[Alignment][NFC] Migrate Instructions to Align
[llvm-core.git] / include / llvm / Analysis / LoopInfoImpl.h
blob2f38dde7b3af32ce1d8bfd29d1e216a5776f01a0
1 //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the generic implementation of LoopInfo used for both Loops and
10 // MachineLoops.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
15 #define LLVM_ANALYSIS_LOOPINFOIMPL_H
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/IR/Dominators.h"
24 namespace llvm {
26 //===----------------------------------------------------------------------===//
27 // APIs for simple analysis of the loop. See header notes.
29 /// getExitingBlocks - Return all blocks inside the loop that have successors
30 /// outside of the loop. These are the blocks _inside of the current loop_
31 /// which branch out. The returned list is always unique.
32 ///
33 template <class BlockT, class LoopT>
34 void LoopBase<BlockT, LoopT>::getExitingBlocks(
35 SmallVectorImpl<BlockT *> &ExitingBlocks) const {
36 assert(!isInvalid() && "Loop not in a valid state!");
37 for (const auto BB : blocks())
38 for (const auto &Succ : children<BlockT *>(BB))
39 if (!contains(Succ)) {
40 // Not in current loop? It must be an exit block.
41 ExitingBlocks.push_back(BB);
42 break;
46 /// getExitingBlock - If getExitingBlocks would return exactly one block,
47 /// return that block. Otherwise return null.
48 template <class BlockT, class LoopT>
49 BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
50 assert(!isInvalid() && "Loop not in a valid state!");
51 SmallVector<BlockT *, 8> ExitingBlocks;
52 getExitingBlocks(ExitingBlocks);
53 if (ExitingBlocks.size() == 1)
54 return ExitingBlocks[0];
55 return nullptr;
58 /// getExitBlocks - Return all of the successor blocks of this loop. These
59 /// are the blocks _outside of the current loop_ which are branched to.
60 ///
61 template <class BlockT, class LoopT>
62 void LoopBase<BlockT, LoopT>::getExitBlocks(
63 SmallVectorImpl<BlockT *> &ExitBlocks) const {
64 assert(!isInvalid() && "Loop not in a valid state!");
65 for (const auto BB : blocks())
66 for (const auto &Succ : children<BlockT *>(BB))
67 if (!contains(Succ))
68 // Not in current loop? It must be an exit block.
69 ExitBlocks.push_back(Succ);
72 /// getExitBlock - If getExitBlocks would return exactly one block,
73 /// return that block. Otherwise return null.
74 template <class BlockT, class LoopT>
75 BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
76 assert(!isInvalid() && "Loop not in a valid state!");
77 SmallVector<BlockT *, 8> ExitBlocks;
78 getExitBlocks(ExitBlocks);
79 if (ExitBlocks.size() == 1)
80 return ExitBlocks[0];
81 return nullptr;
84 template <class BlockT, class LoopT>
85 bool LoopBase<BlockT, LoopT>::hasDedicatedExits() const {
86 // Each predecessor of each exit block of a normal loop is contained
87 // within the loop.
88 SmallVector<BlockT *, 4> ExitBlocks;
89 getExitBlocks(ExitBlocks);
90 for (BlockT *EB : ExitBlocks)
91 for (BlockT *Predecessor : children<Inverse<BlockT *>>(EB))
92 if (!contains(Predecessor))
93 return false;
94 // All the requirements are met.
95 return true;
98 // Helper function to get unique loop exits. Pred is a predicate pointing to
99 // BasicBlocks in a loop which should be considered to find loop exits.
100 template <class BlockT, class LoopT, typename PredicateT>
101 void getUniqueExitBlocksHelper(const LoopT *L,
102 SmallVectorImpl<BlockT *> &ExitBlocks,
103 PredicateT Pred) {
104 assert(!L->isInvalid() && "Loop not in a valid state!");
105 SmallPtrSet<BlockT *, 32> Visited;
106 auto Filtered = make_filter_range(L->blocks(), Pred);
107 for (BlockT *BB : Filtered)
108 for (BlockT *Successor : children<BlockT *>(BB))
109 if (!L->contains(Successor))
110 if (Visited.insert(Successor).second)
111 ExitBlocks.push_back(Successor);
114 template <class BlockT, class LoopT>
115 void LoopBase<BlockT, LoopT>::getUniqueExitBlocks(
116 SmallVectorImpl<BlockT *> &ExitBlocks) const {
117 getUniqueExitBlocksHelper(this, ExitBlocks,
118 [](const BlockT *BB) { return true; });
121 template <class BlockT, class LoopT>
122 void LoopBase<BlockT, LoopT>::getUniqueNonLatchExitBlocks(
123 SmallVectorImpl<BlockT *> &ExitBlocks) const {
124 const BlockT *Latch = getLoopLatch();
125 assert(Latch && "Latch block must exists");
126 getUniqueExitBlocksHelper(this, ExitBlocks,
127 [Latch](const BlockT *BB) { return BB != Latch; });
130 template <class BlockT, class LoopT>
131 BlockT *LoopBase<BlockT, LoopT>::getUniqueExitBlock() const {
132 SmallVector<BlockT *, 8> UniqueExitBlocks;
133 getUniqueExitBlocks(UniqueExitBlocks);
134 if (UniqueExitBlocks.size() == 1)
135 return UniqueExitBlocks[0];
136 return nullptr;
139 /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
140 template <class BlockT, class LoopT>
141 void LoopBase<BlockT, LoopT>::getExitEdges(
142 SmallVectorImpl<Edge> &ExitEdges) const {
143 assert(!isInvalid() && "Loop not in a valid state!");
144 for (const auto BB : blocks())
145 for (const auto &Succ : children<BlockT *>(BB))
146 if (!contains(Succ))
147 // Not in current loop? It must be an exit block.
148 ExitEdges.emplace_back(BB, Succ);
151 /// getLoopPreheader - If there is a preheader for this loop, return it. A
152 /// loop has a preheader if there is only one edge to the header of the loop
153 /// from outside of the loop and it is legal to hoist instructions into the
154 /// predecessor. If this is the case, the block branching to the header of the
155 /// loop is the preheader node.
157 /// This method returns null if there is no preheader for the loop.
159 template <class BlockT, class LoopT>
160 BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
161 assert(!isInvalid() && "Loop not in a valid state!");
162 // Keep track of nodes outside the loop branching to the header...
163 BlockT *Out = getLoopPredecessor();
164 if (!Out)
165 return nullptr;
167 // Make sure we are allowed to hoist instructions into the predecessor.
168 if (!Out->isLegalToHoistInto())
169 return nullptr;
171 // Make sure there is only one exit out of the preheader.
172 typedef GraphTraits<BlockT *> BlockTraits;
173 typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
174 ++SI;
175 if (SI != BlockTraits::child_end(Out))
176 return nullptr; // Multiple exits from the block, must not be a preheader.
178 // The predecessor has exactly one successor, so it is a preheader.
179 return Out;
182 /// getLoopPredecessor - If the given loop's header has exactly one unique
183 /// predecessor outside the loop, return it. Otherwise return null.
184 /// This is less strict that the loop "preheader" concept, which requires
185 /// the predecessor to have exactly one successor.
187 template <class BlockT, class LoopT>
188 BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
189 assert(!isInvalid() && "Loop not in a valid state!");
190 // Keep track of nodes outside the loop branching to the header...
191 BlockT *Out = nullptr;
193 // Loop over the predecessors of the header node...
194 BlockT *Header = getHeader();
195 for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
196 if (!contains(Pred)) { // If the block is not in the loop...
197 if (Out && Out != Pred)
198 return nullptr; // Multiple predecessors outside the loop
199 Out = Pred;
203 return Out;
206 /// getLoopLatch - If there is a single latch block for this loop, return it.
207 /// A latch block is a block that contains a branch back to the header.
208 template <class BlockT, class LoopT>
209 BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
210 assert(!isInvalid() && "Loop not in a valid state!");
211 BlockT *Header = getHeader();
212 BlockT *Latch = nullptr;
213 for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
214 if (contains(Pred)) {
215 if (Latch)
216 return nullptr;
217 Latch = Pred;
221 return Latch;
224 //===----------------------------------------------------------------------===//
225 // APIs for updating loop information after changing the CFG
228 /// addBasicBlockToLoop - This method is used by other analyses to update loop
229 /// information. NewBB is set to be a new member of the current loop.
230 /// Because of this, it is added as a member of all parent loops, and is added
231 /// to the specified LoopInfo object as being in the current basic block. It
232 /// is not valid to replace the loop header with this method.
234 template <class BlockT, class LoopT>
235 void LoopBase<BlockT, LoopT>::addBasicBlockToLoop(
236 BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
237 assert(!isInvalid() && "Loop not in a valid state!");
238 #ifndef NDEBUG
239 if (!Blocks.empty()) {
240 auto SameHeader = LIB[getHeader()];
241 assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() &&
242 "Incorrect LI specified for this loop!");
244 #endif
245 assert(NewBB && "Cannot add a null basic block to the loop!");
246 assert(!LIB[NewBB] && "BasicBlock already in the loop!");
248 LoopT *L = static_cast<LoopT *>(this);
250 // Add the loop mapping to the LoopInfo object...
251 LIB.BBMap[NewBB] = L;
253 // Add the basic block to this loop and all parent loops...
254 while (L) {
255 L->addBlockEntry(NewBB);
256 L = L->getParentLoop();
260 /// replaceChildLoopWith - This is used when splitting loops up. It replaces
261 /// the OldChild entry in our children list with NewChild, and updates the
262 /// parent pointer of OldChild to be null and the NewChild to be this loop.
263 /// This updates the loop depth of the new child.
264 template <class BlockT, class LoopT>
265 void LoopBase<BlockT, LoopT>::replaceChildLoopWith(LoopT *OldChild,
266 LoopT *NewChild) {
267 assert(!isInvalid() && "Loop not in a valid state!");
268 assert(OldChild->ParentLoop == this && "This loop is already broken!");
269 assert(!NewChild->ParentLoop && "NewChild already has a parent!");
270 typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild);
271 assert(I != SubLoops.end() && "OldChild not in loop!");
272 *I = NewChild;
273 OldChild->ParentLoop = nullptr;
274 NewChild->ParentLoop = static_cast<LoopT *>(this);
277 /// verifyLoop - Verify loop structure
278 template <class BlockT, class LoopT>
279 void LoopBase<BlockT, LoopT>::verifyLoop() const {
280 assert(!isInvalid() && "Loop not in a valid state!");
281 #ifndef NDEBUG
282 assert(!Blocks.empty() && "Loop header is missing");
284 // Setup for using a depth-first iterator to visit every block in the loop.
285 SmallVector<BlockT *, 8> ExitBBs;
286 getExitBlocks(ExitBBs);
287 df_iterator_default_set<BlockT *> VisitSet;
288 VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
289 df_ext_iterator<BlockT *, df_iterator_default_set<BlockT *>>
290 BI = df_ext_begin(getHeader(), VisitSet),
291 BE = df_ext_end(getHeader(), VisitSet);
293 // Keep track of the BBs visited.
294 SmallPtrSet<BlockT *, 8> VisitedBBs;
296 // Check the individual blocks.
297 for (; BI != BE; ++BI) {
298 BlockT *BB = *BI;
300 assert(std::any_of(GraphTraits<BlockT *>::child_begin(BB),
301 GraphTraits<BlockT *>::child_end(BB),
302 [&](BlockT *B) { return contains(B); }) &&
303 "Loop block has no in-loop successors!");
305 assert(std::any_of(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
306 GraphTraits<Inverse<BlockT *>>::child_end(BB),
307 [&](BlockT *B) { return contains(B); }) &&
308 "Loop block has no in-loop predecessors!");
310 SmallVector<BlockT *, 2> OutsideLoopPreds;
311 std::for_each(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
312 GraphTraits<Inverse<BlockT *>>::child_end(BB),
313 [&](BlockT *B) {
314 if (!contains(B))
315 OutsideLoopPreds.push_back(B);
318 if (BB == getHeader()) {
319 assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
320 } else if (!OutsideLoopPreds.empty()) {
321 // A non-header loop shouldn't be reachable from outside the loop,
322 // though it is permitted if the predecessor is not itself actually
323 // reachable.
324 BlockT *EntryBB = &BB->getParent()->front();
325 for (BlockT *CB : depth_first(EntryBB))
326 for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
327 assert(CB != OutsideLoopPreds[i] &&
328 "Loop has multiple entry points!");
330 assert(BB != &getHeader()->getParent()->front() &&
331 "Loop contains function entry block!");
333 VisitedBBs.insert(BB);
336 if (VisitedBBs.size() != getNumBlocks()) {
337 dbgs() << "The following blocks are unreachable in the loop: ";
338 for (auto BB : Blocks) {
339 if (!VisitedBBs.count(BB)) {
340 dbgs() << *BB << "\n";
343 assert(false && "Unreachable block in loop");
346 // Check the subloops.
347 for (iterator I = begin(), E = end(); I != E; ++I)
348 // Each block in each subloop should be contained within this loop.
349 for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
350 BI != BE; ++BI) {
351 assert(contains(*BI) &&
352 "Loop does not contain all the blocks of a subloop!");
355 // Check the parent loop pointer.
356 if (ParentLoop) {
357 assert(is_contained(*ParentLoop, this) &&
358 "Loop is not a subloop of its parent!");
360 #endif
363 /// verifyLoop - Verify loop structure of this loop and all nested loops.
364 template <class BlockT, class LoopT>
365 void LoopBase<BlockT, LoopT>::verifyLoopNest(
366 DenseSet<const LoopT *> *Loops) const {
367 assert(!isInvalid() && "Loop not in a valid state!");
368 Loops->insert(static_cast<const LoopT *>(this));
369 // Verify this loop.
370 verifyLoop();
371 // Verify the subloops.
372 for (iterator I = begin(), E = end(); I != E; ++I)
373 (*I)->verifyLoopNest(Loops);
376 template <class BlockT, class LoopT>
377 void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth,
378 bool Verbose) const {
379 OS.indent(Depth * 2);
380 if (static_cast<const LoopT *>(this)->isAnnotatedParallel())
381 OS << "Parallel ";
382 OS << "Loop at depth " << getLoopDepth() << " containing: ";
384 BlockT *H = getHeader();
385 for (unsigned i = 0; i < getBlocks().size(); ++i) {
386 BlockT *BB = getBlocks()[i];
387 if (!Verbose) {
388 if (i)
389 OS << ",";
390 BB->printAsOperand(OS, false);
391 } else
392 OS << "\n";
394 if (BB == H)
395 OS << "<header>";
396 if (isLoopLatch(BB))
397 OS << "<latch>";
398 if (isLoopExiting(BB))
399 OS << "<exiting>";
400 if (Verbose)
401 BB->print(OS);
403 OS << "\n";
405 for (iterator I = begin(), E = end(); I != E; ++I)
406 (*I)->print(OS, Depth + 2);
409 //===----------------------------------------------------------------------===//
410 /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
411 /// result does / not depend on use list (block predecessor) order.
414 /// Discover a subloop with the specified backedges such that: All blocks within
415 /// this loop are mapped to this loop or a subloop. And all subloops within this
416 /// loop have their parent loop set to this loop or a subloop.
417 template <class BlockT, class LoopT>
418 static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT *> Backedges,
419 LoopInfoBase<BlockT, LoopT> *LI,
420 const DomTreeBase<BlockT> &DomTree) {
421 typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
423 unsigned NumBlocks = 0;
424 unsigned NumSubloops = 0;
426 // Perform a backward CFG traversal using a worklist.
427 std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
428 while (!ReverseCFGWorklist.empty()) {
429 BlockT *PredBB = ReverseCFGWorklist.back();
430 ReverseCFGWorklist.pop_back();
432 LoopT *Subloop = LI->getLoopFor(PredBB);
433 if (!Subloop) {
434 if (!DomTree.isReachableFromEntry(PredBB))
435 continue;
437 // This is an undiscovered block. Map it to the current loop.
438 LI->changeLoopFor(PredBB, L);
439 ++NumBlocks;
440 if (PredBB == L->getHeader())
441 continue;
442 // Push all block predecessors on the worklist.
443 ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
444 InvBlockTraits::child_begin(PredBB),
445 InvBlockTraits::child_end(PredBB));
446 } else {
447 // This is a discovered block. Find its outermost discovered loop.
448 while (LoopT *Parent = Subloop->getParentLoop())
449 Subloop = Parent;
451 // If it is already discovered to be a subloop of this loop, continue.
452 if (Subloop == L)
453 continue;
455 // Discover a subloop of this loop.
456 Subloop->setParentLoop(L);
457 ++NumSubloops;
458 NumBlocks += Subloop->getBlocksVector().capacity();
459 PredBB = Subloop->getHeader();
460 // Continue traversal along predecessors that are not loop-back edges from
461 // within this subloop tree itself. Note that a predecessor may directly
462 // reach another subloop that is not yet discovered to be a subloop of
463 // this loop, which we must traverse.
464 for (const auto Pred : children<Inverse<BlockT *>>(PredBB)) {
465 if (LI->getLoopFor(Pred) != Subloop)
466 ReverseCFGWorklist.push_back(Pred);
470 L->getSubLoopsVector().reserve(NumSubloops);
471 L->reserveBlocks(NumBlocks);
474 /// Populate all loop data in a stable order during a single forward DFS.
475 template <class BlockT, class LoopT> class PopulateLoopsDFS {
476 typedef GraphTraits<BlockT *> BlockTraits;
477 typedef typename BlockTraits::ChildIteratorType SuccIterTy;
479 LoopInfoBase<BlockT, LoopT> *LI;
481 public:
482 PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li) : LI(li) {}
484 void traverse(BlockT *EntryBlock);
486 protected:
487 void insertIntoLoop(BlockT *Block);
490 /// Top-level driver for the forward DFS within the loop.
491 template <class BlockT, class LoopT>
492 void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
493 for (BlockT *BB : post_order(EntryBlock))
494 insertIntoLoop(BB);
497 /// Add a single Block to its ancestor loops in PostOrder. If the block is a
498 /// subloop header, add the subloop to its parent in PostOrder, then reverse the
499 /// Block and Subloop vectors of the now complete subloop to achieve RPO.
500 template <class BlockT, class LoopT>
501 void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
502 LoopT *Subloop = LI->getLoopFor(Block);
503 if (Subloop && Block == Subloop->getHeader()) {
504 // We reach this point once per subloop after processing all the blocks in
505 // the subloop.
506 if (Subloop->getParentLoop())
507 Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
508 else
509 LI->addTopLevelLoop(Subloop);
511 // For convenience, Blocks and Subloops are inserted in postorder. Reverse
512 // the lists, except for the loop header, which is always at the beginning.
513 Subloop->reverseBlock(1);
514 std::reverse(Subloop->getSubLoopsVector().begin(),
515 Subloop->getSubLoopsVector().end());
517 Subloop = Subloop->getParentLoop();
519 for (; Subloop; Subloop = Subloop->getParentLoop())
520 Subloop->addBlockEntry(Block);
523 /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
524 /// interleaved with backward CFG traversals within each subloop
525 /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
526 /// this part of the algorithm is linear in the number of CFG edges. Subloop and
527 /// Block vectors are then populated during a single forward CFG traversal
528 /// (PopulateLoopDFS).
530 /// During the two CFG traversals each block is seen three times:
531 /// 1) Discovered and mapped by a reverse CFG traversal.
532 /// 2) Visited during a forward DFS CFG traversal.
533 /// 3) Reverse-inserted in the loop in postorder following forward DFS.
535 /// The Block vectors are inclusive, so step 3 requires loop-depth number of
536 /// insertions per block.
537 template <class BlockT, class LoopT>
538 void LoopInfoBase<BlockT, LoopT>::analyze(const DomTreeBase<BlockT> &DomTree) {
539 // Postorder traversal of the dominator tree.
540 const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode();
541 for (auto DomNode : post_order(DomRoot)) {
543 BlockT *Header = DomNode->getBlock();
544 SmallVector<BlockT *, 4> Backedges;
546 // Check each predecessor of the potential loop header.
547 for (const auto Backedge : children<Inverse<BlockT *>>(Header)) {
548 // If Header dominates predBB, this is a new loop. Collect the backedges.
549 if (DomTree.dominates(Header, Backedge) &&
550 DomTree.isReachableFromEntry(Backedge)) {
551 Backedges.push_back(Backedge);
554 // Perform a backward CFG traversal to discover and map blocks in this loop.
555 if (!Backedges.empty()) {
556 LoopT *L = AllocateLoop(Header);
557 discoverAndMapSubloop(L, ArrayRef<BlockT *>(Backedges), this, DomTree);
560 // Perform a single forward CFG traversal to populate block and subloop
561 // vectors for all loops.
562 PopulateLoopsDFS<BlockT, LoopT> DFS(this);
563 DFS.traverse(DomRoot->getBlock());
566 template <class BlockT, class LoopT>
567 SmallVector<LoopT *, 4> LoopInfoBase<BlockT, LoopT>::getLoopsInPreorder() {
568 SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
569 // The outer-most loop actually goes into the result in the same relative
570 // order as we walk it. But LoopInfo stores the top level loops in reverse
571 // program order so for here we reverse it to get forward program order.
572 // FIXME: If we change the order of LoopInfo we will want to remove the
573 // reverse here.
574 for (LoopT *RootL : reverse(*this)) {
575 auto PreOrderLoopsInRootL = RootL->getLoopsInPreorder();
576 PreOrderLoops.append(PreOrderLoopsInRootL.begin(),
577 PreOrderLoopsInRootL.end());
580 return PreOrderLoops;
583 template <class BlockT, class LoopT>
584 SmallVector<LoopT *, 4>
585 LoopInfoBase<BlockT, LoopT>::getLoopsInReverseSiblingPreorder() {
586 SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
587 // The outer-most loop actually goes into the result in the same relative
588 // order as we walk it. LoopInfo stores the top level loops in reverse
589 // program order so we walk in order here.
590 // FIXME: If we change the order of LoopInfo we will want to add a reverse
591 // here.
592 for (LoopT *RootL : *this) {
593 assert(PreOrderWorklist.empty() &&
594 "Must start with an empty preorder walk worklist.");
595 PreOrderWorklist.push_back(RootL);
596 do {
597 LoopT *L = PreOrderWorklist.pop_back_val();
598 // Sub-loops are stored in forward program order, but will process the
599 // worklist backwards so we can just append them in order.
600 PreOrderWorklist.append(L->begin(), L->end());
601 PreOrderLoops.push_back(L);
602 } while (!PreOrderWorklist.empty());
605 return PreOrderLoops;
608 // Debugging
609 template <class BlockT, class LoopT>
610 void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
611 for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
612 TopLevelLoops[i]->print(OS);
613 #if 0
614 for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
615 E = BBMap.end(); I != E; ++I)
616 OS << "BB '" << I->first->getName() << "' level = "
617 << I->second->getLoopDepth() << "\n";
618 #endif
621 template <typename T>
622 bool compareVectors(std::vector<T> &BB1, std::vector<T> &BB2) {
623 llvm::sort(BB1);
624 llvm::sort(BB2);
625 return BB1 == BB2;
628 template <class BlockT, class LoopT>
629 void addInnerLoopsToHeadersMap(DenseMap<BlockT *, const LoopT *> &LoopHeaders,
630 const LoopInfoBase<BlockT, LoopT> &LI,
631 const LoopT &L) {
632 LoopHeaders[L.getHeader()] = &L;
633 for (LoopT *SL : L)
634 addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL);
637 #ifndef NDEBUG
638 template <class BlockT, class LoopT>
639 static void compareLoops(const LoopT *L, const LoopT *OtherL,
640 DenseMap<BlockT *, const LoopT *> &OtherLoopHeaders) {
641 BlockT *H = L->getHeader();
642 BlockT *OtherH = OtherL->getHeader();
643 assert(H == OtherH &&
644 "Mismatched headers even though found in the same map entry!");
646 assert(L->getLoopDepth() == OtherL->getLoopDepth() &&
647 "Mismatched loop depth!");
648 const LoopT *ParentL = L, *OtherParentL = OtherL;
649 do {
650 assert(ParentL->getHeader() == OtherParentL->getHeader() &&
651 "Mismatched parent loop headers!");
652 ParentL = ParentL->getParentLoop();
653 OtherParentL = OtherParentL->getParentLoop();
654 } while (ParentL);
656 for (const LoopT *SubL : *L) {
657 BlockT *SubH = SubL->getHeader();
658 const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH);
659 assert(OtherSubL && "Inner loop is missing in computed loop info!");
660 OtherLoopHeaders.erase(SubH);
661 compareLoops(SubL, OtherSubL, OtherLoopHeaders);
664 std::vector<BlockT *> BBs = L->getBlocks();
665 std::vector<BlockT *> OtherBBs = OtherL->getBlocks();
666 assert(compareVectors(BBs, OtherBBs) &&
667 "Mismatched basic blocks in the loops!");
669 const SmallPtrSetImpl<const BlockT *> &BlocksSet = L->getBlocksSet();
670 const SmallPtrSetImpl<const BlockT *> &OtherBlocksSet = L->getBlocksSet();
671 assert(BlocksSet.size() == OtherBlocksSet.size() &&
672 std::all_of(BlocksSet.begin(), BlocksSet.end(),
673 [&OtherBlocksSet](const BlockT *BB) {
674 return OtherBlocksSet.count(BB);
675 }) &&
676 "Mismatched basic blocks in BlocksSets!");
678 #endif
680 template <class BlockT, class LoopT>
681 void LoopInfoBase<BlockT, LoopT>::verify(
682 const DomTreeBase<BlockT> &DomTree) const {
683 DenseSet<const LoopT *> Loops;
684 for (iterator I = begin(), E = end(); I != E; ++I) {
685 assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
686 (*I)->verifyLoopNest(&Loops);
689 // Verify that blocks are mapped to valid loops.
690 #ifndef NDEBUG
691 for (auto &Entry : BBMap) {
692 const BlockT *BB = Entry.first;
693 LoopT *L = Entry.second;
694 assert(Loops.count(L) && "orphaned loop");
695 assert(L->contains(BB) && "orphaned block");
696 for (LoopT *ChildLoop : *L)
697 assert(!ChildLoop->contains(BB) &&
698 "BBMap should point to the innermost loop containing BB");
701 // Recompute LoopInfo to verify loops structure.
702 LoopInfoBase<BlockT, LoopT> OtherLI;
703 OtherLI.analyze(DomTree);
705 // Build a map we can use to move from our LI to the computed one. This
706 // allows us to ignore the particular order in any layer of the loop forest
707 // while still comparing the structure.
708 DenseMap<BlockT *, const LoopT *> OtherLoopHeaders;
709 for (LoopT *L : OtherLI)
710 addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L);
712 // Walk the top level loops and ensure there is a corresponding top-level
713 // loop in the computed version and then recursively compare those loop
714 // nests.
715 for (LoopT *L : *this) {
716 BlockT *Header = L->getHeader();
717 const LoopT *OtherL = OtherLoopHeaders.lookup(Header);
718 assert(OtherL && "Top level loop is missing in computed loop info!");
719 // Now that we've matched this loop, erase its header from the map.
720 OtherLoopHeaders.erase(Header);
721 // And recursively compare these loops.
722 compareLoops(L, OtherL, OtherLoopHeaders);
725 // Any remaining entries in the map are loops which were found when computing
726 // a fresh LoopInfo but not present in the current one.
727 if (!OtherLoopHeaders.empty()) {
728 for (const auto &HeaderAndLoop : OtherLoopHeaders)
729 dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n";
730 llvm_unreachable("Found new loops when recomputing LoopInfo!");
732 #endif
735 } // End llvm namespace
737 #endif