||
3911 isSignOrZeroExtended(*MISrc2
, SignExt
, Depth
+1);
3920 bool PPCInstrInfo::isBDNZ(unsigned Opcode
) const {
3921 return (Opcode
== (Subtarget
.isPPC64() ? PPC::BDNZ8
: PPC::BDNZ
));
3924 bool PPCInstrInfo::analyzeLoop(MachineLoop
&L
, MachineInstr
*&IndVarInst
,
3925 MachineInstr
*&CmpInst
) const {
3926 MachineBasicBlock
*LoopEnd
= L
.getBottomBlock();
3927 MachineBasicBlock::iterator I
= LoopEnd
->getFirstTerminator();
3928 // We really "analyze" only CTR loops right now.
3929 if (I
!= LoopEnd
->end() && isBDNZ(I
->getOpcode())) {
3930 IndVarInst
= nullptr;
3938 PPCInstrInfo::findLoopInstr(MachineBasicBlock
&PreHeader
) const {
3940 unsigned LOOPi
= (Subtarget
.isPPC64() ? PPC::MTCTR8loop
: PPC::MTCTRloop
);
3942 // The loop set-up instruction should be in preheader
3943 for (auto &I
: PreHeader
.instrs())
3944 if (I
.getOpcode() == LOOPi
)
3949 unsigned PPCInstrInfo::reduceLoopCount(
3950 MachineBasicBlock
&MBB
, MachineBasicBlock
&PreHeader
, MachineInstr
*IndVar
,
3951 MachineInstr
&Cmp
, SmallVectorImpl
<MachineOperand
> &Cond
,
3952 SmallVectorImpl
<MachineInstr
*> &PrevInsts
, unsigned Iter
,
3953 unsigned MaxIter
) const {
3954 // We expect a hardware loop currently. This means that IndVar is set
3955 // to null, and the compare is the ENDLOOP instruction.
3956 assert((!IndVar
) && isBDNZ(Cmp
.getOpcode()) && "Expecting a CTR loop");
3957 MachineFunction
*MF
= MBB
.getParent();
3958 DebugLoc DL
= Cmp
.getDebugLoc();
3959 MachineInstr
*Loop
= findLoopInstr(PreHeader
);
3962 unsigned LoopCountReg
= Loop
->getOperand(0).getReg();
3963 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
3964 MachineInstr
*LoopCount
= MRI
.getUniqueVRegDef(LoopCountReg
);
3968 // If the loop trip count is a compile-time value, then just change the
3970 if (LoopCount
->getOpcode() == PPC::LI8
|| LoopCount
->getOpcode() == PPC::LI
) {
3971 int64_t Offset
= LoopCount
->getOperand(1).getImm();
3973 LoopCount
->eraseFromParent();
3974 Loop
->eraseFromParent();
3977 LoopCount
->getOperand(1).setImm(Offset
- 1);
3981 // The loop trip count is a run-time value.
3982 // We need to subtract one from the trip count,
3983 // and insert branch later to check if we're done with the loop.
3985 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
3986 // so we don't need to generate any thing here.
3987 Cond
.push_back(MachineOperand::CreateImm(0));
3988 Cond
.push_back(MachineOperand::CreateReg(
3989 Subtarget
.isPPC64() ? PPC::CTR8
: PPC::CTR
, true));
3990 return LoopCountReg
;
3993 // Return true if get the base operand, byte offset of an instruction and the
3994 // memory width. Width is the size of memory that is being loaded/stored.
3995 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
3996 const MachineInstr
&LdSt
,
3997 const MachineOperand
*&BaseReg
,
4000 const TargetRegisterInfo
*TRI
) const {
4001 assert(LdSt
.mayLoadOrStore() && "Expected a memory operation.");
4003 // Handle only loads/stores with base register followed by immediate offset.
4004 if (LdSt
.getNumExplicitOperands() != 3)
4006 if (!LdSt
.getOperand(1).isImm() || !LdSt
.getOperand(2).isReg())
4009 if (!LdSt
.hasOneMemOperand())
4012 Width
= (*LdSt
.memoperands_begin())->getSize();
4013 Offset
= LdSt
.getOperand(1).getImm();
4014 BaseReg
= &LdSt
.getOperand(2);
4018 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
4019 const MachineInstr
&MIa
, const MachineInstr
&MIb
,
4020 AliasAnalysis
* /*AA*/) const {
4021 assert(MIa
.mayLoadOrStore() && "MIa must be a load or store.");
4022 assert(MIb
.mayLoadOrStore() && "MIb must be a load or store.");
4024 if (MIa
.hasUnmodeledSideEffects() || MIb
.hasUnmodeledSideEffects() ||
4025 MIa
.hasOrderedMemoryRef() || MIb
.hasOrderedMemoryRef())
4028 // Retrieve the base register, offset from the base register and width. Width
4029 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If
4030 // base registers are identical, and the offset of a lower memory access +
4031 // the width doesn't overlap the offset of a higher memory access,
4032 // then the memory accesses are different.
4033 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
4034 const MachineOperand
*BaseOpA
= nullptr, *BaseOpB
= nullptr;
4035 int64_t OffsetA
= 0, OffsetB
= 0;
4036 unsigned int WidthA
= 0, WidthB
= 0;
4037 if (getMemOperandWithOffsetWidth(MIa
, BaseOpA
, OffsetA
, WidthA
, TRI
) &&
4038 getMemOperandWithOffsetWidth(MIb
, BaseOpB
, OffsetB
, WidthB
, TRI
)) {
4039 if (BaseOpA
->isIdenticalTo(*BaseOpB
)) {
4040 int LowOffset
= std::min(OffsetA
, OffsetB
);
4041 int HighOffset
= std::max(OffsetA
, OffsetB
);
4042 int LowWidth
= (LowOffset
== OffsetA
) ? WidthA
: WidthB
;
4043 if (LowOffset
+ LowWidth
<= HighOffset
)