[Alignment][NFC] Migrate Instructions to Align
[llvm-core.git] / include / llvm / DebugInfo / DWARF / DWARFDebugFrame.h
blobc6539df0d75666e64fec02fabe8a17c6c62613f3
1 //===- DWARFDebugFrame.h - Parsing of .debug_frame --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_DEBUGINFO_DWARF_DWARFDEBUGFRAME_H
10 #define LLVM_DEBUGINFO_DWARF_DWARFDEBUGFRAME_H
12 #include "llvm/ADT/ArrayRef.h"
13 #include "llvm/ADT/iterator.h"
14 #include "llvm/ADT/SmallString.h"
15 #include "llvm/ADT/Triple.h"
16 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
17 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
18 #include "llvm/Support/Error.h"
19 #include <memory>
20 #include <vector>
22 namespace llvm {
24 class raw_ostream;
26 namespace dwarf {
28 /// Represent a sequence of Call Frame Information instructions that, when read
29 /// in order, construct a table mapping PC to frame state. This can also be
30 /// referred to as "CFI rules" in DWARF literature to avoid confusion with
31 /// computer programs in the broader sense, and in this context each instruction
32 /// would be a rule to establish the mapping. Refer to pg. 172 in the DWARF5
33 /// manual, "6.4.1 Structure of Call Frame Information".
34 class CFIProgram {
35 public:
36 typedef SmallVector<uint64_t, 2> Operands;
38 /// An instruction consists of a DWARF CFI opcode and an optional sequence of
39 /// operands. If it refers to an expression, then this expression has its own
40 /// sequence of operations and operands handled separately by DWARFExpression.
41 struct Instruction {
42 Instruction(uint8_t Opcode) : Opcode(Opcode) {}
44 uint8_t Opcode;
45 Operands Ops;
46 // Associated DWARF expression in case this instruction refers to one
47 Optional<DWARFExpression> Expression;
50 using InstrList = std::vector<Instruction>;
51 using iterator = InstrList::iterator;
52 using const_iterator = InstrList::const_iterator;
54 iterator begin() { return Instructions.begin(); }
55 const_iterator begin() const { return Instructions.begin(); }
56 iterator end() { return Instructions.end(); }
57 const_iterator end() const { return Instructions.end(); }
59 unsigned size() const { return (unsigned)Instructions.size(); }
60 bool empty() const { return Instructions.empty(); }
62 CFIProgram(uint64_t CodeAlignmentFactor, int64_t DataAlignmentFactor,
63 Triple::ArchType Arch)
64 : CodeAlignmentFactor(CodeAlignmentFactor),
65 DataAlignmentFactor(DataAlignmentFactor),
66 Arch(Arch) {}
68 /// Parse and store a sequence of CFI instructions from Data,
69 /// starting at *Offset and ending at EndOffset. *Offset is updated
70 /// to EndOffset upon successful parsing, or indicates the offset
71 /// where a problem occurred in case an error is returned.
72 Error parse(DWARFDataExtractor Data, uint64_t *Offset, uint64_t EndOffset);
74 void dump(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH,
75 unsigned IndentLevel = 1) const;
77 private:
78 std::vector<Instruction> Instructions;
79 const uint64_t CodeAlignmentFactor;
80 const int64_t DataAlignmentFactor;
81 Triple::ArchType Arch;
83 /// Convenience method to add a new instruction with the given opcode.
84 void addInstruction(uint8_t Opcode) {
85 Instructions.push_back(Instruction(Opcode));
88 /// Add a new single-operand instruction.
89 void addInstruction(uint8_t Opcode, uint64_t Operand1) {
90 Instructions.push_back(Instruction(Opcode));
91 Instructions.back().Ops.push_back(Operand1);
94 /// Add a new instruction that has two operands.
95 void addInstruction(uint8_t Opcode, uint64_t Operand1, uint64_t Operand2) {
96 Instructions.push_back(Instruction(Opcode));
97 Instructions.back().Ops.push_back(Operand1);
98 Instructions.back().Ops.push_back(Operand2);
101 /// Types of operands to CFI instructions
102 /// In DWARF, this type is implicitly tied to a CFI instruction opcode and
103 /// thus this type doesn't need to be explictly written to the file (this is
104 /// not a DWARF encoding). The relationship of instrs to operand types can
105 /// be obtained from getOperandTypes() and is only used to simplify
106 /// instruction printing.
107 enum OperandType {
108 OT_Unset,
109 OT_None,
110 OT_Address,
111 OT_Offset,
112 OT_FactoredCodeOffset,
113 OT_SignedFactDataOffset,
114 OT_UnsignedFactDataOffset,
115 OT_Register,
116 OT_Expression
119 /// Retrieve the array describing the types of operands according to the enum
120 /// above. This is indexed by opcode.
121 static ArrayRef<OperandType[2]> getOperandTypes();
123 /// Print \p Opcode's operand number \p OperandIdx which has value \p Operand.
124 void printOperand(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH,
125 const Instruction &Instr, unsigned OperandIdx,
126 uint64_t Operand) const;
129 /// An entry in either debug_frame or eh_frame. This entry can be a CIE or an
130 /// FDE.
131 class FrameEntry {
132 public:
133 enum FrameKind { FK_CIE, FK_FDE };
135 FrameEntry(FrameKind K, uint64_t Offset, uint64_t Length, uint64_t CodeAlign,
136 int64_t DataAlign, Triple::ArchType Arch)
137 : Kind(K), Offset(Offset), Length(Length),
138 CFIs(CodeAlign, DataAlign, Arch) {}
140 virtual ~FrameEntry() {}
142 FrameKind getKind() const { return Kind; }
143 uint64_t getOffset() const { return Offset; }
144 uint64_t getLength() const { return Length; }
145 const CFIProgram &cfis() const { return CFIs; }
146 CFIProgram &cfis() { return CFIs; }
148 /// Dump the instructions in this CFI fragment
149 virtual void dump(raw_ostream &OS, const MCRegisterInfo *MRI,
150 bool IsEH) const = 0;
152 protected:
153 const FrameKind Kind;
155 /// Offset of this entry in the section.
156 const uint64_t Offset;
158 /// Entry length as specified in DWARF.
159 const uint64_t Length;
161 CFIProgram CFIs;
164 /// DWARF Common Information Entry (CIE)
165 class CIE : public FrameEntry {
166 public:
167 // CIEs (and FDEs) are simply container classes, so the only sensible way to
168 // create them is by providing the full parsed contents in the constructor.
169 CIE(uint64_t Offset, uint64_t Length, uint8_t Version,
170 SmallString<8> Augmentation, uint8_t AddressSize,
171 uint8_t SegmentDescriptorSize, uint64_t CodeAlignmentFactor,
172 int64_t DataAlignmentFactor, uint64_t ReturnAddressRegister,
173 SmallString<8> AugmentationData, uint32_t FDEPointerEncoding,
174 uint32_t LSDAPointerEncoding, Optional<uint64_t> Personality,
175 Optional<uint32_t> PersonalityEnc, Triple::ArchType Arch)
176 : FrameEntry(FK_CIE, Offset, Length, CodeAlignmentFactor,
177 DataAlignmentFactor, Arch),
178 Version(Version), Augmentation(std::move(Augmentation)),
179 AddressSize(AddressSize), SegmentDescriptorSize(SegmentDescriptorSize),
180 CodeAlignmentFactor(CodeAlignmentFactor),
181 DataAlignmentFactor(DataAlignmentFactor),
182 ReturnAddressRegister(ReturnAddressRegister),
183 AugmentationData(std::move(AugmentationData)),
184 FDEPointerEncoding(FDEPointerEncoding),
185 LSDAPointerEncoding(LSDAPointerEncoding), Personality(Personality),
186 PersonalityEnc(PersonalityEnc) {}
188 static bool classof(const FrameEntry *FE) { return FE->getKind() == FK_CIE; }
190 StringRef getAugmentationString() const { return Augmentation; }
191 uint64_t getCodeAlignmentFactor() const { return CodeAlignmentFactor; }
192 int64_t getDataAlignmentFactor() const { return DataAlignmentFactor; }
193 uint8_t getVersion() const { return Version; }
194 uint64_t getReturnAddressRegister() const { return ReturnAddressRegister; }
195 Optional<uint64_t> getPersonalityAddress() const { return Personality; }
196 Optional<uint32_t> getPersonalityEncoding() const { return PersonalityEnc; }
198 uint32_t getFDEPointerEncoding() const { return FDEPointerEncoding; }
200 uint32_t getLSDAPointerEncoding() const { return LSDAPointerEncoding; }
202 void dump(raw_ostream &OS, const MCRegisterInfo *MRI,
203 bool IsEH) const override;
205 private:
206 /// The following fields are defined in section 6.4.1 of the DWARF standard v4
207 const uint8_t Version;
208 const SmallString<8> Augmentation;
209 const uint8_t AddressSize;
210 const uint8_t SegmentDescriptorSize;
211 const uint64_t CodeAlignmentFactor;
212 const int64_t DataAlignmentFactor;
213 const uint64_t ReturnAddressRegister;
215 // The following are used when the CIE represents an EH frame entry.
216 const SmallString<8> AugmentationData;
217 const uint32_t FDEPointerEncoding;
218 const uint32_t LSDAPointerEncoding;
219 const Optional<uint64_t> Personality;
220 const Optional<uint32_t> PersonalityEnc;
223 /// DWARF Frame Description Entry (FDE)
224 class FDE : public FrameEntry {
225 public:
226 // Each FDE has a CIE it's "linked to". Our FDE contains is constructed with
227 // an offset to the CIE (provided by parsing the FDE header). The CIE itself
228 // is obtained lazily once it's actually required.
229 FDE(uint64_t Offset, uint64_t Length, int64_t LinkedCIEOffset,
230 uint64_t InitialLocation, uint64_t AddressRange, CIE *Cie,
231 Optional<uint64_t> LSDAAddress, Triple::ArchType Arch)
232 : FrameEntry(FK_FDE, Offset, Length,
233 Cie ? Cie->getCodeAlignmentFactor() : 0,
234 Cie ? Cie->getDataAlignmentFactor() : 0,
235 Arch),
236 LinkedCIEOffset(LinkedCIEOffset), InitialLocation(InitialLocation),
237 AddressRange(AddressRange), LinkedCIE(Cie), LSDAAddress(LSDAAddress) {}
239 ~FDE() override = default;
241 const CIE *getLinkedCIE() const { return LinkedCIE; }
242 uint64_t getInitialLocation() const { return InitialLocation; }
243 uint64_t getAddressRange() const { return AddressRange; }
244 Optional<uint64_t> getLSDAAddress() const { return LSDAAddress; }
246 void dump(raw_ostream &OS, const MCRegisterInfo *MRI,
247 bool IsEH) const override;
249 static bool classof(const FrameEntry *FE) { return FE->getKind() == FK_FDE; }
251 private:
252 /// The following fields are defined in section 6.4.1 of the DWARF standard v3
253 const uint64_t LinkedCIEOffset;
254 const uint64_t InitialLocation;
255 const uint64_t AddressRange;
256 const CIE *LinkedCIE;
257 const Optional<uint64_t> LSDAAddress;
260 } // end namespace dwarf
262 /// A parsed .debug_frame or .eh_frame section
263 class DWARFDebugFrame {
264 const Triple::ArchType Arch;
265 // True if this is parsing an eh_frame section.
266 const bool IsEH;
267 // Not zero for sane pointer values coming out of eh_frame
268 const uint64_t EHFrameAddress;
270 std::vector<std::unique_ptr<dwarf::FrameEntry>> Entries;
271 using iterator = pointee_iterator<decltype(Entries)::const_iterator>;
273 /// Return the entry at the given offset or nullptr.
274 dwarf::FrameEntry *getEntryAtOffset(uint64_t Offset) const;
276 public:
277 // If IsEH is true, assume it is a .eh_frame section. Otherwise,
278 // it is a .debug_frame section. EHFrameAddress should be different
279 // than zero for correct parsing of .eh_frame addresses when they
280 // use a PC-relative encoding.
281 DWARFDebugFrame(Triple::ArchType Arch,
282 bool IsEH = false, uint64_t EHFrameAddress = 0);
283 ~DWARFDebugFrame();
285 /// Dump the section data into the given stream.
286 void dump(raw_ostream &OS, const MCRegisterInfo *MRI,
287 Optional<uint64_t> Offset) const;
289 /// Parse the section from raw data. \p Data is assumed to contain the whole
290 /// frame section contents to be parsed.
291 void parse(DWARFDataExtractor Data);
293 /// Return whether the section has any entries.
294 bool empty() const { return Entries.empty(); }
296 /// DWARF Frame entries accessors
297 iterator begin() const { return Entries.begin(); }
298 iterator end() const { return Entries.end(); }
299 iterator_range<iterator> entries() const {
300 return iterator_range<iterator>(Entries.begin(), Entries.end());
303 uint64_t getEHFrameAddress() const { return EHFrameAddress; }
306 } // end namespace llvm
308 #endif // LLVM_DEBUGINFO_DWARF_DWARFDEBUGFRAME_H