[Alignment][NFC] Migrate Instructions to Align
[llvm-core.git] / include / llvm / CodeGen / FastISel.h
blob03d681feb7aa9ea450a437ed019267e43ac02c9c
1 //===- FastISel.h - Definition of the FastISel class ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines the FastISel class.
11 ///
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_CODEGEN_FASTISEL_H
15 #define LLVM_CODEGEN_FASTISEL_H
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/CallSite.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/DebugLoc.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/Support/MachineValueType.h"
30 #include <algorithm>
31 #include <cstdint>
32 #include <utility>
34 namespace llvm {
36 class AllocaInst;
37 class BasicBlock;
38 class CallInst;
39 class Constant;
40 class ConstantFP;
41 class DataLayout;
42 class FunctionLoweringInfo;
43 class LoadInst;
44 class MachineConstantPool;
45 class MachineFrameInfo;
46 class MachineFunction;
47 class MachineInstr;
48 class MachineMemOperand;
49 class MachineOperand;
50 class MachineRegisterInfo;
51 class MCContext;
52 class MCInstrDesc;
53 class MCSymbol;
54 class TargetInstrInfo;
55 class TargetLibraryInfo;
56 class TargetMachine;
57 class TargetRegisterClass;
58 class TargetRegisterInfo;
59 class Type;
60 class User;
61 class Value;
63 /// This is a fast-path instruction selection class that generates poor
64 /// code and doesn't support illegal types or non-trivial lowering, but runs
65 /// quickly.
66 class FastISel {
67 public:
68 using ArgListEntry = TargetLoweringBase::ArgListEntry;
69 using ArgListTy = TargetLoweringBase::ArgListTy;
70 struct CallLoweringInfo {
71 Type *RetTy = nullptr;
72 bool RetSExt : 1;
73 bool RetZExt : 1;
74 bool IsVarArg : 1;
75 bool IsInReg : 1;
76 bool DoesNotReturn : 1;
77 bool IsReturnValueUsed : 1;
78 bool IsPatchPoint : 1;
80 // IsTailCall Should be modified by implementations of FastLowerCall
81 // that perform tail call conversions.
82 bool IsTailCall = false;
84 unsigned NumFixedArgs = -1;
85 CallingConv::ID CallConv = CallingConv::C;
86 const Value *Callee = nullptr;
87 MCSymbol *Symbol = nullptr;
88 ArgListTy Args;
89 ImmutableCallSite *CS = nullptr;
90 MachineInstr *Call = nullptr;
91 unsigned ResultReg = 0;
92 unsigned NumResultRegs = 0;
94 SmallVector<Value *, 16> OutVals;
95 SmallVector<ISD::ArgFlagsTy, 16> OutFlags;
96 SmallVector<Register, 16> OutRegs;
97 SmallVector<ISD::InputArg, 4> Ins;
98 SmallVector<Register, 4> InRegs;
100 CallLoweringInfo()
101 : RetSExt(false), RetZExt(false), IsVarArg(false), IsInReg(false),
102 DoesNotReturn(false), IsReturnValueUsed(true), IsPatchPoint(false) {}
104 CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
105 const Value *Target, ArgListTy &&ArgsList,
106 ImmutableCallSite &Call) {
107 RetTy = ResultTy;
108 Callee = Target;
110 IsInReg = Call.hasRetAttr(Attribute::InReg);
111 DoesNotReturn = Call.doesNotReturn();
112 IsVarArg = FuncTy->isVarArg();
113 IsReturnValueUsed = !Call.getInstruction()->use_empty();
114 RetSExt = Call.hasRetAttr(Attribute::SExt);
115 RetZExt = Call.hasRetAttr(Attribute::ZExt);
117 CallConv = Call.getCallingConv();
118 Args = std::move(ArgsList);
119 NumFixedArgs = FuncTy->getNumParams();
121 CS = &Call;
123 return *this;
126 CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
127 MCSymbol *Target, ArgListTy &&ArgsList,
128 ImmutableCallSite &Call,
129 unsigned FixedArgs = ~0U) {
130 RetTy = ResultTy;
131 Callee = Call.getCalledValue();
132 Symbol = Target;
134 IsInReg = Call.hasRetAttr(Attribute::InReg);
135 DoesNotReturn = Call.doesNotReturn();
136 IsVarArg = FuncTy->isVarArg();
137 IsReturnValueUsed = !Call.getInstruction()->use_empty();
138 RetSExt = Call.hasRetAttr(Attribute::SExt);
139 RetZExt = Call.hasRetAttr(Attribute::ZExt);
141 CallConv = Call.getCallingConv();
142 Args = std::move(ArgsList);
143 NumFixedArgs = (FixedArgs == ~0U) ? FuncTy->getNumParams() : FixedArgs;
145 CS = &Call;
147 return *this;
150 CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
151 const Value *Target, ArgListTy &&ArgsList,
152 unsigned FixedArgs = ~0U) {
153 RetTy = ResultTy;
154 Callee = Target;
155 CallConv = CC;
156 Args = std::move(ArgsList);
157 NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
158 return *this;
161 CallLoweringInfo &setCallee(const DataLayout &DL, MCContext &Ctx,
162 CallingConv::ID CC, Type *ResultTy,
163 StringRef Target, ArgListTy &&ArgsList,
164 unsigned FixedArgs = ~0U);
166 CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
167 MCSymbol *Target, ArgListTy &&ArgsList,
168 unsigned FixedArgs = ~0U) {
169 RetTy = ResultTy;
170 Symbol = Target;
171 CallConv = CC;
172 Args = std::move(ArgsList);
173 NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
174 return *this;
177 CallLoweringInfo &setTailCall(bool Value = true) {
178 IsTailCall = Value;
179 return *this;
182 CallLoweringInfo &setIsPatchPoint(bool Value = true) {
183 IsPatchPoint = Value;
184 return *this;
187 ArgListTy &getArgs() { return Args; }
189 void clearOuts() {
190 OutVals.clear();
191 OutFlags.clear();
192 OutRegs.clear();
195 void clearIns() {
196 Ins.clear();
197 InRegs.clear();
201 protected:
202 DenseMap<const Value *, unsigned> LocalValueMap;
203 FunctionLoweringInfo &FuncInfo;
204 MachineFunction *MF;
205 MachineRegisterInfo &MRI;
206 MachineFrameInfo &MFI;
207 MachineConstantPool &MCP;
208 DebugLoc DbgLoc;
209 const TargetMachine &TM;
210 const DataLayout &DL;
211 const TargetInstrInfo &TII;
212 const TargetLowering &TLI;
213 const TargetRegisterInfo &TRI;
214 const TargetLibraryInfo *LibInfo;
215 bool SkipTargetIndependentISel;
217 /// The position of the last instruction for materializing constants
218 /// for use in the current block. It resets to EmitStartPt when it makes sense
219 /// (for example, it's usually profitable to avoid function calls between the
220 /// definition and the use)
221 MachineInstr *LastLocalValue;
223 /// The top most instruction in the current block that is allowed for
224 /// emitting local variables. LastLocalValue resets to EmitStartPt when it
225 /// makes sense (for example, on function calls)
226 MachineInstr *EmitStartPt;
228 /// Last local value flush point. On a subsequent flush, no local value will
229 /// sink past this point.
230 MachineBasicBlock::iterator LastFlushPoint;
232 public:
233 virtual ~FastISel();
235 /// Return the position of the last instruction emitted for
236 /// materializing constants for use in the current block.
237 MachineInstr *getLastLocalValue() { return LastLocalValue; }
239 /// Update the position of the last instruction emitted for
240 /// materializing constants for use in the current block.
241 void setLastLocalValue(MachineInstr *I) {
242 EmitStartPt = I;
243 LastLocalValue = I;
246 /// Set the current block to which generated machine instructions will
247 /// be appended.
248 void startNewBlock();
250 /// Flush the local value map and sink local values if possible.
251 void finishBasicBlock();
253 /// Return current debug location information.
254 DebugLoc getCurDebugLoc() const { return DbgLoc; }
256 /// Do "fast" instruction selection for function arguments and append
257 /// the machine instructions to the current block. Returns true when
258 /// successful.
259 bool lowerArguments();
261 /// Do "fast" instruction selection for the given LLVM IR instruction
262 /// and append the generated machine instructions to the current block.
263 /// Returns true if selection was successful.
264 bool selectInstruction(const Instruction *I);
266 /// Do "fast" instruction selection for the given LLVM IR operator
267 /// (Instruction or ConstantExpr), and append generated machine instructions
268 /// to the current block. Return true if selection was successful.
269 bool selectOperator(const User *I, unsigned Opcode);
271 /// Create a virtual register and arrange for it to be assigned the
272 /// value for the given LLVM value.
273 unsigned getRegForValue(const Value *V);
275 /// Look up the value to see if its value is already cached in a
276 /// register. It may be defined by instructions across blocks or defined
277 /// locally.
278 unsigned lookUpRegForValue(const Value *V);
280 /// This is a wrapper around getRegForValue that also takes care of
281 /// truncating or sign-extending the given getelementptr index value.
282 std::pair<unsigned, bool> getRegForGEPIndex(const Value *Idx);
284 /// We're checking to see if we can fold \p LI into \p FoldInst. Note
285 /// that we could have a sequence where multiple LLVM IR instructions are
286 /// folded into the same machineinstr. For example we could have:
288 /// A: x = load i32 *P
289 /// B: y = icmp A, 42
290 /// C: br y, ...
292 /// In this scenario, \p LI is "A", and \p FoldInst is "C". We know about "B"
293 /// (and any other folded instructions) because it is between A and C.
295 /// If we succeed folding, return true.
296 bool tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst);
298 /// The specified machine instr operand is a vreg, and that vreg is
299 /// being provided by the specified load instruction. If possible, try to
300 /// fold the load as an operand to the instruction, returning true if
301 /// possible.
303 /// This method should be implemented by targets.
304 virtual bool tryToFoldLoadIntoMI(MachineInstr * /*MI*/, unsigned /*OpNo*/,
305 const LoadInst * /*LI*/) {
306 return false;
309 /// Reset InsertPt to prepare for inserting instructions into the
310 /// current block.
311 void recomputeInsertPt();
313 /// Remove all dead instructions between the I and E.
314 void removeDeadCode(MachineBasicBlock::iterator I,
315 MachineBasicBlock::iterator E);
317 struct SavePoint {
318 MachineBasicBlock::iterator InsertPt;
319 DebugLoc DL;
322 /// Prepare InsertPt to begin inserting instructions into the local
323 /// value area and return the old insert position.
324 SavePoint enterLocalValueArea();
326 /// Reset InsertPt to the given old insert position.
327 void leaveLocalValueArea(SavePoint Old);
329 protected:
330 explicit FastISel(FunctionLoweringInfo &FuncInfo,
331 const TargetLibraryInfo *LibInfo,
332 bool SkipTargetIndependentISel = false);
334 /// This method is called by target-independent code when the normal
335 /// FastISel process fails to select an instruction. This gives targets a
336 /// chance to emit code for anything that doesn't fit into FastISel's
337 /// framework. It returns true if it was successful.
338 virtual bool fastSelectInstruction(const Instruction *I) = 0;
340 /// This method is called by target-independent code to do target-
341 /// specific argument lowering. It returns true if it was successful.
342 virtual bool fastLowerArguments();
344 /// This method is called by target-independent code to do target-
345 /// specific call lowering. It returns true if it was successful.
346 virtual bool fastLowerCall(CallLoweringInfo &CLI);
348 /// This method is called by target-independent code to do target-
349 /// specific intrinsic lowering. It returns true if it was successful.
350 virtual bool fastLowerIntrinsicCall(const IntrinsicInst *II);
352 /// This method is called by target-independent code to request that an
353 /// instruction with the given type and opcode be emitted.
354 virtual unsigned fastEmit_(MVT VT, MVT RetVT, unsigned Opcode);
356 /// This method is called by target-independent code to request that an
357 /// instruction with the given type, opcode, and register operand be emitted.
358 virtual unsigned fastEmit_r(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
359 bool Op0IsKill);
361 /// This method is called by target-independent code to request that an
362 /// instruction with the given type, opcode, and register operands be emitted.
363 virtual unsigned fastEmit_rr(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
364 bool Op0IsKill, unsigned Op1, bool Op1IsKill);
366 /// This method is called by target-independent code to request that an
367 /// instruction with the given type, opcode, and register and immediate
368 /// operands be emitted.
369 virtual unsigned fastEmit_ri(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
370 bool Op0IsKill, uint64_t Imm);
372 /// This method is a wrapper of fastEmit_ri.
374 /// It first tries to emit an instruction with an immediate operand using
375 /// fastEmit_ri. If that fails, it materializes the immediate into a register
376 /// and try fastEmit_rr instead.
377 unsigned fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, bool Op0IsKill,
378 uint64_t Imm, MVT ImmType);
380 /// This method is called by target-independent code to request that an
381 /// instruction with the given type, opcode, and immediate operand be emitted.
382 virtual unsigned fastEmit_i(MVT VT, MVT RetVT, unsigned Opcode, uint64_t Imm);
384 /// This method is called by target-independent code to request that an
385 /// instruction with the given type, opcode, and floating-point immediate
386 /// operand be emitted.
387 virtual unsigned fastEmit_f(MVT VT, MVT RetVT, unsigned Opcode,
388 const ConstantFP *FPImm);
390 /// Emit a MachineInstr with no operands and a result register in the
391 /// given register class.
392 unsigned fastEmitInst_(unsigned MachineInstOpcode,
393 const TargetRegisterClass *RC);
395 /// Emit a MachineInstr with one register operand and a result register
396 /// in the given register class.
397 unsigned fastEmitInst_r(unsigned MachineInstOpcode,
398 const TargetRegisterClass *RC, unsigned Op0,
399 bool Op0IsKill);
401 /// Emit a MachineInstr with two register operands and a result
402 /// register in the given register class.
403 unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
404 const TargetRegisterClass *RC, unsigned Op0,
405 bool Op0IsKill, unsigned Op1, bool Op1IsKill);
407 /// Emit a MachineInstr with three register operands and a result
408 /// register in the given register class.
409 unsigned fastEmitInst_rrr(unsigned MachineInstOpcode,
410 const TargetRegisterClass *RC, unsigned Op0,
411 bool Op0IsKill, unsigned Op1, bool Op1IsKill,
412 unsigned Op2, bool Op2IsKill);
414 /// Emit a MachineInstr with a register operand, an immediate, and a
415 /// result register in the given register class.
416 unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
417 const TargetRegisterClass *RC, unsigned Op0,
418 bool Op0IsKill, uint64_t Imm);
420 /// Emit a MachineInstr with one register operand and two immediate
421 /// operands.
422 unsigned fastEmitInst_rii(unsigned MachineInstOpcode,
423 const TargetRegisterClass *RC, unsigned Op0,
424 bool Op0IsKill, uint64_t Imm1, uint64_t Imm2);
426 /// Emit a MachineInstr with a floating point immediate, and a result
427 /// register in the given register class.
428 unsigned fastEmitInst_f(unsigned MachineInstOpcode,
429 const TargetRegisterClass *RC,
430 const ConstantFP *FPImm);
432 /// Emit a MachineInstr with two register operands, an immediate, and a
433 /// result register in the given register class.
434 unsigned fastEmitInst_rri(unsigned MachineInstOpcode,
435 const TargetRegisterClass *RC, unsigned Op0,
436 bool Op0IsKill, unsigned Op1, bool Op1IsKill,
437 uint64_t Imm);
439 /// Emit a MachineInstr with a single immediate operand, and a result
440 /// register in the given register class.
441 unsigned fastEmitInst_i(unsigned MachineInstOpcode,
442 const TargetRegisterClass *RC, uint64_t Imm);
444 /// Emit a MachineInstr for an extract_subreg from a specified index of
445 /// a superregister to a specified type.
446 unsigned fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, bool Op0IsKill,
447 uint32_t Idx);
449 /// Emit MachineInstrs to compute the value of Op with all but the
450 /// least significant bit set to zero.
451 unsigned fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill);
453 /// Emit an unconditional branch to the given block, unless it is the
454 /// immediate (fall-through) successor, and update the CFG.
455 void fastEmitBranch(MachineBasicBlock *MSucc, const DebugLoc &DbgLoc);
457 /// Emit an unconditional branch to \p FalseMBB, obtains the branch weight
458 /// and adds TrueMBB and FalseMBB to the successor list.
459 void finishCondBranch(const BasicBlock *BranchBB, MachineBasicBlock *TrueMBB,
460 MachineBasicBlock *FalseMBB);
462 /// Update the value map to include the new mapping for this
463 /// instruction, or insert an extra copy to get the result in a previous
464 /// determined register.
466 /// NOTE: This is only necessary because we might select a block that uses a
467 /// value before we select the block that defines the value. It might be
468 /// possible to fix this by selecting blocks in reverse postorder.
469 void updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs = 1);
471 unsigned createResultReg(const TargetRegisterClass *RC);
473 /// Try to constrain Op so that it is usable by argument OpNum of the
474 /// provided MCInstrDesc. If this fails, create a new virtual register in the
475 /// correct class and COPY the value there.
476 unsigned constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
477 unsigned OpNum);
479 /// Emit a constant in a register using target-specific logic, such as
480 /// constant pool loads.
481 virtual unsigned fastMaterializeConstant(const Constant *C) { return 0; }
483 /// Emit an alloca address in a register using target-specific logic.
484 virtual unsigned fastMaterializeAlloca(const AllocaInst *C) { return 0; }
486 /// Emit the floating-point constant +0.0 in a register using target-
487 /// specific logic.
488 virtual unsigned fastMaterializeFloatZero(const ConstantFP *CF) {
489 return 0;
492 /// Check if \c Add is an add that can be safely folded into \c GEP.
494 /// \c Add can be folded into \c GEP if:
495 /// - \c Add is an add,
496 /// - \c Add's size matches \c GEP's,
497 /// - \c Add is in the same basic block as \c GEP, and
498 /// - \c Add has a constant operand.
499 bool canFoldAddIntoGEP(const User *GEP, const Value *Add);
501 /// Test whether the given value has exactly one use.
502 bool hasTrivialKill(const Value *V);
504 /// Create a machine mem operand from the given instruction.
505 MachineMemOperand *createMachineMemOperandFor(const Instruction *I) const;
507 CmpInst::Predicate optimizeCmpPredicate(const CmpInst *CI) const;
509 bool lowerCallTo(const CallInst *CI, MCSymbol *Symbol, unsigned NumArgs);
510 bool lowerCallTo(const CallInst *CI, const char *SymName,
511 unsigned NumArgs);
512 bool lowerCallTo(CallLoweringInfo &CLI);
514 bool isCommutativeIntrinsic(IntrinsicInst const *II) {
515 switch (II->getIntrinsicID()) {
516 case Intrinsic::sadd_with_overflow:
517 case Intrinsic::uadd_with_overflow:
518 case Intrinsic::smul_with_overflow:
519 case Intrinsic::umul_with_overflow:
520 return true;
521 default:
522 return false;
526 bool lowerCall(const CallInst *I);
527 /// Select and emit code for a binary operator instruction, which has
528 /// an opcode which directly corresponds to the given ISD opcode.
529 bool selectBinaryOp(const User *I, unsigned ISDOpcode);
530 bool selectFNeg(const User *I, const Value *In);
531 bool selectGetElementPtr(const User *I);
532 bool selectStackmap(const CallInst *I);
533 bool selectPatchpoint(const CallInst *I);
534 bool selectCall(const User *I);
535 bool selectIntrinsicCall(const IntrinsicInst *II);
536 bool selectBitCast(const User *I);
537 bool selectCast(const User *I, unsigned Opcode);
538 bool selectExtractValue(const User *U);
539 bool selectInsertValue(const User *I);
540 bool selectXRayCustomEvent(const CallInst *II);
541 bool selectXRayTypedEvent(const CallInst *II);
543 private:
544 /// Handle PHI nodes in successor blocks.
546 /// Emit code to ensure constants are copied into registers when needed.
547 /// Remember the virtual registers that need to be added to the Machine PHI
548 /// nodes as input. We cannot just directly add them, because expansion might
549 /// result in multiple MBB's for one BB. As such, the start of the BB might
550 /// correspond to a different MBB than the end.
551 bool handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
553 /// Helper for materializeRegForValue to materialize a constant in a
554 /// target-independent way.
555 unsigned materializeConstant(const Value *V, MVT VT);
557 /// Helper for getRegForVale. This function is called when the value
558 /// isn't already available in a register and must be materialized with new
559 /// instructions.
560 unsigned materializeRegForValue(const Value *V, MVT VT);
562 /// Clears LocalValueMap and moves the area for the new local variables
563 /// to the beginning of the block. It helps to avoid spilling cached variables
564 /// across heavy instructions like calls.
565 void flushLocalValueMap();
567 /// Removes dead local value instructions after SavedLastLocalvalue.
568 void removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue);
570 struct InstOrderMap {
571 DenseMap<MachineInstr *, unsigned> Orders;
572 MachineInstr *FirstTerminator = nullptr;
573 unsigned FirstTerminatorOrder = std::numeric_limits<unsigned>::max();
575 void initialize(MachineBasicBlock *MBB,
576 MachineBasicBlock::iterator LastFlushPoint);
579 /// Sinks the local value materialization instruction LocalMI to its first use
580 /// in the basic block, or deletes it if it is not used.
581 void sinkLocalValueMaterialization(MachineInstr &LocalMI, unsigned DefReg,
582 InstOrderMap &OrderMap);
584 /// Insertion point before trying to select the current instruction.
585 MachineBasicBlock::iterator SavedInsertPt;
587 /// Add a stackmap or patchpoint intrinsic call's live variable
588 /// operands to a stackmap or patchpoint machine instruction.
589 bool addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
590 const CallInst *CI, unsigned StartIdx);
591 bool lowerCallOperands(const CallInst *CI, unsigned ArgIdx, unsigned NumArgs,
592 const Value *Callee, bool ForceRetVoidTy,
593 CallLoweringInfo &CLI);
596 } // end namespace llvm
598 #endif // LLVM_CODEGEN_FASTISEL_H