1 //===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file declares the SDNode class and derived classes, which are used to
10 // represent the nodes and operations present in a SelectionDAG. These nodes
11 // and operations are machine code level operations, with some similarities to
12 // the GCC RTL representation.
14 // Clients should include the SelectionDAG.h file instead of this file directly.
16 //===----------------------------------------------------------------------===//
18 #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
19 #define LLVM_CODEGEN_SELECTIONDAGNODES_H
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/FoldingSet.h"
25 #include "llvm/ADT/GraphTraits.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/ilist_node.h"
29 #include "llvm/ADT/iterator.h"
30 #include "llvm/ADT/iterator_range.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/ValueTypes.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/Support/AlignOf.h"
41 #include "llvm/Support/AtomicOrdering.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MachineValueType.h"
59 template <typename T
> struct DenseMapInfo
;
61 class MachineBasicBlock
;
62 class MachineConstantPoolValue
;
70 void checkForCycles(const SDNode
*N
, const SelectionDAG
*DAG
= nullptr,
73 /// This represents a list of ValueType's that has been intern'd by
74 /// a SelectionDAG. Instances of this simple value class are returned by
75 /// SelectionDAG::getVTList(...).
86 /// If N is a BUILD_VECTOR node whose elements are all the same constant or
87 /// undefined, return true and return the constant value in \p SplatValue.
88 bool isConstantSplatVector(const SDNode
*N
, APInt
&SplatValue
);
90 /// Return true if the specified node is a BUILD_VECTOR where all of the
91 /// elements are ~0 or undef.
92 bool isBuildVectorAllOnes(const SDNode
*N
);
94 /// Return true if the specified node is a BUILD_VECTOR where all of the
95 /// elements are 0 or undef.
96 bool isBuildVectorAllZeros(const SDNode
*N
);
98 /// Return true if the specified node is a BUILD_VECTOR node of all
99 /// ConstantSDNode or undef.
100 bool isBuildVectorOfConstantSDNodes(const SDNode
*N
);
102 /// Return true if the specified node is a BUILD_VECTOR node of all
103 /// ConstantFPSDNode or undef.
104 bool isBuildVectorOfConstantFPSDNodes(const SDNode
*N
);
106 /// Return true if the node has at least one operand and all operands of the
107 /// specified node are ISD::UNDEF.
108 bool allOperandsUndef(const SDNode
*N
);
110 } // end namespace ISD
112 //===----------------------------------------------------------------------===//
113 /// Unlike LLVM values, Selection DAG nodes may return multiple
114 /// values as the result of a computation. Many nodes return multiple values,
115 /// from loads (which define a token and a return value) to ADDC (which returns
116 /// a result and a carry value), to calls (which may return an arbitrary number
119 /// As such, each use of a SelectionDAG computation must indicate the node that
120 /// computes it as well as which return value to use from that node. This pair
121 /// of information is represented with the SDValue value type.
124 friend struct DenseMapInfo
<SDValue
>;
126 SDNode
*Node
= nullptr; // The node defining the value we are using.
127 unsigned ResNo
= 0; // Which return value of the node we are using.
131 SDValue(SDNode
*node
, unsigned resno
);
133 /// get the index which selects a specific result in the SDNode
134 unsigned getResNo() const { return ResNo
; }
136 /// get the SDNode which holds the desired result
137 SDNode
*getNode() const { return Node
; }
140 void setNode(SDNode
*N
) { Node
= N
; }
142 inline SDNode
*operator->() const { return Node
; }
144 bool operator==(const SDValue
&O
) const {
145 return Node
== O
.Node
&& ResNo
== O
.ResNo
;
147 bool operator!=(const SDValue
&O
) const {
148 return !operator==(O
);
150 bool operator<(const SDValue
&O
) const {
151 return std::tie(Node
, ResNo
) < std::tie(O
.Node
, O
.ResNo
);
153 explicit operator bool() const {
154 return Node
!= nullptr;
157 SDValue
getValue(unsigned R
) const {
158 return SDValue(Node
, R
);
161 /// Return true if this node is an operand of N.
162 bool isOperandOf(const SDNode
*N
) const;
164 /// Return the ValueType of the referenced return value.
165 inline EVT
getValueType() const;
167 /// Return the simple ValueType of the referenced return value.
168 MVT
getSimpleValueType() const {
169 return getValueType().getSimpleVT();
172 /// Returns the size of the value in bits.
173 unsigned getValueSizeInBits() const {
174 return getValueType().getSizeInBits();
177 unsigned getScalarValueSizeInBits() const {
178 return getValueType().getScalarType().getSizeInBits();
181 // Forwarding methods - These forward to the corresponding methods in SDNode.
182 inline unsigned getOpcode() const;
183 inline unsigned getNumOperands() const;
184 inline const SDValue
&getOperand(unsigned i
) const;
185 inline uint64_t getConstantOperandVal(unsigned i
) const;
186 inline const APInt
&getConstantOperandAPInt(unsigned i
) const;
187 inline bool isTargetMemoryOpcode() const;
188 inline bool isTargetOpcode() const;
189 inline bool isMachineOpcode() const;
190 inline bool isUndef() const;
191 inline unsigned getMachineOpcode() const;
192 inline const DebugLoc
&getDebugLoc() const;
193 inline void dump() const;
194 inline void dump(const SelectionDAG
*G
) const;
195 inline void dumpr() const;
196 inline void dumpr(const SelectionDAG
*G
) const;
198 /// Return true if this operand (which must be a chain) reaches the
199 /// specified operand without crossing any side-effecting instructions.
200 /// In practice, this looks through token factors and non-volatile loads.
201 /// In order to remain efficient, this only
202 /// looks a couple of nodes in, it does not do an exhaustive search.
203 bool reachesChainWithoutSideEffects(SDValue Dest
,
204 unsigned Depth
= 2) const;
206 /// Return true if there are no nodes using value ResNo of Node.
207 inline bool use_empty() const;
209 /// Return true if there is exactly one node using value ResNo of Node.
210 inline bool hasOneUse() const;
213 template<> struct DenseMapInfo
<SDValue
> {
214 static inline SDValue
getEmptyKey() {
220 static inline SDValue
getTombstoneKey() {
226 static unsigned getHashValue(const SDValue
&Val
) {
227 return ((unsigned)((uintptr_t)Val
.getNode() >> 4) ^
228 (unsigned)((uintptr_t)Val
.getNode() >> 9)) + Val
.getResNo();
231 static bool isEqual(const SDValue
&LHS
, const SDValue
&RHS
) {
236 /// Allow casting operators to work directly on
237 /// SDValues as if they were SDNode*'s.
238 template<> struct simplify_type
<SDValue
> {
239 using SimpleType
= SDNode
*;
241 static SimpleType
getSimplifiedValue(SDValue
&Val
) {
242 return Val
.getNode();
245 template<> struct simplify_type
<const SDValue
> {
246 using SimpleType
= /*const*/ SDNode
*;
248 static SimpleType
getSimplifiedValue(const SDValue
&Val
) {
249 return Val
.getNode();
253 /// Represents a use of a SDNode. This class holds an SDValue,
254 /// which records the SDNode being used and the result number, a
255 /// pointer to the SDNode using the value, and Next and Prev pointers,
256 /// which link together all the uses of an SDNode.
259 /// Val - The value being used.
261 /// User - The user of this value.
262 SDNode
*User
= nullptr;
263 /// Prev, Next - Pointers to the uses list of the SDNode referred by
265 SDUse
**Prev
= nullptr;
266 SDUse
*Next
= nullptr;
270 SDUse(const SDUse
&U
) = delete;
271 SDUse
&operator=(const SDUse
&) = delete;
273 /// Normally SDUse will just implicitly convert to an SDValue that it holds.
274 operator const SDValue
&() const { return Val
; }
276 /// If implicit conversion to SDValue doesn't work, the get() method returns
278 const SDValue
&get() const { return Val
; }
280 /// This returns the SDNode that contains this Use.
281 SDNode
*getUser() { return User
; }
283 /// Get the next SDUse in the use list.
284 SDUse
*getNext() const { return Next
; }
286 /// Convenience function for get().getNode().
287 SDNode
*getNode() const { return Val
.getNode(); }
288 /// Convenience function for get().getResNo().
289 unsigned getResNo() const { return Val
.getResNo(); }
290 /// Convenience function for get().getValueType().
291 EVT
getValueType() const { return Val
.getValueType(); }
293 /// Convenience function for get().operator==
294 bool operator==(const SDValue
&V
) const {
298 /// Convenience function for get().operator!=
299 bool operator!=(const SDValue
&V
) const {
303 /// Convenience function for get().operator<
304 bool operator<(const SDValue
&V
) const {
309 friend class SelectionDAG
;
311 // TODO: unfriend HandleSDNode once we fix its operand handling.
312 friend class HandleSDNode
;
314 void setUser(SDNode
*p
) { User
= p
; }
316 /// Remove this use from its existing use list, assign it the
317 /// given value, and add it to the new value's node's use list.
318 inline void set(const SDValue
&V
);
319 /// Like set, but only supports initializing a newly-allocated
320 /// SDUse with a non-null value.
321 inline void setInitial(const SDValue
&V
);
322 /// Like set, but only sets the Node portion of the value,
323 /// leaving the ResNo portion unmodified.
324 inline void setNode(SDNode
*N
);
326 void addToList(SDUse
**List
) {
328 if (Next
) Next
->Prev
= &Next
;
333 void removeFromList() {
335 if (Next
) Next
->Prev
= Prev
;
339 /// simplify_type specializations - Allow casting operators to work directly on
340 /// SDValues as if they were SDNode*'s.
341 template<> struct simplify_type
<SDUse
> {
342 using SimpleType
= SDNode
*;
344 static SimpleType
getSimplifiedValue(SDUse
&Val
) {
345 return Val
.getNode();
349 /// These are IR-level optimization flags that may be propagated to SDNodes.
350 /// TODO: This data structure should be shared by the IR optimizer and the
354 // This bit is used to determine if the flags are in a defined state.
355 // Flag bits can only be masked out during intersection if the masking flags
359 bool NoUnsignedWrap
: 1;
360 bool NoSignedWrap
: 1;
364 bool NoSignedZeros
: 1;
365 bool AllowReciprocal
: 1;
366 bool VectorReduction
: 1;
367 bool AllowContract
: 1;
368 bool ApproximateFuncs
: 1;
369 bool AllowReassociation
: 1;
371 // We assume instructions do not raise floating-point exceptions by default,
372 // and only those marked explicitly may do so. We could choose to represent
373 // this via a positive "FPExcept" flags like on the MI level, but having a
374 // negative "NoFPExcept" flag here (that defaults to true) makes the flag
375 // intersection logic more straightforward.
379 /// Default constructor turns off all optimization flags.
381 : AnyDefined(false), NoUnsignedWrap(false), NoSignedWrap(false),
382 Exact(false), NoNaNs(false), NoInfs(false),
383 NoSignedZeros(false), AllowReciprocal(false), VectorReduction(false),
384 AllowContract(false), ApproximateFuncs(false),
385 AllowReassociation(false), NoFPExcept(true) {}
387 /// Propagate the fast-math-flags from an IR FPMathOperator.
388 void copyFMF(const FPMathOperator
&FPMO
) {
389 setNoNaNs(FPMO
.hasNoNaNs());
390 setNoInfs(FPMO
.hasNoInfs());
391 setNoSignedZeros(FPMO
.hasNoSignedZeros());
392 setAllowReciprocal(FPMO
.hasAllowReciprocal());
393 setAllowContract(FPMO
.hasAllowContract());
394 setApproximateFuncs(FPMO
.hasApproxFunc());
395 setAllowReassociation(FPMO
.hasAllowReassoc());
398 /// Sets the state of the flags to the defined state.
399 void setDefined() { AnyDefined
= true; }
400 /// Returns true if the flags are in a defined state.
401 bool isDefined() const { return AnyDefined
; }
403 // These are mutators for each flag.
404 void setNoUnsignedWrap(bool b
) {
408 void setNoSignedWrap(bool b
) {
412 void setExact(bool b
) {
416 void setNoNaNs(bool b
) {
420 void setNoInfs(bool b
) {
424 void setNoSignedZeros(bool b
) {
428 void setAllowReciprocal(bool b
) {
432 void setVectorReduction(bool b
) {
436 void setAllowContract(bool b
) {
440 void setApproximateFuncs(bool b
) {
442 ApproximateFuncs
= b
;
444 void setAllowReassociation(bool b
) {
446 AllowReassociation
= b
;
448 void setFPExcept(bool b
) {
453 // These are accessors for each flag.
454 bool hasNoUnsignedWrap() const { return NoUnsignedWrap
; }
455 bool hasNoSignedWrap() const { return NoSignedWrap
; }
456 bool hasExact() const { return Exact
; }
457 bool hasNoNaNs() const { return NoNaNs
; }
458 bool hasNoInfs() const { return NoInfs
; }
459 bool hasNoSignedZeros() const { return NoSignedZeros
; }
460 bool hasAllowReciprocal() const { return AllowReciprocal
; }
461 bool hasVectorReduction() const { return VectorReduction
; }
462 bool hasAllowContract() const { return AllowContract
; }
463 bool hasApproximateFuncs() const { return ApproximateFuncs
; }
464 bool hasAllowReassociation() const { return AllowReassociation
; }
465 bool hasFPExcept() const { return !NoFPExcept
; }
467 bool isFast() const {
468 return NoSignedZeros
&& AllowReciprocal
&& NoNaNs
&& NoInfs
&& NoFPExcept
&&
469 AllowContract
&& ApproximateFuncs
&& AllowReassociation
;
472 /// Clear any flags in this flag set that aren't also set in Flags.
473 /// If the given Flags are undefined then don't do anything.
474 void intersectWith(const SDNodeFlags Flags
) {
475 if (!Flags
.isDefined())
477 NoUnsignedWrap
&= Flags
.NoUnsignedWrap
;
478 NoSignedWrap
&= Flags
.NoSignedWrap
;
479 Exact
&= Flags
.Exact
;
480 NoNaNs
&= Flags
.NoNaNs
;
481 NoInfs
&= Flags
.NoInfs
;
482 NoSignedZeros
&= Flags
.NoSignedZeros
;
483 AllowReciprocal
&= Flags
.AllowReciprocal
;
484 VectorReduction
&= Flags
.VectorReduction
;
485 AllowContract
&= Flags
.AllowContract
;
486 ApproximateFuncs
&= Flags
.ApproximateFuncs
;
487 AllowReassociation
&= Flags
.AllowReassociation
;
488 NoFPExcept
&= Flags
.NoFPExcept
;
492 /// Represents one node in the SelectionDAG.
494 class SDNode
: public FoldingSetNode
, public ilist_node
<SDNode
> {
496 /// The operation that this node performs.
500 // We define a set of mini-helper classes to help us interpret the bits in our
501 // SubclassData. These are designed to fit within a uint16_t so they pack
504 #if defined(_AIX) && (!defined(__GNUC__) || defined(__ibmxl__))
505 // Except for GCC; by default, AIX compilers store bit-fields in 4-byte words
506 // and give the `pack` pragma push semantics.
507 #define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)")
508 #define END_TWO_BYTE_PACK() _Pragma("pack(pop)")
510 #define BEGIN_TWO_BYTE_PACK()
511 #define END_TWO_BYTE_PACK()
514 BEGIN_TWO_BYTE_PACK()
515 class SDNodeBitfields
{
517 friend class MemIntrinsicSDNode
;
518 friend class MemSDNode
;
519 friend class SelectionDAG
;
521 uint16_t HasDebugValue
: 1;
522 uint16_t IsMemIntrinsic
: 1;
523 uint16_t IsDivergent
: 1;
525 enum { NumSDNodeBits
= 3 };
527 class ConstantSDNodeBitfields
{
528 friend class ConstantSDNode
;
530 uint16_t : NumSDNodeBits
;
532 uint16_t IsOpaque
: 1;
535 class MemSDNodeBitfields
{
536 friend class MemSDNode
;
537 friend class MemIntrinsicSDNode
;
538 friend class AtomicSDNode
;
540 uint16_t : NumSDNodeBits
;
542 uint16_t IsVolatile
: 1;
543 uint16_t IsNonTemporal
: 1;
544 uint16_t IsDereferenceable
: 1;
545 uint16_t IsInvariant
: 1;
547 enum { NumMemSDNodeBits
= NumSDNodeBits
+ 4 };
549 class LSBaseSDNodeBitfields
{
550 friend class LSBaseSDNode
;
551 friend class MaskedGatherScatterSDNode
;
553 uint16_t : NumMemSDNodeBits
;
555 // This storage is shared between disparate class hierarchies to hold an
556 // enumeration specific to the class hierarchy in use.
557 // LSBaseSDNode => enum ISD::MemIndexedMode
558 // MaskedGatherScatterSDNode => enum ISD::MemIndexType
559 uint16_t AddressingMode
: 3;
561 enum { NumLSBaseSDNodeBits
= NumMemSDNodeBits
+ 3 };
563 class LoadSDNodeBitfields
{
564 friend class LoadSDNode
;
565 friend class MaskedLoadSDNode
;
567 uint16_t : NumLSBaseSDNodeBits
;
569 uint16_t ExtTy
: 2; // enum ISD::LoadExtType
570 uint16_t IsExpanding
: 1;
573 class StoreSDNodeBitfields
{
574 friend class StoreSDNode
;
575 friend class MaskedStoreSDNode
;
577 uint16_t : NumLSBaseSDNodeBits
;
579 uint16_t IsTruncating
: 1;
580 uint16_t IsCompressing
: 1;
584 char RawSDNodeBits
[sizeof(uint16_t)];
585 SDNodeBitfields SDNodeBits
;
586 ConstantSDNodeBitfields ConstantSDNodeBits
;
587 MemSDNodeBitfields MemSDNodeBits
;
588 LSBaseSDNodeBitfields LSBaseSDNodeBits
;
589 LoadSDNodeBitfields LoadSDNodeBits
;
590 StoreSDNodeBitfields StoreSDNodeBits
;
593 #undef BEGIN_TWO_BYTE_PACK
594 #undef END_TWO_BYTE_PACK
596 // RawSDNodeBits must cover the entirety of the union. This means that all of
597 // the union's members must have size <= RawSDNodeBits. We write the RHS as
598 // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
599 static_assert(sizeof(SDNodeBitfields
) <= 2, "field too wide");
600 static_assert(sizeof(ConstantSDNodeBitfields
) <= 2, "field too wide");
601 static_assert(sizeof(MemSDNodeBitfields
) <= 2, "field too wide");
602 static_assert(sizeof(LSBaseSDNodeBitfields
) <= 2, "field too wide");
603 static_assert(sizeof(LoadSDNodeBitfields
) <= 2, "field too wide");
604 static_assert(sizeof(StoreSDNodeBitfields
) <= 2, "field too wide");
607 friend class SelectionDAG
;
608 // TODO: unfriend HandleSDNode once we fix its operand handling.
609 friend class HandleSDNode
;
611 /// Unique id per SDNode in the DAG.
614 /// The values that are used by this operation.
615 SDUse
*OperandList
= nullptr;
617 /// The types of the values this node defines. SDNode's may
618 /// define multiple values simultaneously.
619 const EVT
*ValueList
;
621 /// List of uses for this SDNode.
622 SDUse
*UseList
= nullptr;
624 /// The number of entries in the Operand/Value list.
625 unsigned short NumOperands
= 0;
626 unsigned short NumValues
;
628 // The ordering of the SDNodes. It roughly corresponds to the ordering of the
629 // original LLVM instructions.
630 // This is used for turning off scheduling, because we'll forgo
631 // the normal scheduling algorithms and output the instructions according to
635 /// Source line information.
638 /// Return a pointer to the specified value type.
639 static const EVT
*getValueTypeList(EVT VT
);
644 /// Unique and persistent id per SDNode in the DAG.
645 /// Used for debug printing.
646 uint16_t PersistentId
;
648 //===--------------------------------------------------------------------===//
652 /// Return the SelectionDAG opcode value for this node. For
653 /// pre-isel nodes (those for which isMachineOpcode returns false), these
654 /// are the opcode values in the ISD and <target>ISD namespaces. For
655 /// post-isel opcodes, see getMachineOpcode.
656 unsigned getOpcode() const { return (unsigned short)NodeType
; }
658 /// Test if this node has a target-specific opcode (in the
659 /// \<target\>ISD namespace).
660 bool isTargetOpcode() const { return NodeType
>= ISD::BUILTIN_OP_END
; }
662 /// Test if this node has a target-specific
663 /// memory-referencing opcode (in the \<target\>ISD namespace and
664 /// greater than FIRST_TARGET_MEMORY_OPCODE).
665 bool isTargetMemoryOpcode() const {
666 return NodeType
>= ISD::FIRST_TARGET_MEMORY_OPCODE
;
669 /// Return true if the type of the node type undefined.
670 bool isUndef() const { return NodeType
== ISD::UNDEF
; }
672 /// Test if this node is a memory intrinsic (with valid pointer information).
673 /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
674 /// non-memory intrinsics (with chains) that are not really instances of
675 /// MemSDNode. For such nodes, we need some extra state to determine the
676 /// proper classof relationship.
677 bool isMemIntrinsic() const {
678 return (NodeType
== ISD::INTRINSIC_W_CHAIN
||
679 NodeType
== ISD::INTRINSIC_VOID
) &&
680 SDNodeBits
.IsMemIntrinsic
;
683 /// Test if this node is a strict floating point pseudo-op.
684 bool isStrictFPOpcode() {
688 case ISD::STRICT_FADD
:
689 case ISD::STRICT_FSUB
:
690 case ISD::STRICT_FMUL
:
691 case ISD::STRICT_FDIV
:
692 case ISD::STRICT_FREM
:
693 case ISD::STRICT_FMA
:
694 case ISD::STRICT_FSQRT
:
695 case ISD::STRICT_FPOW
:
696 case ISD::STRICT_FPOWI
:
697 case ISD::STRICT_FSIN
:
698 case ISD::STRICT_FCOS
:
699 case ISD::STRICT_FEXP
:
700 case ISD::STRICT_FEXP2
:
701 case ISD::STRICT_FLOG
:
702 case ISD::STRICT_FLOG10
:
703 case ISD::STRICT_FLOG2
:
704 case ISD::STRICT_LRINT
:
705 case ISD::STRICT_LLRINT
:
706 case ISD::STRICT_FRINT
:
707 case ISD::STRICT_FNEARBYINT
:
708 case ISD::STRICT_FMAXNUM
:
709 case ISD::STRICT_FMINNUM
:
710 case ISD::STRICT_FCEIL
:
711 case ISD::STRICT_FFLOOR
:
712 case ISD::STRICT_LROUND
:
713 case ISD::STRICT_LLROUND
:
714 case ISD::STRICT_FROUND
:
715 case ISD::STRICT_FTRUNC
:
716 case ISD::STRICT_FP_TO_SINT
:
717 case ISD::STRICT_FP_TO_UINT
:
718 case ISD::STRICT_FP_ROUND
:
719 case ISD::STRICT_FP_EXTEND
:
724 /// Test if this node has a post-isel opcode, directly
725 /// corresponding to a MachineInstr opcode.
726 bool isMachineOpcode() const { return NodeType
< 0; }
728 /// This may only be called if isMachineOpcode returns
729 /// true. It returns the MachineInstr opcode value that the node's opcode
731 unsigned getMachineOpcode() const {
732 assert(isMachineOpcode() && "Not a MachineInstr opcode!");
736 bool getHasDebugValue() const { return SDNodeBits
.HasDebugValue
; }
737 void setHasDebugValue(bool b
) { SDNodeBits
.HasDebugValue
= b
; }
739 bool isDivergent() const { return SDNodeBits
.IsDivergent
; }
741 /// Return true if there are no uses of this node.
742 bool use_empty() const { return UseList
== nullptr; }
744 /// Return true if there is exactly one use of this node.
745 bool hasOneUse() const {
746 return !use_empty() && std::next(use_begin()) == use_end();
749 /// Return the number of uses of this node. This method takes
750 /// time proportional to the number of uses.
751 size_t use_size() const { return std::distance(use_begin(), use_end()); }
753 /// Return the unique node id.
754 int getNodeId() const { return NodeId
; }
756 /// Set unique node id.
757 void setNodeId(int Id
) { NodeId
= Id
; }
759 /// Return the node ordering.
760 unsigned getIROrder() const { return IROrder
; }
762 /// Set the node ordering.
763 void setIROrder(unsigned Order
) { IROrder
= Order
; }
765 /// Return the source location info.
766 const DebugLoc
&getDebugLoc() const { return debugLoc
; }
768 /// Set source location info. Try to avoid this, putting
769 /// it in the constructor is preferable.
770 void setDebugLoc(DebugLoc dl
) { debugLoc
= std::move(dl
); }
772 /// This class provides iterator support for SDUse
773 /// operands that use a specific SDNode.
775 : public std::iterator
<std::forward_iterator_tag
, SDUse
, ptrdiff_t> {
780 explicit use_iterator(SDUse
*op
) : Op(op
) {}
783 using reference
= std::iterator
<std::forward_iterator_tag
,
784 SDUse
, ptrdiff_t>::reference
;
785 using pointer
= std::iterator
<std::forward_iterator_tag
,
786 SDUse
, ptrdiff_t>::pointer
;
788 use_iterator() = default;
789 use_iterator(const use_iterator
&I
) : Op(I
.Op
) {}
791 bool operator==(const use_iterator
&x
) const {
794 bool operator!=(const use_iterator
&x
) const {
795 return !operator==(x
);
798 /// Return true if this iterator is at the end of uses list.
799 bool atEnd() const { return Op
== nullptr; }
801 // Iterator traversal: forward iteration only.
802 use_iterator
&operator++() { // Preincrement
803 assert(Op
&& "Cannot increment end iterator!");
808 use_iterator
operator++(int) { // Postincrement
809 use_iterator tmp
= *this; ++*this; return tmp
;
812 /// Retrieve a pointer to the current user node.
813 SDNode
*operator*() const {
814 assert(Op
&& "Cannot dereference end iterator!");
815 return Op
->getUser();
818 SDNode
*operator->() const { return operator*(); }
820 SDUse
&getUse() const { return *Op
; }
822 /// Retrieve the operand # of this use in its user.
823 unsigned getOperandNo() const {
824 assert(Op
&& "Cannot dereference end iterator!");
825 return (unsigned)(Op
- Op
->getUser()->OperandList
);
829 /// Provide iteration support to walk over all uses of an SDNode.
830 use_iterator
use_begin() const {
831 return use_iterator(UseList
);
834 static use_iterator
use_end() { return use_iterator(nullptr); }
836 inline iterator_range
<use_iterator
> uses() {
837 return make_range(use_begin(), use_end());
839 inline iterator_range
<use_iterator
> uses() const {
840 return make_range(use_begin(), use_end());
843 /// Return true if there are exactly NUSES uses of the indicated value.
844 /// This method ignores uses of other values defined by this operation.
845 bool hasNUsesOfValue(unsigned NUses
, unsigned Value
) const;
847 /// Return true if there are any use of the indicated value.
848 /// This method ignores uses of other values defined by this operation.
849 bool hasAnyUseOfValue(unsigned Value
) const;
851 /// Return true if this node is the only use of N.
852 bool isOnlyUserOf(const SDNode
*N
) const;
854 /// Return true if this node is an operand of N.
855 bool isOperandOf(const SDNode
*N
) const;
857 /// Return true if this node is a predecessor of N.
858 /// NOTE: Implemented on top of hasPredecessor and every bit as
859 /// expensive. Use carefully.
860 bool isPredecessorOf(const SDNode
*N
) const {
861 return N
->hasPredecessor(this);
864 /// Return true if N is a predecessor of this node.
865 /// N is either an operand of this node, or can be reached by recursively
866 /// traversing up the operands.
867 /// NOTE: This is an expensive method. Use it carefully.
868 bool hasPredecessor(const SDNode
*N
) const;
870 /// Returns true if N is a predecessor of any node in Worklist. This
871 /// helper keeps Visited and Worklist sets externally to allow unions
872 /// searches to be performed in parallel, caching of results across
873 /// queries and incremental addition to Worklist. Stops early if N is
874 /// found but will resume. Remember to clear Visited and Worklists
875 /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
876 /// giving up. The TopologicalPrune flag signals that positive NodeIds are
877 /// topologically ordered (Operands have strictly smaller node id) and search
878 /// can be pruned leveraging this.
879 static bool hasPredecessorHelper(const SDNode
*N
,
880 SmallPtrSetImpl
<const SDNode
*> &Visited
,
881 SmallVectorImpl
<const SDNode
*> &Worklist
,
882 unsigned int MaxSteps
= 0,
883 bool TopologicalPrune
= false) {
884 SmallVector
<const SDNode
*, 8> DeferredNodes
;
885 if (Visited
.count(N
))
888 // Node Id's are assigned in three places: As a topological
889 // ordering (> 0), during legalization (results in values set to
890 // 0), new nodes (set to -1). If N has a topolgical id then we
891 // know that all nodes with ids smaller than it cannot be
892 // successors and we need not check them. Filter out all node
893 // that can't be matches. We add them to the worklist before exit
894 // in case of multiple calls. Note that during selection the topological id
895 // may be violated if a node's predecessor is selected before it. We mark
896 // this at selection negating the id of unselected successors and
897 // restricting topological pruning to positive ids.
899 int NId
= N
->getNodeId();
900 // If we Invalidated the Id, reconstruct original NId.
905 while (!Worklist
.empty()) {
906 const SDNode
*M
= Worklist
.pop_back_val();
907 int MId
= M
->getNodeId();
908 if (TopologicalPrune
&& M
->getOpcode() != ISD::TokenFactor
&& (NId
> 0) &&
909 (MId
> 0) && (MId
< NId
)) {
910 DeferredNodes
.push_back(M
);
913 for (const SDValue
&OpV
: M
->op_values()) {
914 SDNode
*Op
= OpV
.getNode();
915 if (Visited
.insert(Op
).second
)
916 Worklist
.push_back(Op
);
922 if (MaxSteps
!= 0 && Visited
.size() >= MaxSteps
)
925 // Push deferred nodes back on worklist.
926 Worklist
.append(DeferredNodes
.begin(), DeferredNodes
.end());
927 // If we bailed early, conservatively return found.
928 if (MaxSteps
!= 0 && Visited
.size() >= MaxSteps
)
933 /// Return true if all the users of N are contained in Nodes.
934 /// NOTE: Requires at least one match, but doesn't require them all.
935 static bool areOnlyUsersOf(ArrayRef
<const SDNode
*> Nodes
, const SDNode
*N
);
937 /// Return the number of values used by this operation.
938 unsigned getNumOperands() const { return NumOperands
; }
940 /// Return the maximum number of operands that a SDNode can hold.
941 static constexpr size_t getMaxNumOperands() {
942 return std::numeric_limits
<decltype(SDNode::NumOperands
)>::max();
945 /// Helper method returns the integer value of a ConstantSDNode operand.
946 inline uint64_t getConstantOperandVal(unsigned Num
) const;
948 /// Helper method returns the APInt of a ConstantSDNode operand.
949 inline const APInt
&getConstantOperandAPInt(unsigned Num
) const;
951 const SDValue
&getOperand(unsigned Num
) const {
952 assert(Num
< NumOperands
&& "Invalid child # of SDNode!");
953 return OperandList
[Num
];
956 using op_iterator
= SDUse
*;
958 op_iterator
op_begin() const { return OperandList
; }
959 op_iterator
op_end() const { return OperandList
+NumOperands
; }
960 ArrayRef
<SDUse
> ops() const { return makeArrayRef(op_begin(), op_end()); }
962 /// Iterator for directly iterating over the operand SDValue's.
963 struct value_op_iterator
964 : iterator_adaptor_base
<value_op_iterator
, op_iterator
,
965 std::random_access_iterator_tag
, SDValue
,
966 ptrdiff_t, value_op_iterator
*,
967 value_op_iterator
*> {
968 explicit value_op_iterator(SDUse
*U
= nullptr)
969 : iterator_adaptor_base(U
) {}
971 const SDValue
&operator*() const { return I
->get(); }
974 iterator_range
<value_op_iterator
> op_values() const {
975 return make_range(value_op_iterator(op_begin()),
976 value_op_iterator(op_end()));
979 SDVTList
getVTList() const {
980 SDVTList X
= { ValueList
, NumValues
};
984 /// If this node has a glue operand, return the node
985 /// to which the glue operand points. Otherwise return NULL.
986 SDNode
*getGluedNode() const {
987 if (getNumOperands() != 0 &&
988 getOperand(getNumOperands()-1).getValueType() == MVT::Glue
)
989 return getOperand(getNumOperands()-1).getNode();
993 /// If this node has a glue value with a user, return
994 /// the user (there is at most one). Otherwise return NULL.
995 SDNode
*getGluedUser() const {
996 for (use_iterator UI
= use_begin(), UE
= use_end(); UI
!= UE
; ++UI
)
997 if (UI
.getUse().get().getValueType() == MVT::Glue
)
1002 const SDNodeFlags
getFlags() const { return Flags
; }
1003 void setFlags(SDNodeFlags NewFlags
) { Flags
= NewFlags
; }
1004 bool isFast() { return Flags
.isFast(); }
1006 /// Clear any flags in this node that aren't also set in Flags.
1007 /// If Flags is not in a defined state then this has no effect.
1008 void intersectFlagsWith(const SDNodeFlags Flags
);
1010 /// Return the number of values defined/returned by this operator.
1011 unsigned getNumValues() const { return NumValues
; }
1013 /// Return the type of a specified result.
1014 EVT
getValueType(unsigned ResNo
) const {
1015 assert(ResNo
< NumValues
&& "Illegal result number!");
1016 return ValueList
[ResNo
];
1019 /// Return the type of a specified result as a simple type.
1020 MVT
getSimpleValueType(unsigned ResNo
) const {
1021 return getValueType(ResNo
).getSimpleVT();
1024 /// Returns MVT::getSizeInBits(getValueType(ResNo)).
1025 unsigned getValueSizeInBits(unsigned ResNo
) const {
1026 return getValueType(ResNo
).getSizeInBits();
1029 using value_iterator
= const EVT
*;
1031 value_iterator
value_begin() const { return ValueList
; }
1032 value_iterator
value_end() const { return ValueList
+NumValues
; }
1034 /// Return the opcode of this operation for printing.
1035 std::string
getOperationName(const SelectionDAG
*G
= nullptr) const;
1036 static const char* getIndexedModeName(ISD::MemIndexedMode AM
);
1037 void print_types(raw_ostream
&OS
, const SelectionDAG
*G
) const;
1038 void print_details(raw_ostream
&OS
, const SelectionDAG
*G
) const;
1039 void print(raw_ostream
&OS
, const SelectionDAG
*G
= nullptr) const;
1040 void printr(raw_ostream
&OS
, const SelectionDAG
*G
= nullptr) const;
1042 /// Print a SelectionDAG node and all children down to
1043 /// the leaves. The given SelectionDAG allows target-specific nodes
1044 /// to be printed in human-readable form. Unlike printr, this will
1045 /// print the whole DAG, including children that appear multiple
1048 void printrFull(raw_ostream
&O
, const SelectionDAG
*G
= nullptr) const;
1050 /// Print a SelectionDAG node and children up to
1051 /// depth "depth." The given SelectionDAG allows target-specific
1052 /// nodes to be printed in human-readable form. Unlike printr, this
1053 /// will print children that appear multiple times wherever they are
1056 void printrWithDepth(raw_ostream
&O
, const SelectionDAG
*G
= nullptr,
1057 unsigned depth
= 100) const;
1059 /// Dump this node, for debugging.
1062 /// Dump (recursively) this node and its use-def subgraph.
1065 /// Dump this node, for debugging.
1066 /// The given SelectionDAG allows target-specific nodes to be printed
1067 /// in human-readable form.
1068 void dump(const SelectionDAG
*G
) const;
1070 /// Dump (recursively) this node and its use-def subgraph.
1071 /// The given SelectionDAG allows target-specific nodes to be printed
1072 /// in human-readable form.
1073 void dumpr(const SelectionDAG
*G
) const;
1075 /// printrFull to dbgs(). The given SelectionDAG allows
1076 /// target-specific nodes to be printed in human-readable form.
1077 /// Unlike dumpr, this will print the whole DAG, including children
1078 /// that appear multiple times.
1079 void dumprFull(const SelectionDAG
*G
= nullptr) const;
1081 /// printrWithDepth to dbgs(). The given
1082 /// SelectionDAG allows target-specific nodes to be printed in
1083 /// human-readable form. Unlike dumpr, this will print children
1084 /// that appear multiple times wherever they are used.
1086 void dumprWithDepth(const SelectionDAG
*G
= nullptr,
1087 unsigned depth
= 100) const;
1089 /// Gather unique data for the node.
1090 void Profile(FoldingSetNodeID
&ID
) const;
1092 /// This method should only be used by the SDUse class.
1093 void addUse(SDUse
&U
) { U
.addToList(&UseList
); }
1096 static SDVTList
getSDVTList(EVT VT
) {
1097 SDVTList Ret
= { getValueTypeList(VT
), 1 };
1101 /// Create an SDNode.
1103 /// SDNodes are created without any operands, and never own the operand
1104 /// storage. To add operands, see SelectionDAG::createOperands.
1105 SDNode(unsigned Opc
, unsigned Order
, DebugLoc dl
, SDVTList VTs
)
1106 : NodeType(Opc
), ValueList(VTs
.VTs
), NumValues(VTs
.NumVTs
),
1107 IROrder(Order
), debugLoc(std::move(dl
)) {
1108 memset(&RawSDNodeBits
, 0, sizeof(RawSDNodeBits
));
1109 assert(debugLoc
.hasTrivialDestructor() && "Expected trivial destructor");
1110 assert(NumValues
== VTs
.NumVTs
&&
1111 "NumValues wasn't wide enough for its operands!");
1114 /// Release the operands and set this node to have zero operands.
1115 void DropOperands();
1118 /// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
1119 /// into SDNode creation functions.
1120 /// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
1121 /// from the original Instruction, and IROrder is the ordinal position of
1122 /// the instruction.
1123 /// When an SDNode is created after the DAG is being built, both DebugLoc and
1124 /// the IROrder are propagated from the original SDNode.
1125 /// So SDLoc class provides two constructors besides the default one, one to
1126 /// be used by the DAGBuilder, the other to be used by others.
1134 SDLoc(const SDNode
*N
) : DL(N
->getDebugLoc()), IROrder(N
->getIROrder()) {}
1135 SDLoc(const SDValue V
) : SDLoc(V
.getNode()) {}
1136 SDLoc(const Instruction
*I
, int Order
) : IROrder(Order
) {
1137 assert(Order
>= 0 && "bad IROrder");
1139 DL
= I
->getDebugLoc();
1142 unsigned getIROrder() const { return IROrder
; }
1143 const DebugLoc
&getDebugLoc() const { return DL
; }
1146 // Define inline functions from the SDValue class.
1148 inline SDValue::SDValue(SDNode
*node
, unsigned resno
)
1149 : Node(node
), ResNo(resno
) {
1150 // Explicitly check for !ResNo to avoid use-after-free, because there are
1151 // callers that use SDValue(N, 0) with a deleted N to indicate successful
1153 assert((!Node
|| !ResNo
|| ResNo
< Node
->getNumValues()) &&
1154 "Invalid result number for the given node!");
1155 assert(ResNo
< -2U && "Cannot use result numbers reserved for DenseMaps.");
1158 inline unsigned SDValue::getOpcode() const {
1159 return Node
->getOpcode();
1162 inline EVT
SDValue::getValueType() const {
1163 return Node
->getValueType(ResNo
);
1166 inline unsigned SDValue::getNumOperands() const {
1167 return Node
->getNumOperands();
1170 inline const SDValue
&SDValue::getOperand(unsigned i
) const {
1171 return Node
->getOperand(i
);
1174 inline uint64_t SDValue::getConstantOperandVal(unsigned i
) const {
1175 return Node
->getConstantOperandVal(i
);
1178 inline const APInt
&SDValue::getConstantOperandAPInt(unsigned i
) const {
1179 return Node
->getConstantOperandAPInt(i
);
1182 inline bool SDValue::isTargetOpcode() const {
1183 return Node
->isTargetOpcode();
1186 inline bool SDValue::isTargetMemoryOpcode() const {
1187 return Node
->isTargetMemoryOpcode();
1190 inline bool SDValue::isMachineOpcode() const {
1191 return Node
->isMachineOpcode();
1194 inline unsigned SDValue::getMachineOpcode() const {
1195 return Node
->getMachineOpcode();
1198 inline bool SDValue::isUndef() const {
1199 return Node
->isUndef();
1202 inline bool SDValue::use_empty() const {
1203 return !Node
->hasAnyUseOfValue(ResNo
);
1206 inline bool SDValue::hasOneUse() const {
1207 return Node
->hasNUsesOfValue(1, ResNo
);
1210 inline const DebugLoc
&SDValue::getDebugLoc() const {
1211 return Node
->getDebugLoc();
1214 inline void SDValue::dump() const {
1215 return Node
->dump();
1218 inline void SDValue::dump(const SelectionDAG
*G
) const {
1219 return Node
->dump(G
);
1222 inline void SDValue::dumpr() const {
1223 return Node
->dumpr();
1226 inline void SDValue::dumpr(const SelectionDAG
*G
) const {
1227 return Node
->dumpr(G
);
1230 // Define inline functions from the SDUse class.
1232 inline void SDUse::set(const SDValue
&V
) {
1233 if (Val
.getNode()) removeFromList();
1235 if (V
.getNode()) V
.getNode()->addUse(*this);
1238 inline void SDUse::setInitial(const SDValue
&V
) {
1240 V
.getNode()->addUse(*this);
1243 inline void SDUse::setNode(SDNode
*N
) {
1244 if (Val
.getNode()) removeFromList();
1246 if (N
) N
->addUse(*this);
1249 /// This class is used to form a handle around another node that
1250 /// is persistent and is updated across invocations of replaceAllUsesWith on its
1251 /// operand. This node should be directly created by end-users and not added to
1252 /// the AllNodes list.
1253 class HandleSDNode
: public SDNode
{
1257 explicit HandleSDNode(SDValue X
)
1258 : SDNode(ISD::HANDLENODE
, 0, DebugLoc(), getSDVTList(MVT::Other
)) {
1259 // HandleSDNodes are never inserted into the DAG, so they won't be
1260 // auto-numbered. Use ID 65535 as a sentinel.
1261 PersistentId
= 0xffff;
1263 // Manually set up the operand list. This node type is special in that it's
1264 // always stack allocated and SelectionDAG does not manage its operands.
1265 // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
1274 const SDValue
&getValue() const { return Op
; }
1277 class AddrSpaceCastSDNode
: public SDNode
{
1279 unsigned SrcAddrSpace
;
1280 unsigned DestAddrSpace
;
1283 AddrSpaceCastSDNode(unsigned Order
, const DebugLoc
&dl
, EVT VT
,
1284 unsigned SrcAS
, unsigned DestAS
);
1286 unsigned getSrcAddressSpace() const { return SrcAddrSpace
; }
1287 unsigned getDestAddressSpace() const { return DestAddrSpace
; }
1289 static bool classof(const SDNode
*N
) {
1290 return N
->getOpcode() == ISD::ADDRSPACECAST
;
1294 /// This is an abstract virtual class for memory operations.
1295 class MemSDNode
: public SDNode
{
1297 // VT of in-memory value.
1301 /// Memory reference information.
1302 MachineMemOperand
*MMO
;
1305 MemSDNode(unsigned Opc
, unsigned Order
, const DebugLoc
&dl
, SDVTList VTs
,
1306 EVT memvt
, MachineMemOperand
*MMO
);
1308 bool readMem() const { return MMO
->isLoad(); }
1309 bool writeMem() const { return MMO
->isStore(); }
1311 /// Returns alignment and volatility of the memory access
1312 unsigned getOriginalAlignment() const {
1313 return MMO
->getBaseAlignment();
1315 unsigned getAlignment() const {
1316 return MMO
->getAlignment();
1319 /// Return the SubclassData value, without HasDebugValue. This contains an
1320 /// encoding of the volatile flag, as well as bits used by subclasses. This
1321 /// function should only be used to compute a FoldingSetNodeID value.
1322 /// The HasDebugValue bit is masked out because CSE map needs to match
1323 /// nodes with debug info with nodes without debug info. Same is about
1324 /// isDivergent bit.
1325 unsigned getRawSubclassData() const {
1328 char RawSDNodeBits
[sizeof(uint16_t)];
1329 SDNodeBitfields SDNodeBits
;
1331 memcpy(&RawSDNodeBits
, &this->RawSDNodeBits
, sizeof(this->RawSDNodeBits
));
1332 SDNodeBits
.HasDebugValue
= 0;
1333 SDNodeBits
.IsDivergent
= false;
1334 memcpy(&Data
, &RawSDNodeBits
, sizeof(RawSDNodeBits
));
1338 bool isVolatile() const { return MemSDNodeBits
.IsVolatile
; }
1339 bool isNonTemporal() const { return MemSDNodeBits
.IsNonTemporal
; }
1340 bool isDereferenceable() const { return MemSDNodeBits
.IsDereferenceable
; }
1341 bool isInvariant() const { return MemSDNodeBits
.IsInvariant
; }
1343 // Returns the offset from the location of the access.
1344 int64_t getSrcValueOffset() const { return MMO
->getOffset(); }
1346 /// Returns the AA info that describes the dereference.
1347 AAMDNodes
getAAInfo() const { return MMO
->getAAInfo(); }
1349 /// Returns the Ranges that describes the dereference.
1350 const MDNode
*getRanges() const { return MMO
->getRanges(); }
1352 /// Returns the synchronization scope ID for this memory operation.
1353 SyncScope::ID
getSyncScopeID() const { return MMO
->getSyncScopeID(); }
1355 /// Return the atomic ordering requirements for this memory operation. For
1356 /// cmpxchg atomic operations, return the atomic ordering requirements when
1358 AtomicOrdering
getOrdering() const { return MMO
->getOrdering(); }
1360 /// Return true if the memory operation ordering is Unordered or higher.
1361 bool isAtomic() const { return MMO
->isAtomic(); }
1363 /// Returns true if the memory operation doesn't imply any ordering
1364 /// constraints on surrounding memory operations beyond the normal memory
1366 bool isUnordered() const { return MMO
->isUnordered(); }
1368 /// Returns true if the memory operation is neither atomic or volatile.
1369 bool isSimple() const { return !isAtomic() && !isVolatile(); }
1371 /// Return the type of the in-memory value.
1372 EVT
getMemoryVT() const { return MemoryVT
; }
1374 /// Return a MachineMemOperand object describing the memory
1375 /// reference performed by operation.
1376 MachineMemOperand
*getMemOperand() const { return MMO
; }
1378 const MachinePointerInfo
&getPointerInfo() const {
1379 return MMO
->getPointerInfo();
1382 /// Return the address space for the associated pointer
1383 unsigned getAddressSpace() const {
1384 return getPointerInfo().getAddrSpace();
1387 /// Update this MemSDNode's MachineMemOperand information
1388 /// to reflect the alignment of NewMMO, if it has a greater alignment.
1389 /// This must only be used when the new alignment applies to all users of
1390 /// this MachineMemOperand.
1391 void refineAlignment(const MachineMemOperand
*NewMMO
) {
1392 MMO
->refineAlignment(NewMMO
);
1395 const SDValue
&getChain() const { return getOperand(0); }
1396 const SDValue
&getBasePtr() const {
1397 return getOperand(getOpcode() == ISD::STORE
? 2 : 1);
1400 // Methods to support isa and dyn_cast
1401 static bool classof(const SDNode
*N
) {
1402 // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1403 // with either an intrinsic or a target opcode.
1404 return N
->getOpcode() == ISD::LOAD
||
1405 N
->getOpcode() == ISD::STORE
||
1406 N
->getOpcode() == ISD::PREFETCH
||
1407 N
->getOpcode() == ISD::ATOMIC_CMP_SWAP
||
1408 N
->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
||
1409 N
->getOpcode() == ISD::ATOMIC_SWAP
||
1410 N
->getOpcode() == ISD::ATOMIC_LOAD_ADD
||
1411 N
->getOpcode() == ISD::ATOMIC_LOAD_SUB
||
1412 N
->getOpcode() == ISD::ATOMIC_LOAD_AND
||
1413 N
->getOpcode() == ISD::ATOMIC_LOAD_CLR
||
1414 N
->getOpcode() == ISD::ATOMIC_LOAD_OR
||
1415 N
->getOpcode() == ISD::ATOMIC_LOAD_XOR
||
1416 N
->getOpcode() == ISD::ATOMIC_LOAD_NAND
||
1417 N
->getOpcode() == ISD::ATOMIC_LOAD_MIN
||
1418 N
->getOpcode() == ISD::ATOMIC_LOAD_MAX
||
1419 N
->getOpcode() == ISD::ATOMIC_LOAD_UMIN
||
1420 N
->getOpcode() == ISD::ATOMIC_LOAD_UMAX
||
1421 N
->getOpcode() == ISD::ATOMIC_LOAD_FADD
||
1422 N
->getOpcode() == ISD::ATOMIC_LOAD_FSUB
||
1423 N
->getOpcode() == ISD::ATOMIC_LOAD
||
1424 N
->getOpcode() == ISD::ATOMIC_STORE
||
1425 N
->getOpcode() == ISD::MLOAD
||
1426 N
->getOpcode() == ISD::MSTORE
||
1427 N
->getOpcode() == ISD::MGATHER
||
1428 N
->getOpcode() == ISD::MSCATTER
||
1429 N
->isMemIntrinsic() ||
1430 N
->isTargetMemoryOpcode();
1434 /// This is an SDNode representing atomic operations.
1435 class AtomicSDNode
: public MemSDNode
{
1437 AtomicSDNode(unsigned Opc
, unsigned Order
, const DebugLoc
&dl
, SDVTList VTL
,
1438 EVT MemVT
, MachineMemOperand
*MMO
)
1439 : MemSDNode(Opc
, Order
, dl
, VTL
, MemVT
, MMO
) {
1440 assert(((Opc
!= ISD::ATOMIC_LOAD
&& Opc
!= ISD::ATOMIC_STORE
) ||
1441 MMO
->isAtomic()) && "then why are we using an AtomicSDNode?");
1444 const SDValue
&getBasePtr() const { return getOperand(1); }
1445 const SDValue
&getVal() const { return getOperand(2); }
1447 /// Returns true if this SDNode represents cmpxchg atomic operation, false
1449 bool isCompareAndSwap() const {
1450 unsigned Op
= getOpcode();
1451 return Op
== ISD::ATOMIC_CMP_SWAP
||
1452 Op
== ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
;
1455 /// For cmpxchg atomic operations, return the atomic ordering requirements
1456 /// when store does not occur.
1457 AtomicOrdering
getFailureOrdering() const {
1458 assert(isCompareAndSwap() && "Must be cmpxchg operation");
1459 return MMO
->getFailureOrdering();
1462 // Methods to support isa and dyn_cast
1463 static bool classof(const SDNode
*N
) {
1464 return N
->getOpcode() == ISD::ATOMIC_CMP_SWAP
||
1465 N
->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
||
1466 N
->getOpcode() == ISD::ATOMIC_SWAP
||
1467 N
->getOpcode() == ISD::ATOMIC_LOAD_ADD
||
1468 N
->getOpcode() == ISD::ATOMIC_LOAD_SUB
||
1469 N
->getOpcode() == ISD::ATOMIC_LOAD_AND
||
1470 N
->getOpcode() == ISD::ATOMIC_LOAD_CLR
||
1471 N
->getOpcode() == ISD::ATOMIC_LOAD_OR
||
1472 N
->getOpcode() == ISD::ATOMIC_LOAD_XOR
||
1473 N
->getOpcode() == ISD::ATOMIC_LOAD_NAND
||
1474 N
->getOpcode() == ISD::ATOMIC_LOAD_MIN
||
1475 N
->getOpcode() == ISD::ATOMIC_LOAD_MAX
||
1476 N
->getOpcode() == ISD::ATOMIC_LOAD_UMIN
||
1477 N
->getOpcode() == ISD::ATOMIC_LOAD_UMAX
||
1478 N
->getOpcode() == ISD::ATOMIC_LOAD_FADD
||
1479 N
->getOpcode() == ISD::ATOMIC_LOAD_FSUB
||
1480 N
->getOpcode() == ISD::ATOMIC_LOAD
||
1481 N
->getOpcode() == ISD::ATOMIC_STORE
;
1485 /// This SDNode is used for target intrinsics that touch
1486 /// memory and need an associated MachineMemOperand. Its opcode may be
1487 /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
1488 /// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
1489 class MemIntrinsicSDNode
: public MemSDNode
{
1491 MemIntrinsicSDNode(unsigned Opc
, unsigned Order
, const DebugLoc
&dl
,
1492 SDVTList VTs
, EVT MemoryVT
, MachineMemOperand
*MMO
)
1493 : MemSDNode(Opc
, Order
, dl
, VTs
, MemoryVT
, MMO
) {
1494 SDNodeBits
.IsMemIntrinsic
= true;
1497 // Methods to support isa and dyn_cast
1498 static bool classof(const SDNode
*N
) {
1499 // We lower some target intrinsics to their target opcode
1500 // early a node with a target opcode can be of this class
1501 return N
->isMemIntrinsic() ||
1502 N
->getOpcode() == ISD::PREFETCH
||
1503 N
->isTargetMemoryOpcode();
1507 /// This SDNode is used to implement the code generator
1508 /// support for the llvm IR shufflevector instruction. It combines elements
1509 /// from two input vectors into a new input vector, with the selection and
1510 /// ordering of elements determined by an array of integers, referred to as
1511 /// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
1512 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1513 /// An index of -1 is treated as undef, such that the code generator may put
1514 /// any value in the corresponding element of the result.
1515 class ShuffleVectorSDNode
: public SDNode
{
1516 // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1517 // is freed when the SelectionDAG object is destroyed.
1521 friend class SelectionDAG
;
1523 ShuffleVectorSDNode(EVT VT
, unsigned Order
, const DebugLoc
&dl
, const int *M
)
1524 : SDNode(ISD::VECTOR_SHUFFLE
, Order
, dl
, getSDVTList(VT
)), Mask(M
) {}
1527 ArrayRef
<int> getMask() const {
1528 EVT VT
= getValueType(0);
1529 return makeArrayRef(Mask
, VT
.getVectorNumElements());
1532 int getMaskElt(unsigned Idx
) const {
1533 assert(Idx
< getValueType(0).getVectorNumElements() && "Idx out of range!");
1537 bool isSplat() const { return isSplatMask(Mask
, getValueType(0)); }
1539 int getSplatIndex() const {
1540 assert(isSplat() && "Cannot get splat index for non-splat!");
1541 EVT VT
= getValueType(0);
1542 for (unsigned i
= 0, e
= VT
.getVectorNumElements(); i
!= e
; ++i
)
1546 // We can choose any index value here and be correct because all elements
1547 // are undefined. Return 0 for better potential for callers to simplify.
1551 static bool isSplatMask(const int *Mask
, EVT VT
);
1553 /// Change values in a shuffle permute mask assuming
1554 /// the two vector operands have swapped position.
1555 static void commuteMask(MutableArrayRef
<int> Mask
) {
1556 unsigned NumElems
= Mask
.size();
1557 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
1561 else if (idx
< (int)NumElems
)
1562 Mask
[i
] = idx
+ NumElems
;
1564 Mask
[i
] = idx
- NumElems
;
1568 static bool classof(const SDNode
*N
) {
1569 return N
->getOpcode() == ISD::VECTOR_SHUFFLE
;
1573 class ConstantSDNode
: public SDNode
{
1574 friend class SelectionDAG
;
1576 const ConstantInt
*Value
;
1578 ConstantSDNode(bool isTarget
, bool isOpaque
, const ConstantInt
*val
, EVT VT
)
1579 : SDNode(isTarget
? ISD::TargetConstant
: ISD::Constant
, 0, DebugLoc(),
1582 ConstantSDNodeBits
.IsOpaque
= isOpaque
;
1586 const ConstantInt
*getConstantIntValue() const { return Value
; }
1587 const APInt
&getAPIntValue() const { return Value
->getValue(); }
1588 uint64_t getZExtValue() const { return Value
->getZExtValue(); }
1589 int64_t getSExtValue() const { return Value
->getSExtValue(); }
1590 uint64_t getLimitedValue(uint64_t Limit
= UINT64_MAX
) {
1591 return Value
->getLimitedValue(Limit
);
1594 bool isOne() const { return Value
->isOne(); }
1595 bool isNullValue() const { return Value
->isZero(); }
1596 bool isAllOnesValue() const { return Value
->isMinusOne(); }
1598 bool isOpaque() const { return ConstantSDNodeBits
.IsOpaque
; }
1600 static bool classof(const SDNode
*N
) {
1601 return N
->getOpcode() == ISD::Constant
||
1602 N
->getOpcode() == ISD::TargetConstant
;
1606 uint64_t SDNode::getConstantOperandVal(unsigned Num
) const {
1607 return cast
<ConstantSDNode
>(getOperand(Num
))->getZExtValue();
1610 const APInt
&SDNode::getConstantOperandAPInt(unsigned Num
) const {
1611 return cast
<ConstantSDNode
>(getOperand(Num
))->getAPIntValue();
1614 class ConstantFPSDNode
: public SDNode
{
1615 friend class SelectionDAG
;
1617 const ConstantFP
*Value
;
1619 ConstantFPSDNode(bool isTarget
, const ConstantFP
*val
, EVT VT
)
1620 : SDNode(isTarget
? ISD::TargetConstantFP
: ISD::ConstantFP
, 0,
1621 DebugLoc(), getSDVTList(VT
)),
1625 const APFloat
& getValueAPF() const { return Value
->getValueAPF(); }
1626 const ConstantFP
*getConstantFPValue() const { return Value
; }
1628 /// Return true if the value is positive or negative zero.
1629 bool isZero() const { return Value
->isZero(); }
1631 /// Return true if the value is a NaN.
1632 bool isNaN() const { return Value
->isNaN(); }
1634 /// Return true if the value is an infinity
1635 bool isInfinity() const { return Value
->isInfinity(); }
1637 /// Return true if the value is negative.
1638 bool isNegative() const { return Value
->isNegative(); }
1640 /// We don't rely on operator== working on double values, as
1641 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1642 /// As such, this method can be used to do an exact bit-for-bit comparison of
1643 /// two floating point values.
1645 /// We leave the version with the double argument here because it's just so
1646 /// convenient to write "2.0" and the like. Without this function we'd
1647 /// have to duplicate its logic everywhere it's called.
1648 bool isExactlyValue(double V
) const {
1649 return Value
->getValueAPF().isExactlyValue(V
);
1651 bool isExactlyValue(const APFloat
& V
) const;
1653 static bool isValueValidForType(EVT VT
, const APFloat
& Val
);
1655 static bool classof(const SDNode
*N
) {
1656 return N
->getOpcode() == ISD::ConstantFP
||
1657 N
->getOpcode() == ISD::TargetConstantFP
;
1661 /// Returns true if \p V is a constant integer zero.
1662 bool isNullConstant(SDValue V
);
1664 /// Returns true if \p V is an FP constant with a value of positive zero.
1665 bool isNullFPConstant(SDValue V
);
1667 /// Returns true if \p V is an integer constant with all bits set.
1668 bool isAllOnesConstant(SDValue V
);
1670 /// Returns true if \p V is a constant integer one.
1671 bool isOneConstant(SDValue V
);
1673 /// Return the non-bitcasted source operand of \p V if it exists.
1674 /// If \p V is not a bitcasted value, it is returned as-is.
1675 SDValue
peekThroughBitcasts(SDValue V
);
1677 /// Return the non-bitcasted and one-use source operand of \p V if it exists.
1678 /// If \p V is not a bitcasted one-use value, it is returned as-is.
1679 SDValue
peekThroughOneUseBitcasts(SDValue V
);
1681 /// Return the non-extracted vector source operand of \p V if it exists.
1682 /// If \p V is not an extracted subvector, it is returned as-is.
1683 SDValue
peekThroughExtractSubvectors(SDValue V
);
1685 /// Returns true if \p V is a bitwise not operation. Assumes that an all ones
1686 /// constant is canonicalized to be operand 1.
1687 bool isBitwiseNot(SDValue V
, bool AllowUndefs
= false);
1689 /// Returns the SDNode if it is a constant splat BuildVector or constant int.
1690 ConstantSDNode
*isConstOrConstSplat(SDValue N
, bool AllowUndefs
= false,
1691 bool AllowTruncation
= false);
1693 /// Returns the SDNode if it is a demanded constant splat BuildVector or
1695 ConstantSDNode
*isConstOrConstSplat(SDValue N
, const APInt
&DemandedElts
,
1696 bool AllowUndefs
= false,
1697 bool AllowTruncation
= false);
1699 /// Returns the SDNode if it is a constant splat BuildVector or constant float.
1700 ConstantFPSDNode
*isConstOrConstSplatFP(SDValue N
, bool AllowUndefs
= false);
1702 /// Returns the SDNode if it is a demanded constant splat BuildVector or
1704 ConstantFPSDNode
*isConstOrConstSplatFP(SDValue N
, const APInt
&DemandedElts
,
1705 bool AllowUndefs
= false);
1707 /// Return true if the value is a constant 0 integer or a splatted vector of
1708 /// a constant 0 integer (with no undefs by default).
1709 /// Build vector implicit truncation is not an issue for null values.
1710 bool isNullOrNullSplat(SDValue V
, bool AllowUndefs
= false);
1712 /// Return true if the value is a constant 1 integer or a splatted vector of a
1713 /// constant 1 integer (with no undefs).
1714 /// Does not permit build vector implicit truncation.
1715 bool isOneOrOneSplat(SDValue V
);
1717 /// Return true if the value is a constant -1 integer or a splatted vector of a
1718 /// constant -1 integer (with no undefs).
1719 /// Does not permit build vector implicit truncation.
1720 bool isAllOnesOrAllOnesSplat(SDValue V
);
1722 class GlobalAddressSDNode
: public SDNode
{
1723 friend class SelectionDAG
;
1725 const GlobalValue
*TheGlobal
;
1727 unsigned TargetFlags
;
1729 GlobalAddressSDNode(unsigned Opc
, unsigned Order
, const DebugLoc
&DL
,
1730 const GlobalValue
*GA
, EVT VT
, int64_t o
,
1734 const GlobalValue
*getGlobal() const { return TheGlobal
; }
1735 int64_t getOffset() const { return Offset
; }
1736 unsigned getTargetFlags() const { return TargetFlags
; }
1737 // Return the address space this GlobalAddress belongs to.
1738 unsigned getAddressSpace() const;
1740 static bool classof(const SDNode
*N
) {
1741 return N
->getOpcode() == ISD::GlobalAddress
||
1742 N
->getOpcode() == ISD::TargetGlobalAddress
||
1743 N
->getOpcode() == ISD::GlobalTLSAddress
||
1744 N
->getOpcode() == ISD::TargetGlobalTLSAddress
;
1748 class FrameIndexSDNode
: public SDNode
{
1749 friend class SelectionDAG
;
1753 FrameIndexSDNode(int fi
, EVT VT
, bool isTarg
)
1754 : SDNode(isTarg
? ISD::TargetFrameIndex
: ISD::FrameIndex
,
1755 0, DebugLoc(), getSDVTList(VT
)), FI(fi
) {
1759 int getIndex() const { return FI
; }
1761 static bool classof(const SDNode
*N
) {
1762 return N
->getOpcode() == ISD::FrameIndex
||
1763 N
->getOpcode() == ISD::TargetFrameIndex
;
1767 /// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate
1768 /// the offet and size that are started/ended in the underlying FrameIndex.
1769 class LifetimeSDNode
: public SDNode
{
1770 friend class SelectionDAG
;
1772 int64_t Offset
; // -1 if offset is unknown.
1774 LifetimeSDNode(unsigned Opcode
, unsigned Order
, const DebugLoc
&dl
,
1775 SDVTList VTs
, int64_t Size
, int64_t Offset
)
1776 : SDNode(Opcode
, Order
, dl
, VTs
), Size(Size
), Offset(Offset
) {}
1778 int64_t getFrameIndex() const {
1779 return cast
<FrameIndexSDNode
>(getOperand(1))->getIndex();
1782 bool hasOffset() const { return Offset
>= 0; }
1783 int64_t getOffset() const {
1784 assert(hasOffset() && "offset is unknown");
1787 int64_t getSize() const {
1788 assert(hasOffset() && "offset is unknown");
1792 // Methods to support isa and dyn_cast
1793 static bool classof(const SDNode
*N
) {
1794 return N
->getOpcode() == ISD::LIFETIME_START
||
1795 N
->getOpcode() == ISD::LIFETIME_END
;
1799 class JumpTableSDNode
: public SDNode
{
1800 friend class SelectionDAG
;
1803 unsigned TargetFlags
;
1805 JumpTableSDNode(int jti
, EVT VT
, bool isTarg
, unsigned TF
)
1806 : SDNode(isTarg
? ISD::TargetJumpTable
: ISD::JumpTable
,
1807 0, DebugLoc(), getSDVTList(VT
)), JTI(jti
), TargetFlags(TF
) {
1811 int getIndex() const { return JTI
; }
1812 unsigned getTargetFlags() const { return TargetFlags
; }
1814 static bool classof(const SDNode
*N
) {
1815 return N
->getOpcode() == ISD::JumpTable
||
1816 N
->getOpcode() == ISD::TargetJumpTable
;
1820 class ConstantPoolSDNode
: public SDNode
{
1821 friend class SelectionDAG
;
1824 const Constant
*ConstVal
;
1825 MachineConstantPoolValue
*MachineCPVal
;
1827 int Offset
; // It's a MachineConstantPoolValue if top bit is set.
1828 unsigned Alignment
; // Minimum alignment requirement of CP (not log2 value).
1829 unsigned TargetFlags
;
1831 ConstantPoolSDNode(bool isTarget
, const Constant
*c
, EVT VT
, int o
,
1832 unsigned Align
, unsigned TF
)
1833 : SDNode(isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
, 0,
1834 DebugLoc(), getSDVTList(VT
)), Offset(o
), Alignment(Align
),
1836 assert(Offset
>= 0 && "Offset is too large");
1840 ConstantPoolSDNode(bool isTarget
, MachineConstantPoolValue
*v
,
1841 EVT VT
, int o
, unsigned Align
, unsigned TF
)
1842 : SDNode(isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
, 0,
1843 DebugLoc(), getSDVTList(VT
)), Offset(o
), Alignment(Align
),
1845 assert(Offset
>= 0 && "Offset is too large");
1846 Val
.MachineCPVal
= v
;
1847 Offset
|= 1 << (sizeof(unsigned)*CHAR_BIT
-1);
1851 bool isMachineConstantPoolEntry() const {
1855 const Constant
*getConstVal() const {
1856 assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1857 return Val
.ConstVal
;
1860 MachineConstantPoolValue
*getMachineCPVal() const {
1861 assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1862 return Val
.MachineCPVal
;
1865 int getOffset() const {
1866 return Offset
& ~(1 << (sizeof(unsigned)*CHAR_BIT
-1));
1869 // Return the alignment of this constant pool object, which is either 0 (for
1870 // default alignment) or the desired value.
1871 unsigned getAlignment() const { return Alignment
; }
1872 unsigned getTargetFlags() const { return TargetFlags
; }
1874 Type
*getType() const;
1876 static bool classof(const SDNode
*N
) {
1877 return N
->getOpcode() == ISD::ConstantPool
||
1878 N
->getOpcode() == ISD::TargetConstantPool
;
1882 /// Completely target-dependent object reference.
1883 class TargetIndexSDNode
: public SDNode
{
1884 friend class SelectionDAG
;
1886 unsigned TargetFlags
;
1891 TargetIndexSDNode(int Idx
, EVT VT
, int64_t Ofs
, unsigned TF
)
1892 : SDNode(ISD::TargetIndex
, 0, DebugLoc(), getSDVTList(VT
)),
1893 TargetFlags(TF
), Index(Idx
), Offset(Ofs
) {}
1895 unsigned getTargetFlags() const { return TargetFlags
; }
1896 int getIndex() const { return Index
; }
1897 int64_t getOffset() const { return Offset
; }
1899 static bool classof(const SDNode
*N
) {
1900 return N
->getOpcode() == ISD::TargetIndex
;
1904 class BasicBlockSDNode
: public SDNode
{
1905 friend class SelectionDAG
;
1907 MachineBasicBlock
*MBB
;
1909 /// Debug info is meaningful and potentially useful here, but we create
1910 /// blocks out of order when they're jumped to, which makes it a bit
1911 /// harder. Let's see if we need it first.
1912 explicit BasicBlockSDNode(MachineBasicBlock
*mbb
)
1913 : SDNode(ISD::BasicBlock
, 0, DebugLoc(), getSDVTList(MVT::Other
)), MBB(mbb
)
1917 MachineBasicBlock
*getBasicBlock() const { return MBB
; }
1919 static bool classof(const SDNode
*N
) {
1920 return N
->getOpcode() == ISD::BasicBlock
;
1924 /// A "pseudo-class" with methods for operating on BUILD_VECTORs.
1925 class BuildVectorSDNode
: public SDNode
{
1927 // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1928 explicit BuildVectorSDNode() = delete;
1930 /// Check if this is a constant splat, and if so, find the
1931 /// smallest element size that splats the vector. If MinSplatBits is
1932 /// nonzero, the element size must be at least that large. Note that the
1933 /// splat element may be the entire vector (i.e., a one element vector).
1934 /// Returns the splat element value in SplatValue. Any undefined bits in
1935 /// that value are zero, and the corresponding bits in the SplatUndef mask
1936 /// are set. The SplatBitSize value is set to the splat element size in
1937 /// bits. HasAnyUndefs is set to true if any bits in the vector are
1938 /// undefined. isBigEndian describes the endianness of the target.
1939 bool isConstantSplat(APInt
&SplatValue
, APInt
&SplatUndef
,
1940 unsigned &SplatBitSize
, bool &HasAnyUndefs
,
1941 unsigned MinSplatBits
= 0,
1942 bool isBigEndian
= false) const;
1944 /// Returns the demanded splatted value or a null value if this is not a
1947 /// The DemandedElts mask indicates the elements that must be in the splat.
1948 /// If passed a non-null UndefElements bitvector, it will resize it to match
1949 /// the vector width and set the bits where elements are undef.
1950 SDValue
getSplatValue(const APInt
&DemandedElts
,
1951 BitVector
*UndefElements
= nullptr) const;
1953 /// Returns the splatted value or a null value if this is not a splat.
1955 /// If passed a non-null UndefElements bitvector, it will resize it to match
1956 /// the vector width and set the bits where elements are undef.
1957 SDValue
getSplatValue(BitVector
*UndefElements
= nullptr) const;
1959 /// Returns the demanded splatted constant or null if this is not a constant
1962 /// The DemandedElts mask indicates the elements that must be in the splat.
1963 /// If passed a non-null UndefElements bitvector, it will resize it to match
1964 /// the vector width and set the bits where elements are undef.
1966 getConstantSplatNode(const APInt
&DemandedElts
,
1967 BitVector
*UndefElements
= nullptr) const;
1969 /// Returns the splatted constant or null if this is not a constant
1972 /// If passed a non-null UndefElements bitvector, it will resize it to match
1973 /// the vector width and set the bits where elements are undef.
1975 getConstantSplatNode(BitVector
*UndefElements
= nullptr) const;
1977 /// Returns the demanded splatted constant FP or null if this is not a
1978 /// constant FP splat.
1980 /// The DemandedElts mask indicates the elements that must be in the splat.
1981 /// If passed a non-null UndefElements bitvector, it will resize it to match
1982 /// the vector width and set the bits where elements are undef.
1984 getConstantFPSplatNode(const APInt
&DemandedElts
,
1985 BitVector
*UndefElements
= nullptr) const;
1987 /// Returns the splatted constant FP or null if this is not a constant
1990 /// If passed a non-null UndefElements bitvector, it will resize it to match
1991 /// the vector width and set the bits where elements are undef.
1993 getConstantFPSplatNode(BitVector
*UndefElements
= nullptr) const;
1995 /// If this is a constant FP splat and the splatted constant FP is an
1996 /// exact power or 2, return the log base 2 integer value. Otherwise,
1999 /// The BitWidth specifies the necessary bit precision.
2000 int32_t getConstantFPSplatPow2ToLog2Int(BitVector
*UndefElements
,
2001 uint32_t BitWidth
) const;
2003 bool isConstant() const;
2005 static bool classof(const SDNode
*N
) {
2006 return N
->getOpcode() == ISD::BUILD_VECTOR
;
2010 /// An SDNode that holds an arbitrary LLVM IR Value. This is
2011 /// used when the SelectionDAG needs to make a simple reference to something
2012 /// in the LLVM IR representation.
2014 class SrcValueSDNode
: public SDNode
{
2015 friend class SelectionDAG
;
2019 /// Create a SrcValue for a general value.
2020 explicit SrcValueSDNode(const Value
*v
)
2021 : SDNode(ISD::SRCVALUE
, 0, DebugLoc(), getSDVTList(MVT::Other
)), V(v
) {}
2024 /// Return the contained Value.
2025 const Value
*getValue() const { return V
; }
2027 static bool classof(const SDNode
*N
) {
2028 return N
->getOpcode() == ISD::SRCVALUE
;
2032 class MDNodeSDNode
: public SDNode
{
2033 friend class SelectionDAG
;
2037 explicit MDNodeSDNode(const MDNode
*md
)
2038 : SDNode(ISD::MDNODE_SDNODE
, 0, DebugLoc(), getSDVTList(MVT::Other
)), MD(md
)
2042 const MDNode
*getMD() const { return MD
; }
2044 static bool classof(const SDNode
*N
) {
2045 return N
->getOpcode() == ISD::MDNODE_SDNODE
;
2049 class RegisterSDNode
: public SDNode
{
2050 friend class SelectionDAG
;
2054 RegisterSDNode(unsigned reg
, EVT VT
)
2055 : SDNode(ISD::Register
, 0, DebugLoc(), getSDVTList(VT
)), Reg(reg
) {}
2058 unsigned getReg() const { return Reg
; }
2060 static bool classof(const SDNode
*N
) {
2061 return N
->getOpcode() == ISD::Register
;
2065 class RegisterMaskSDNode
: public SDNode
{
2066 friend class SelectionDAG
;
2068 // The memory for RegMask is not owned by the node.
2069 const uint32_t *RegMask
;
2071 RegisterMaskSDNode(const uint32_t *mask
)
2072 : SDNode(ISD::RegisterMask
, 0, DebugLoc(), getSDVTList(MVT::Untyped
)),
2076 const uint32_t *getRegMask() const { return RegMask
; }
2078 static bool classof(const SDNode
*N
) {
2079 return N
->getOpcode() == ISD::RegisterMask
;
2083 class BlockAddressSDNode
: public SDNode
{
2084 friend class SelectionDAG
;
2086 const BlockAddress
*BA
;
2088 unsigned TargetFlags
;
2090 BlockAddressSDNode(unsigned NodeTy
, EVT VT
, const BlockAddress
*ba
,
2091 int64_t o
, unsigned Flags
)
2092 : SDNode(NodeTy
, 0, DebugLoc(), getSDVTList(VT
)),
2093 BA(ba
), Offset(o
), TargetFlags(Flags
) {}
2096 const BlockAddress
*getBlockAddress() const { return BA
; }
2097 int64_t getOffset() const { return Offset
; }
2098 unsigned getTargetFlags() const { return TargetFlags
; }
2100 static bool classof(const SDNode
*N
) {
2101 return N
->getOpcode() == ISD::BlockAddress
||
2102 N
->getOpcode() == ISD::TargetBlockAddress
;
2106 class LabelSDNode
: public SDNode
{
2107 friend class SelectionDAG
;
2111 LabelSDNode(unsigned Opcode
, unsigned Order
, const DebugLoc
&dl
, MCSymbol
*L
)
2112 : SDNode(Opcode
, Order
, dl
, getSDVTList(MVT::Other
)), Label(L
) {
2113 assert(LabelSDNode::classof(this) && "not a label opcode");
2117 MCSymbol
*getLabel() const { return Label
; }
2119 static bool classof(const SDNode
*N
) {
2120 return N
->getOpcode() == ISD::EH_LABEL
||
2121 N
->getOpcode() == ISD::ANNOTATION_LABEL
;
2125 class ExternalSymbolSDNode
: public SDNode
{
2126 friend class SelectionDAG
;
2129 unsigned TargetFlags
;
2131 ExternalSymbolSDNode(bool isTarget
, const char *Sym
, unsigned TF
, EVT VT
)
2132 : SDNode(isTarget
? ISD::TargetExternalSymbol
: ISD::ExternalSymbol
, 0,
2133 DebugLoc(), getSDVTList(VT
)),
2134 Symbol(Sym
), TargetFlags(TF
) {}
2137 const char *getSymbol() const { return Symbol
; }
2138 unsigned getTargetFlags() const { return TargetFlags
; }
2140 static bool classof(const SDNode
*N
) {
2141 return N
->getOpcode() == ISD::ExternalSymbol
||
2142 N
->getOpcode() == ISD::TargetExternalSymbol
;
2146 class MCSymbolSDNode
: public SDNode
{
2147 friend class SelectionDAG
;
2151 MCSymbolSDNode(MCSymbol
*Symbol
, EVT VT
)
2152 : SDNode(ISD::MCSymbol
, 0, DebugLoc(), getSDVTList(VT
)), Symbol(Symbol
) {}
2155 MCSymbol
*getMCSymbol() const { return Symbol
; }
2157 static bool classof(const SDNode
*N
) {
2158 return N
->getOpcode() == ISD::MCSymbol
;
2162 class CondCodeSDNode
: public SDNode
{
2163 friend class SelectionDAG
;
2165 ISD::CondCode Condition
;
2167 explicit CondCodeSDNode(ISD::CondCode Cond
)
2168 : SDNode(ISD::CONDCODE
, 0, DebugLoc(), getSDVTList(MVT::Other
)),
2172 ISD::CondCode
get() const { return Condition
; }
2174 static bool classof(const SDNode
*N
) {
2175 return N
->getOpcode() == ISD::CONDCODE
;
2179 /// This class is used to represent EVT's, which are used
2180 /// to parameterize some operations.
2181 class VTSDNode
: public SDNode
{
2182 friend class SelectionDAG
;
2186 explicit VTSDNode(EVT VT
)
2187 : SDNode(ISD::VALUETYPE
, 0, DebugLoc(), getSDVTList(MVT::Other
)),
2191 EVT
getVT() const { return ValueType
; }
2193 static bool classof(const SDNode
*N
) {
2194 return N
->getOpcode() == ISD::VALUETYPE
;
2198 /// Base class for LoadSDNode and StoreSDNode
2199 class LSBaseSDNode
: public MemSDNode
{
2201 LSBaseSDNode(ISD::NodeType NodeTy
, unsigned Order
, const DebugLoc
&dl
,
2202 SDVTList VTs
, ISD::MemIndexedMode AM
, EVT MemVT
,
2203 MachineMemOperand
*MMO
)
2204 : MemSDNode(NodeTy
, Order
, dl
, VTs
, MemVT
, MMO
) {
2205 LSBaseSDNodeBits
.AddressingMode
= AM
;
2206 assert(getAddressingMode() == AM
&& "Value truncated");
2209 const SDValue
&getOffset() const {
2210 return getOperand(getOpcode() == ISD::LOAD
? 2 : 3);
2213 /// Return the addressing mode for this load or store:
2214 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2215 ISD::MemIndexedMode
getAddressingMode() const {
2216 return static_cast<ISD::MemIndexedMode
>(LSBaseSDNodeBits
.AddressingMode
);
2219 /// Return true if this is a pre/post inc/dec load/store.
2220 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED
; }
2222 /// Return true if this is NOT a pre/post inc/dec load/store.
2223 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED
; }
2225 static bool classof(const SDNode
*N
) {
2226 return N
->getOpcode() == ISD::LOAD
||
2227 N
->getOpcode() == ISD::STORE
;
2231 /// This class is used to represent ISD::LOAD nodes.
2232 class LoadSDNode
: public LSBaseSDNode
{
2233 friend class SelectionDAG
;
2235 LoadSDNode(unsigned Order
, const DebugLoc
&dl
, SDVTList VTs
,
2236 ISD::MemIndexedMode AM
, ISD::LoadExtType ETy
, EVT MemVT
,
2237 MachineMemOperand
*MMO
)
2238 : LSBaseSDNode(ISD::LOAD
, Order
, dl
, VTs
, AM
, MemVT
, MMO
) {
2239 LoadSDNodeBits
.ExtTy
= ETy
;
2240 assert(readMem() && "Load MachineMemOperand is not a load!");
2241 assert(!writeMem() && "Load MachineMemOperand is a store!");
2245 /// Return whether this is a plain node,
2246 /// or one of the varieties of value-extending loads.
2247 ISD::LoadExtType
getExtensionType() const {
2248 return static_cast<ISD::LoadExtType
>(LoadSDNodeBits
.ExtTy
);
2251 const SDValue
&getBasePtr() const { return getOperand(1); }
2252 const SDValue
&getOffset() const { return getOperand(2); }
2254 static bool classof(const SDNode
*N
) {
2255 return N
->getOpcode() == ISD::LOAD
;
2259 /// This class is used to represent ISD::STORE nodes.
2260 class StoreSDNode
: public LSBaseSDNode
{
2261 friend class SelectionDAG
;
2263 StoreSDNode(unsigned Order
, const DebugLoc
&dl
, SDVTList VTs
,
2264 ISD::MemIndexedMode AM
, bool isTrunc
, EVT MemVT
,
2265 MachineMemOperand
*MMO
)
2266 : LSBaseSDNode(ISD::STORE
, Order
, dl
, VTs
, AM
, MemVT
, MMO
) {
2267 StoreSDNodeBits
.IsTruncating
= isTrunc
;
2268 assert(!readMem() && "Store MachineMemOperand is a load!");
2269 assert(writeMem() && "Store MachineMemOperand is not a store!");
2273 /// Return true if the op does a truncation before store.
2274 /// For integers this is the same as doing a TRUNCATE and storing the result.
2275 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2276 bool isTruncatingStore() const { return StoreSDNodeBits
.IsTruncating
; }
2277 void setTruncatingStore(bool Truncating
) {
2278 StoreSDNodeBits
.IsTruncating
= Truncating
;
2281 const SDValue
&getValue() const { return getOperand(1); }
2282 const SDValue
&getBasePtr() const { return getOperand(2); }
2283 const SDValue
&getOffset() const { return getOperand(3); }
2285 static bool classof(const SDNode
*N
) {
2286 return N
->getOpcode() == ISD::STORE
;
2290 /// This base class is used to represent MLOAD and MSTORE nodes
2291 class MaskedLoadStoreSDNode
: public MemSDNode
{
2293 friend class SelectionDAG
;
2295 MaskedLoadStoreSDNode(ISD::NodeType NodeTy
, unsigned Order
,
2296 const DebugLoc
&dl
, SDVTList VTs
, EVT MemVT
,
2297 MachineMemOperand
*MMO
)
2298 : MemSDNode(NodeTy
, Order
, dl
, VTs
, MemVT
, MMO
) {}
2300 // MaskedLoadSDNode (Chain, ptr, mask, passthru)
2301 // MaskedStoreSDNode (Chain, data, ptr, mask)
2302 // Mask is a vector of i1 elements
2303 const SDValue
&getBasePtr() const {
2304 return getOperand(getOpcode() == ISD::MLOAD
? 1 : 2);
2306 const SDValue
&getMask() const {
2307 return getOperand(getOpcode() == ISD::MLOAD
? 2 : 3);
2310 static bool classof(const SDNode
*N
) {
2311 return N
->getOpcode() == ISD::MLOAD
||
2312 N
->getOpcode() == ISD::MSTORE
;
2316 /// This class is used to represent an MLOAD node
2317 class MaskedLoadSDNode
: public MaskedLoadStoreSDNode
{
2319 friend class SelectionDAG
;
2321 MaskedLoadSDNode(unsigned Order
, const DebugLoc
&dl
, SDVTList VTs
,
2322 ISD::LoadExtType ETy
, bool IsExpanding
, EVT MemVT
,
2323 MachineMemOperand
*MMO
)
2324 : MaskedLoadStoreSDNode(ISD::MLOAD
, Order
, dl
, VTs
, MemVT
, MMO
) {
2325 LoadSDNodeBits
.ExtTy
= ETy
;
2326 LoadSDNodeBits
.IsExpanding
= IsExpanding
;
2329 ISD::LoadExtType
getExtensionType() const {
2330 return static_cast<ISD::LoadExtType
>(LoadSDNodeBits
.ExtTy
);
2333 const SDValue
&getBasePtr() const { return getOperand(1); }
2334 const SDValue
&getMask() const { return getOperand(2); }
2335 const SDValue
&getPassThru() const { return getOperand(3); }
2337 static bool classof(const SDNode
*N
) {
2338 return N
->getOpcode() == ISD::MLOAD
;
2341 bool isExpandingLoad() const { return LoadSDNodeBits
.IsExpanding
; }
2344 /// This class is used to represent an MSTORE node
2345 class MaskedStoreSDNode
: public MaskedLoadStoreSDNode
{
2347 friend class SelectionDAG
;
2349 MaskedStoreSDNode(unsigned Order
, const DebugLoc
&dl
, SDVTList VTs
,
2350 bool isTrunc
, bool isCompressing
, EVT MemVT
,
2351 MachineMemOperand
*MMO
)
2352 : MaskedLoadStoreSDNode(ISD::MSTORE
, Order
, dl
, VTs
, MemVT
, MMO
) {
2353 StoreSDNodeBits
.IsTruncating
= isTrunc
;
2354 StoreSDNodeBits
.IsCompressing
= isCompressing
;
2357 /// Return true if the op does a truncation before store.
2358 /// For integers this is the same as doing a TRUNCATE and storing the result.
2359 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2360 bool isTruncatingStore() const { return StoreSDNodeBits
.IsTruncating
; }
2362 /// Returns true if the op does a compression to the vector before storing.
2363 /// The node contiguously stores the active elements (integers or floats)
2364 /// in src (those with their respective bit set in writemask k) to unaligned
2365 /// memory at base_addr.
2366 bool isCompressingStore() const { return StoreSDNodeBits
.IsCompressing
; }
2368 const SDValue
&getValue() const { return getOperand(1); }
2369 const SDValue
&getBasePtr() const { return getOperand(2); }
2370 const SDValue
&getMask() const { return getOperand(3); }
2372 static bool classof(const SDNode
*N
) {
2373 return N
->getOpcode() == ISD::MSTORE
;
2377 /// This is a base class used to represent
2378 /// MGATHER and MSCATTER nodes
2380 class MaskedGatherScatterSDNode
: public MemSDNode
{
2382 friend class SelectionDAG
;
2384 MaskedGatherScatterSDNode(ISD::NodeType NodeTy
, unsigned Order
,
2385 const DebugLoc
&dl
, SDVTList VTs
, EVT MemVT
,
2386 MachineMemOperand
*MMO
, ISD::MemIndexType IndexType
)
2387 : MemSDNode(NodeTy
, Order
, dl
, VTs
, MemVT
, MMO
) {
2388 LSBaseSDNodeBits
.AddressingMode
= IndexType
;
2389 assert(getIndexType() == IndexType
&& "Value truncated");
2392 /// How is Index applied to BasePtr when computing addresses.
2393 ISD::MemIndexType
getIndexType() const {
2394 return static_cast<ISD::MemIndexType
>(LSBaseSDNodeBits
.AddressingMode
);
2396 bool isIndexScaled() const {
2397 return (getIndexType() == ISD::SIGNED_SCALED
) ||
2398 (getIndexType() == ISD::UNSIGNED_SCALED
);
2400 bool isIndexSigned() const {
2401 return (getIndexType() == ISD::SIGNED_SCALED
) ||
2402 (getIndexType() == ISD::SIGNED_UNSCALED
);
2405 // In the both nodes address is Op1, mask is Op2:
2406 // MaskedGatherSDNode (Chain, passthru, mask, base, index, scale)
2407 // MaskedScatterSDNode (Chain, value, mask, base, index, scale)
2408 // Mask is a vector of i1 elements
2409 const SDValue
&getBasePtr() const { return getOperand(3); }
2410 const SDValue
&getIndex() const { return getOperand(4); }
2411 const SDValue
&getMask() const { return getOperand(2); }
2412 const SDValue
&getScale() const { return getOperand(5); }
2414 static bool classof(const SDNode
*N
) {
2415 return N
->getOpcode() == ISD::MGATHER
||
2416 N
->getOpcode() == ISD::MSCATTER
;
2420 /// This class is used to represent an MGATHER node
2422 class MaskedGatherSDNode
: public MaskedGatherScatterSDNode
{
2424 friend class SelectionDAG
;
2426 MaskedGatherSDNode(unsigned Order
, const DebugLoc
&dl
, SDVTList VTs
,
2427 EVT MemVT
, MachineMemOperand
*MMO
,
2428 ISD::MemIndexType IndexType
)
2429 : MaskedGatherScatterSDNode(ISD::MGATHER
, Order
, dl
, VTs
, MemVT
, MMO
,
2432 const SDValue
&getPassThru() const { return getOperand(1); }
2434 static bool classof(const SDNode
*N
) {
2435 return N
->getOpcode() == ISD::MGATHER
;
2439 /// This class is used to represent an MSCATTER node
2441 class MaskedScatterSDNode
: public MaskedGatherScatterSDNode
{
2443 friend class SelectionDAG
;
2445 MaskedScatterSDNode(unsigned Order
, const DebugLoc
&dl
, SDVTList VTs
,
2446 EVT MemVT
, MachineMemOperand
*MMO
,
2447 ISD::MemIndexType IndexType
)
2448 : MaskedGatherScatterSDNode(ISD::MSCATTER
, Order
, dl
, VTs
, MemVT
, MMO
,
2451 const SDValue
&getValue() const { return getOperand(1); }
2453 static bool classof(const SDNode
*N
) {
2454 return N
->getOpcode() == ISD::MSCATTER
;
2458 /// An SDNode that represents everything that will be needed
2459 /// to construct a MachineInstr. These nodes are created during the
2460 /// instruction selection proper phase.
2462 /// Note that the only supported way to set the `memoperands` is by calling the
2463 /// `SelectionDAG::setNodeMemRefs` function as the memory management happens
2464 /// inside the DAG rather than in the node.
2465 class MachineSDNode
: public SDNode
{
2467 friend class SelectionDAG
;
2469 MachineSDNode(unsigned Opc
, unsigned Order
, const DebugLoc
&DL
, SDVTList VTs
)
2470 : SDNode(Opc
, Order
, DL
, VTs
) {}
2472 // We use a pointer union between a single `MachineMemOperand` pointer and
2473 // a pointer to an array of `MachineMemOperand` pointers. This is null when
2474 // the number of these is zero, the single pointer variant used when the
2475 // number is one, and the array is used for larger numbers.
2477 // The array is allocated via the `SelectionDAG`'s allocator and so will
2478 // always live until the DAG is cleaned up and doesn't require ownership here.
2480 // We can't use something simpler like `TinyPtrVector` here because `SDNode`
2481 // subclasses aren't managed in a conforming C++ manner. See the comments on
2482 // `SelectionDAG::MorphNodeTo` which details what all goes on, but the
2483 // constraint here is that these don't manage memory with their constructor or
2484 // destructor and can be initialized to a good state even if they start off
2486 PointerUnion
<MachineMemOperand
*, MachineMemOperand
**> MemRefs
= {};
2488 // Note that this could be folded into the above `MemRefs` member if doing so
2489 // is advantageous at some point. We don't need to store this in most cases.
2490 // However, at the moment this doesn't appear to make the allocation any
2491 // smaller and makes the code somewhat simpler to read.
2495 using mmo_iterator
= ArrayRef
<MachineMemOperand
*>::const_iterator
;
2497 ArrayRef
<MachineMemOperand
*> memoperands() const {
2498 // Special case the common cases.
2499 if (NumMemRefs
== 0)
2501 if (NumMemRefs
== 1)
2502 return makeArrayRef(MemRefs
.getAddrOfPtr1(), 1);
2504 // Otherwise we have an actual array.
2505 return makeArrayRef(MemRefs
.get
<MachineMemOperand
**>(), NumMemRefs
);
2507 mmo_iterator
memoperands_begin() const { return memoperands().begin(); }
2508 mmo_iterator
memoperands_end() const { return memoperands().end(); }
2509 bool memoperands_empty() const { return memoperands().empty(); }
2511 /// Clear out the memory reference descriptor list.
2512 void clearMemRefs() {
2517 static bool classof(const SDNode
*N
) {
2518 return N
->isMachineOpcode();
2522 class SDNodeIterator
: public std::iterator
<std::forward_iterator_tag
,
2523 SDNode
, ptrdiff_t> {
2527 SDNodeIterator(const SDNode
*N
, unsigned Op
) : Node(N
), Operand(Op
) {}
2530 bool operator==(const SDNodeIterator
& x
) const {
2531 return Operand
== x
.Operand
;
2533 bool operator!=(const SDNodeIterator
& x
) const { return !operator==(x
); }
2535 pointer
operator*() const {
2536 return Node
->getOperand(Operand
).getNode();
2538 pointer
operator->() const { return operator*(); }
2540 SDNodeIterator
& operator++() { // Preincrement
2544 SDNodeIterator
operator++(int) { // Postincrement
2545 SDNodeIterator tmp
= *this; ++*this; return tmp
;
2547 size_t operator-(SDNodeIterator Other
) const {
2548 assert(Node
== Other
.Node
&&
2549 "Cannot compare iterators of two different nodes!");
2550 return Operand
- Other
.Operand
;
2553 static SDNodeIterator
begin(const SDNode
*N
) { return SDNodeIterator(N
, 0); }
2554 static SDNodeIterator
end (const SDNode
*N
) {
2555 return SDNodeIterator(N
, N
->getNumOperands());
2558 unsigned getOperand() const { return Operand
; }
2559 const SDNode
*getNode() const { return Node
; }
2562 template <> struct GraphTraits
<SDNode
*> {
2563 using NodeRef
= SDNode
*;
2564 using ChildIteratorType
= SDNodeIterator
;
2566 static NodeRef
getEntryNode(SDNode
*N
) { return N
; }
2568 static ChildIteratorType
child_begin(NodeRef N
) {
2569 return SDNodeIterator::begin(N
);
2572 static ChildIteratorType
child_end(NodeRef N
) {
2573 return SDNodeIterator::end(N
);
2577 /// A representation of the largest SDNode, for use in sizeof().
2579 /// This needs to be a union because the largest node differs on 32 bit systems
2580 /// with 4 and 8 byte pointer alignment, respectively.
2581 using LargestSDNode
= AlignedCharArrayUnion
<AtomicSDNode
, TargetIndexSDNode
,
2583 GlobalAddressSDNode
>;
2585 /// The SDNode class with the greatest alignment requirement.
2586 using MostAlignedSDNode
= GlobalAddressSDNode
;
2590 /// Returns true if the specified node is a non-extending and unindexed load.
2591 inline bool isNormalLoad(const SDNode
*N
) {
2592 const LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(N
);
2593 return Ld
&& Ld
->getExtensionType() == ISD::NON_EXTLOAD
&&
2594 Ld
->getAddressingMode() == ISD::UNINDEXED
;
2597 /// Returns true if the specified node is a non-extending load.
2598 inline bool isNON_EXTLoad(const SDNode
*N
) {
2599 return isa
<LoadSDNode
>(N
) &&
2600 cast
<LoadSDNode
>(N
)->getExtensionType() == ISD::NON_EXTLOAD
;
2603 /// Returns true if the specified node is a EXTLOAD.
2604 inline bool isEXTLoad(const SDNode
*N
) {
2605 return isa
<LoadSDNode
>(N
) &&
2606 cast
<LoadSDNode
>(N
)->getExtensionType() == ISD::EXTLOAD
;
2609 /// Returns true if the specified node is a SEXTLOAD.
2610 inline bool isSEXTLoad(const SDNode
*N
) {
2611 return isa
<LoadSDNode
>(N
) &&
2612 cast
<LoadSDNode
>(N
)->getExtensionType() == ISD::SEXTLOAD
;
2615 /// Returns true if the specified node is a ZEXTLOAD.
2616 inline bool isZEXTLoad(const SDNode
*N
) {
2617 return isa
<LoadSDNode
>(N
) &&
2618 cast
<LoadSDNode
>(N
)->getExtensionType() == ISD::ZEXTLOAD
;
2621 /// Returns true if the specified node is an unindexed load.
2622 inline bool isUNINDEXEDLoad(const SDNode
*N
) {
2623 return isa
<LoadSDNode
>(N
) &&
2624 cast
<LoadSDNode
>(N
)->getAddressingMode() == ISD::UNINDEXED
;
2627 /// Returns true if the specified node is a non-truncating
2628 /// and unindexed store.
2629 inline bool isNormalStore(const SDNode
*N
) {
2630 const StoreSDNode
*St
= dyn_cast
<StoreSDNode
>(N
);
2631 return St
&& !St
->isTruncatingStore() &&
2632 St
->getAddressingMode() == ISD::UNINDEXED
;
2635 /// Returns true if the specified node is a non-truncating store.
2636 inline bool isNON_TRUNCStore(const SDNode
*N
) {
2637 return isa
<StoreSDNode
>(N
) && !cast
<StoreSDNode
>(N
)->isTruncatingStore();
2640 /// Returns true if the specified node is a truncating store.
2641 inline bool isTRUNCStore(const SDNode
*N
) {
2642 return isa
<StoreSDNode
>(N
) && cast
<StoreSDNode
>(N
)->isTruncatingStore();
2645 /// Returns true if the specified node is an unindexed store.
2646 inline bool isUNINDEXEDStore(const SDNode
*N
) {
2647 return isa
<StoreSDNode
>(N
) &&
2648 cast
<StoreSDNode
>(N
)->getAddressingMode() == ISD::UNINDEXED
;
2651 /// Attempt to match a unary predicate against a scalar/splat constant or
2652 /// every element of a constant BUILD_VECTOR.
2653 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2654 bool matchUnaryPredicate(SDValue Op
,
2655 std::function
<bool(ConstantSDNode
*)> Match
,
2656 bool AllowUndefs
= false);
2658 /// Attempt to match a binary predicate against a pair of scalar/splat
2659 /// constants or every element of a pair of constant BUILD_VECTORs.
2660 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2661 /// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match.
2662 bool matchBinaryPredicate(
2663 SDValue LHS
, SDValue RHS
,
2664 std::function
<bool(ConstantSDNode
*, ConstantSDNode
*)> Match
,
2665 bool AllowUndefs
= false, bool AllowTypeMismatch
= false);
2666 } // end namespace ISD
2668 } // end namespace llvm
2670 #endif // LLVM_CODEGEN_SELECTIONDAGNODES_H