[PowerPC] Do not emit record-form rotates when record-form andi suffices
[llvm-core.git] / tools / llvm-objcopy / Object.cpp
blobb3ad7329bb6b72902655b2809d06bc682364fcc4
1 //===- Object.cpp ---------------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "Object.h"
11 #include "llvm-objcopy.h"
12 #include "llvm/ADT/ArrayRef.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/BinaryFormat/ELF.h"
18 #include "llvm/Object/ELFObjectFile.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/FileOutputBuffer.h"
21 #include "llvm/Support/Path.h"
22 #include <algorithm>
23 #include <cstddef>
24 #include <cstdint>
25 #include <iterator>
26 #include <utility>
27 #include <vector>
29 using namespace llvm;
30 using namespace object;
31 using namespace ELF;
33 template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) {
34 using Elf_Phdr = typename ELFT::Phdr;
36 uint8_t *Buf = BufPtr->getBufferStart();
37 Buf += Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr);
38 Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(Buf);
39 Phdr.p_type = Seg.Type;
40 Phdr.p_flags = Seg.Flags;
41 Phdr.p_offset = Seg.Offset;
42 Phdr.p_vaddr = Seg.VAddr;
43 Phdr.p_paddr = Seg.PAddr;
44 Phdr.p_filesz = Seg.FileSize;
45 Phdr.p_memsz = Seg.MemSize;
46 Phdr.p_align = Seg.Align;
49 void SectionBase::removeSectionReferences(const SectionBase *Sec) {}
50 void SectionBase::initialize(SectionTableRef SecTable) {}
51 void SectionBase::finalize() {}
53 template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) {
54 uint8_t *Buf = BufPtr->getBufferStart();
55 Buf += Sec.HeaderOffset;
56 typename ELFT::Shdr &Shdr = *reinterpret_cast<typename ELFT::Shdr *>(Buf);
57 Shdr.sh_name = Sec.NameIndex;
58 Shdr.sh_type = Sec.Type;
59 Shdr.sh_flags = Sec.Flags;
60 Shdr.sh_addr = Sec.Addr;
61 Shdr.sh_offset = Sec.Offset;
62 Shdr.sh_size = Sec.Size;
63 Shdr.sh_link = Sec.Link;
64 Shdr.sh_info = Sec.Info;
65 Shdr.sh_addralign = Sec.Align;
66 Shdr.sh_entsize = Sec.EntrySize;
69 SectionVisitor::~SectionVisitor() {}
71 void BinarySectionWriter::visit(const SymbolTableSection &Sec) {
72 error("Cannot write symbol table '" + Sec.Name + "' out to binary");
75 void BinarySectionWriter::visit(const RelocationSection &Sec) {
76 error("Cannot write relocation section '" + Sec.Name + "' out to binary");
79 void BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) {
80 error("Cannot write '.gnu_debuglink' out to binary");
83 void SectionWriter::visit(const Section &Sec) {
84 if (Sec.Type == SHT_NOBITS)
85 return;
86 uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
87 std::copy(std::begin(Sec.Contents), std::end(Sec.Contents), Buf);
90 void Section::accept(SectionVisitor &Visitor) const { Visitor.visit(*this); }
92 void SectionWriter::visit(const OwnedDataSection &Sec) {
93 uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
94 std::copy(std::begin(Sec.Data), std::end(Sec.Data), Buf);
97 void OwnedDataSection::accept(SectionVisitor &Visitor) const {
98 Visitor.visit(*this);
101 void StringTableSection::addString(StringRef Name) {
102 StrTabBuilder.add(Name);
103 Size = StrTabBuilder.getSize();
106 uint32_t StringTableSection::findIndex(StringRef Name) const {
107 return StrTabBuilder.getOffset(Name);
110 void StringTableSection::finalize() { StrTabBuilder.finalize(); }
112 void SectionWriter::visit(const StringTableSection &Sec) {
113 Sec.StrTabBuilder.write(Out.getBufferStart() + Sec.Offset);
116 void StringTableSection::accept(SectionVisitor &Visitor) const {
117 Visitor.visit(*this);
120 static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
121 switch (Index) {
122 case SHN_ABS:
123 case SHN_COMMON:
124 return true;
126 if (Machine == EM_HEXAGON) {
127 switch (Index) {
128 case SHN_HEXAGON_SCOMMON:
129 case SHN_HEXAGON_SCOMMON_2:
130 case SHN_HEXAGON_SCOMMON_4:
131 case SHN_HEXAGON_SCOMMON_8:
132 return true;
135 return false;
138 uint16_t Symbol::getShndx() const {
139 if (DefinedIn != nullptr) {
140 return DefinedIn->Index;
142 switch (ShndxType) {
143 // This means that we don't have a defined section but we do need to
144 // output a legitimate section index.
145 case SYMBOL_SIMPLE_INDEX:
146 return SHN_UNDEF;
147 case SYMBOL_ABS:
148 case SYMBOL_COMMON:
149 case SYMBOL_HEXAGON_SCOMMON:
150 case SYMBOL_HEXAGON_SCOMMON_2:
151 case SYMBOL_HEXAGON_SCOMMON_4:
152 case SYMBOL_HEXAGON_SCOMMON_8:
153 return static_cast<uint16_t>(ShndxType);
155 llvm_unreachable("Symbol with invalid ShndxType encountered");
158 void SymbolTableSection::addSymbol(StringRef Name, uint8_t Bind, uint8_t Type,
159 SectionBase *DefinedIn, uint64_t Value,
160 uint8_t Visibility, uint16_t Shndx,
161 uint64_t Sz) {
162 Symbol Sym;
163 Sym.Name = Name;
164 Sym.Binding = Bind;
165 Sym.Type = Type;
166 Sym.DefinedIn = DefinedIn;
167 if (DefinedIn == nullptr) {
168 if (Shndx >= SHN_LORESERVE)
169 Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
170 else
171 Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
173 Sym.Value = Value;
174 Sym.Visibility = Visibility;
175 Sym.Size = Sz;
176 Sym.Index = Symbols.size();
177 Symbols.emplace_back(llvm::make_unique<Symbol>(Sym));
178 Size += this->EntrySize;
181 void SymbolTableSection::removeSectionReferences(const SectionBase *Sec) {
182 if (SymbolNames == Sec) {
183 error("String table " + SymbolNames->Name +
184 " cannot be removed because it is referenced by the symbol table " +
185 this->Name);
187 auto Iter =
188 std::remove_if(std::begin(Symbols), std::end(Symbols),
189 [=](const SymPtr &Sym) { return Sym->DefinedIn == Sec; });
190 Size -= (std::end(Symbols) - Iter) * this->EntrySize;
191 Symbols.erase(Iter, std::end(Symbols));
194 void SymbolTableSection::localize(
195 std::function<bool(const Symbol &)> ToLocalize) {
196 for (const auto &Sym : Symbols) {
197 if (ToLocalize(*Sym))
198 Sym->Binding = STB_LOCAL;
201 // Now that the local symbols aren't grouped at the start we have to reorder
202 // the symbols to respect this property.
203 std::stable_partition(
204 std::begin(Symbols), std::end(Symbols),
205 [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; });
207 // Lastly we fix the symbol indexes.
208 uint32_t Index = 0;
209 for (auto &Sym : Symbols)
210 Sym->Index = Index++;
213 void SymbolTableSection::initialize(SectionTableRef SecTable) {
214 Size = 0;
215 setStrTab(SecTable.getSectionOfType<StringTableSection>(
216 Link,
217 "Symbol table has link index of " + Twine(Link) +
218 " which is not a valid index",
219 "Symbol table has link index of " + Twine(Link) +
220 " which is not a string table"));
223 void SymbolTableSection::finalize() {
224 // Make sure SymbolNames is finalized before getting name indexes.
225 SymbolNames->finalize();
227 uint32_t MaxLocalIndex = 0;
228 for (auto &Sym : Symbols) {
229 Sym->NameIndex = SymbolNames->findIndex(Sym->Name);
230 if (Sym->Binding == STB_LOCAL)
231 MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
233 // Now we need to set the Link and Info fields.
234 Link = SymbolNames->Index;
235 Info = MaxLocalIndex + 1;
238 void SymbolTableSection::addSymbolNames() {
239 // Add all of our strings to SymbolNames so that SymbolNames has the right
240 // size before layout is decided.
241 for (auto &Sym : Symbols)
242 SymbolNames->addString(Sym->Name);
245 const Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
246 if (Symbols.size() <= Index)
247 error("Invalid symbol index: " + Twine(Index));
248 return Symbols[Index].get();
251 template <class ELFT>
252 void ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) {
253 uint8_t *Buf = Out.getBufferStart();
254 Buf += Sec.Offset;
255 typename ELFT::Sym *Sym = reinterpret_cast<typename ELFT::Sym *>(Buf);
256 // Loop though symbols setting each entry of the symbol table.
257 for (auto &Symbol : Sec.Symbols) {
258 Sym->st_name = Symbol->NameIndex;
259 Sym->st_value = Symbol->Value;
260 Sym->st_size = Symbol->Size;
261 Sym->st_other = Symbol->Visibility;
262 Sym->setBinding(Symbol->Binding);
263 Sym->setType(Symbol->Type);
264 Sym->st_shndx = Symbol->getShndx();
265 ++Sym;
269 void SymbolTableSection::accept(SectionVisitor &Visitor) const {
270 Visitor.visit(*this);
273 template <class SymTabType>
274 void RelocSectionWithSymtabBase<SymTabType>::removeSectionReferences(
275 const SectionBase *Sec) {
276 if (Symbols == Sec) {
277 error("Symbol table " + Symbols->Name + " cannot be removed because it is "
278 "referenced by the relocation "
279 "section " +
280 this->Name);
284 template <class SymTabType>
285 void RelocSectionWithSymtabBase<SymTabType>::initialize(
286 SectionTableRef SecTable) {
287 setSymTab(SecTable.getSectionOfType<SymTabType>(
288 Link,
289 "Link field value " + Twine(Link) + " in section " + Name + " is invalid",
290 "Link field value " + Twine(Link) + " in section " + Name +
291 " is not a symbol table"));
293 if (Info != SHN_UNDEF)
294 setSection(SecTable.getSection(Info,
295 "Info field value " + Twine(Info) +
296 " in section " + Name + " is invalid"));
297 else
298 setSection(nullptr);
301 template <class SymTabType>
302 void RelocSectionWithSymtabBase<SymTabType>::finalize() {
303 this->Link = Symbols->Index;
304 if (SecToApplyRel != nullptr)
305 this->Info = SecToApplyRel->Index;
308 template <class ELFT>
309 void setAddend(Elf_Rel_Impl<ELFT, false> &Rel, uint64_t Addend) {}
311 template <class ELFT>
312 void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
313 Rela.r_addend = Addend;
316 template <class RelRange, class T>
317 void writeRel(const RelRange &Relocations, T *Buf) {
318 for (const auto &Reloc : Relocations) {
319 Buf->r_offset = Reloc.Offset;
320 setAddend(*Buf, Reloc.Addend);
321 Buf->setSymbolAndType(Reloc.RelocSymbol->Index, Reloc.Type, false);
322 ++Buf;
326 template <class ELFT>
327 void ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) {
328 uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
329 if (Sec.Type == SHT_REL)
330 writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf));
331 else
332 writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf));
335 void RelocationSection::accept(SectionVisitor &Visitor) const {
336 Visitor.visit(*this);
339 void SectionWriter::visit(const DynamicRelocationSection &Sec) {
340 std::copy(std::begin(Sec.Contents), std::end(Sec.Contents),
341 Out.getBufferStart() + Sec.Offset);
344 void DynamicRelocationSection::accept(SectionVisitor &Visitor) const {
345 Visitor.visit(*this);
348 void SectionWithStrTab::removeSectionReferences(const SectionBase *Sec) {
349 if (StrTab == Sec) {
350 error("String table " + StrTab->Name + " cannot be removed because it is "
351 "referenced by the section " +
352 this->Name);
356 bool SectionWithStrTab::classof(const SectionBase *S) {
357 return isa<DynamicSymbolTableSection>(S) || isa<DynamicSection>(S);
360 void SectionWithStrTab::initialize(SectionTableRef SecTable) {
361 auto StrTab = SecTable.getSection(Link,
362 "Link field value " + Twine(Link) +
363 " in section " + Name + " is invalid");
364 if (StrTab->Type != SHT_STRTAB) {
365 error("Link field value " + Twine(Link) + " in section " + Name +
366 " is not a string table");
368 setStrTab(StrTab);
371 void SectionWithStrTab::finalize() { this->Link = StrTab->Index; }
373 void GnuDebugLinkSection::init(StringRef File, StringRef Data) {
374 FileName = sys::path::filename(File);
375 // The format for the .gnu_debuglink starts with the file name and is
376 // followed by a null terminator and then the CRC32 of the file. The CRC32
377 // should be 4 byte aligned. So we add the FileName size, a 1 for the null
378 // byte, and then finally push the size to alignment and add 4.
379 Size = alignTo(FileName.size() + 1, 4) + 4;
380 // The CRC32 will only be aligned if we align the whole section.
381 Align = 4;
382 Type = ELF::SHT_PROGBITS;
383 Name = ".gnu_debuglink";
384 // For sections not found in segments, OriginalOffset is only used to
385 // establish the order that sections should go in. By using the maximum
386 // possible offset we cause this section to wind up at the end.
387 OriginalOffset = std::numeric_limits<uint64_t>::max();
388 JamCRC crc;
389 crc.update(ArrayRef<char>(Data.data(), Data.size()));
390 // The CRC32 value needs to be complemented because the JamCRC dosn't
391 // finalize the CRC32 value. It also dosn't negate the initial CRC32 value
392 // but it starts by default at 0xFFFFFFFF which is the complement of zero.
393 CRC32 = ~crc.getCRC();
396 GnuDebugLinkSection::GnuDebugLinkSection(StringRef File) : FileName(File) {
397 // Read in the file to compute the CRC of it.
398 auto DebugOrErr = MemoryBuffer::getFile(File);
399 if (!DebugOrErr)
400 error("'" + File + "': " + DebugOrErr.getError().message());
401 auto Debug = std::move(*DebugOrErr);
402 init(File, Debug->getBuffer());
405 template <class ELFT>
406 void ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) {
407 auto Buf = Out.getBufferStart() + Sec.Offset;
408 char *File = reinterpret_cast<char *>(Buf);
409 Elf_Word *CRC =
410 reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word));
411 *CRC = Sec.CRC32;
412 std::copy(std::begin(Sec.FileName), std::end(Sec.FileName), File);
415 void GnuDebugLinkSection::accept(SectionVisitor &Visitor) const {
416 Visitor.visit(*this);
419 // Returns true IFF a section is wholly inside the range of a segment
420 static bool sectionWithinSegment(const SectionBase &Section,
421 const Segment &Segment) {
422 // If a section is empty it should be treated like it has a size of 1. This is
423 // to clarify the case when an empty section lies on a boundary between two
424 // segments and ensures that the section "belongs" to the second segment and
425 // not the first.
426 uint64_t SecSize = Section.Size ? Section.Size : 1;
427 return Segment.Offset <= Section.OriginalOffset &&
428 Segment.Offset + Segment.FileSize >= Section.OriginalOffset + SecSize;
431 // Returns true IFF a segment's original offset is inside of another segment's
432 // range.
433 static bool segmentOverlapsSegment(const Segment &Child,
434 const Segment &Parent) {
436 return Parent.OriginalOffset <= Child.OriginalOffset &&
437 Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
440 static bool compareSegmentsByOffset(const Segment *A, const Segment *B) {
441 // Any segment without a parent segment should come before a segment
442 // that has a parent segment.
443 if (A->OriginalOffset < B->OriginalOffset)
444 return true;
445 if (A->OriginalOffset > B->OriginalOffset)
446 return false;
447 return A->Index < B->Index;
450 static bool compareSegmentsByPAddr(const Segment *A, const Segment *B) {
451 if (A->PAddr < B->PAddr)
452 return true;
453 if (A->PAddr > B->PAddr)
454 return false;
455 return A->Index < B->Index;
458 template <class ELFT>
459 void ELFBuilder<ELFT>::setParentSegment(Segment &Child) {
460 for (auto &Parent : Obj.segments()) {
461 // Every segment will overlap with itself but we don't want a segment to
462 // be it's own parent so we avoid that situation.
463 if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) {
464 // We want a canonical "most parental" segment but this requires
465 // inspecting the ParentSegment.
466 if (compareSegmentsByOffset(&Parent, &Child))
467 if (Child.ParentSegment == nullptr ||
468 compareSegmentsByOffset(&Parent, Child.ParentSegment)) {
469 Child.ParentSegment = &Parent;
475 template <class ELFT> void ELFBuilder<ELFT>::readProgramHeaders() {
476 uint32_t Index = 0;
477 for (const auto &Phdr : unwrapOrError(ElfFile.program_headers())) {
478 ArrayRef<uint8_t> Data{ElfFile.base() + Phdr.p_offset,
479 (size_t)Phdr.p_filesz};
480 Segment &Seg = Obj.addSegment(Data);
481 Seg.Type = Phdr.p_type;
482 Seg.Flags = Phdr.p_flags;
483 Seg.OriginalOffset = Phdr.p_offset;
484 Seg.Offset = Phdr.p_offset;
485 Seg.VAddr = Phdr.p_vaddr;
486 Seg.PAddr = Phdr.p_paddr;
487 Seg.FileSize = Phdr.p_filesz;
488 Seg.MemSize = Phdr.p_memsz;
489 Seg.Align = Phdr.p_align;
490 Seg.Index = Index++;
491 for (auto &Section : Obj.sections()) {
492 if (sectionWithinSegment(Section, Seg)) {
493 Seg.addSection(&Section);
494 if (!Section.ParentSegment ||
495 Section.ParentSegment->Offset > Seg.Offset) {
496 Section.ParentSegment = &Seg;
502 auto &ElfHdr = Obj.ElfHdrSegment;
503 // Creating multiple PT_PHDR segments technically is not valid, but PT_LOAD
504 // segments must not overlap, and other types fit even less.
505 ElfHdr.Type = PT_PHDR;
506 ElfHdr.Flags = 0;
507 ElfHdr.OriginalOffset = ElfHdr.Offset = 0;
508 ElfHdr.VAddr = 0;
509 ElfHdr.PAddr = 0;
510 ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr);
511 ElfHdr.Align = 0;
512 ElfHdr.Index = Index++;
514 const auto &Ehdr = *ElfFile.getHeader();
515 auto &PrHdr = Obj.ProgramHdrSegment;
516 PrHdr.Type = PT_PHDR;
517 PrHdr.Flags = 0;
518 // The spec requires us to have p_vaddr % p_align == p_offset % p_align.
519 // Whereas this works automatically for ElfHdr, here OriginalOffset is
520 // always non-zero and to ensure the equation we assign the same value to
521 // VAddr as well.
522 PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = Ehdr.e_phoff;
523 PrHdr.PAddr = 0;
524 PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum;
525 // The spec requires us to naturally align all the fields.
526 PrHdr.Align = sizeof(Elf_Addr);
527 PrHdr.Index = Index++;
529 // Now we do an O(n^2) loop through the segments in order to match up
530 // segments.
531 for (auto &Child : Obj.segments())
532 setParentSegment(Child);
533 setParentSegment(ElfHdr);
534 setParentSegment(PrHdr);
537 template <class ELFT>
538 void ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) {
539 const Elf_Shdr &Shdr = *unwrapOrError(ElfFile.getSection(SymTab->Index));
540 StringRef StrTabData = unwrapOrError(ElfFile.getStringTableForSymtab(Shdr));
542 for (const auto &Sym : unwrapOrError(ElfFile.symbols(&Shdr))) {
543 SectionBase *DefSection = nullptr;
544 StringRef Name = unwrapOrError(Sym.getName(StrTabData));
546 if (Sym.st_shndx >= SHN_LORESERVE) {
547 if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) {
548 error(
549 "Symbol '" + Name +
550 "' has unsupported value greater than or equal to SHN_LORESERVE: " +
551 Twine(Sym.st_shndx));
553 } else if (Sym.st_shndx != SHN_UNDEF) {
554 DefSection = Obj.sections().getSection(
555 Sym.st_shndx,
556 "Symbol '" + Name + "' is defined in invalid section with index " +
557 Twine(Sym.st_shndx));
560 SymTab->addSymbol(Name, Sym.getBinding(), Sym.getType(), DefSection,
561 Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size);
565 template <class ELFT>
566 static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, false> &Rel) {}
568 template <class ELFT>
569 static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
570 ToSet = Rela.r_addend;
573 template <class T>
574 void initRelocations(RelocationSection *Relocs, SymbolTableSection *SymbolTable,
575 T RelRange) {
576 for (const auto &Rel : RelRange) {
577 Relocation ToAdd;
578 ToAdd.Offset = Rel.r_offset;
579 getAddend(ToAdd.Addend, Rel);
580 ToAdd.Type = Rel.getType(false);
581 ToAdd.RelocSymbol = SymbolTable->getSymbolByIndex(Rel.getSymbol(false));
582 Relocs->addRelocation(ToAdd);
586 SectionBase *SectionTableRef::getSection(uint16_t Index, Twine ErrMsg) {
587 if (Index == SHN_UNDEF || Index > Sections.size())
588 error(ErrMsg);
589 return Sections[Index - 1].get();
592 template <class T>
593 T *SectionTableRef::getSectionOfType(uint16_t Index, Twine IndexErrMsg,
594 Twine TypeErrMsg) {
595 if (T *Sec = dyn_cast<T>(getSection(Index, IndexErrMsg)))
596 return Sec;
597 error(TypeErrMsg);
600 template <class ELFT>
601 SectionBase &ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) {
602 ArrayRef<uint8_t> Data;
603 switch (Shdr.sh_type) {
604 case SHT_REL:
605 case SHT_RELA:
606 if (Shdr.sh_flags & SHF_ALLOC) {
607 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
608 return Obj.addSection<DynamicRelocationSection>(Data);
610 return Obj.addSection<RelocationSection>();
611 case SHT_STRTAB:
612 // If a string table is allocated we don't want to mess with it. That would
613 // mean altering the memory image. There are no special link types or
614 // anything so we can just use a Section.
615 if (Shdr.sh_flags & SHF_ALLOC) {
616 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
617 return Obj.addSection<Section>(Data);
619 return Obj.addSection<StringTableSection>();
620 case SHT_HASH:
621 case SHT_GNU_HASH:
622 // Hash tables should refer to SHT_DYNSYM which we're not going to change.
623 // Because of this we don't need to mess with the hash tables either.
624 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
625 return Obj.addSection<Section>(Data);
626 case SHT_DYNSYM:
627 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
628 return Obj.addSection<DynamicSymbolTableSection>(Data);
629 case SHT_DYNAMIC:
630 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
631 return Obj.addSection<DynamicSection>(Data);
632 case SHT_SYMTAB: {
633 auto &SymTab = Obj.addSection<SymbolTableSection>();
634 Obj.SymbolTable = &SymTab;
635 return SymTab;
637 case SHT_NOBITS:
638 return Obj.addSection<Section>(Data);
639 default:
640 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
641 return Obj.addSection<Section>(Data);
645 template <class ELFT> void ELFBuilder<ELFT>::readSectionHeaders() {
646 uint32_t Index = 0;
647 for (const auto &Shdr : unwrapOrError(ElfFile.sections())) {
648 if (Index == 0) {
649 ++Index;
650 continue;
652 auto &Sec = makeSection(Shdr);
653 Sec.Name = unwrapOrError(ElfFile.getSectionName(&Shdr));
654 Sec.Type = Shdr.sh_type;
655 Sec.Flags = Shdr.sh_flags;
656 Sec.Addr = Shdr.sh_addr;
657 Sec.Offset = Shdr.sh_offset;
658 Sec.OriginalOffset = Shdr.sh_offset;
659 Sec.Size = Shdr.sh_size;
660 Sec.Link = Shdr.sh_link;
661 Sec.Info = Shdr.sh_info;
662 Sec.Align = Shdr.sh_addralign;
663 Sec.EntrySize = Shdr.sh_entsize;
664 Sec.Index = Index++;
667 // Now that all of the sections have been added we can fill out some extra
668 // details about symbol tables. We need the symbol table filled out before
669 // any relocations.
670 if (Obj.SymbolTable) {
671 Obj.SymbolTable->initialize(Obj.sections());
672 initSymbolTable(Obj.SymbolTable);
675 // Now that all sections and symbols have been added we can add
676 // relocations that reference symbols and set the link and info fields for
677 // relocation sections.
678 for (auto &Section : Obj.sections()) {
679 if (&Section == Obj.SymbolTable)
680 continue;
681 Section.initialize(Obj.sections());
682 if (auto RelSec = dyn_cast<RelocationSection>(&Section)) {
683 auto Shdr = unwrapOrError(ElfFile.sections()).begin() + RelSec->Index;
684 if (RelSec->Type == SHT_REL)
685 initRelocations(RelSec, Obj.SymbolTable,
686 unwrapOrError(ElfFile.rels(Shdr)));
687 else
688 initRelocations(RelSec, Obj.SymbolTable,
689 unwrapOrError(ElfFile.relas(Shdr)));
694 template <class ELFT> void ELFBuilder<ELFT>::build() {
695 const auto &Ehdr = *ElfFile.getHeader();
697 std::copy(Ehdr.e_ident, Ehdr.e_ident + 16, Obj.Ident);
698 Obj.Type = Ehdr.e_type;
699 Obj.Machine = Ehdr.e_machine;
700 Obj.Version = Ehdr.e_version;
701 Obj.Entry = Ehdr.e_entry;
702 Obj.Flags = Ehdr.e_flags;
704 readSectionHeaders();
705 readProgramHeaders();
707 Obj.SectionNames =
708 Obj.sections().template getSectionOfType<StringTableSection>(
709 Ehdr.e_shstrndx,
710 "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) +
711 " in elf header " + " is invalid",
712 "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) +
713 " in elf header " + " is not a string table");
716 // A generic size function which computes sizes of any random access range.
717 template <class R> size_t size(R &&Range) {
718 return static_cast<size_t>(std::end(Range) - std::begin(Range));
721 Writer::~Writer() {}
723 Reader::~Reader() {}
725 ELFReader::ELFReader(StringRef File) {
726 auto BinaryOrErr = createBinary(File);
727 if (!BinaryOrErr)
728 reportError(File, BinaryOrErr.takeError());
729 auto OwnedBin = std::move(BinaryOrErr.get());
730 std::tie(Bin, Data) = OwnedBin.takeBinary();
733 ElfType ELFReader::getElfType() const {
734 if (isa<ELFObjectFile<ELF32LE>>(Bin.get()))
735 return ELFT_ELF32LE;
736 if (isa<ELFObjectFile<ELF64LE>>(Bin.get()))
737 return ELFT_ELF64LE;
738 if (isa<ELFObjectFile<ELF32BE>>(Bin.get()))
739 return ELFT_ELF32BE;
740 if (isa<ELFObjectFile<ELF64BE>>(Bin.get()))
741 return ELFT_ELF64BE;
742 llvm_unreachable("Invalid ELFType");
745 std::unique_ptr<Object> ELFReader::create() const {
746 auto Obj = llvm::make_unique<Object>(Data);
747 if (auto *o = dyn_cast<ELFObjectFile<ELF32LE>>(Bin.get())) {
748 ELFBuilder<ELF32LE> Builder(*o, *Obj);
749 Builder.build();
750 return Obj;
751 } else if (auto *o = dyn_cast<ELFObjectFile<ELF64LE>>(Bin.get())) {
752 ELFBuilder<ELF64LE> Builder(*o, *Obj);
753 Builder.build();
754 return Obj;
755 } else if (auto *o = dyn_cast<ELFObjectFile<ELF32BE>>(Bin.get())) {
756 ELFBuilder<ELF32BE> Builder(*o, *Obj);
757 Builder.build();
758 return Obj;
759 } else if (auto *o = dyn_cast<ELFObjectFile<ELF64BE>>(Bin.get())) {
760 ELFBuilder<ELF64BE> Builder(*o, *Obj);
761 Builder.build();
762 return Obj;
764 error("Invalid file type");
767 template <class ELFT> void ELFWriter<ELFT>::writeEhdr() {
768 uint8_t *Buf = BufPtr->getBufferStart();
769 Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf);
770 std::copy(Obj.Ident, Obj.Ident + 16, Ehdr.e_ident);
771 Ehdr.e_type = Obj.Type;
772 Ehdr.e_machine = Obj.Machine;
773 Ehdr.e_version = Obj.Version;
774 Ehdr.e_entry = Obj.Entry;
775 Ehdr.e_phoff = Obj.ProgramHdrSegment.Offset;
776 Ehdr.e_flags = Obj.Flags;
777 Ehdr.e_ehsize = sizeof(Elf_Ehdr);
778 Ehdr.e_phentsize = sizeof(Elf_Phdr);
779 Ehdr.e_phnum = size(Obj.segments());
780 Ehdr.e_shentsize = sizeof(Elf_Shdr);
781 if (WriteSectionHeaders) {
782 Ehdr.e_shoff = Obj.SHOffset;
783 Ehdr.e_shnum = size(Obj.sections()) + 1;
784 Ehdr.e_shstrndx = Obj.SectionNames->Index;
785 } else {
786 Ehdr.e_shoff = 0;
787 Ehdr.e_shnum = 0;
788 Ehdr.e_shstrndx = 0;
792 template <class ELFT> void ELFWriter<ELFT>::writePhdrs() {
793 for (auto &Seg : Obj.segments())
794 writePhdr(Seg);
797 template <class ELFT> void ELFWriter<ELFT>::writeShdrs() {
798 uint8_t *Buf = BufPtr->getBufferStart() + Obj.SHOffset;
799 // This reference serves to write the dummy section header at the begining
800 // of the file. It is not used for anything else
801 Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(Buf);
802 Shdr.sh_name = 0;
803 Shdr.sh_type = SHT_NULL;
804 Shdr.sh_flags = 0;
805 Shdr.sh_addr = 0;
806 Shdr.sh_offset = 0;
807 Shdr.sh_size = 0;
808 Shdr.sh_link = 0;
809 Shdr.sh_info = 0;
810 Shdr.sh_addralign = 0;
811 Shdr.sh_entsize = 0;
813 for (auto &Sec : Obj.sections())
814 writeShdr(Sec);
817 template <class ELFT> void ELFWriter<ELFT>::writeSectionData() {
818 for (auto &Sec : Obj.sections())
819 Sec.accept(*SecWriter);
822 void Object::removeSections(std::function<bool(const SectionBase &)> ToRemove) {
824 auto Iter = std::stable_partition(
825 std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
826 if (ToRemove(*Sec))
827 return false;
828 if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
829 if (auto ToRelSec = RelSec->getSection())
830 return !ToRemove(*ToRelSec);
832 return true;
834 if (SymbolTable != nullptr && ToRemove(*SymbolTable))
835 SymbolTable = nullptr;
836 if (SectionNames != nullptr && ToRemove(*SectionNames)) {
837 SectionNames = nullptr;
839 // Now make sure there are no remaining references to the sections that will
840 // be removed. Sometimes it is impossible to remove a reference so we emit
841 // an error here instead.
842 for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
843 for (auto &Segment : Segments)
844 Segment->removeSection(RemoveSec.get());
845 for (auto &KeepSec : make_range(std::begin(Sections), Iter))
846 KeepSec->removeSectionReferences(RemoveSec.get());
848 // Now finally get rid of them all togethor.
849 Sections.erase(Iter, std::end(Sections));
852 void Object::sortSections() {
853 // Put all sections in offset order. Maintain the ordering as closely as
854 // possible while meeting that demand however.
855 auto CompareSections = [](const SecPtr &A, const SecPtr &B) {
856 return A->OriginalOffset < B->OriginalOffset;
858 std::stable_sort(std::begin(this->Sections), std::end(this->Sections),
859 CompareSections);
862 static uint64_t alignToAddr(uint64_t Offset, uint64_t Addr, uint64_t Align) {
863 // Calculate Diff such that (Offset + Diff) & -Align == Addr & -Align.
864 if (Align == 0)
865 Align = 1;
866 auto Diff =
867 static_cast<int64_t>(Addr % Align) - static_cast<int64_t>(Offset % Align);
868 // We only want to add to Offset, however, so if Diff < 0 we can add Align and
869 // (Offset + Diff) & -Align == Addr & -Align will still hold.
870 if (Diff < 0)
871 Diff += Align;
872 return Offset + Diff;
875 // Orders segments such that if x = y->ParentSegment then y comes before x.
876 static void OrderSegments(std::vector<Segment *> &Segments) {
877 std::stable_sort(std::begin(Segments), std::end(Segments),
878 compareSegmentsByOffset);
881 // This function finds a consistent layout for a list of segments starting from
882 // an Offset. It assumes that Segments have been sorted by OrderSegments and
883 // returns an Offset one past the end of the last segment.
884 static uint64_t LayoutSegments(std::vector<Segment *> &Segments,
885 uint64_t Offset) {
886 assert(std::is_sorted(std::begin(Segments), std::end(Segments),
887 compareSegmentsByOffset));
888 // The only way a segment should move is if a section was between two
889 // segments and that section was removed. If that section isn't in a segment
890 // then it's acceptable, but not ideal, to simply move it to after the
891 // segments. So we can simply layout segments one after the other accounting
892 // for alignment.
893 for (auto &Segment : Segments) {
894 // We assume that segments have been ordered by OriginalOffset and Index
895 // such that a parent segment will always come before a child segment in
896 // OrderedSegments. This means that the Offset of the ParentSegment should
897 // already be set and we can set our offset relative to it.
898 if (Segment->ParentSegment != nullptr) {
899 auto Parent = Segment->ParentSegment;
900 Segment->Offset =
901 Parent->Offset + Segment->OriginalOffset - Parent->OriginalOffset;
902 } else {
903 Offset = alignToAddr(Offset, Segment->VAddr, Segment->Align);
904 Segment->Offset = Offset;
906 Offset = std::max(Offset, Segment->Offset + Segment->FileSize);
908 return Offset;
911 // This function finds a consistent layout for a list of sections. It assumes
912 // that the ->ParentSegment of each section has already been laid out. The
913 // supplied starting Offset is used for the starting offset of any section that
914 // does not have a ParentSegment. It returns either the offset given if all
915 // sections had a ParentSegment or an offset one past the last section if there
916 // was a section that didn't have a ParentSegment.
917 template <class Range>
918 static uint64_t LayoutSections(Range Sections, uint64_t Offset) {
919 // Now the offset of every segment has been set we can assign the offsets
920 // of each section. For sections that are covered by a segment we should use
921 // the segment's original offset and the section's original offset to compute
922 // the offset from the start of the segment. Using the offset from the start
923 // of the segment we can assign a new offset to the section. For sections not
924 // covered by segments we can just bump Offset to the next valid location.
925 uint32_t Index = 1;
926 for (auto &Section : Sections) {
927 Section.Index = Index++;
928 if (Section.ParentSegment != nullptr) {
929 auto Segment = *Section.ParentSegment;
930 Section.Offset =
931 Segment.Offset + (Section.OriginalOffset - Segment.OriginalOffset);
932 } else {
933 Offset = alignTo(Offset, Section.Align == 0 ? 1 : Section.Align);
934 Section.Offset = Offset;
935 if (Section.Type != SHT_NOBITS)
936 Offset += Section.Size;
939 return Offset;
942 template <class ELFT> void ELFWriter<ELFT>::assignOffsets() {
943 // We need a temporary list of segments that has a special order to it
944 // so that we know that anytime ->ParentSegment is set that segment has
945 // already had its offset properly set.
946 std::vector<Segment *> OrderedSegments;
947 for (auto &Segment : Obj.segments())
948 OrderedSegments.push_back(&Segment);
949 OrderedSegments.push_back(&Obj.ElfHdrSegment);
950 OrderedSegments.push_back(&Obj.ProgramHdrSegment);
951 OrderSegments(OrderedSegments);
952 // Offset is used as the start offset of the first segment to be laid out.
953 // Since the ELF Header (ElfHdrSegment) must be at the start of the file,
954 // we start at offset 0.
955 uint64_t Offset = 0;
956 Offset = LayoutSegments(OrderedSegments, Offset);
957 Offset = LayoutSections(Obj.sections(), Offset);
958 // If we need to write the section header table out then we need to align the
959 // Offset so that SHOffset is valid.
960 if (WriteSectionHeaders)
961 Offset = alignTo(Offset, sizeof(typename ELFT::Addr));
962 Obj.SHOffset = Offset;
965 template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const {
966 // We already have the section header offset so we can calculate the total
967 // size by just adding up the size of each section header.
968 auto NullSectionSize = WriteSectionHeaders ? sizeof(Elf_Shdr) : 0;
969 return Obj.SHOffset + size(Obj.sections()) * sizeof(Elf_Shdr) +
970 NullSectionSize;
973 template <class ELFT> void ELFWriter<ELFT>::write() {
974 writeEhdr();
975 writePhdrs();
976 writeSectionData();
977 if (WriteSectionHeaders)
978 writeShdrs();
979 if (auto E = BufPtr->commit())
980 reportError(File, errorToErrorCode(std::move(E)));
983 void Writer::createBuffer(uint64_t Size) {
984 auto BufferOrErr =
985 FileOutputBuffer::create(File, Size, FileOutputBuffer::F_executable);
986 handleAllErrors(BufferOrErr.takeError(), [this](const ErrorInfoBase &) {
987 error("failed to open " + File);
989 BufPtr = std::move(*BufferOrErr);
992 template <class ELFT> void ELFWriter<ELFT>::finalize() {
993 // It could happen that SectionNames has been removed and yet the user wants
994 // a section header table output. We need to throw an error if a user tries
995 // to do that.
996 if (Obj.SectionNames == nullptr && WriteSectionHeaders)
997 error("Cannot write section header table because section header string "
998 "table was removed.");
1000 // Make sure we add the names of all the sections.
1001 if (Obj.SectionNames != nullptr)
1002 for (const auto &Section : Obj.sections()) {
1003 Obj.SectionNames->addString(Section.Name);
1005 // Make sure we add the names of all the symbols.
1006 if (Obj.SymbolTable != nullptr)
1007 Obj.SymbolTable->addSymbolNames();
1009 Obj.sortSections();
1010 assignOffsets();
1012 // Finalize SectionNames first so that we can assign name indexes.
1013 if (Obj.SectionNames != nullptr)
1014 Obj.SectionNames->finalize();
1015 // Finally now that all offsets and indexes have been set we can finalize any
1016 // remaining issues.
1017 uint64_t Offset = Obj.SHOffset + sizeof(Elf_Shdr);
1018 for (auto &Section : Obj.sections()) {
1019 Section.HeaderOffset = Offset;
1020 Offset += sizeof(Elf_Shdr);
1021 if (WriteSectionHeaders)
1022 Section.NameIndex = Obj.SectionNames->findIndex(Section.Name);
1023 Section.finalize();
1026 createBuffer(totalSize());
1027 SecWriter = llvm::make_unique<ELFSectionWriter<ELFT>>(*BufPtr);
1030 void BinaryWriter::write() {
1031 for (auto &Section : Obj.sections()) {
1032 if ((Section.Flags & SHF_ALLOC) == 0)
1033 continue;
1034 Section.accept(*SecWriter);
1036 if (auto E = BufPtr->commit())
1037 reportError(File, errorToErrorCode(std::move(E)));
1040 void BinaryWriter::finalize() {
1041 // TODO: Create a filter range to construct OrderedSegments from so that this
1042 // code can be deduped with assignOffsets above. This should also solve the
1043 // todo below for LayoutSections.
1044 // We need a temporary list of segments that has a special order to it
1045 // so that we know that anytime ->ParentSegment is set that segment has
1046 // already had it's offset properly set. We only want to consider the segments
1047 // that will affect layout of allocated sections so we only add those.
1048 std::vector<Segment *> OrderedSegments;
1049 for (auto &Section : Obj.sections()) {
1050 if ((Section.Flags & SHF_ALLOC) != 0 && Section.ParentSegment != nullptr) {
1051 OrderedSegments.push_back(Section.ParentSegment);
1055 // For binary output, we're going to use physical addresses instead of
1056 // virtual addresses, since a binary output is used for cases like ROM
1057 // loading and physical addresses are intended for ROM loading.
1058 // However, if no segment has a physical address, we'll fallback to using
1059 // virtual addresses for all.
1060 if (std::all_of(std::begin(OrderedSegments), std::end(OrderedSegments),
1061 [](const Segment *Segment) { return Segment->PAddr == 0; }))
1062 for (const auto &Segment : OrderedSegments)
1063 Segment->PAddr = Segment->VAddr;
1065 std::stable_sort(std::begin(OrderedSegments), std::end(OrderedSegments),
1066 compareSegmentsByPAddr);
1068 // Because we add a ParentSegment for each section we might have duplicate
1069 // segments in OrderedSegments. If there were duplicates then LayoutSegments
1070 // would do very strange things.
1071 auto End =
1072 std::unique(std::begin(OrderedSegments), std::end(OrderedSegments));
1073 OrderedSegments.erase(End, std::end(OrderedSegments));
1075 uint64_t Offset = 0;
1077 // Modify the first segment so that there is no gap at the start. This allows
1078 // our layout algorithm to proceed as expected while not out writing out the
1079 // gap at the start.
1080 if (!OrderedSegments.empty()) {
1081 auto Seg = OrderedSegments[0];
1082 auto Sec = Seg->firstSection();
1083 auto Diff = Sec->OriginalOffset - Seg->OriginalOffset;
1084 Seg->OriginalOffset += Diff;
1085 // The size needs to be shrunk as well.
1086 Seg->FileSize -= Diff;
1087 // The PAddr needs to be increased to remove the gap before the first
1088 // section.
1089 Seg->PAddr += Diff;
1090 uint64_t LowestPAddr = Seg->PAddr;
1091 for (auto &Segment : OrderedSegments) {
1092 Segment->Offset = Segment->PAddr - LowestPAddr;
1093 Offset = std::max(Offset, Segment->Offset + Segment->FileSize);
1097 // TODO: generalize LayoutSections to take a range. Pass a special range
1098 // constructed from an iterator that skips values for which a predicate does
1099 // not hold. Then pass such a range to LayoutSections instead of constructing
1100 // AllocatedSections here.
1101 std::vector<SectionBase *> AllocatedSections;
1102 for (auto &Section : Obj.sections()) {
1103 if ((Section.Flags & SHF_ALLOC) == 0)
1104 continue;
1105 AllocatedSections.push_back(&Section);
1107 LayoutSections(make_pointee_range(AllocatedSections), Offset);
1109 // Now that every section has been laid out we just need to compute the total
1110 // file size. This might not be the same as the offset returned by
1111 // LayoutSections, because we want to truncate the last segment to the end of
1112 // its last section, to match GNU objcopy's behaviour.
1113 TotalSize = 0;
1114 for (const auto &Section : AllocatedSections) {
1115 if (Section->Type != SHT_NOBITS)
1116 TotalSize = std::max(TotalSize, Section->Offset + Section->Size);
1119 createBuffer(TotalSize);
1120 SecWriter = llvm::make_unique<BinarySectionWriter>(*BufPtr);
1123 namespace llvm {
1125 template class ELFBuilder<ELF64LE>;
1126 template class ELFBuilder<ELF64BE>;
1127 template class ELFBuilder<ELF32LE>;
1128 template class ELFBuilder<ELF32BE>;
1130 template class ELFWriter<ELF64LE>;
1131 template class ELFWriter<ELF64BE>;
1132 template class ELFWriter<ELF32LE>;
1133 template class ELFWriter<ELF32BE>;
1135 } // end namespace llvm