1 //===- LiveRangeEdit.h - Basic tools for split and spill --------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // The LiveRangeEdit class represents changes done to a virtual register when it
10 // is spilled or split.
12 // The parent register is never changed. Instead, a number of new virtual
13 // registers are created and added to the newRegs vector.
15 //===----------------------------------------------------------------------===//
17 #ifndef LLVM_CODEGEN_LIVERANGEEDIT_H
18 #define LLVM_CODEGEN_LIVERANGEEDIT_H
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/CodeGen/LiveInterval.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 class MachineBlockFrequencyInfo
;
39 class MachineLoopInfo
;
41 class TargetInstrInfo
;
42 class TargetRegisterInfo
;
45 class LiveRangeEdit
: private MachineRegisterInfo::Delegate
{
47 /// Callback methods for LiveRangeEdit owners.
49 virtual void anchor();
52 virtual ~Delegate() = default;
54 /// Called immediately before erasing a dead machine instruction.
55 virtual void LRE_WillEraseInstruction(MachineInstr
*MI
) {}
57 /// Called when a virtual register is no longer used. Return false to defer
58 /// its deletion from LiveIntervals.
59 virtual bool LRE_CanEraseVirtReg(unsigned) { return true; }
61 /// Called before shrinking the live range of a virtual register.
62 virtual void LRE_WillShrinkVirtReg(unsigned) {}
64 /// Called after cloning a virtual register.
65 /// This is used for new registers representing connected components of Old.
66 virtual void LRE_DidCloneVirtReg(unsigned New
, unsigned Old
) {}
71 SmallVectorImpl
<unsigned> &NewRegs
;
72 MachineRegisterInfo
&MRI
;
75 const TargetInstrInfo
&TII
;
76 Delegate
*const TheDelegate
;
78 /// FirstNew - Index of the first register added to NewRegs.
79 const unsigned FirstNew
;
81 /// ScannedRemattable - true when remattable values have been identified.
82 bool ScannedRemattable
= false;
84 /// DeadRemats - The saved instructions which have already been dead after
85 /// rematerialization but not deleted yet -- to be done in postOptimization.
86 SmallPtrSet
<MachineInstr
*, 32> *DeadRemats
;
88 /// Remattable - Values defined by remattable instructions as identified by
89 /// tii.isTriviallyReMaterializable().
90 SmallPtrSet
<const VNInfo
*, 4> Remattable
;
92 /// Rematted - Values that were actually rematted, and so need to have their
93 /// live range trimmed or entirely removed.
94 SmallPtrSet
<const VNInfo
*, 4> Rematted
;
96 /// scanRemattable - Identify the Parent values that may rematerialize.
97 void scanRemattable(AliasAnalysis
*aa
);
99 /// allUsesAvailableAt - Return true if all registers used by OrigMI at
100 /// OrigIdx are also available with the same value at UseIdx.
101 bool allUsesAvailableAt(const MachineInstr
*OrigMI
, SlotIndex OrigIdx
,
102 SlotIndex UseIdx
) const;
104 /// foldAsLoad - If LI has a single use and a single def that can be folded as
105 /// a load, eliminate the register by folding the def into the use.
106 bool foldAsLoad(LiveInterval
*LI
, SmallVectorImpl
<MachineInstr
*> &Dead
);
108 using ToShrinkSet
= SetVector
<LiveInterval
*, SmallVector
<LiveInterval
*, 8>,
109 SmallPtrSet
<LiveInterval
*, 8>>;
111 /// Helper for eliminateDeadDefs.
112 void eliminateDeadDef(MachineInstr
*MI
, ToShrinkSet
&ToShrink
,
115 /// MachineRegisterInfo callback to notify when new virtual
116 /// registers are created.
117 void MRI_NoteNewVirtualRegister(unsigned VReg
) override
;
119 /// Check if MachineOperand \p MO is a last use/kill either in the
120 /// main live range of \p LI or in one of the matching subregister ranges.
121 bool useIsKill(const LiveInterval
&LI
, const MachineOperand
&MO
) const;
123 /// Create a new empty interval based on OldReg.
124 LiveInterval
&createEmptyIntervalFrom(unsigned OldReg
, bool createSubRanges
);
127 /// Create a LiveRangeEdit for breaking down parent into smaller pieces.
128 /// @param parent The register being spilled or split.
129 /// @param newRegs List to receive any new registers created. This needn't be
130 /// empty initially, any existing registers are ignored.
131 /// @param MF The MachineFunction the live range edit is taking place in.
132 /// @param lis The collection of all live intervals in this function.
133 /// @param vrm Map of virtual registers to physical registers for this
134 /// function. If NULL, no virtual register map updates will
135 /// be done. This could be the case if called before Regalloc.
136 /// @param deadRemats The collection of all the instructions defining an
137 /// original reg and are dead after remat.
138 LiveRangeEdit(LiveInterval
*parent
, SmallVectorImpl
<unsigned> &newRegs
,
139 MachineFunction
&MF
, LiveIntervals
&lis
, VirtRegMap
*vrm
,
140 Delegate
*delegate
= nullptr,
141 SmallPtrSet
<MachineInstr
*, 32> *deadRemats
= nullptr)
142 : Parent(parent
), NewRegs(newRegs
), MRI(MF
.getRegInfo()), LIS(lis
),
143 VRM(vrm
), TII(*MF
.getSubtarget().getInstrInfo()), TheDelegate(delegate
),
144 FirstNew(newRegs
.size()), DeadRemats(deadRemats
) {
145 MRI
.setDelegate(this);
148 ~LiveRangeEdit() override
{ MRI
.resetDelegate(this); }
150 LiveInterval
&getParent() const {
151 assert(Parent
&& "No parent LiveInterval");
155 unsigned getReg() const { return getParent().reg
; }
157 /// Iterator for accessing the new registers added by this edit.
158 using iterator
= SmallVectorImpl
<unsigned>::const_iterator
;
159 iterator
begin() const { return NewRegs
.begin() + FirstNew
; }
160 iterator
end() const { return NewRegs
.end(); }
161 unsigned size() const { return NewRegs
.size() - FirstNew
; }
162 bool empty() const { return size() == 0; }
163 unsigned get(unsigned idx
) const { return NewRegs
[idx
+ FirstNew
]; }
165 /// pop_back - It allows LiveRangeEdit users to drop new registers.
166 /// The context is when an original def instruction of a register is
167 /// dead after rematerialization, we still want to keep it for following
168 /// rematerializations. We save the def instruction in DeadRemats,
169 /// and replace the original dst register with a new dummy register so
170 /// the live range of original dst register can be shrinked normally.
171 /// We don't want to allocate phys register for the dummy register, so
172 /// we want to drop it from the NewRegs set.
173 void pop_back() { NewRegs
.pop_back(); }
175 ArrayRef
<unsigned> regs() const {
176 return makeArrayRef(NewRegs
).slice(FirstNew
);
179 /// createFrom - Create a new virtual register based on OldReg.
180 unsigned createFrom(unsigned OldReg
);
182 /// create - Create a new register with the same class and original slot as
184 LiveInterval
&createEmptyInterval() {
185 return createEmptyIntervalFrom(getReg(), true);
188 unsigned create() { return createFrom(getReg()); }
190 /// anyRematerializable - Return true if any parent values may be
191 /// rematerializable.
192 /// This function must be called before any rematerialization is attempted.
193 bool anyRematerializable(AliasAnalysis
*);
195 /// checkRematerializable - Manually add VNI to the list of rematerializable
196 /// values if DefMI may be rematerializable.
197 bool checkRematerializable(VNInfo
*VNI
, const MachineInstr
*DefMI
,
200 /// Remat - Information needed to rematerialize at a specific location.
202 VNInfo
*ParentVNI
; // parent_'s value at the remat location.
203 MachineInstr
*OrigMI
= nullptr; // Instruction defining OrigVNI. It contains
204 // the real expr for remat.
206 explicit Remat(VNInfo
*ParentVNI
) : ParentVNI(ParentVNI
) {}
209 /// canRematerializeAt - Determine if ParentVNI can be rematerialized at
210 /// UseIdx. It is assumed that parent_.getVNINfoAt(UseIdx) == ParentVNI.
211 /// When cheapAsAMove is set, only cheap remats are allowed.
212 bool canRematerializeAt(Remat
&RM
, VNInfo
*OrigVNI
, SlotIndex UseIdx
,
215 /// rematerializeAt - Rematerialize RM.ParentVNI into DestReg by inserting an
216 /// instruction into MBB before MI. The new instruction is mapped, but
217 /// liveness is not updated.
218 /// Return the SlotIndex of the new instruction.
219 SlotIndex
rematerializeAt(MachineBasicBlock
&MBB
,
220 MachineBasicBlock::iterator MI
, unsigned DestReg
,
221 const Remat
&RM
, const TargetRegisterInfo
&,
224 /// markRematerialized - explicitly mark a value as rematerialized after doing
226 void markRematerialized(const VNInfo
*ParentVNI
) {
227 Rematted
.insert(ParentVNI
);
230 /// didRematerialize - Return true if ParentVNI was rematerialized anywhere.
231 bool didRematerialize(const VNInfo
*ParentVNI
) const {
232 return Rematted
.count(ParentVNI
);
235 /// eraseVirtReg - Notify the delegate that Reg is no longer in use, and try
236 /// to erase it from LIS.
237 void eraseVirtReg(unsigned Reg
);
239 /// eliminateDeadDefs - Try to delete machine instructions that are now dead
240 /// (allDefsAreDead returns true). This may cause live intervals to be trimmed
241 /// and further dead efs to be eliminated.
242 /// RegsBeingSpilled lists registers currently being spilled by the register
243 /// allocator. These registers should not be split into new intervals
244 /// as currently those new intervals are not guaranteed to spill.
245 void eliminateDeadDefs(SmallVectorImpl
<MachineInstr
*> &Dead
,
246 ArrayRef
<unsigned> RegsBeingSpilled
= None
,
247 AliasAnalysis
*AA
= nullptr);
249 /// calculateRegClassAndHint - Recompute register class and hint for each new
251 void calculateRegClassAndHint(MachineFunction
&, const MachineLoopInfo
&,
252 const MachineBlockFrequencyInfo
&);
255 } // end namespace llvm
257 #endif // LLVM_CODEGEN_LIVERANGEEDIT_H