1 //===- llvm/CodeGen/TargetSchedule.h - Sched Machine Model ------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines a wrapper around MCSchedModel that allows the interface to
10 // benefit from information currently only available in TargetInstrInfo.
11 // Ideally, the scheduling interface would be fully defined in the MC layer.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_CODEGEN_TARGETSCHEDULE_H
16 #define LLVM_CODEGEN_TARGETSCHEDULE_H
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/TargetSubtargetInfo.h"
21 #include "llvm/Config/llvm-config.h"
22 #include "llvm/MC/MCInstrItineraries.h"
23 #include "llvm/MC/MCSchedule.h"
28 class TargetInstrInfo
;
30 /// Provide an instruction scheduling machine model to CodeGen passes.
31 class TargetSchedModel
{
32 // For efficiency, hold a copy of the statically defined MCSchedModel for this
34 MCSchedModel SchedModel
;
35 InstrItineraryData InstrItins
;
36 const TargetSubtargetInfo
*STI
= nullptr;
37 const TargetInstrInfo
*TII
= nullptr;
39 SmallVector
<unsigned, 16> ResourceFactors
;
40 unsigned MicroOpFactor
; // Multiply to normalize microops to resource units.
41 unsigned ResourceLCM
; // Resource units per cycle. Latency normalization factor.
43 unsigned computeInstrLatency(const MCSchedClassDesc
&SCDesc
) const;
46 TargetSchedModel() : SchedModel(MCSchedModel::GetDefaultSchedModel()) {}
48 /// Initialize the machine model for instruction scheduling.
50 /// The machine model API keeps a copy of the top-level MCSchedModel table
51 /// indices and may query TargetSubtargetInfo and TargetInstrInfo to resolve
52 /// dynamic properties.
53 void init(const TargetSubtargetInfo
*TSInfo
);
55 /// Return the MCSchedClassDesc for this instruction.
56 const MCSchedClassDesc
*resolveSchedClass(const MachineInstr
*MI
) const;
58 /// TargetSubtargetInfo getter.
59 const TargetSubtargetInfo
*getSubtargetInfo() const { return STI
; }
61 /// TargetInstrInfo getter.
62 const TargetInstrInfo
*getInstrInfo() const { return TII
; }
64 /// Return true if this machine model includes an instruction-level
67 /// This is more detailed than the course grain IssueWidth and default
68 /// latency properties, but separate from the per-cycle itinerary data.
69 bool hasInstrSchedModel() const;
71 const MCSchedModel
*getMCSchedModel() const { return &SchedModel
; }
73 /// Return true if this machine model includes cycle-to-cycle itinerary
76 /// This models scheduling at each stage in the processor pipeline.
77 bool hasInstrItineraries() const;
79 const InstrItineraryData
*getInstrItineraries() const {
80 if (hasInstrItineraries())
85 /// Return true if this machine model includes an instruction-level
86 /// scheduling model or cycle-to-cycle itinerary data.
87 bool hasInstrSchedModelOrItineraries() const {
88 return hasInstrSchedModel() || hasInstrItineraries();
91 /// Identify the processor corresponding to the current subtarget.
92 unsigned getProcessorID() const { return SchedModel
.getProcessorID(); }
94 /// Maximum number of micro-ops that may be scheduled per cycle.
95 unsigned getIssueWidth() const { return SchedModel
.IssueWidth
; }
97 /// Return true if new group must begin.
98 bool mustBeginGroup(const MachineInstr
*MI
,
99 const MCSchedClassDesc
*SC
= nullptr) const;
100 /// Return true if current group must end.
101 bool mustEndGroup(const MachineInstr
*MI
,
102 const MCSchedClassDesc
*SC
= nullptr) const;
104 /// Return the number of issue slots required for this MI.
105 unsigned getNumMicroOps(const MachineInstr
*MI
,
106 const MCSchedClassDesc
*SC
= nullptr) const;
108 /// Get the number of kinds of resources for this target.
109 unsigned getNumProcResourceKinds() const {
110 return SchedModel
.getNumProcResourceKinds();
113 /// Get a processor resource by ID for convenience.
114 const MCProcResourceDesc
*getProcResource(unsigned PIdx
) const {
115 return SchedModel
.getProcResource(PIdx
);
118 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
119 const char *getResourceName(unsigned PIdx
) const {
122 return SchedModel
.getProcResource(PIdx
)->Name
;
126 using ProcResIter
= const MCWriteProcResEntry
*;
128 // Get an iterator into the processor resources consumed by this
130 ProcResIter
getWriteProcResBegin(const MCSchedClassDesc
*SC
) const {
131 // The subtarget holds a single resource table for all processors.
132 return STI
->getWriteProcResBegin(SC
);
134 ProcResIter
getWriteProcResEnd(const MCSchedClassDesc
*SC
) const {
135 return STI
->getWriteProcResEnd(SC
);
138 /// Multiply the number of units consumed for a resource by this factor
139 /// to normalize it relative to other resources.
140 unsigned getResourceFactor(unsigned ResIdx
) const {
141 return ResourceFactors
[ResIdx
];
144 /// Multiply number of micro-ops by this factor to normalize it
145 /// relative to other resources.
146 unsigned getMicroOpFactor() const {
147 return MicroOpFactor
;
150 /// Multiply cycle count by this factor to normalize it relative to
151 /// other resources. This is the number of resource units per cycle.
152 unsigned getLatencyFactor() const {
156 /// Number of micro-ops that may be buffered for OOO execution.
157 unsigned getMicroOpBufferSize() const { return SchedModel
.MicroOpBufferSize
; }
159 /// Number of resource units that may be buffered for OOO execution.
160 /// \return The buffer size in resource units or -1 for unlimited.
161 int getResourceBufferSize(unsigned PIdx
) const {
162 return SchedModel
.getProcResource(PIdx
)->BufferSize
;
165 /// Compute operand latency based on the available machine model.
167 /// Compute and return the latency of the given data dependent def and use
168 /// when the operand indices are already known. UseMI may be NULL for an
170 unsigned computeOperandLatency(const MachineInstr
*DefMI
, unsigned DefOperIdx
,
171 const MachineInstr
*UseMI
, unsigned UseOperIdx
)
174 /// Compute the instruction latency based on the available machine
177 /// Compute and return the expected latency of this instruction independent of
178 /// a particular use. computeOperandLatency is the preferred API, but this is
179 /// occasionally useful to help estimate instruction cost.
181 /// If UseDefaultDefLatency is false and no new machine sched model is
182 /// present this method falls back to TII->getInstrLatency with an empty
183 /// instruction itinerary (this is so we preserve the previous behavior of the
184 /// if converter after moving it to TargetSchedModel).
185 unsigned computeInstrLatency(const MachineInstr
*MI
,
186 bool UseDefaultDefLatency
= true) const;
187 unsigned computeInstrLatency(const MCInst
&Inst
) const;
188 unsigned computeInstrLatency(unsigned Opcode
) const;
191 /// Output dependency latency of a pair of defs of the same register.
193 /// This is typically one cycle.
194 unsigned computeOutputLatency(const MachineInstr
*DefMI
, unsigned DefOperIdx
,
195 const MachineInstr
*DepMI
) const;
197 /// Compute the reciprocal throughput of the given instruction.
198 double computeReciprocalThroughput(const MachineInstr
*MI
) const;
199 double computeReciprocalThroughput(const MCInst
&MI
) const;
200 double computeReciprocalThroughput(unsigned Opcode
) const;
203 } // end namespace llvm
205 #endif // LLVM_CODEGEN_TARGETSCHEDULE_H