[ARM] MVE integer min and max
[llvm-core.git] / lib / Target / X86 / X86TargetMachine.cpp
blob0cbf13899a2945bc4a1400476cff7c1db183f37a
1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the X86 specific subclass of TargetMachine.
11 //===----------------------------------------------------------------------===//
13 #include "X86TargetMachine.h"
14 #include "MCTargetDesc/X86MCTargetDesc.h"
15 #include "TargetInfo/X86TargetInfo.h"
16 #include "X86.h"
17 #include "X86CallLowering.h"
18 #include "X86LegalizerInfo.h"
19 #include "X86MacroFusion.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetObjectFile.h"
22 #include "X86TargetTransformInfo.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/CodeGen/ExecutionDomainFix.h"
30 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
33 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
35 #include "llvm/CodeGen/MachineScheduler.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/CodeGen.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/TargetRegistry.h"
47 #include "llvm/Target/TargetLoweringObjectFile.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include <memory>
50 #include <string>
52 using namespace llvm;
54 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
55 cl::desc("Enable the machine combiner pass"),
56 cl::init(true), cl::Hidden);
58 static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding",
59 cl::desc("Enable the conditional branch "
60 "folding pass"),
61 cl::init(false), cl::Hidden);
63 extern "C" void LLVMInitializeX86Target() {
64 // Register the target.
65 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
66 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
68 PassRegistry &PR = *PassRegistry::getPassRegistry();
69 initializeGlobalISel(PR);
70 initializeWinEHStatePassPass(PR);
71 initializeFixupBWInstPassPass(PR);
72 initializeEvexToVexInstPassPass(PR);
73 initializeFixupLEAPassPass(PR);
74 initializeFPSPass(PR);
75 initializeX86CallFrameOptimizationPass(PR);
76 initializeX86CmovConverterPassPass(PR);
77 initializeX86ExpandPseudoPass(PR);
78 initializeX86ExecutionDomainFixPass(PR);
79 initializeX86DomainReassignmentPass(PR);
80 initializeX86AvoidSFBPassPass(PR);
81 initializeX86SpeculativeLoadHardeningPassPass(PR);
82 initializeX86FlagsCopyLoweringPassPass(PR);
83 initializeX86CondBrFoldingPassPass(PR);
86 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
87 if (TT.isOSBinFormatMachO()) {
88 if (TT.getArch() == Triple::x86_64)
89 return llvm::make_unique<X86_64MachoTargetObjectFile>();
90 return llvm::make_unique<TargetLoweringObjectFileMachO>();
93 if (TT.isOSFreeBSD())
94 return llvm::make_unique<X86FreeBSDTargetObjectFile>();
95 if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU())
96 return llvm::make_unique<X86LinuxNaClTargetObjectFile>();
97 if (TT.isOSSolaris())
98 return llvm::make_unique<X86SolarisTargetObjectFile>();
99 if (TT.isOSFuchsia())
100 return llvm::make_unique<X86FuchsiaTargetObjectFile>();
101 if (TT.isOSBinFormatELF())
102 return llvm::make_unique<X86ELFTargetObjectFile>();
103 if (TT.isOSBinFormatCOFF())
104 return llvm::make_unique<TargetLoweringObjectFileCOFF>();
105 llvm_unreachable("unknown subtarget type");
108 static std::string computeDataLayout(const Triple &TT) {
109 // X86 is little endian
110 std::string Ret = "e";
112 Ret += DataLayout::getManglingComponent(TT);
113 // X86 and x32 have 32 bit pointers.
114 if ((TT.isArch64Bit() &&
115 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
116 !TT.isArch64Bit())
117 Ret += "-p:32:32";
119 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
120 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
121 Ret += "-i64:64";
122 else if (TT.isOSIAMCU())
123 Ret += "-i64:32-f64:32";
124 else
125 Ret += "-f64:32:64";
127 // Some ABIs align long double to 128 bits, others to 32.
128 if (TT.isOSNaCl() || TT.isOSIAMCU())
129 ; // No f80
130 else if (TT.isArch64Bit() || TT.isOSDarwin())
131 Ret += "-f80:128";
132 else
133 Ret += "-f80:32";
135 if (TT.isOSIAMCU())
136 Ret += "-f128:32";
138 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
139 if (TT.isArch64Bit())
140 Ret += "-n8:16:32:64";
141 else
142 Ret += "-n8:16:32";
144 // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
145 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
146 Ret += "-a:0:32-S32";
147 else
148 Ret += "-S128";
150 return Ret;
153 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
154 bool JIT,
155 Optional<Reloc::Model> RM) {
156 bool is64Bit = TT.getArch() == Triple::x86_64;
157 if (!RM.hasValue()) {
158 // JIT codegen should use static relocations by default, since it's
159 // typically executed in process and not relocatable.
160 if (JIT)
161 return Reloc::Static;
163 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
164 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
165 // use static relocation model by default.
166 if (TT.isOSDarwin()) {
167 if (is64Bit)
168 return Reloc::PIC_;
169 return Reloc::DynamicNoPIC;
171 if (TT.isOSWindows() && is64Bit)
172 return Reloc::PIC_;
173 return Reloc::Static;
176 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC
177 // is defined as a model for code which may be used in static or dynamic
178 // executables but not necessarily a shared library. On X86-32 we just
179 // compile in -static mode, in x86-64 we use PIC.
180 if (*RM == Reloc::DynamicNoPIC) {
181 if (is64Bit)
182 return Reloc::PIC_;
183 if (!TT.isOSDarwin())
184 return Reloc::Static;
187 // If we are on Darwin, disallow static relocation model in X86-64 mode, since
188 // the Mach-O file format doesn't support it.
189 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
190 return Reloc::PIC_;
192 return *RM;
195 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM,
196 bool JIT, bool Is64Bit) {
197 if (CM) {
198 if (*CM == CodeModel::Tiny)
199 report_fatal_error("Target does not support the tiny CodeModel", false);
200 return *CM;
202 if (JIT)
203 return Is64Bit ? CodeModel::Large : CodeModel::Small;
204 return CodeModel::Small;
207 /// Create an X86 target.
209 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
210 StringRef CPU, StringRef FS,
211 const TargetOptions &Options,
212 Optional<Reloc::Model> RM,
213 Optional<CodeModel::Model> CM,
214 CodeGenOpt::Level OL, bool JIT)
215 : LLVMTargetMachine(
216 T, computeDataLayout(TT), TT, CPU, FS, Options,
217 getEffectiveRelocModel(TT, JIT, RM),
218 getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64),
219 OL),
220 TLOF(createTLOF(getTargetTriple())) {
221 // Windows stack unwinder gets confused when execution flow "falls through"
222 // after a call to 'noreturn' function.
223 // To prevent that, we emit a trap for 'unreachable' IR instructions.
224 // (which on X86, happens to be the 'ud2' instruction)
225 // On PS4, the "return address" of a 'noreturn' call must still be within
226 // the calling function, and TrapUnreachable is an easy way to get that.
227 // The check here for 64-bit windows is a bit icky, but as we're unlikely
228 // to ever want to mix 32 and 64-bit windows code in a single module
229 // this should be fine.
230 if ((TT.isOSWindows() && TT.getArch() == Triple::x86_64) || TT.isPS4() ||
231 TT.isOSBinFormatMachO()) {
232 this->Options.TrapUnreachable = true;
233 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
236 // Outlining is available for x86-64.
237 if (TT.getArch() == Triple::x86_64)
238 setMachineOutliner(true);
240 initAsmInfo();
243 X86TargetMachine::~X86TargetMachine() = default;
245 const X86Subtarget *
246 X86TargetMachine::getSubtargetImpl(const Function &F) const {
247 Attribute CPUAttr = F.getFnAttribute("target-cpu");
248 Attribute FSAttr = F.getFnAttribute("target-features");
250 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None)
251 ? CPUAttr.getValueAsString()
252 : (StringRef)TargetCPU;
253 StringRef FS = !FSAttr.hasAttribute(Attribute::None)
254 ? FSAttr.getValueAsString()
255 : (StringRef)TargetFS;
257 SmallString<512> Key;
258 Key.reserve(CPU.size() + FS.size());
259 Key += CPU;
260 Key += FS;
262 // FIXME: This is related to the code below to reset the target options,
263 // we need to know whether or not the soft float flag is set on the
264 // function before we can generate a subtarget. We also need to use
265 // it as a key for the subtarget since that can be the only difference
266 // between two functions.
267 bool SoftFloat =
268 F.getFnAttribute("use-soft-float").getValueAsString() == "true";
269 // If the soft float attribute is set on the function turn on the soft float
270 // subtarget feature.
271 if (SoftFloat)
272 Key += FS.empty() ? "+soft-float" : ",+soft-float";
274 // Keep track of the key width after all features are added so we can extract
275 // the feature string out later.
276 unsigned CPUFSWidth = Key.size();
278 // Extract prefer-vector-width attribute.
279 unsigned PreferVectorWidthOverride = 0;
280 if (F.hasFnAttribute("prefer-vector-width")) {
281 StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString();
282 unsigned Width;
283 if (!Val.getAsInteger(0, Width)) {
284 Key += ",prefer-vector-width=";
285 Key += Val;
286 PreferVectorWidthOverride = Width;
290 // Extract min-legal-vector-width attribute.
291 unsigned RequiredVectorWidth = UINT32_MAX;
292 if (F.hasFnAttribute("min-legal-vector-width")) {
293 StringRef Val =
294 F.getFnAttribute("min-legal-vector-width").getValueAsString();
295 unsigned Width;
296 if (!Val.getAsInteger(0, Width)) {
297 Key += ",min-legal-vector-width=";
298 Key += Val;
299 RequiredVectorWidth = Width;
303 // Extracted here so that we make sure there is backing for the StringRef. If
304 // we assigned earlier, its possible the SmallString reallocated leaving a
305 // dangling StringRef.
306 FS = Key.slice(CPU.size(), CPUFSWidth);
308 auto &I = SubtargetMap[Key];
309 if (!I) {
310 // This needs to be done before we create a new subtarget since any
311 // creation will depend on the TM and the code generation flags on the
312 // function that reside in TargetOptions.
313 resetTargetOptions(F);
314 I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this,
315 Options.StackAlignmentOverride,
316 PreferVectorWidthOverride,
317 RequiredVectorWidth);
319 return I.get();
322 //===----------------------------------------------------------------------===//
323 // Command line options for x86
324 //===----------------------------------------------------------------------===//
325 static cl::opt<bool>
326 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
327 cl::desc("Minimize AVX to SSE transition penalty"),
328 cl::init(true));
330 //===----------------------------------------------------------------------===//
331 // X86 TTI query.
332 //===----------------------------------------------------------------------===//
334 TargetTransformInfo
335 X86TargetMachine::getTargetTransformInfo(const Function &F) {
336 return TargetTransformInfo(X86TTIImpl(this, F));
339 //===----------------------------------------------------------------------===//
340 // Pass Pipeline Configuration
341 //===----------------------------------------------------------------------===//
343 namespace {
345 /// X86 Code Generator Pass Configuration Options.
346 class X86PassConfig : public TargetPassConfig {
347 public:
348 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
349 : TargetPassConfig(TM, PM) {}
351 X86TargetMachine &getX86TargetMachine() const {
352 return getTM<X86TargetMachine>();
355 ScheduleDAGInstrs *
356 createMachineScheduler(MachineSchedContext *C) const override {
357 ScheduleDAGMILive *DAG = createGenericSchedLive(C);
358 DAG->addMutation(createX86MacroFusionDAGMutation());
359 return DAG;
362 ScheduleDAGInstrs *
363 createPostMachineScheduler(MachineSchedContext *C) const override {
364 ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
365 DAG->addMutation(createX86MacroFusionDAGMutation());
366 return DAG;
369 void addIRPasses() override;
370 bool addInstSelector() override;
371 bool addIRTranslator() override;
372 bool addLegalizeMachineIR() override;
373 bool addRegBankSelect() override;
374 bool addGlobalInstructionSelect() override;
375 bool addILPOpts() override;
376 bool addPreISel() override;
377 void addMachineSSAOptimization() override;
378 void addPreRegAlloc() override;
379 void addPostRegAlloc() override;
380 void addPreEmitPass() override;
381 void addPreEmitPass2() override;
382 void addPreSched2() override;
384 std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
387 class X86ExecutionDomainFix : public ExecutionDomainFix {
388 public:
389 static char ID;
390 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
391 StringRef getPassName() const override {
392 return "X86 Execution Dependency Fix";
395 char X86ExecutionDomainFix::ID;
397 } // end anonymous namespace
399 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
400 "X86 Execution Domain Fix", false, false)
401 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
402 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
403 "X86 Execution Domain Fix", false, false)
405 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
406 return new X86PassConfig(*this, PM);
409 void X86PassConfig::addIRPasses() {
410 addPass(createAtomicExpandPass());
412 TargetPassConfig::addIRPasses();
414 if (TM->getOptLevel() != CodeGenOpt::None)
415 addPass(createInterleavedAccessPass());
417 // Add passes that handle indirect branch removal and insertion of a retpoline
418 // thunk. These will be a no-op unless a function subtarget has the retpoline
419 // feature enabled.
420 addPass(createIndirectBrExpandPass());
423 bool X86PassConfig::addInstSelector() {
424 // Install an instruction selector.
425 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
427 // For ELF, cleanup any local-dynamic TLS accesses.
428 if (TM->getTargetTriple().isOSBinFormatELF() &&
429 getOptLevel() != CodeGenOpt::None)
430 addPass(createCleanupLocalDynamicTLSPass());
432 addPass(createX86GlobalBaseRegPass());
433 return false;
436 bool X86PassConfig::addIRTranslator() {
437 addPass(new IRTranslator());
438 return false;
441 bool X86PassConfig::addLegalizeMachineIR() {
442 addPass(new Legalizer());
443 return false;
446 bool X86PassConfig::addRegBankSelect() {
447 addPass(new RegBankSelect());
448 return false;
451 bool X86PassConfig::addGlobalInstructionSelect() {
452 addPass(new InstructionSelect());
453 return false;
456 bool X86PassConfig::addILPOpts() {
457 if (EnableCondBrFoldingPass)
458 addPass(createX86CondBrFolding());
459 addPass(&EarlyIfConverterID);
460 if (EnableMachineCombinerPass)
461 addPass(&MachineCombinerID);
462 addPass(createX86CmovConverterPass());
463 return true;
466 bool X86PassConfig::addPreISel() {
467 // Only add this pass for 32-bit x86 Windows.
468 const Triple &TT = TM->getTargetTriple();
469 if (TT.isOSWindows() && TT.getArch() == Triple::x86)
470 addPass(createX86WinEHStatePass());
471 return true;
474 void X86PassConfig::addPreRegAlloc() {
475 if (getOptLevel() != CodeGenOpt::None) {
476 addPass(&LiveRangeShrinkID);
477 addPass(createX86FixupSetCC());
478 addPass(createX86OptimizeLEAs());
479 addPass(createX86CallFrameOptimization());
480 addPass(createX86AvoidStoreForwardingBlocks());
483 addPass(createX86SpeculativeLoadHardeningPass());
484 addPass(createX86FlagsCopyLoweringPass());
485 addPass(createX86WinAllocaExpander());
487 void X86PassConfig::addMachineSSAOptimization() {
488 addPass(createX86DomainReassignmentPass());
489 TargetPassConfig::addMachineSSAOptimization();
492 void X86PassConfig::addPostRegAlloc() {
493 addPass(createX86FloatingPointStackifierPass());
496 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
498 void X86PassConfig::addPreEmitPass() {
499 if (getOptLevel() != CodeGenOpt::None) {
500 addPass(new X86ExecutionDomainFix());
501 addPass(createBreakFalseDeps());
504 addPass(createX86IndirectBranchTrackingPass());
506 if (UseVZeroUpper)
507 addPass(createX86IssueVZeroUpperPass());
509 if (getOptLevel() != CodeGenOpt::None) {
510 addPass(createX86FixupBWInsts());
511 addPass(createX86PadShortFunctions());
512 addPass(createX86FixupLEAs());
513 addPass(createX86EvexToVexInsts());
515 addPass(createX86DiscriminateMemOpsPass());
516 addPass(createX86InsertPrefetchPass());
519 void X86PassConfig::addPreEmitPass2() {
520 addPass(createX86RetpolineThunksPass());
521 // Verify basic block incoming and outgoing cfa offset and register values and
522 // correct CFA calculation rule where needed by inserting appropriate CFI
523 // instructions.
524 const Triple &TT = TM->getTargetTriple();
525 const MCAsmInfo *MAI = TM->getMCAsmInfo();
526 if (!TT.isOSDarwin() &&
527 (!TT.isOSWindows() ||
528 MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI))
529 addPass(createCFIInstrInserter());
532 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const {
533 return getStandardCSEConfigForOpt(TM->getOptLevel());