1 //===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Collect the sequence of machine instructions for a basic block.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
14 #define LLVM_CODEGEN_MACHINEBASICBLOCK_H
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/ADT/ilist.h"
18 #include "llvm/ADT/ilist_node.h"
19 #include "llvm/ADT/iterator_range.h"
20 #include "llvm/ADT/simple_ilist.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
23 #include "llvm/IR/DebugLoc.h"
24 #include "llvm/MC/LaneBitmask.h"
25 #include "llvm/MC/MCRegisterInfo.h"
26 #include "llvm/Support/BranchProbability.h"
27 #include "llvm/Support/Printable.h"
38 class MachineFunction
;
40 class ModuleSlotTracker
;
45 class TargetRegisterClass
;
46 class TargetRegisterInfo
;
48 template <> struct ilist_traits
<MachineInstr
> {
50 friend class MachineBasicBlock
; // Set by the owning MachineBasicBlock.
52 MachineBasicBlock
*Parent
;
54 using instr_iterator
=
55 simple_ilist
<MachineInstr
, ilist_sentinel_tracking
<true>>::iterator
;
58 void addNodeToList(MachineInstr
*N
);
59 void removeNodeFromList(MachineInstr
*N
);
60 void transferNodesFromList(ilist_traits
&FromList
, instr_iterator First
,
62 void deleteNode(MachineInstr
*MI
);
65 class MachineBasicBlock
66 : public ilist_node_with_parent
<MachineBasicBlock
, MachineFunction
> {
68 /// Pair of physical register and lane mask.
69 /// This is not simply a std::pair typedef because the members should be named
70 /// clearly as they both have an integer type.
71 struct RegisterMaskPair
{
76 RegisterMaskPair(MCPhysReg PhysReg
, LaneBitmask LaneMask
)
77 : PhysReg(PhysReg
), LaneMask(LaneMask
) {}
81 using Instructions
= ilist
<MachineInstr
, ilist_sentinel_tracking
<true>>;
86 MachineFunction
*xParent
;
88 /// Keep track of the predecessor / successor basic blocks.
89 std::vector
<MachineBasicBlock
*> Predecessors
;
90 std::vector
<MachineBasicBlock
*> Successors
;
92 /// Keep track of the probabilities to the successors. This vector has the
93 /// same order as Successors, or it is empty if we don't use it (disable
95 std::vector
<BranchProbability
> Probs
;
96 using probability_iterator
= std::vector
<BranchProbability
>::iterator
;
97 using const_probability_iterator
=
98 std::vector
<BranchProbability
>::const_iterator
;
100 Optional
<uint64_t> IrrLoopHeaderWeight
;
102 /// Keep track of the physical registers that are livein of the basicblock.
103 using LiveInVector
= std::vector
<RegisterMaskPair
>;
104 LiveInVector LiveIns
;
106 /// Alignment of the basic block. One if the basic block does not need to be
108 llvm::Align Alignment
;
110 /// Indicate that this basic block is entered via an exception handler.
111 bool IsEHPad
= false;
113 /// Indicate that this basic block is potentially the target of an indirect
115 bool AddressTaken
= false;
117 /// Indicate that this basic block needs its symbol be emitted regardless of
118 /// whether the flow just falls-through to it.
119 bool LabelMustBeEmitted
= false;
121 /// Indicate that this basic block is the entry block of an EH scope, i.e.,
122 /// the block that used to have a catchpad or cleanuppad instruction in the
124 bool IsEHScopeEntry
= false;
126 /// Indicate that this basic block is the entry block of an EH funclet.
127 bool IsEHFuncletEntry
= false;
129 /// Indicate that this basic block is the entry block of a cleanup funclet.
130 bool IsCleanupFuncletEntry
= false;
132 /// since getSymbol is a relatively heavy-weight operation, the symbol
133 /// is only computed once and is cached.
134 mutable MCSymbol
*CachedMCSymbol
= nullptr;
136 // Intrusive list support
137 MachineBasicBlock() = default;
139 explicit MachineBasicBlock(MachineFunction
&MF
, const BasicBlock
*BB
);
141 ~MachineBasicBlock();
143 // MachineBasicBlocks are allocated and owned by MachineFunction.
144 friend class MachineFunction
;
147 /// Return the LLVM basic block that this instance corresponded to originally.
148 /// Note that this may be NULL if this instance does not correspond directly
149 /// to an LLVM basic block.
150 const BasicBlock
*getBasicBlock() const { return BB
; }
152 /// Return the name of the corresponding LLVM basic block, or an empty string.
153 StringRef
getName() const;
155 /// Return a formatted string to identify this block and its parent function.
156 std::string
getFullName() const;
158 /// Test whether this block is potentially the target of an indirect branch.
159 bool hasAddressTaken() const { return AddressTaken
; }
161 /// Set this block to reflect that it potentially is the target of an indirect
163 void setHasAddressTaken() { AddressTaken
= true; }
165 /// Test whether this block must have its label emitted.
166 bool hasLabelMustBeEmitted() const { return LabelMustBeEmitted
; }
168 /// Set this block to reflect that, regardless how we flow to it, we need
169 /// its label be emitted.
170 void setLabelMustBeEmitted() { LabelMustBeEmitted
= true; }
172 /// Return the MachineFunction containing this basic block.
173 const MachineFunction
*getParent() const { return xParent
; }
174 MachineFunction
*getParent() { return xParent
; }
176 using instr_iterator
= Instructions::iterator
;
177 using const_instr_iterator
= Instructions::const_iterator
;
178 using reverse_instr_iterator
= Instructions::reverse_iterator
;
179 using const_reverse_instr_iterator
= Instructions::const_reverse_iterator
;
181 using iterator
= MachineInstrBundleIterator
<MachineInstr
>;
182 using const_iterator
= MachineInstrBundleIterator
<const MachineInstr
>;
183 using reverse_iterator
= MachineInstrBundleIterator
<MachineInstr
, true>;
184 using const_reverse_iterator
=
185 MachineInstrBundleIterator
<const MachineInstr
, true>;
187 unsigned size() const { return (unsigned)Insts
.size(); }
188 bool empty() const { return Insts
.empty(); }
190 MachineInstr
&instr_front() { return Insts
.front(); }
191 MachineInstr
&instr_back() { return Insts
.back(); }
192 const MachineInstr
&instr_front() const { return Insts
.front(); }
193 const MachineInstr
&instr_back() const { return Insts
.back(); }
195 MachineInstr
&front() { return Insts
.front(); }
196 MachineInstr
&back() { return *--end(); }
197 const MachineInstr
&front() const { return Insts
.front(); }
198 const MachineInstr
&back() const { return *--end(); }
200 instr_iterator
instr_begin() { return Insts
.begin(); }
201 const_instr_iterator
instr_begin() const { return Insts
.begin(); }
202 instr_iterator
instr_end() { return Insts
.end(); }
203 const_instr_iterator
instr_end() const { return Insts
.end(); }
204 reverse_instr_iterator
instr_rbegin() { return Insts
.rbegin(); }
205 const_reverse_instr_iterator
instr_rbegin() const { return Insts
.rbegin(); }
206 reverse_instr_iterator
instr_rend () { return Insts
.rend(); }
207 const_reverse_instr_iterator
instr_rend () const { return Insts
.rend(); }
209 using instr_range
= iterator_range
<instr_iterator
>;
210 using const_instr_range
= iterator_range
<const_instr_iterator
>;
211 instr_range
instrs() { return instr_range(instr_begin(), instr_end()); }
212 const_instr_range
instrs() const {
213 return const_instr_range(instr_begin(), instr_end());
216 iterator
begin() { return instr_begin(); }
217 const_iterator
begin() const { return instr_begin(); }
218 iterator
end () { return instr_end(); }
219 const_iterator
end () const { return instr_end(); }
220 reverse_iterator
rbegin() {
221 return reverse_iterator::getAtBundleBegin(instr_rbegin());
223 const_reverse_iterator
rbegin() const {
224 return const_reverse_iterator::getAtBundleBegin(instr_rbegin());
226 reverse_iterator
rend() { return reverse_iterator(instr_rend()); }
227 const_reverse_iterator
rend() const {
228 return const_reverse_iterator(instr_rend());
231 /// Support for MachineInstr::getNextNode().
232 static Instructions
MachineBasicBlock::*getSublistAccess(MachineInstr
*) {
233 return &MachineBasicBlock::Insts
;
236 inline iterator_range
<iterator
> terminators() {
237 return make_range(getFirstTerminator(), end());
239 inline iterator_range
<const_iterator
> terminators() const {
240 return make_range(getFirstTerminator(), end());
243 /// Returns a range that iterates over the phis in the basic block.
244 inline iterator_range
<iterator
> phis() {
245 return make_range(begin(), getFirstNonPHI());
247 inline iterator_range
<const_iterator
> phis() const {
248 return const_cast<MachineBasicBlock
*>(this)->phis();
251 // Machine-CFG iterators
252 using pred_iterator
= std::vector
<MachineBasicBlock
*>::iterator
;
253 using const_pred_iterator
= std::vector
<MachineBasicBlock
*>::const_iterator
;
254 using succ_iterator
= std::vector
<MachineBasicBlock
*>::iterator
;
255 using const_succ_iterator
= std::vector
<MachineBasicBlock
*>::const_iterator
;
256 using pred_reverse_iterator
=
257 std::vector
<MachineBasicBlock
*>::reverse_iterator
;
258 using const_pred_reverse_iterator
=
259 std::vector
<MachineBasicBlock
*>::const_reverse_iterator
;
260 using succ_reverse_iterator
=
261 std::vector
<MachineBasicBlock
*>::reverse_iterator
;
262 using const_succ_reverse_iterator
=
263 std::vector
<MachineBasicBlock
*>::const_reverse_iterator
;
264 pred_iterator
pred_begin() { return Predecessors
.begin(); }
265 const_pred_iterator
pred_begin() const { return Predecessors
.begin(); }
266 pred_iterator
pred_end() { return Predecessors
.end(); }
267 const_pred_iterator
pred_end() const { return Predecessors
.end(); }
268 pred_reverse_iterator
pred_rbegin()
269 { return Predecessors
.rbegin();}
270 const_pred_reverse_iterator
pred_rbegin() const
271 { return Predecessors
.rbegin();}
272 pred_reverse_iterator
pred_rend()
273 { return Predecessors
.rend(); }
274 const_pred_reverse_iterator
pred_rend() const
275 { return Predecessors
.rend(); }
276 unsigned pred_size() const {
277 return (unsigned)Predecessors
.size();
279 bool pred_empty() const { return Predecessors
.empty(); }
280 succ_iterator
succ_begin() { return Successors
.begin(); }
281 const_succ_iterator
succ_begin() const { return Successors
.begin(); }
282 succ_iterator
succ_end() { return Successors
.end(); }
283 const_succ_iterator
succ_end() const { return Successors
.end(); }
284 succ_reverse_iterator
succ_rbegin()
285 { return Successors
.rbegin(); }
286 const_succ_reverse_iterator
succ_rbegin() const
287 { return Successors
.rbegin(); }
288 succ_reverse_iterator
succ_rend()
289 { return Successors
.rend(); }
290 const_succ_reverse_iterator
succ_rend() const
291 { return Successors
.rend(); }
292 unsigned succ_size() const {
293 return (unsigned)Successors
.size();
295 bool succ_empty() const { return Successors
.empty(); }
297 inline iterator_range
<pred_iterator
> predecessors() {
298 return make_range(pred_begin(), pred_end());
300 inline iterator_range
<const_pred_iterator
> predecessors() const {
301 return make_range(pred_begin(), pred_end());
303 inline iterator_range
<succ_iterator
> successors() {
304 return make_range(succ_begin(), succ_end());
306 inline iterator_range
<const_succ_iterator
> successors() const {
307 return make_range(succ_begin(), succ_end());
310 // LiveIn management methods.
312 /// Adds the specified register as a live in. Note that it is an error to add
313 /// the same register to the same set more than once unless the intention is
314 /// to call sortUniqueLiveIns after all registers are added.
315 void addLiveIn(MCRegister PhysReg
,
316 LaneBitmask LaneMask
= LaneBitmask::getAll()) {
317 LiveIns
.push_back(RegisterMaskPair(PhysReg
, LaneMask
));
319 void addLiveIn(const RegisterMaskPair
&RegMaskPair
) {
320 LiveIns
.push_back(RegMaskPair
);
323 /// Sorts and uniques the LiveIns vector. It can be significantly faster to do
324 /// this than repeatedly calling isLiveIn before calling addLiveIn for every
325 /// LiveIn insertion.
326 void sortUniqueLiveIns();
328 /// Clear live in list.
331 /// Add PhysReg as live in to this block, and ensure that there is a copy of
332 /// PhysReg to a virtual register of class RC. Return the virtual register
333 /// that is a copy of the live in PhysReg.
334 unsigned addLiveIn(MCRegister PhysReg
, const TargetRegisterClass
*RC
);
336 /// Remove the specified register from the live in set.
337 void removeLiveIn(MCPhysReg Reg
,
338 LaneBitmask LaneMask
= LaneBitmask::getAll());
340 /// Return true if the specified register is in the live in set.
341 bool isLiveIn(MCPhysReg Reg
,
342 LaneBitmask LaneMask
= LaneBitmask::getAll()) const;
344 // Iteration support for live in sets. These sets are kept in sorted
345 // order by their register number.
346 using livein_iterator
= LiveInVector::const_iterator
;
348 /// Unlike livein_begin, this method does not check that the liveness
349 /// information is accurate. Still for debug purposes it may be useful
350 /// to have iterators that won't assert if the liveness information
352 livein_iterator
livein_begin_dbg() const { return LiveIns
.begin(); }
353 iterator_range
<livein_iterator
> liveins_dbg() const {
354 return make_range(livein_begin_dbg(), livein_end());
357 livein_iterator
livein_begin() const;
358 livein_iterator
livein_end() const { return LiveIns
.end(); }
359 bool livein_empty() const { return LiveIns
.empty(); }
360 iterator_range
<livein_iterator
> liveins() const {
361 return make_range(livein_begin(), livein_end());
364 /// Remove entry from the livein set and return iterator to the next.
365 livein_iterator
removeLiveIn(livein_iterator I
);
367 /// Get the clobber mask for the start of this basic block. Funclets use this
368 /// to prevent register allocation across funclet transitions.
369 const uint32_t *getBeginClobberMask(const TargetRegisterInfo
*TRI
) const;
371 /// Get the clobber mask for the end of the basic block.
372 /// \see getBeginClobberMask()
373 const uint32_t *getEndClobberMask(const TargetRegisterInfo
*TRI
) const;
375 /// Return alignment of the basic block.
376 llvm::Align
getAlignment() const { return Alignment
; }
378 /// Set alignment of the basic block.
379 void setAlignment(llvm::Align A
) { Alignment
= A
; }
381 /// Returns true if the block is a landing pad. That is this basic block is
382 /// entered via an exception handler.
383 bool isEHPad() const { return IsEHPad
; }
385 /// Indicates the block is a landing pad. That is this basic block is entered
386 /// via an exception handler.
387 void setIsEHPad(bool V
= true) { IsEHPad
= V
; }
389 bool hasEHPadSuccessor() const;
391 /// Returns true if this is the entry block of an EH scope, i.e., the block
392 /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
393 bool isEHScopeEntry() const { return IsEHScopeEntry
; }
395 /// Indicates if this is the entry block of an EH scope, i.e., the block that
396 /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
397 void setIsEHScopeEntry(bool V
= true) { IsEHScopeEntry
= V
; }
399 /// Returns true if this is the entry block of an EH funclet.
400 bool isEHFuncletEntry() const { return IsEHFuncletEntry
; }
402 /// Indicates if this is the entry block of an EH funclet.
403 void setIsEHFuncletEntry(bool V
= true) { IsEHFuncletEntry
= V
; }
405 /// Returns true if this is the entry block of a cleanup funclet.
406 bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry
; }
408 /// Indicates if this is the entry block of a cleanup funclet.
409 void setIsCleanupFuncletEntry(bool V
= true) { IsCleanupFuncletEntry
= V
; }
411 /// Returns true if it is legal to hoist instructions into this block.
412 bool isLegalToHoistInto() const;
414 // Code Layout methods.
416 /// Move 'this' block before or after the specified block. This only moves
417 /// the block, it does not modify the CFG or adjust potential fall-throughs at
418 /// the end of the block.
419 void moveBefore(MachineBasicBlock
*NewAfter
);
420 void moveAfter(MachineBasicBlock
*NewBefore
);
422 /// Update the terminator instructions in block to account for changes to the
423 /// layout. If the block previously used a fallthrough, it may now need a
424 /// branch, and if it previously used branching it may now be able to use a
426 void updateTerminator();
428 // Machine-CFG mutators
430 /// Add Succ as a successor of this MachineBasicBlock. The Predecessors list
431 /// of Succ is automatically updated. PROB parameter is stored in
432 /// Probabilities list. The default probability is set as unknown. Mixing
433 /// known and unknown probabilities in successor list is not allowed. When all
434 /// successors have unknown probabilities, 1 / N is returned as the
435 /// probability for each successor, where N is the number of successors.
437 /// Note that duplicate Machine CFG edges are not allowed.
438 void addSuccessor(MachineBasicBlock
*Succ
,
439 BranchProbability Prob
= BranchProbability::getUnknown());
441 /// Add Succ as a successor of this MachineBasicBlock. The Predecessors list
442 /// of Succ is automatically updated. The probability is not provided because
443 /// BPI is not available (e.g. -O0 is used), in which case edge probabilities
444 /// won't be used. Using this interface can save some space.
445 void addSuccessorWithoutProb(MachineBasicBlock
*Succ
);
447 /// Set successor probability of a given iterator.
448 void setSuccProbability(succ_iterator I
, BranchProbability Prob
);
450 /// Normalize probabilities of all successors so that the sum of them becomes
451 /// one. This is usually done when the current update on this MBB is done, and
452 /// the sum of its successors' probabilities is not guaranteed to be one. The
453 /// user is responsible for the correct use of this function.
454 /// MBB::removeSuccessor() has an option to do this automatically.
455 void normalizeSuccProbs() {
456 BranchProbability::normalizeProbabilities(Probs
.begin(), Probs
.end());
459 /// Validate successors' probabilities and check if the sum of them is
460 /// approximate one. This only works in DEBUG mode.
461 void validateSuccProbs() const;
463 /// Remove successor from the successors list of this MachineBasicBlock. The
464 /// Predecessors list of Succ is automatically updated.
465 /// If NormalizeSuccProbs is true, then normalize successors' probabilities
466 /// after the successor is removed.
467 void removeSuccessor(MachineBasicBlock
*Succ
,
468 bool NormalizeSuccProbs
= false);
470 /// Remove specified successor from the successors list of this
471 /// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
472 /// If NormalizeSuccProbs is true, then normalize successors' probabilities
473 /// after the successor is removed.
474 /// Return the iterator to the element after the one removed.
475 succ_iterator
removeSuccessor(succ_iterator I
,
476 bool NormalizeSuccProbs
= false);
478 /// Replace successor OLD with NEW and update probability info.
479 void replaceSuccessor(MachineBasicBlock
*Old
, MachineBasicBlock
*New
);
481 /// Copy a successor (and any probability info) from original block to this
482 /// block's. Uses an iterator into the original blocks successors.
484 /// This is useful when doing a partial clone of successors. Afterward, the
485 /// probabilities may need to be normalized.
486 void copySuccessor(MachineBasicBlock
*Orig
, succ_iterator I
);
488 /// Split the old successor into old plus new and updates the probability
490 void splitSuccessor(MachineBasicBlock
*Old
, MachineBasicBlock
*New
,
491 bool NormalizeSuccProbs
= false);
493 /// Transfers all the successors from MBB to this machine basic block (i.e.,
494 /// copies all the successors FromMBB and remove all the successors from
496 void transferSuccessors(MachineBasicBlock
*FromMBB
);
498 /// Transfers all the successors, as in transferSuccessors, and update PHI
499 /// operands in the successor blocks which refer to FromMBB to refer to this.
500 void transferSuccessorsAndUpdatePHIs(MachineBasicBlock
*FromMBB
);
502 /// Return true if any of the successors have probabilities attached to them.
503 bool hasSuccessorProbabilities() const { return !Probs
.empty(); }
505 /// Return true if the specified MBB is a predecessor of this block.
506 bool isPredecessor(const MachineBasicBlock
*MBB
) const;
508 /// Return true if the specified MBB is a successor of this block.
509 bool isSuccessor(const MachineBasicBlock
*MBB
) const;
511 /// Return true if the specified MBB will be emitted immediately after this
512 /// block, such that if this block exits by falling through, control will
513 /// transfer to the specified MBB. Note that MBB need not be a successor at
514 /// all, for example if this block ends with an unconditional branch to some
516 bool isLayoutSuccessor(const MachineBasicBlock
*MBB
) const;
518 /// Return the fallthrough block if the block can implicitly
519 /// transfer control to the block after it by falling off the end of
520 /// it. This should return null if it can reach the block after
521 /// it, but it uses an explicit branch to do so (e.g., a table
522 /// jump). Non-null return is a conservative answer.
523 MachineBasicBlock
*getFallThrough();
525 /// Return true if the block can implicitly transfer control to the
526 /// block after it by falling off the end of it. This should return
527 /// false if it can reach the block after it, but it uses an
528 /// explicit branch to do so (e.g., a table jump). True is a
529 /// conservative answer.
530 bool canFallThrough();
532 /// Returns a pointer to the first instruction in this block that is not a
533 /// PHINode instruction. When adding instructions to the beginning of the
534 /// basic block, they should be added before the returned value, not before
535 /// the first instruction, which might be PHI.
536 /// Returns end() is there's no non-PHI instruction.
537 iterator
getFirstNonPHI();
539 /// Return the first instruction in MBB after I that is not a PHI or a label.
540 /// This is the correct point to insert lowered copies at the beginning of a
541 /// basic block that must be before any debugging information.
542 iterator
SkipPHIsAndLabels(iterator I
);
544 /// Return the first instruction in MBB after I that is not a PHI, label or
545 /// debug. This is the correct point to insert copies at the beginning of a
547 iterator
SkipPHIsLabelsAndDebug(iterator I
);
549 /// Returns an iterator to the first terminator instruction of this basic
550 /// block. If a terminator does not exist, it returns end().
551 iterator
getFirstTerminator();
552 const_iterator
getFirstTerminator() const {
553 return const_cast<MachineBasicBlock
*>(this)->getFirstTerminator();
556 /// Same getFirstTerminator but it ignores bundles and return an
557 /// instr_iterator instead.
558 instr_iterator
getFirstInstrTerminator();
560 /// Returns an iterator to the first non-debug instruction in the basic block,
562 iterator
getFirstNonDebugInstr();
563 const_iterator
getFirstNonDebugInstr() const {
564 return const_cast<MachineBasicBlock
*>(this)->getFirstNonDebugInstr();
567 /// Returns an iterator to the last non-debug instruction in the basic block,
569 iterator
getLastNonDebugInstr();
570 const_iterator
getLastNonDebugInstr() const {
571 return const_cast<MachineBasicBlock
*>(this)->getLastNonDebugInstr();
574 /// Convenience function that returns true if the block ends in a return
576 bool isReturnBlock() const {
577 return !empty() && back().isReturn();
580 /// Convenience function that returns true if the bock ends in a EH scope
581 /// return instruction.
582 bool isEHScopeReturnBlock() const {
583 return !empty() && back().isEHScopeReturn();
586 /// Split the critical edge from this block to the given successor block, and
587 /// return the newly created block, or null if splitting is not possible.
589 /// This function updates LiveVariables, MachineDominatorTree, and
590 /// MachineLoopInfo, as applicable.
591 MachineBasicBlock
*SplitCriticalEdge(MachineBasicBlock
*Succ
, Pass
&P
);
593 /// Check if the edge between this block and the given successor \p
594 /// Succ, can be split. If this returns true a subsequent call to
595 /// SplitCriticalEdge is guaranteed to return a valid basic block if
596 /// no changes occurred in the meantime.
597 bool canSplitCriticalEdge(const MachineBasicBlock
*Succ
) const;
599 void pop_front() { Insts
.pop_front(); }
600 void pop_back() { Insts
.pop_back(); }
601 void push_back(MachineInstr
*MI
) { Insts
.push_back(MI
); }
603 /// Insert MI into the instruction list before I, possibly inside a bundle.
605 /// If the insertion point is inside a bundle, MI will be added to the bundle,
606 /// otherwise MI will not be added to any bundle. That means this function
607 /// alone can't be used to prepend or append instructions to bundles. See
608 /// MIBundleBuilder::insert() for a more reliable way of doing that.
609 instr_iterator
insert(instr_iterator I
, MachineInstr
*M
);
611 /// Insert a range of instructions into the instruction list before I.
612 template<typename IT
>
613 void insert(iterator I
, IT S
, IT E
) {
614 assert((I
== end() || I
->getParent() == this) &&
615 "iterator points outside of basic block");
616 Insts
.insert(I
.getInstrIterator(), S
, E
);
619 /// Insert MI into the instruction list before I.
620 iterator
insert(iterator I
, MachineInstr
*MI
) {
621 assert((I
== end() || I
->getParent() == this) &&
622 "iterator points outside of basic block");
623 assert(!MI
->isBundledWithPred() && !MI
->isBundledWithSucc() &&
624 "Cannot insert instruction with bundle flags");
625 return Insts
.insert(I
.getInstrIterator(), MI
);
628 /// Insert MI into the instruction list after I.
629 iterator
insertAfter(iterator I
, MachineInstr
*MI
) {
630 assert((I
== end() || I
->getParent() == this) &&
631 "iterator points outside of basic block");
632 assert(!MI
->isBundledWithPred() && !MI
->isBundledWithSucc() &&
633 "Cannot insert instruction with bundle flags");
634 return Insts
.insertAfter(I
.getInstrIterator(), MI
);
637 /// If I is bundled then insert MI into the instruction list after the end of
638 /// the bundle, otherwise insert MI immediately after I.
639 instr_iterator
insertAfterBundle(instr_iterator I
, MachineInstr
*MI
) {
640 assert((I
== instr_end() || I
->getParent() == this) &&
641 "iterator points outside of basic block");
642 assert(!MI
->isBundledWithPred() && !MI
->isBundledWithSucc() &&
643 "Cannot insert instruction with bundle flags");
644 while (I
->isBundledWithSucc())
646 return Insts
.insertAfter(I
, MI
);
649 /// Remove an instruction from the instruction list and delete it.
651 /// If the instruction is part of a bundle, the other instructions in the
652 /// bundle will still be bundled after removing the single instruction.
653 instr_iterator
erase(instr_iterator I
);
655 /// Remove an instruction from the instruction list and delete it.
657 /// If the instruction is part of a bundle, the other instructions in the
658 /// bundle will still be bundled after removing the single instruction.
659 instr_iterator
erase_instr(MachineInstr
*I
) {
660 return erase(instr_iterator(I
));
663 /// Remove a range of instructions from the instruction list and delete them.
664 iterator
erase(iterator I
, iterator E
) {
665 return Insts
.erase(I
.getInstrIterator(), E
.getInstrIterator());
668 /// Remove an instruction or bundle from the instruction list and delete it.
670 /// If I points to a bundle of instructions, they are all erased.
671 iterator
erase(iterator I
) {
672 return erase(I
, std::next(I
));
675 /// Remove an instruction from the instruction list and delete it.
677 /// If I is the head of a bundle of instructions, the whole bundle will be
679 iterator
erase(MachineInstr
*I
) {
680 return erase(iterator(I
));
683 /// Remove the unbundled instruction from the instruction list without
686 /// This function can not be used to remove bundled instructions, use
687 /// remove_instr to remove individual instructions from a bundle.
688 MachineInstr
*remove(MachineInstr
*I
) {
689 assert(!I
->isBundled() && "Cannot remove bundled instructions");
690 return Insts
.remove(instr_iterator(I
));
693 /// Remove the possibly bundled instruction from the instruction list
694 /// without deleting it.
696 /// If the instruction is part of a bundle, the other instructions in the
697 /// bundle will still be bundled after removing the single instruction.
698 MachineInstr
*remove_instr(MachineInstr
*I
);
704 /// Take an instruction from MBB 'Other' at the position From, and insert it
705 /// into this MBB right before 'Where'.
707 /// If From points to a bundle of instructions, the whole bundle is moved.
708 void splice(iterator Where
, MachineBasicBlock
*Other
, iterator From
) {
709 // The range splice() doesn't allow noop moves, but this one does.
711 splice(Where
, Other
, From
, std::next(From
));
714 /// Take a block of instructions from MBB 'Other' in the range [From, To),
715 /// and insert them into this MBB right before 'Where'.
717 /// The instruction at 'Where' must not be included in the range of
718 /// instructions to move.
719 void splice(iterator Where
, MachineBasicBlock
*Other
,
720 iterator From
, iterator To
) {
721 Insts
.splice(Where
.getInstrIterator(), Other
->Insts
,
722 From
.getInstrIterator(), To
.getInstrIterator());
725 /// This method unlinks 'this' from the containing function, and returns it,
726 /// but does not delete it.
727 MachineBasicBlock
*removeFromParent();
729 /// This method unlinks 'this' from the containing function and deletes it.
730 void eraseFromParent();
732 /// Given a machine basic block that branched to 'Old', change the code and
733 /// CFG so that it branches to 'New' instead.
734 void ReplaceUsesOfBlockWith(MachineBasicBlock
*Old
, MachineBasicBlock
*New
);
736 /// Update all phi nodes in this basic block to refer to basic block \p New
737 /// instead of basic block \p Old.
738 void replacePhiUsesWith(MachineBasicBlock
*Old
, MachineBasicBlock
*New
);
740 /// Various pieces of code can cause excess edges in the CFG to be inserted.
741 /// If we have proven that MBB can only branch to DestA and DestB, remove any
742 /// other MBB successors from the CFG. DestA and DestB can be null. Besides
743 /// DestA and DestB, retain other edges leading to LandingPads (currently
744 /// there can be only one; we don't check or require that here). Note it is
745 /// possible that DestA and/or DestB are LandingPads.
746 bool CorrectExtraCFGEdges(MachineBasicBlock
*DestA
,
747 MachineBasicBlock
*DestB
,
750 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
751 /// and DBG_LABEL instructions. Return UnknownLoc if there is none.
752 DebugLoc
findDebugLoc(instr_iterator MBBI
);
753 DebugLoc
findDebugLoc(iterator MBBI
) {
754 return findDebugLoc(MBBI
.getInstrIterator());
757 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
758 /// instructions. Return UnknownLoc if there is none.
759 DebugLoc
findPrevDebugLoc(instr_iterator MBBI
);
760 DebugLoc
findPrevDebugLoc(iterator MBBI
) {
761 return findPrevDebugLoc(MBBI
.getInstrIterator());
764 /// Find and return the merged DebugLoc of the branch instructions of the
765 /// block. Return UnknownLoc if there is none.
766 DebugLoc
findBranchDebugLoc();
768 /// Possible outcome of a register liveness query to computeRegisterLiveness()
769 enum LivenessQueryResult
{
770 LQR_Live
, ///< Register is known to be (at least partially) live.
771 LQR_Dead
, ///< Register is known to be fully dead.
772 LQR_Unknown
///< Register liveness not decidable from local neighborhood.
775 /// Return whether (physical) register \p Reg has been defined and not
776 /// killed as of just before \p Before.
778 /// Search is localised to a neighborhood of \p Neighborhood instructions
779 /// before (searching for defs or kills) and \p Neighborhood instructions
780 /// after (searching just for defs) \p Before.
782 /// \p Reg must be a physical register.
783 LivenessQueryResult
computeRegisterLiveness(const TargetRegisterInfo
*TRI
,
785 const_iterator Before
,
786 unsigned Neighborhood
= 10) const;
788 // Debugging methods.
790 void print(raw_ostream
&OS
, const SlotIndexes
* = nullptr,
791 bool IsStandalone
= true) const;
792 void print(raw_ostream
&OS
, ModuleSlotTracker
&MST
,
793 const SlotIndexes
* = nullptr, bool IsStandalone
= true) const;
795 // Printing method used by LoopInfo.
796 void printAsOperand(raw_ostream
&OS
, bool PrintType
= true) const;
798 /// MachineBasicBlocks are uniquely numbered at the function level, unless
799 /// they're not in a MachineFunction yet, in which case this will return -1.
800 int getNumber() const { return Number
; }
801 void setNumber(int N
) { Number
= N
; }
803 /// Return the MCSymbol for this basic block.
804 MCSymbol
*getSymbol() const;
806 Optional
<uint64_t> getIrrLoopHeaderWeight() const {
807 return IrrLoopHeaderWeight
;
810 void setIrrLoopHeaderWeight(uint64_t Weight
) {
811 IrrLoopHeaderWeight
= Weight
;
815 /// Return probability iterator corresponding to the I successor iterator.
816 probability_iterator
getProbabilityIterator(succ_iterator I
);
817 const_probability_iterator
818 getProbabilityIterator(const_succ_iterator I
) const;
820 friend class MachineBranchProbabilityInfo
;
821 friend class MIPrinter
;
823 /// Return probability of the edge from this block to MBB. This method should
824 /// NOT be called directly, but by using getEdgeProbability method from
825 /// MachineBranchProbabilityInfo class.
826 BranchProbability
getSuccProbability(const_succ_iterator Succ
) const;
828 // Methods used to maintain doubly linked list of blocks...
829 friend struct ilist_callback_traits
<MachineBasicBlock
>;
831 // Machine-CFG mutators
833 /// Add Pred as a predecessor of this MachineBasicBlock. Don't do this
834 /// unless you know what you're doing, because it doesn't update Pred's
835 /// successors list. Use Pred->addSuccessor instead.
836 void addPredecessor(MachineBasicBlock
*Pred
);
838 /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
839 /// unless you know what you're doing, because it doesn't update Pred's
840 /// successors list. Use Pred->removeSuccessor instead.
841 void removePredecessor(MachineBasicBlock
*Pred
);
844 raw_ostream
& operator<<(raw_ostream
&OS
, const MachineBasicBlock
&MBB
);
846 /// Prints a machine basic block reference.
849 /// %bb.5 - a machine basic block with MBB.getNumber() == 5.
851 /// Usage: OS << printMBBReference(MBB) << '\n';
852 Printable
printMBBReference(const MachineBasicBlock
&MBB
);
854 // This is useful when building IndexedMaps keyed on basic block pointers.
855 struct MBB2NumberFunctor
{
856 using argument_type
= const MachineBasicBlock
*;
857 unsigned operator()(const MachineBasicBlock
*MBB
) const {
858 return MBB
->getNumber();
862 //===--------------------------------------------------------------------===//
863 // GraphTraits specializations for machine basic block graphs (machine-CFGs)
864 //===--------------------------------------------------------------------===//
866 // Provide specializations of GraphTraits to be able to treat a
867 // MachineFunction as a graph of MachineBasicBlocks.
870 template <> struct GraphTraits
<MachineBasicBlock
*> {
871 using NodeRef
= MachineBasicBlock
*;
872 using ChildIteratorType
= MachineBasicBlock::succ_iterator
;
874 static NodeRef
getEntryNode(MachineBasicBlock
*BB
) { return BB
; }
875 static ChildIteratorType
child_begin(NodeRef N
) { return N
->succ_begin(); }
876 static ChildIteratorType
child_end(NodeRef N
) { return N
->succ_end(); }
879 template <> struct GraphTraits
<const MachineBasicBlock
*> {
880 using NodeRef
= const MachineBasicBlock
*;
881 using ChildIteratorType
= MachineBasicBlock::const_succ_iterator
;
883 static NodeRef
getEntryNode(const MachineBasicBlock
*BB
) { return BB
; }
884 static ChildIteratorType
child_begin(NodeRef N
) { return N
->succ_begin(); }
885 static ChildIteratorType
child_end(NodeRef N
) { return N
->succ_end(); }
888 // Provide specializations of GraphTraits to be able to treat a
889 // MachineFunction as a graph of MachineBasicBlocks and to walk it
890 // in inverse order. Inverse order for a function is considered
891 // to be when traversing the predecessor edges of a MBB
892 // instead of the successor edges.
894 template <> struct GraphTraits
<Inverse
<MachineBasicBlock
*>> {
895 using NodeRef
= MachineBasicBlock
*;
896 using ChildIteratorType
= MachineBasicBlock::pred_iterator
;
898 static NodeRef
getEntryNode(Inverse
<MachineBasicBlock
*> G
) {
902 static ChildIteratorType
child_begin(NodeRef N
) { return N
->pred_begin(); }
903 static ChildIteratorType
child_end(NodeRef N
) { return N
->pred_end(); }
906 template <> struct GraphTraits
<Inverse
<const MachineBasicBlock
*>> {
907 using NodeRef
= const MachineBasicBlock
*;
908 using ChildIteratorType
= MachineBasicBlock::const_pred_iterator
;
910 static NodeRef
getEntryNode(Inverse
<const MachineBasicBlock
*> G
) {
914 static ChildIteratorType
child_begin(NodeRef N
) { return N
->pred_begin(); }
915 static ChildIteratorType
child_end(NodeRef N
) { return N
->pred_end(); }
918 /// MachineInstrSpan provides an interface to get an iteration range
919 /// containing the instruction it was initialized with, along with all
920 /// those instructions inserted prior to or following that instruction
921 /// at some point after the MachineInstrSpan is constructed.
922 class MachineInstrSpan
{
923 MachineBasicBlock
&MBB
;
924 MachineBasicBlock::iterator I
, B
, E
;
927 MachineInstrSpan(MachineBasicBlock::iterator I
, MachineBasicBlock
*BB
)
928 : MBB(*BB
), I(I
), B(I
== MBB
.begin() ? MBB
.end() : std::prev(I
)),
930 assert(I
== BB
->end() || I
->getParent() == BB
);
933 MachineBasicBlock::iterator
begin() {
934 return B
== MBB
.end() ? MBB
.begin() : std::next(B
);
936 MachineBasicBlock::iterator
end() { return E
; }
937 bool empty() { return begin() == end(); }
939 MachineBasicBlock::iterator
getInitial() { return I
; }
942 /// Increment \p It until it points to a non-debug instruction or to \p End
943 /// and return the resulting iterator. This function should only be used
944 /// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
945 /// const_instr_iterator} and the respective reverse iterators.
946 template<typename IterT
>
947 inline IterT
skipDebugInstructionsForward(IterT It
, IterT End
) {
948 while (It
!= End
&& It
->isDebugInstr())
953 /// Decrement \p It until it points to a non-debug instruction or to \p Begin
954 /// and return the resulting iterator. This function should only be used
955 /// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
956 /// const_instr_iterator} and the respective reverse iterators.
957 template<class IterT
>
958 inline IterT
skipDebugInstructionsBackward(IterT It
, IterT Begin
) {
959 while (It
!= Begin
&& It
->isDebugInstr())
964 } // end namespace llvm
966 #endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H