1 //==- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation -*- C++ -*-==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines classes mirroring those in llvm/Analysis/Dominators.h,
10 // but for target-specific code rather than target-independent IR.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H
15 #define LLVM_CODEGEN_MACHINEDOMINATORS_H
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/Support/GenericDomTree.h"
23 #include "llvm/Support/GenericDomTreeConstruction.h"
31 inline void DominatorTreeBase
<MachineBasicBlock
, false>::addRoot(
32 MachineBasicBlock
*MBB
) {
33 this->Roots
.push_back(MBB
);
36 extern template class DomTreeNodeBase
<MachineBasicBlock
>;
37 extern template class DominatorTreeBase
<MachineBasicBlock
, false>; // DomTree
38 extern template class DominatorTreeBase
<MachineBasicBlock
, true>; // PostDomTree
40 using MachineDomTreeNode
= DomTreeNodeBase
<MachineBasicBlock
>;
42 //===-------------------------------------
43 /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
44 /// compute a normal dominator tree.
46 class MachineDominatorTree
: public MachineFunctionPass
{
47 /// Helper structure used to hold all the basic blocks
48 /// involved in the split of a critical edge.
50 MachineBasicBlock
*FromBB
;
51 MachineBasicBlock
*ToBB
;
52 MachineBasicBlock
*NewBB
;
55 /// Pile up all the critical edges to be split.
56 /// The splitting of a critical edge is local and thus, it is possible
57 /// to apply several of those changes at the same time.
58 mutable SmallVector
<CriticalEdge
, 32> CriticalEdgesToSplit
;
60 /// Remember all the basic blocks that are inserted during
62 /// Invariant: NewBBs == all the basic blocks contained in the NewBB
63 /// field of all the elements of CriticalEdgesToSplit.
64 /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs
65 /// such as BB == elt.NewBB.
66 mutable SmallSet
<MachineBasicBlock
*, 32> NewBBs
;
68 /// The DominatorTreeBase that is used to compute a normal dominator tree
69 std::unique_ptr
<DomTreeBase
<MachineBasicBlock
>> DT
;
71 /// Apply all the recorded critical edges to the DT.
72 /// This updates the underlying DT information in a way that uses
73 /// the fast query path of DT as much as possible.
75 /// \post CriticalEdgesToSplit.empty().
76 void applySplitCriticalEdges() const;
79 static char ID
; // Pass ID, replacement for typeid
81 MachineDominatorTree();
83 DomTreeBase
<MachineBasicBlock
> &getBase() {
84 if (!DT
) DT
.reset(new DomTreeBase
<MachineBasicBlock
>());
85 applySplitCriticalEdges();
89 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
91 /// getRoots - Return the root blocks of the current CFG. This may include
92 /// multiple blocks if we are computing post dominators. For forward
93 /// dominators, this will always be a single block (the entry node).
95 inline const SmallVectorImpl
<MachineBasicBlock
*> &getRoots() const {
96 applySplitCriticalEdges();
97 return DT
->getRoots();
100 inline MachineBasicBlock
*getRoot() const {
101 applySplitCriticalEdges();
102 return DT
->getRoot();
105 inline MachineDomTreeNode
*getRootNode() const {
106 applySplitCriticalEdges();
107 return DT
->getRootNode();
110 bool runOnMachineFunction(MachineFunction
&F
) override
;
112 inline bool dominates(const MachineDomTreeNode
* A
,
113 const MachineDomTreeNode
* B
) const {
114 applySplitCriticalEdges();
115 return DT
->dominates(A
, B
);
118 inline bool dominates(const MachineBasicBlock
* A
,
119 const MachineBasicBlock
* B
) const {
120 applySplitCriticalEdges();
121 return DT
->dominates(A
, B
);
124 // dominates - Return true if A dominates B. This performs the
125 // special checks necessary if A and B are in the same basic block.
126 bool dominates(const MachineInstr
*A
, const MachineInstr
*B
) const {
127 applySplitCriticalEdges();
128 const MachineBasicBlock
*BBA
= A
->getParent(), *BBB
= B
->getParent();
129 if (BBA
!= BBB
) return DT
->dominates(BBA
, BBB
);
131 // Loop through the basic block until we find A or B.
132 MachineBasicBlock::const_iterator I
= BBA
->begin();
133 for (; &*I
!= A
&& &*I
!= B
; ++I
)
136 //if(!DT.IsPostDominators) {
137 // A dominates B if it is found first in the basic block.
140 // // A post-dominates B if B is found first in the basic block.
145 inline bool properlyDominates(const MachineDomTreeNode
* A
,
146 const MachineDomTreeNode
* B
) const {
147 applySplitCriticalEdges();
148 return DT
->properlyDominates(A
, B
);
151 inline bool properlyDominates(const MachineBasicBlock
* A
,
152 const MachineBasicBlock
* B
) const {
153 applySplitCriticalEdges();
154 return DT
->properlyDominates(A
, B
);
157 /// findNearestCommonDominator - Find nearest common dominator basic block
158 /// for basic block A and B. If there is no such block then return NULL.
159 inline MachineBasicBlock
*findNearestCommonDominator(MachineBasicBlock
*A
,
160 MachineBasicBlock
*B
) {
161 applySplitCriticalEdges();
162 return DT
->findNearestCommonDominator(A
, B
);
165 inline MachineDomTreeNode
*operator[](MachineBasicBlock
*BB
) const {
166 applySplitCriticalEdges();
167 return DT
->getNode(BB
);
170 /// getNode - return the (Post)DominatorTree node for the specified basic
171 /// block. This is the same as using operator[] on this class.
173 inline MachineDomTreeNode
*getNode(MachineBasicBlock
*BB
) const {
174 applySplitCriticalEdges();
175 return DT
->getNode(BB
);
178 /// addNewBlock - Add a new node to the dominator tree information. This
179 /// creates a new node as a child of DomBB dominator node,linking it into
180 /// the children list of the immediate dominator.
181 inline MachineDomTreeNode
*addNewBlock(MachineBasicBlock
*BB
,
182 MachineBasicBlock
*DomBB
) {
183 applySplitCriticalEdges();
184 return DT
->addNewBlock(BB
, DomBB
);
187 /// changeImmediateDominator - This method is used to update the dominator
188 /// tree information when a node's immediate dominator changes.
190 inline void changeImmediateDominator(MachineBasicBlock
*N
,
191 MachineBasicBlock
* NewIDom
) {
192 applySplitCriticalEdges();
193 DT
->changeImmediateDominator(N
, NewIDom
);
196 inline void changeImmediateDominator(MachineDomTreeNode
*N
,
197 MachineDomTreeNode
* NewIDom
) {
198 applySplitCriticalEdges();
199 DT
->changeImmediateDominator(N
, NewIDom
);
202 /// eraseNode - Removes a node from the dominator tree. Block must not
203 /// dominate any other blocks. Removes node from its immediate dominator's
204 /// children list. Deletes dominator node associated with basic block BB.
205 inline void eraseNode(MachineBasicBlock
*BB
) {
206 applySplitCriticalEdges();
210 /// splitBlock - BB is split and now it has one successor. Update dominator
211 /// tree to reflect this change.
212 inline void splitBlock(MachineBasicBlock
* NewBB
) {
213 applySplitCriticalEdges();
214 DT
->splitBlock(NewBB
);
217 /// isReachableFromEntry - Return true if A is dominated by the entry
218 /// block of the function containing it.
219 bool isReachableFromEntry(const MachineBasicBlock
*A
) {
220 applySplitCriticalEdges();
221 return DT
->isReachableFromEntry(A
);
224 void releaseMemory() override
;
226 void verifyAnalysis() const override
;
228 void print(raw_ostream
&OS
, const Module
*) const override
;
230 /// Record that the critical edge (FromBB, ToBB) has been
231 /// split with NewBB.
232 /// This is best to use this method instead of directly update the
233 /// underlying information, because this helps mitigating the
234 /// number of time the DT information is invalidated.
236 /// \note Do not use this method with regular edges.
238 /// \note To benefit from the compile time improvement incurred by this
239 /// method, the users of this method have to limit the queries to the DT
240 /// interface between two edges splitting. In other words, they have to
241 /// pack the splitting of critical edges as much as possible.
242 void recordSplitCriticalEdge(MachineBasicBlock
*FromBB
,
243 MachineBasicBlock
*ToBB
,
244 MachineBasicBlock
*NewBB
) {
245 bool Inserted
= NewBBs
.insert(NewBB
).second
;
248 "A basic block inserted via edge splitting cannot appear twice");
249 CriticalEdgesToSplit
.push_back({FromBB
, ToBB
, NewBB
});
253 //===-------------------------------------
254 /// DominatorTree GraphTraits specialization so the DominatorTree can be
255 /// iterable by generic graph iterators.
258 template <class Node
, class ChildIterator
>
259 struct MachineDomTreeGraphTraitsBase
{
260 using NodeRef
= Node
*;
261 using ChildIteratorType
= ChildIterator
;
263 static NodeRef
getEntryNode(NodeRef N
) { return N
; }
264 static ChildIteratorType
child_begin(NodeRef N
) { return N
->begin(); }
265 static ChildIteratorType
child_end(NodeRef N
) { return N
->end(); }
268 template <class T
> struct GraphTraits
;
271 struct GraphTraits
<MachineDomTreeNode
*>
272 : public MachineDomTreeGraphTraitsBase
<MachineDomTreeNode
,
273 MachineDomTreeNode::iterator
> {};
276 struct GraphTraits
<const MachineDomTreeNode
*>
277 : public MachineDomTreeGraphTraitsBase
<const MachineDomTreeNode
,
278 MachineDomTreeNode::const_iterator
> {
281 template <> struct GraphTraits
<MachineDominatorTree
*>
282 : public GraphTraits
<MachineDomTreeNode
*> {
283 static NodeRef
getEntryNode(MachineDominatorTree
*DT
) {
284 return DT
->getRootNode();
288 } // end namespace llvm
290 #endif // LLVM_CODEGEN_MACHINEDOMINATORS_H