1 //===----------- PPCVSXSwapRemoval.cpp - Remove VSX LE Swaps -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===---------------------------------------------------------------------===//
9 // This pass analyzes vector computations and removes unnecessary
10 // doubleword swaps (xxswapd instructions). This pass is performed
11 // only for little-endian VSX code generation.
13 // For this specific case, loads and stores of v4i32, v4f32, v2i64,
14 // and v2f64 vectors are inefficient. These are implemented using
15 // the lxvd2x and stxvd2x instructions, which invert the order of
16 // doublewords in a vector register. Thus code generation inserts
17 // an xxswapd after each such load, and prior to each such store.
19 // The extra xxswapd instructions reduce performance. The purpose
20 // of this pass is to reduce the number of xxswapd instructions
21 // required for correctness.
23 // The primary insight is that much code that operates on vectors
24 // does not care about the relative order of elements in a register,
25 // so long as the correct memory order is preserved. If we have a
26 // computation where all input values are provided by lxvd2x/xxswapd,
27 // all outputs are stored using xxswapd/lxvd2x, and all intermediate
28 // computations are lane-insensitive (independent of element order),
29 // then all the xxswapd instructions associated with the loads and
30 // stores may be removed without changing observable semantics.
32 // This pass uses standard equivalence class infrastructure to create
33 // maximal webs of computations fitting the above description. Each
34 // such web is then optimized by removing its unnecessary xxswapd
37 // There are some lane-sensitive operations for which we can still
38 // permit the optimization, provided we modify those operations
39 // accordingly. Such operations are identified as using "special
40 // handling" within this module.
42 //===---------------------------------------------------------------------===//
45 #include "PPCInstrBuilder.h"
46 #include "PPCInstrInfo.h"
47 #include "PPCTargetMachine.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/EquivalenceClasses.h"
50 #include "llvm/CodeGen/MachineFunctionPass.h"
51 #include "llvm/CodeGen/MachineInstrBuilder.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/Config/llvm-config.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/Format.h"
56 #include "llvm/Support/raw_ostream.h"
60 #define DEBUG_TYPE "ppc-vsx-swaps"
64 // A PPCVSXSwapEntry is created for each machine instruction that
65 // is relevant to a vector computation.
66 struct PPCVSXSwapEntry
{
67 // Pointer to the instruction.
70 // Unique ID (position in the swap vector).
73 // Attributes of this node.
74 unsigned int IsLoad
: 1;
75 unsigned int IsStore
: 1;
76 unsigned int IsSwap
: 1;
77 unsigned int MentionsPhysVR
: 1;
78 unsigned int IsSwappable
: 1;
79 unsigned int MentionsPartialVR
: 1;
80 unsigned int SpecialHandling
: 3;
81 unsigned int WebRejected
: 1;
82 unsigned int WillRemove
: 1;
96 struct PPCVSXSwapRemoval
: public MachineFunctionPass
{
99 const PPCInstrInfo
*TII
;
101 MachineRegisterInfo
*MRI
;
103 // Swap entries are allocated in a vector for better performance.
104 std::vector
<PPCVSXSwapEntry
> SwapVector
;
106 // A mapping is maintained between machine instructions and
107 // their swap entries. The key is the address of the MI.
108 DenseMap
<MachineInstr
*, int> SwapMap
;
110 // Equivalence classes are used to gather webs of related computation.
111 // Swap entries are represented by their VSEId fields.
112 EquivalenceClasses
<int> *EC
;
114 PPCVSXSwapRemoval() : MachineFunctionPass(ID
) {
115 initializePPCVSXSwapRemovalPass(*PassRegistry::getPassRegistry());
119 // Initialize data structures.
120 void initialize(MachineFunction
&MFParm
);
122 // Walk the machine instructions to gather vector usage information.
123 // Return true iff vector mentions are present.
124 bool gatherVectorInstructions();
126 // Add an entry to the swap vector and swap map.
127 int addSwapEntry(MachineInstr
*MI
, PPCVSXSwapEntry
&SwapEntry
);
129 // Hunt backwards through COPY and SUBREG_TO_REG chains for a
130 // source register. VecIdx indicates the swap vector entry to
131 // mark as mentioning a physical register if the search leads
133 unsigned lookThruCopyLike(unsigned SrcReg
, unsigned VecIdx
);
135 // Generate equivalence classes for related computations (webs).
138 // Analyze webs and determine those that cannot be optimized.
139 void recordUnoptimizableWebs();
141 // Record which swap instructions can be safely removed.
142 void markSwapsForRemoval();
144 // Remove swaps and update other instructions requiring special
145 // handling. Return true iff any changes are made.
148 // Insert a swap instruction from SrcReg to DstReg at the given
150 void insertSwap(MachineInstr
*MI
, MachineBasicBlock::iterator InsertPoint
,
151 unsigned DstReg
, unsigned SrcReg
);
153 // Update instructions requiring special handling.
154 void handleSpecialSwappables(int EntryIdx
);
156 // Dump a description of the entries in the swap vector.
157 void dumpSwapVector();
159 // Return true iff the given register is in the given class.
160 bool isRegInClass(unsigned Reg
, const TargetRegisterClass
*RC
) {
161 if (TargetRegisterInfo::isVirtualRegister(Reg
))
162 return RC
->hasSubClassEq(MRI
->getRegClass(Reg
));
163 return RC
->contains(Reg
);
166 // Return true iff the given register is a full vector register.
167 bool isVecReg(unsigned Reg
) {
168 return (isRegInClass(Reg
, &PPC::VSRCRegClass
) ||
169 isRegInClass(Reg
, &PPC::VRRCRegClass
));
172 // Return true iff the given register is a partial vector register.
173 bool isScalarVecReg(unsigned Reg
) {
174 return (isRegInClass(Reg
, &PPC::VSFRCRegClass
) ||
175 isRegInClass(Reg
, &PPC::VSSRCRegClass
));
178 // Return true iff the given register mentions all or part of a
179 // vector register. Also sets Partial to true if the mention
180 // is for just the floating-point register overlap of the register.
181 bool isAnyVecReg(unsigned Reg
, bool &Partial
) {
182 if (isScalarVecReg(Reg
))
184 return isScalarVecReg(Reg
) || isVecReg(Reg
);
188 // Main entry point for this pass.
189 bool runOnMachineFunction(MachineFunction
&MF
) override
{
190 if (skipFunction(MF
.getFunction()))
193 // If we don't have VSX on the subtarget, don't do anything.
194 // Also, on Power 9 the load and store ops preserve element order and so
195 // the swaps are not required.
196 const PPCSubtarget
&STI
= MF
.getSubtarget
<PPCSubtarget
>();
197 if (!STI
.hasVSX() || !STI
.needsSwapsForVSXMemOps())
200 bool Changed
= false;
203 if (gatherVectorInstructions()) {
205 recordUnoptimizableWebs();
206 markSwapsForRemoval();
207 Changed
= removeSwaps();
210 // FIXME: See the allocation of EC in initialize().
216 // Initialize data structures for this pass. In particular, clear the
217 // swap vector and allocate the equivalence class mapping before
218 // processing each function.
219 void PPCVSXSwapRemoval::initialize(MachineFunction
&MFParm
) {
221 MRI
= &MF
->getRegInfo();
222 TII
= MF
->getSubtarget
<PPCSubtarget
>().getInstrInfo();
224 // An initial vector size of 256 appears to work well in practice.
225 // Small/medium functions with vector content tend not to incur a
226 // reallocation at this size. Three of the vector tests in
227 // projects/test-suite reallocate, which seems like a reasonable rate.
228 const int InitialVectorSize(256);
230 SwapVector
.reserve(InitialVectorSize
);
232 // FIXME: Currently we allocate EC each time because we don't have
233 // access to the set representation on which to call clear(). Should
234 // consider adding a clear() method to the EquivalenceClasses class.
235 EC
= new EquivalenceClasses
<int>;
238 // Create an entry in the swap vector for each instruction that mentions
239 // a full vector register, recording various characteristics of the
240 // instructions there.
241 bool PPCVSXSwapRemoval::gatherVectorInstructions() {
242 bool RelevantFunction
= false;
244 for (MachineBasicBlock
&MBB
: *MF
) {
245 for (MachineInstr
&MI
: MBB
) {
247 if (MI
.isDebugInstr())
250 bool RelevantInstr
= false;
251 bool Partial
= false;
253 for (const MachineOperand
&MO
: MI
.operands()) {
256 unsigned Reg
= MO
.getReg();
257 if (isAnyVecReg(Reg
, Partial
)) {
258 RelevantInstr
= true;
266 RelevantFunction
= true;
268 // Create a SwapEntry initialized to zeros, then fill in the
269 // instruction and ID fields before pushing it to the back
270 // of the swap vector.
271 PPCVSXSwapEntry SwapEntry
{};
272 int VecIdx
= addSwapEntry(&MI
, SwapEntry
);
274 switch(MI
.getOpcode()) {
276 // Unless noted otherwise, an instruction is considered
277 // safe for the optimization. There are a large number of
278 // such true-SIMD instructions (all vector math, logical,
279 // select, compare, etc.). However, if the instruction
280 // mentions a partial vector register and does not have
281 // special handling defined, it is not swappable.
283 SwapVector
[VecIdx
].MentionsPartialVR
= 1;
285 SwapVector
[VecIdx
].IsSwappable
= 1;
287 case PPC::XXPERMDI
: {
288 // This is a swap if it is of the form XXPERMDI t, s, s, 2.
289 // Unfortunately, MachineCSE ignores COPY and SUBREG_TO_REG, so we
290 // can also see XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), 2,
291 // for example. We have to look through chains of COPY and
292 // SUBREG_TO_REG to find the real source value for comparison.
293 // If the real source value is a physical register, then mark the
294 // XXPERMDI as mentioning a physical register.
295 int immed
= MI
.getOperand(3).getImm();
297 unsigned trueReg1
= lookThruCopyLike(MI
.getOperand(1).getReg(),
299 unsigned trueReg2
= lookThruCopyLike(MI
.getOperand(2).getReg(),
301 if (trueReg1
== trueReg2
)
302 SwapVector
[VecIdx
].IsSwap
= 1;
304 // We can still handle these if the two registers are not
305 // identical, by adjusting the form of the XXPERMDI.
306 SwapVector
[VecIdx
].IsSwappable
= 1;
307 SwapVector
[VecIdx
].SpecialHandling
= SHValues::SH_XXPERMDI
;
309 // This is a doubleword splat if it is of the form
310 // XXPERMDI t, s, s, 0 or XXPERMDI t, s, s, 3. As above we
311 // must look through chains of copy-likes to find the source
312 // register. We turn off the marking for mention of a physical
313 // register, because splatting it is safe; the optimization
314 // will not swap the value in the physical register. Whether
315 // or not the two input registers are identical, we can handle
316 // these by adjusting the form of the XXPERMDI.
317 } else if (immed
== 0 || immed
== 3) {
319 SwapVector
[VecIdx
].IsSwappable
= 1;
320 SwapVector
[VecIdx
].SpecialHandling
= SHValues::SH_XXPERMDI
;
322 unsigned trueReg1
= lookThruCopyLike(MI
.getOperand(1).getReg(),
324 unsigned trueReg2
= lookThruCopyLike(MI
.getOperand(2).getReg(),
326 if (trueReg1
== trueReg2
)
327 SwapVector
[VecIdx
].MentionsPhysVR
= 0;
330 // We can still handle these by adjusting the form of the XXPERMDI.
331 SwapVector
[VecIdx
].IsSwappable
= 1;
332 SwapVector
[VecIdx
].SpecialHandling
= SHValues::SH_XXPERMDI
;
337 // Non-permuting loads are currently unsafe. We can use special
338 // handling for this in the future. By not marking these as
339 // IsSwap, we ensure computations containing them will be rejected
341 SwapVector
[VecIdx
].IsLoad
= 1;
345 // Permuting loads are marked as both load and swap, and are
346 // safe for optimization.
347 SwapVector
[VecIdx
].IsLoad
= 1;
348 SwapVector
[VecIdx
].IsSwap
= 1;
354 // A load of a floating-point value into the high-order half of
355 // a vector register is safe, provided that we introduce a swap
356 // following the load, which will be done by the SUBREG_TO_REG
357 // support. So just mark these as safe.
358 SwapVector
[VecIdx
].IsLoad
= 1;
359 SwapVector
[VecIdx
].IsSwappable
= 1;
362 // Non-permuting stores are currently unsafe. We can use special
363 // handling for this in the future. By not marking these as
364 // IsSwap, we ensure computations containing them will be rejected
366 SwapVector
[VecIdx
].IsStore
= 1;
370 // Permuting stores are marked as both store and swap, and are
371 // safe for optimization.
372 SwapVector
[VecIdx
].IsStore
= 1;
373 SwapVector
[VecIdx
].IsSwap
= 1;
376 // These are fine provided they are moving between full vector
378 if (isVecReg(MI
.getOperand(0).getReg()) &&
379 isVecReg(MI
.getOperand(1).getReg()))
380 SwapVector
[VecIdx
].IsSwappable
= 1;
381 // If we have a copy from one scalar floating-point register
382 // to another, we can accept this even if it is a physical
383 // register. The only way this gets involved is if it feeds
384 // a SUBREG_TO_REG, which is handled by introducing a swap.
385 else if (isScalarVecReg(MI
.getOperand(0).getReg()) &&
386 isScalarVecReg(MI
.getOperand(1).getReg()))
387 SwapVector
[VecIdx
].IsSwappable
= 1;
389 case PPC::SUBREG_TO_REG
: {
390 // These are fine provided they are moving between full vector
391 // register classes. If they are moving from a scalar
392 // floating-point class to a vector class, we can handle those
393 // as well, provided we introduce a swap. It is generally the
394 // case that we will introduce fewer swaps than we remove, but
395 // (FIXME) a cost model could be used. However, introduced
396 // swaps could potentially be CSEd, so this is not trivial.
397 if (isVecReg(MI
.getOperand(0).getReg()) &&
398 isVecReg(MI
.getOperand(2).getReg()))
399 SwapVector
[VecIdx
].IsSwappable
= 1;
400 else if (isVecReg(MI
.getOperand(0).getReg()) &&
401 isScalarVecReg(MI
.getOperand(2).getReg())) {
402 SwapVector
[VecIdx
].IsSwappable
= 1;
403 SwapVector
[VecIdx
].SpecialHandling
= SHValues::SH_COPYWIDEN
;
411 // Splats are lane-sensitive, but we can use special handling
412 // to adjust the source lane for the splat.
413 SwapVector
[VecIdx
].IsSwappable
= 1;
414 SwapVector
[VecIdx
].SpecialHandling
= SHValues::SH_SPLAT
;
416 // The presence of the following lane-sensitive operations in a
417 // web will kill the optimization, at least for now. For these
418 // we do nothing, causing the optimization to fail.
419 // FIXME: Some of these could be permitted with special handling,
420 // and will be phased in as time permits.
421 // FIXME: There is no simple and maintainable way to express a set
422 // of opcodes having a common attribute in TableGen. Should this
423 // change, this is a prime candidate to use such a mechanism.
425 case PPC::INLINEASM_BR
:
426 case PPC::EXTRACT_SUBREG
:
427 case PPC::INSERT_SUBREG
:
428 case PPC::COPY_TO_REGCLASS
:
439 // We can handle STXSDX and STXSSPX similarly to LXSDX and LXSSPX,
440 // by adding special handling for narrowing copies as well as
441 // widening ones. However, I've experimented with this, and in
442 // practice we currently do not appear to use STXSDX fed by
443 // a narrowing copy from a full vector register. Since I can't
444 // generate any useful test cases, I've left this alone for now.
448 case PPC::VCIPHERLAST
:
468 case PPC::VNCIPHERLAST
:
493 case PPC::VSHASIGMAD
:
494 case PPC::VSHASIGMAW
:
515 // XXSLDWI could be replaced by a general permute with one of three
516 // permute control vectors (for shift values 1, 2, 3). However,
517 // VPERM has a more restrictive register class.
526 if (RelevantFunction
) {
527 LLVM_DEBUG(dbgs() << "Swap vector when first built\n\n");
528 LLVM_DEBUG(dumpSwapVector());
531 return RelevantFunction
;
534 // Add an entry to the swap vector and swap map, and make a
535 // singleton equivalence class for the entry.
536 int PPCVSXSwapRemoval::addSwapEntry(MachineInstr
*MI
,
537 PPCVSXSwapEntry
& SwapEntry
) {
538 SwapEntry
.VSEMI
= MI
;
539 SwapEntry
.VSEId
= SwapVector
.size();
540 SwapVector
.push_back(SwapEntry
);
541 EC
->insert(SwapEntry
.VSEId
);
542 SwapMap
[MI
] = SwapEntry
.VSEId
;
543 return SwapEntry
.VSEId
;
546 // This is used to find the "true" source register for an
547 // XXPERMDI instruction, since MachineCSE does not handle the
548 // "copy-like" operations (Copy and SubregToReg). Returns
549 // the original SrcReg unless it is the target of a copy-like
550 // operation, in which case we chain backwards through all
551 // such operations to the ultimate source register. If a
552 // physical register is encountered, we stop the search and
553 // flag the swap entry indicated by VecIdx (the original
554 // XXPERMDI) as mentioning a physical register.
555 unsigned PPCVSXSwapRemoval::lookThruCopyLike(unsigned SrcReg
,
557 MachineInstr
*MI
= MRI
->getVRegDef(SrcReg
);
558 if (!MI
->isCopyLike())
563 CopySrcReg
= MI
->getOperand(1).getReg();
565 assert(MI
->isSubregToReg() && "bad opcode for lookThruCopyLike");
566 CopySrcReg
= MI
->getOperand(2).getReg();
569 if (!TargetRegisterInfo::isVirtualRegister(CopySrcReg
)) {
570 if (!isScalarVecReg(CopySrcReg
))
571 SwapVector
[VecIdx
].MentionsPhysVR
= 1;
575 return lookThruCopyLike(CopySrcReg
, VecIdx
);
578 // Generate equivalence classes for related computations (webs) by
579 // def-use relationships of virtual registers. Mention of a physical
580 // register terminates the generation of equivalence classes as this
581 // indicates a use of a parameter, definition of a return value, use
582 // of a value returned from a call, or definition of a parameter to a
583 // call. Computations with physical register mentions are flagged
584 // as such so their containing webs will not be optimized.
585 void PPCVSXSwapRemoval::formWebs() {
587 LLVM_DEBUG(dbgs() << "\n*** Forming webs for swap removal ***\n\n");
589 for (unsigned EntryIdx
= 0; EntryIdx
< SwapVector
.size(); ++EntryIdx
) {
591 MachineInstr
*MI
= SwapVector
[EntryIdx
].VSEMI
;
593 LLVM_DEBUG(dbgs() << "\n" << SwapVector
[EntryIdx
].VSEId
<< " ");
594 LLVM_DEBUG(MI
->dump());
596 // It's sufficient to walk vector uses and join them to their unique
597 // definitions. In addition, check full vector register operands
598 // for physical regs. We exclude partial-vector register operands
599 // because we can handle them if copied to a full vector.
600 for (const MachineOperand
&MO
: MI
->operands()) {
604 unsigned Reg
= MO
.getReg();
605 if (!isVecReg(Reg
) && !isScalarVecReg(Reg
))
608 if (!TargetRegisterInfo::isVirtualRegister(Reg
)) {
609 if (!(MI
->isCopy() && isScalarVecReg(Reg
)))
610 SwapVector
[EntryIdx
].MentionsPhysVR
= 1;
617 MachineInstr
* DefMI
= MRI
->getVRegDef(Reg
);
618 assert(SwapMap
.find(DefMI
) != SwapMap
.end() &&
619 "Inconsistency: def of vector reg not found in swap map!");
620 int DefIdx
= SwapMap
[DefMI
];
621 (void)EC
->unionSets(SwapVector
[DefIdx
].VSEId
,
622 SwapVector
[EntryIdx
].VSEId
);
624 LLVM_DEBUG(dbgs() << format("Unioning %d with %d\n",
625 SwapVector
[DefIdx
].VSEId
,
626 SwapVector
[EntryIdx
].VSEId
));
627 LLVM_DEBUG(dbgs() << " Def: ");
628 LLVM_DEBUG(DefMI
->dump());
633 // Walk the swap vector entries looking for conditions that prevent their
634 // containing computations from being optimized. When such conditions are
635 // found, mark the representative of the computation's equivalence class
637 void PPCVSXSwapRemoval::recordUnoptimizableWebs() {
639 LLVM_DEBUG(dbgs() << "\n*** Rejecting webs for swap removal ***\n\n");
641 for (unsigned EntryIdx
= 0; EntryIdx
< SwapVector
.size(); ++EntryIdx
) {
642 int Repr
= EC
->getLeaderValue(SwapVector
[EntryIdx
].VSEId
);
644 // If representative is already rejected, don't waste further time.
645 if (SwapVector
[Repr
].WebRejected
)
648 // Reject webs containing mentions of physical or partial registers, or
649 // containing operations that we don't know how to handle in a lane-
651 if (SwapVector
[EntryIdx
].MentionsPhysVR
||
652 SwapVector
[EntryIdx
].MentionsPartialVR
||
653 !(SwapVector
[EntryIdx
].IsSwappable
|| SwapVector
[EntryIdx
].IsSwap
)) {
655 SwapVector
[Repr
].WebRejected
= 1;
658 dbgs() << format("Web %d rejected for physreg, partial reg, or not "
661 LLVM_DEBUG(dbgs() << " in " << EntryIdx
<< ": ");
662 LLVM_DEBUG(SwapVector
[EntryIdx
].VSEMI
->dump());
663 LLVM_DEBUG(dbgs() << "\n");
666 // Reject webs than contain swapping loads that feed something other
667 // than a swap instruction.
668 else if (SwapVector
[EntryIdx
].IsLoad
&& SwapVector
[EntryIdx
].IsSwap
) {
669 MachineInstr
*MI
= SwapVector
[EntryIdx
].VSEMI
;
670 unsigned DefReg
= MI
->getOperand(0).getReg();
672 // We skip debug instructions in the analysis. (Note that debug
673 // location information is still maintained by this optimization
674 // because it remains on the LXVD2X and STXVD2X instructions after
675 // the XXPERMDIs are removed.)
676 for (MachineInstr
&UseMI
: MRI
->use_nodbg_instructions(DefReg
)) {
677 int UseIdx
= SwapMap
[&UseMI
];
679 if (!SwapVector
[UseIdx
].IsSwap
|| SwapVector
[UseIdx
].IsLoad
||
680 SwapVector
[UseIdx
].IsStore
) {
682 SwapVector
[Repr
].WebRejected
= 1;
684 LLVM_DEBUG(dbgs() << format(
685 "Web %d rejected for load not feeding swap\n", Repr
));
686 LLVM_DEBUG(dbgs() << " def " << EntryIdx
<< ": ");
687 LLVM_DEBUG(MI
->dump());
688 LLVM_DEBUG(dbgs() << " use " << UseIdx
<< ": ");
689 LLVM_DEBUG(UseMI
.dump());
690 LLVM_DEBUG(dbgs() << "\n");
694 // Reject webs that contain swapping stores that are fed by something
695 // other than a swap instruction.
696 } else if (SwapVector
[EntryIdx
].IsStore
&& SwapVector
[EntryIdx
].IsSwap
) {
697 MachineInstr
*MI
= SwapVector
[EntryIdx
].VSEMI
;
698 unsigned UseReg
= MI
->getOperand(0).getReg();
699 MachineInstr
*DefMI
= MRI
->getVRegDef(UseReg
);
700 unsigned DefReg
= DefMI
->getOperand(0).getReg();
701 int DefIdx
= SwapMap
[DefMI
];
703 if (!SwapVector
[DefIdx
].IsSwap
|| SwapVector
[DefIdx
].IsLoad
||
704 SwapVector
[DefIdx
].IsStore
) {
706 SwapVector
[Repr
].WebRejected
= 1;
708 LLVM_DEBUG(dbgs() << format(
709 "Web %d rejected for store not fed by swap\n", Repr
));
710 LLVM_DEBUG(dbgs() << " def " << DefIdx
<< ": ");
711 LLVM_DEBUG(DefMI
->dump());
712 LLVM_DEBUG(dbgs() << " use " << EntryIdx
<< ": ");
713 LLVM_DEBUG(MI
->dump());
714 LLVM_DEBUG(dbgs() << "\n");
717 // Ensure all uses of the register defined by DefMI feed store
719 for (MachineInstr
&UseMI
: MRI
->use_nodbg_instructions(DefReg
)) {
720 int UseIdx
= SwapMap
[&UseMI
];
722 if (SwapVector
[UseIdx
].VSEMI
->getOpcode() != MI
->getOpcode()) {
723 SwapVector
[Repr
].WebRejected
= 1;
727 "Web %d rejected for swap not feeding only stores\n", Repr
));
728 LLVM_DEBUG(dbgs() << " def "
730 LLVM_DEBUG(DefMI
->dump());
731 LLVM_DEBUG(dbgs() << " use " << UseIdx
<< ": ");
732 LLVM_DEBUG(SwapVector
[UseIdx
].VSEMI
->dump());
733 LLVM_DEBUG(dbgs() << "\n");
739 LLVM_DEBUG(dbgs() << "Swap vector after web analysis:\n\n");
740 LLVM_DEBUG(dumpSwapVector());
743 // Walk the swap vector entries looking for swaps fed by permuting loads
744 // and swaps that feed permuting stores. If the containing computation
745 // has not been marked rejected, mark each such swap for removal.
746 // (Removal is delayed in case optimization has disturbed the pattern,
747 // such that multiple loads feed the same swap, etc.)
748 void PPCVSXSwapRemoval::markSwapsForRemoval() {
750 LLVM_DEBUG(dbgs() << "\n*** Marking swaps for removal ***\n\n");
752 for (unsigned EntryIdx
= 0; EntryIdx
< SwapVector
.size(); ++EntryIdx
) {
754 if (SwapVector
[EntryIdx
].IsLoad
&& SwapVector
[EntryIdx
].IsSwap
) {
755 int Repr
= EC
->getLeaderValue(SwapVector
[EntryIdx
].VSEId
);
757 if (!SwapVector
[Repr
].WebRejected
) {
758 MachineInstr
*MI
= SwapVector
[EntryIdx
].VSEMI
;
759 unsigned DefReg
= MI
->getOperand(0).getReg();
761 for (MachineInstr
&UseMI
: MRI
->use_nodbg_instructions(DefReg
)) {
762 int UseIdx
= SwapMap
[&UseMI
];
763 SwapVector
[UseIdx
].WillRemove
= 1;
765 LLVM_DEBUG(dbgs() << "Marking swap fed by load for removal: ");
766 LLVM_DEBUG(UseMI
.dump());
770 } else if (SwapVector
[EntryIdx
].IsStore
&& SwapVector
[EntryIdx
].IsSwap
) {
771 int Repr
= EC
->getLeaderValue(SwapVector
[EntryIdx
].VSEId
);
773 if (!SwapVector
[Repr
].WebRejected
) {
774 MachineInstr
*MI
= SwapVector
[EntryIdx
].VSEMI
;
775 unsigned UseReg
= MI
->getOperand(0).getReg();
776 MachineInstr
*DefMI
= MRI
->getVRegDef(UseReg
);
777 int DefIdx
= SwapMap
[DefMI
];
778 SwapVector
[DefIdx
].WillRemove
= 1;
780 LLVM_DEBUG(dbgs() << "Marking swap feeding store for removal: ");
781 LLVM_DEBUG(DefMI
->dump());
784 } else if (SwapVector
[EntryIdx
].IsSwappable
&&
785 SwapVector
[EntryIdx
].SpecialHandling
!= 0) {
786 int Repr
= EC
->getLeaderValue(SwapVector
[EntryIdx
].VSEId
);
788 if (!SwapVector
[Repr
].WebRejected
)
789 handleSpecialSwappables(EntryIdx
);
794 // Create an xxswapd instruction and insert it prior to the given point.
795 // MI is used to determine basic block and debug loc information.
796 // FIXME: When inserting a swap, we should check whether SrcReg is
797 // defined by another swap: SrcReg = XXPERMDI Reg, Reg, 2; If so,
798 // then instead we should generate a copy from Reg to DstReg.
799 void PPCVSXSwapRemoval::insertSwap(MachineInstr
*MI
,
800 MachineBasicBlock::iterator InsertPoint
,
801 unsigned DstReg
, unsigned SrcReg
) {
802 BuildMI(*MI
->getParent(), InsertPoint
, MI
->getDebugLoc(),
803 TII
->get(PPC::XXPERMDI
), DstReg
)
809 // The identified swap entry requires special handling to allow its
810 // containing computation to be optimized. Perform that handling
812 // FIXME: Additional opportunities will be phased in with subsequent
814 void PPCVSXSwapRemoval::handleSpecialSwappables(int EntryIdx
) {
815 switch (SwapVector
[EntryIdx
].SpecialHandling
) {
818 llvm_unreachable("Unexpected special handling type");
820 // For splats based on an index into a vector, add N/2 modulo N
821 // to the index, where N is the number of vector elements.
822 case SHValues::SH_SPLAT
: {
823 MachineInstr
*MI
= SwapVector
[EntryIdx
].VSEMI
;
826 LLVM_DEBUG(dbgs() << "Changing splat: ");
827 LLVM_DEBUG(MI
->dump());
829 switch (MI
->getOpcode()) {
831 llvm_unreachable("Unexpected splat opcode");
832 case PPC::VSPLTB
: NElts
= 16; break;
833 case PPC::VSPLTH
: NElts
= 8; break;
835 case PPC::XXSPLTW
: NElts
= 4; break;
839 if (MI
->getOpcode() == PPC::XXSPLTW
)
840 EltNo
= MI
->getOperand(2).getImm();
842 EltNo
= MI
->getOperand(1).getImm();
844 EltNo
= (EltNo
+ NElts
/ 2) % NElts
;
845 if (MI
->getOpcode() == PPC::XXSPLTW
)
846 MI
->getOperand(2).setImm(EltNo
);
848 MI
->getOperand(1).setImm(EltNo
);
850 LLVM_DEBUG(dbgs() << " Into: ");
851 LLVM_DEBUG(MI
->dump());
855 // For an XXPERMDI that isn't handled otherwise, we need to
856 // reverse the order of the operands. If the selector operand
857 // has a value of 0 or 3, we need to change it to 3 or 0,
858 // respectively. Otherwise we should leave it alone. (This
859 // is equivalent to reversing the two bits of the selector
860 // operand and complementing the result.)
861 case SHValues::SH_XXPERMDI
: {
862 MachineInstr
*MI
= SwapVector
[EntryIdx
].VSEMI
;
864 LLVM_DEBUG(dbgs() << "Changing XXPERMDI: ");
865 LLVM_DEBUG(MI
->dump());
867 unsigned Selector
= MI
->getOperand(3).getImm();
868 if (Selector
== 0 || Selector
== 3)
869 Selector
= 3 - Selector
;
870 MI
->getOperand(3).setImm(Selector
);
872 unsigned Reg1
= MI
->getOperand(1).getReg();
873 unsigned Reg2
= MI
->getOperand(2).getReg();
874 MI
->getOperand(1).setReg(Reg2
);
875 MI
->getOperand(2).setReg(Reg1
);
877 // We also need to swap kill flag associated with the register.
878 bool IsKill1
= MI
->getOperand(1).isKill();
879 bool IsKill2
= MI
->getOperand(2).isKill();
880 MI
->getOperand(1).setIsKill(IsKill2
);
881 MI
->getOperand(2).setIsKill(IsKill1
);
883 LLVM_DEBUG(dbgs() << " Into: ");
884 LLVM_DEBUG(MI
->dump());
888 // For a copy from a scalar floating-point register to a vector
889 // register, removing swaps will leave the copied value in the
890 // wrong lane. Insert a swap following the copy to fix this.
891 case SHValues::SH_COPYWIDEN
: {
892 MachineInstr
*MI
= SwapVector
[EntryIdx
].VSEMI
;
894 LLVM_DEBUG(dbgs() << "Changing SUBREG_TO_REG: ");
895 LLVM_DEBUG(MI
->dump());
897 unsigned DstReg
= MI
->getOperand(0).getReg();
898 const TargetRegisterClass
*DstRC
= MRI
->getRegClass(DstReg
);
899 unsigned NewVReg
= MRI
->createVirtualRegister(DstRC
);
901 MI
->getOperand(0).setReg(NewVReg
);
902 LLVM_DEBUG(dbgs() << " Into: ");
903 LLVM_DEBUG(MI
->dump());
905 auto InsertPoint
= ++MachineBasicBlock::iterator(MI
);
907 // Note that an XXPERMDI requires a VSRC, so if the SUBREG_TO_REG
908 // is copying to a VRRC, we need to be careful to avoid a register
909 // assignment problem. In this case we must copy from VRRC to VSRC
910 // prior to the swap, and from VSRC to VRRC following the swap.
911 // Coalescing will usually remove all this mess.
912 if (DstRC
== &PPC::VRRCRegClass
) {
913 unsigned VSRCTmp1
= MRI
->createVirtualRegister(&PPC::VSRCRegClass
);
914 unsigned VSRCTmp2
= MRI
->createVirtualRegister(&PPC::VSRCRegClass
);
916 BuildMI(*MI
->getParent(), InsertPoint
, MI
->getDebugLoc(),
917 TII
->get(PPC::COPY
), VSRCTmp1
)
919 LLVM_DEBUG(std::prev(InsertPoint
)->dump());
921 insertSwap(MI
, InsertPoint
, VSRCTmp2
, VSRCTmp1
);
922 LLVM_DEBUG(std::prev(InsertPoint
)->dump());
924 BuildMI(*MI
->getParent(), InsertPoint
, MI
->getDebugLoc(),
925 TII
->get(PPC::COPY
), DstReg
)
927 LLVM_DEBUG(std::prev(InsertPoint
)->dump());
930 insertSwap(MI
, InsertPoint
, DstReg
, NewVReg
);
931 LLVM_DEBUG(std::prev(InsertPoint
)->dump());
938 // Walk the swap vector and replace each entry marked for removal with
940 bool PPCVSXSwapRemoval::removeSwaps() {
942 LLVM_DEBUG(dbgs() << "\n*** Removing swaps ***\n\n");
944 bool Changed
= false;
946 for (unsigned EntryIdx
= 0; EntryIdx
< SwapVector
.size(); ++EntryIdx
) {
947 if (SwapVector
[EntryIdx
].WillRemove
) {
949 MachineInstr
*MI
= SwapVector
[EntryIdx
].VSEMI
;
950 MachineBasicBlock
*MBB
= MI
->getParent();
951 BuildMI(*MBB
, MI
, MI
->getDebugLoc(), TII
->get(TargetOpcode::COPY
),
952 MI
->getOperand(0).getReg())
953 .add(MI
->getOperand(1));
955 LLVM_DEBUG(dbgs() << format("Replaced %d with copy: ",
956 SwapVector
[EntryIdx
].VSEId
));
957 LLVM_DEBUG(MI
->dump());
959 MI
->eraseFromParent();
966 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
967 // For debug purposes, dump the contents of the swap vector.
968 LLVM_DUMP_METHOD
void PPCVSXSwapRemoval::dumpSwapVector() {
970 for (unsigned EntryIdx
= 0; EntryIdx
< SwapVector
.size(); ++EntryIdx
) {
972 MachineInstr
*MI
= SwapVector
[EntryIdx
].VSEMI
;
973 int ID
= SwapVector
[EntryIdx
].VSEId
;
975 dbgs() << format("%6d", ID
);
976 dbgs() << format("%6d", EC
->getLeaderValue(ID
));
977 dbgs() << format(" %bb.%3d", MI
->getParent()->getNumber());
978 dbgs() << format(" %14s ", TII
->getName(MI
->getOpcode()).str().c_str());
980 if (SwapVector
[EntryIdx
].IsLoad
)
982 if (SwapVector
[EntryIdx
].IsStore
)
984 if (SwapVector
[EntryIdx
].IsSwap
)
986 if (SwapVector
[EntryIdx
].MentionsPhysVR
)
987 dbgs() << "physreg ";
988 if (SwapVector
[EntryIdx
].MentionsPartialVR
)
989 dbgs() << "partialreg ";
991 if (SwapVector
[EntryIdx
].IsSwappable
) {
992 dbgs() << "swappable ";
993 switch(SwapVector
[EntryIdx
].SpecialHandling
) {
995 dbgs() << "special:**unknown**";
1000 dbgs() << "special:extract ";
1003 dbgs() << "special:insert ";
1006 dbgs() << "special:load ";
1009 dbgs() << "special:store ";
1012 dbgs() << "special:splat ";
1015 dbgs() << "special:xxpermdi ";
1018 dbgs() << "special:copywiden ";
1023 if (SwapVector
[EntryIdx
].WebRejected
)
1024 dbgs() << "rejected ";
1025 if (SwapVector
[EntryIdx
].WillRemove
)
1026 dbgs() << "remove ";
1030 // For no-asserts builds.
1039 } // end default namespace
1041 INITIALIZE_PASS_BEGIN(PPCVSXSwapRemoval
, DEBUG_TYPE
,
1042 "PowerPC VSX Swap Removal", false, false)
1043 INITIALIZE_PASS_END(PPCVSXSwapRemoval
, DEBUG_TYPE
,
1044 "PowerPC VSX Swap Removal", false, false)
1046 char PPCVSXSwapRemoval::ID
= 0;
1048 llvm::createPPCVSXSwapRemovalPass() { return new PPCVSXSwapRemoval(); }