[Alignment][NFC] Support compile time constants
[llvm-core.git] / include / llvm / IR / User.h
blob850ee72a03877a9bc210ece0826890392ac9b9b4
1 //===- llvm/User.h - User class definition ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This class defines the interface that one who uses a Value must implement.
10 // Each instance of the Value class keeps track of what User's have handles
11 // to it.
13 // * Instructions are the largest class of Users.
14 // * Constants may be users of other constants (think arrays and stuff)
16 //===----------------------------------------------------------------------===//
18 #ifndef LLVM_IR_USER_H
19 #define LLVM_IR_USER_H
21 #include "llvm/ADT/iterator.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/IR/Use.h"
24 #include "llvm/IR/Value.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include <cassert>
29 #include <cstddef>
30 #include <cstdint>
31 #include <iterator>
33 namespace llvm {
35 template <typename T> class ArrayRef;
36 template <typename T> class MutableArrayRef;
38 /// Compile-time customization of User operands.
39 ///
40 /// Customizes operand-related allocators and accessors.
41 template <class>
42 struct OperandTraits;
44 class User : public Value {
45 template <unsigned>
46 friend struct HungoffOperandTraits;
48 LLVM_ATTRIBUTE_ALWAYS_INLINE inline static void *
49 allocateFixedOperandUser(size_t, unsigned, unsigned);
51 protected:
52 /// Allocate a User with an operand pointer co-allocated.
53 ///
54 /// This is used for subclasses which need to allocate a variable number
55 /// of operands, ie, 'hung off uses'.
56 void *operator new(size_t Size);
58 /// Allocate a User with the operands co-allocated.
59 ///
60 /// This is used for subclasses which have a fixed number of operands.
61 void *operator new(size_t Size, unsigned Us);
63 /// Allocate a User with the operands co-allocated. If DescBytes is non-zero
64 /// then allocate an additional DescBytes bytes before the operands. These
65 /// bytes can be accessed by calling getDescriptor.
66 ///
67 /// DescBytes needs to be divisible by sizeof(void *). The allocated
68 /// descriptor, if any, is aligned to sizeof(void *) bytes.
69 ///
70 /// This is used for subclasses which have a fixed number of operands.
71 void *operator new(size_t Size, unsigned Us, unsigned DescBytes);
73 User(Type *ty, unsigned vty, Use *, unsigned NumOps)
74 : Value(ty, vty) {
75 assert(NumOps < (1u << NumUserOperandsBits) && "Too many operands");
76 NumUserOperands = NumOps;
77 // If we have hung off uses, then the operand list should initially be
78 // null.
79 assert((!HasHungOffUses || !getOperandList()) &&
80 "Error in initializing hung off uses for User");
83 /// Allocate the array of Uses, followed by a pointer
84 /// (with bottom bit set) to the User.
85 /// \param IsPhi identifies callers which are phi nodes and which need
86 /// N BasicBlock* allocated along with N
87 void allocHungoffUses(unsigned N, bool IsPhi = false);
89 /// Grow the number of hung off uses. Note that allocHungoffUses
90 /// should be called if there are no uses.
91 void growHungoffUses(unsigned N, bool IsPhi = false);
93 protected:
94 ~User() = default; // Use deleteValue() to delete a generic Instruction.
96 public:
97 User(const User &) = delete;
99 /// Free memory allocated for User and Use objects.
100 void operator delete(void *Usr);
101 /// Placement delete - required by std, called if the ctor throws.
102 void operator delete(void *Usr, unsigned) {
103 // Note: If a subclass manipulates the information which is required to calculate the
104 // Usr memory pointer, e.g. NumUserOperands, the operator delete of that subclass has
105 // to restore the changed information to the original value, since the dtor of that class
106 // is not called if the ctor fails.
107 User::operator delete(Usr);
109 #ifndef LLVM_ENABLE_EXCEPTIONS
110 llvm_unreachable("Constructor throws?");
111 #endif
113 /// Placement delete - required by std, called if the ctor throws.
114 void operator delete(void *Usr, unsigned, unsigned) {
115 // Note: If a subclass manipulates the information which is required to calculate the
116 // Usr memory pointer, e.g. NumUserOperands, the operator delete of that subclass has
117 // to restore the changed information to the original value, since the dtor of that class
118 // is not called if the ctor fails.
119 User::operator delete(Usr);
121 #ifndef LLVM_ENABLE_EXCEPTIONS
122 llvm_unreachable("Constructor throws?");
123 #endif
126 protected:
127 template <int Idx, typename U> static Use &OpFrom(const U *that) {
128 return Idx < 0
129 ? OperandTraits<U>::op_end(const_cast<U*>(that))[Idx]
130 : OperandTraits<U>::op_begin(const_cast<U*>(that))[Idx];
133 template <int Idx> Use &Op() {
134 return OpFrom<Idx>(this);
136 template <int Idx> const Use &Op() const {
137 return OpFrom<Idx>(this);
140 private:
141 const Use *getHungOffOperands() const {
142 return *(reinterpret_cast<const Use *const *>(this) - 1);
145 Use *&getHungOffOperands() { return *(reinterpret_cast<Use **>(this) - 1); }
147 const Use *getIntrusiveOperands() const {
148 return reinterpret_cast<const Use *>(this) - NumUserOperands;
151 Use *getIntrusiveOperands() {
152 return reinterpret_cast<Use *>(this) - NumUserOperands;
155 void setOperandList(Use *NewList) {
156 assert(HasHungOffUses &&
157 "Setting operand list only required for hung off uses");
158 getHungOffOperands() = NewList;
161 public:
162 const Use *getOperandList() const {
163 return HasHungOffUses ? getHungOffOperands() : getIntrusiveOperands();
165 Use *getOperandList() {
166 return const_cast<Use *>(static_cast<const User *>(this)->getOperandList());
169 Value *getOperand(unsigned i) const {
170 assert(i < NumUserOperands && "getOperand() out of range!");
171 return getOperandList()[i];
174 void setOperand(unsigned i, Value *Val) {
175 assert(i < NumUserOperands && "setOperand() out of range!");
176 assert((!isa<Constant>((const Value*)this) ||
177 isa<GlobalValue>((const Value*)this)) &&
178 "Cannot mutate a constant with setOperand!");
179 getOperandList()[i] = Val;
182 const Use &getOperandUse(unsigned i) const {
183 assert(i < NumUserOperands && "getOperandUse() out of range!");
184 return getOperandList()[i];
186 Use &getOperandUse(unsigned i) {
187 assert(i < NumUserOperands && "getOperandUse() out of range!");
188 return getOperandList()[i];
191 unsigned getNumOperands() const { return NumUserOperands; }
193 /// Returns the descriptor co-allocated with this User instance.
194 ArrayRef<const uint8_t> getDescriptor() const;
196 /// Returns the descriptor co-allocated with this User instance.
197 MutableArrayRef<uint8_t> getDescriptor();
199 /// Set the number of operands on a GlobalVariable.
201 /// GlobalVariable always allocates space for a single operands, but
202 /// doesn't always use it.
204 /// FIXME: As that the number of operands is used to find the start of
205 /// the allocated memory in operator delete, we need to always think we have
206 /// 1 operand before delete.
207 void setGlobalVariableNumOperands(unsigned NumOps) {
208 assert(NumOps <= 1 && "GlobalVariable can only have 0 or 1 operands");
209 NumUserOperands = NumOps;
212 /// Subclasses with hung off uses need to manage the operand count
213 /// themselves. In these instances, the operand count isn't used to find the
214 /// OperandList, so there's no issue in having the operand count change.
215 void setNumHungOffUseOperands(unsigned NumOps) {
216 assert(HasHungOffUses && "Must have hung off uses to use this method");
217 assert(NumOps < (1u << NumUserOperandsBits) && "Too many operands");
218 NumUserOperands = NumOps;
221 // ---------------------------------------------------------------------------
222 // Operand Iterator interface...
224 using op_iterator = Use*;
225 using const_op_iterator = const Use*;
226 using op_range = iterator_range<op_iterator>;
227 using const_op_range = iterator_range<const_op_iterator>;
229 op_iterator op_begin() { return getOperandList(); }
230 const_op_iterator op_begin() const { return getOperandList(); }
231 op_iterator op_end() {
232 return getOperandList() + NumUserOperands;
234 const_op_iterator op_end() const {
235 return getOperandList() + NumUserOperands;
237 op_range operands() {
238 return op_range(op_begin(), op_end());
240 const_op_range operands() const {
241 return const_op_range(op_begin(), op_end());
244 /// Iterator for directly iterating over the operand Values.
245 struct value_op_iterator
246 : iterator_adaptor_base<value_op_iterator, op_iterator,
247 std::random_access_iterator_tag, Value *,
248 ptrdiff_t, Value *, Value *> {
249 explicit value_op_iterator(Use *U = nullptr) : iterator_adaptor_base(U) {}
251 Value *operator*() const { return *I; }
252 Value *operator->() const { return operator*(); }
255 value_op_iterator value_op_begin() {
256 return value_op_iterator(op_begin());
258 value_op_iterator value_op_end() {
259 return value_op_iterator(op_end());
261 iterator_range<value_op_iterator> operand_values() {
262 return make_range(value_op_begin(), value_op_end());
265 struct const_value_op_iterator
266 : iterator_adaptor_base<const_value_op_iterator, const_op_iterator,
267 std::random_access_iterator_tag, const Value *,
268 ptrdiff_t, const Value *, const Value *> {
269 explicit const_value_op_iterator(const Use *U = nullptr) :
270 iterator_adaptor_base(U) {}
272 const Value *operator*() const { return *I; }
273 const Value *operator->() const { return operator*(); }
276 const_value_op_iterator value_op_begin() const {
277 return const_value_op_iterator(op_begin());
279 const_value_op_iterator value_op_end() const {
280 return const_value_op_iterator(op_end());
282 iterator_range<const_value_op_iterator> operand_values() const {
283 return make_range(value_op_begin(), value_op_end());
286 /// Drop all references to operands.
288 /// This function is in charge of "letting go" of all objects that this User
289 /// refers to. This allows one to 'delete' a whole class at a time, even
290 /// though there may be circular references... First all references are
291 /// dropped, and all use counts go to zero. Then everything is deleted for
292 /// real. Note that no operations are valid on an object that has "dropped
293 /// all references", except operator delete.
294 void dropAllReferences() {
295 for (Use &U : operands())
296 U.set(nullptr);
299 /// Replace uses of one Value with another.
301 /// Replaces all references to the "From" definition with references to the
302 /// "To" definition.
303 void replaceUsesOfWith(Value *From, Value *To);
305 // Methods for support type inquiry through isa, cast, and dyn_cast:
306 static bool classof(const Value *V) {
307 return isa<Instruction>(V) || isa<Constant>(V);
311 // Either Use objects, or a Use pointer can be prepended to User.
312 static_assert(alignof(Use) >= alignof(User),
313 "Alignment is insufficient after objects prepended to User");
314 static_assert(alignof(Use *) >= alignof(User),
315 "Alignment is insufficient after objects prepended to User");
317 template<> struct simplify_type<User::op_iterator> {
318 using SimpleType = Value*;
320 static SimpleType getSimplifiedValue(User::op_iterator &Val) {
321 return Val->get();
324 template<> struct simplify_type<User::const_op_iterator> {
325 using SimpleType = /*const*/ Value*;
327 static SimpleType getSimplifiedValue(User::const_op_iterator &Val) {
328 return Val->get();
332 } // end namespace llvm
334 #endif // LLVM_IR_USER_H