[Alignment][NFC] Migrate Instructions to Align
[llvm-core.git] / lib / IR / ConstantRange.cpp
blob920fdc01a14ff180d020a8f6a2ca866be8c2e6b6
1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Represent a range of possible values that may occur when the program is run
10 // for an integral value. This keeps track of a lower and upper bound for the
11 // constant, which MAY wrap around the end of the numeric range. To do this, it
12 // keeps track of a [lower, upper) bound, which specifies an interval just like
13 // STL iterators. When used with boolean values, the following are important
14 // ranges (other integral ranges use min/max values for special range values):
16 // [F, F) = {} = Empty set
17 // [T, F) = {T}
18 // [F, T) = {F}
19 // [T, T) = {F, T} = Full set
21 //===----------------------------------------------------------------------===//
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/KnownBits.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <algorithm>
37 #include <cassert>
38 #include <cstdint>
40 using namespace llvm;
42 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
43 : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
44 Upper(Lower) {}
46 ConstantRange::ConstantRange(APInt V)
47 : Lower(std::move(V)), Upper(Lower + 1) {}
49 ConstantRange::ConstantRange(APInt L, APInt U)
50 : Lower(std::move(L)), Upper(std::move(U)) {
51 assert(Lower.getBitWidth() == Upper.getBitWidth() &&
52 "ConstantRange with unequal bit widths");
53 assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
54 "Lower == Upper, but they aren't min or max value!");
57 ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known,
58 bool IsSigned) {
59 assert(!Known.hasConflict() && "Expected valid KnownBits");
61 if (Known.isUnknown())
62 return getFull(Known.getBitWidth());
64 // For unsigned ranges, or signed ranges with known sign bit, create a simple
65 // range between the smallest and largest possible value.
66 if (!IsSigned || Known.isNegative() || Known.isNonNegative())
67 return ConstantRange(Known.One, ~Known.Zero + 1);
69 // If we don't know the sign bit, pick the lower bound as a negative number
70 // and the upper bound as a non-negative one.
71 APInt Lower = Known.One, Upper = ~Known.Zero;
72 Lower.setSignBit();
73 Upper.clearSignBit();
74 return ConstantRange(Lower, Upper + 1);
77 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
78 const ConstantRange &CR) {
79 if (CR.isEmptySet())
80 return CR;
82 uint32_t W = CR.getBitWidth();
83 switch (Pred) {
84 default:
85 llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
86 case CmpInst::ICMP_EQ:
87 return CR;
88 case CmpInst::ICMP_NE:
89 if (CR.isSingleElement())
90 return ConstantRange(CR.getUpper(), CR.getLower());
91 return getFull(W);
92 case CmpInst::ICMP_ULT: {
93 APInt UMax(CR.getUnsignedMax());
94 if (UMax.isMinValue())
95 return getEmpty(W);
96 return ConstantRange(APInt::getMinValue(W), std::move(UMax));
98 case CmpInst::ICMP_SLT: {
99 APInt SMax(CR.getSignedMax());
100 if (SMax.isMinSignedValue())
101 return getEmpty(W);
102 return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
104 case CmpInst::ICMP_ULE:
105 return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1);
106 case CmpInst::ICMP_SLE:
107 return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1);
108 case CmpInst::ICMP_UGT: {
109 APInt UMin(CR.getUnsignedMin());
110 if (UMin.isMaxValue())
111 return getEmpty(W);
112 return ConstantRange(std::move(UMin) + 1, APInt::getNullValue(W));
114 case CmpInst::ICMP_SGT: {
115 APInt SMin(CR.getSignedMin());
116 if (SMin.isMaxSignedValue())
117 return getEmpty(W);
118 return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
120 case CmpInst::ICMP_UGE:
121 return getNonEmpty(CR.getUnsignedMin(), APInt::getNullValue(W));
122 case CmpInst::ICMP_SGE:
123 return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W));
127 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
128 const ConstantRange &CR) {
129 // Follows from De-Morgan's laws:
131 // ~(~A union ~B) == A intersect B.
133 return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
134 .inverse();
137 ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
138 const APInt &C) {
139 // Computes the exact range that is equal to both the constant ranges returned
140 // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
141 // when RHS is a singleton such as an APInt and so the assert is valid.
142 // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
143 // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
145 assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
146 return makeAllowedICmpRegion(Pred, C);
149 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
150 APInt &RHS) const {
151 bool Success = false;
153 if (isFullSet() || isEmptySet()) {
154 Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
155 RHS = APInt(getBitWidth(), 0);
156 Success = true;
157 } else if (auto *OnlyElt = getSingleElement()) {
158 Pred = CmpInst::ICMP_EQ;
159 RHS = *OnlyElt;
160 Success = true;
161 } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
162 Pred = CmpInst::ICMP_NE;
163 RHS = *OnlyMissingElt;
164 Success = true;
165 } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
166 Pred =
167 getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
168 RHS = getUpper();
169 Success = true;
170 } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
171 Pred =
172 getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
173 RHS = getLower();
174 Success = true;
177 assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) &&
178 "Bad result!");
180 return Success;
183 /// Exact mul nuw region for single element RHS.
184 static ConstantRange makeExactMulNUWRegion(const APInt &V) {
185 unsigned BitWidth = V.getBitWidth();
186 if (V == 0)
187 return ConstantRange::getFull(V.getBitWidth());
189 return ConstantRange::getNonEmpty(
190 APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V,
191 APInt::Rounding::UP),
192 APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V,
193 APInt::Rounding::DOWN) + 1);
196 /// Exact mul nsw region for single element RHS.
197 static ConstantRange makeExactMulNSWRegion(const APInt &V) {
198 // Handle special case for 0, -1 and 1. See the last for reason why we
199 // specialize -1 and 1.
200 unsigned BitWidth = V.getBitWidth();
201 if (V == 0 || V.isOneValue())
202 return ConstantRange::getFull(BitWidth);
204 APInt MinValue = APInt::getSignedMinValue(BitWidth);
205 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
206 // e.g. Returning [-127, 127], represented as [-127, -128).
207 if (V.isAllOnesValue())
208 return ConstantRange(-MaxValue, MinValue);
210 APInt Lower, Upper;
211 if (V.isNegative()) {
212 Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
213 Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
214 } else {
215 Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
216 Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
218 // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1).
219 // Upper + 1 is guaranteed not to overflow, because |divisor| > 1. 0, -1,
220 // and 1 are already handled as special cases.
221 return ConstantRange(Lower, Upper + 1);
224 ConstantRange
225 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
226 const ConstantRange &Other,
227 unsigned NoWrapKind) {
228 using OBO = OverflowingBinaryOperator;
230 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
232 assert((NoWrapKind == OBO::NoSignedWrap ||
233 NoWrapKind == OBO::NoUnsignedWrap) &&
234 "NoWrapKind invalid!");
236 bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
237 unsigned BitWidth = Other.getBitWidth();
239 switch (BinOp) {
240 default:
241 llvm_unreachable("Unsupported binary op");
243 case Instruction::Add: {
244 if (Unsigned)
245 return getNonEmpty(APInt::getNullValue(BitWidth),
246 -Other.getUnsignedMax());
248 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
249 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
250 return getNonEmpty(
251 SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal,
252 SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal);
255 case Instruction::Sub: {
256 if (Unsigned)
257 return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth));
259 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
260 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
261 return getNonEmpty(
262 SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal,
263 SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal);
266 case Instruction::Mul:
267 if (Unsigned)
268 return makeExactMulNUWRegion(Other.getUnsignedMax());
270 return makeExactMulNSWRegion(Other.getSignedMin())
271 .intersectWith(makeExactMulNSWRegion(Other.getSignedMax()));
275 ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
276 const APInt &Other,
277 unsigned NoWrapKind) {
278 // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as
279 // "for all" and "for any" coincide in this case.
280 return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind);
283 bool ConstantRange::isFullSet() const {
284 return Lower == Upper && Lower.isMaxValue();
287 bool ConstantRange::isEmptySet() const {
288 return Lower == Upper && Lower.isMinValue();
291 bool ConstantRange::isWrappedSet() const {
292 return Lower.ugt(Upper) && !Upper.isNullValue();
295 bool ConstantRange::isUpperWrapped() const {
296 return Lower.ugt(Upper);
299 bool ConstantRange::isSignWrappedSet() const {
300 return Lower.sgt(Upper) && !Upper.isMinSignedValue();
303 bool ConstantRange::isUpperSignWrapped() const {
304 return Lower.sgt(Upper);
307 bool
308 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
309 assert(getBitWidth() == Other.getBitWidth());
310 if (isFullSet())
311 return false;
312 if (Other.isFullSet())
313 return true;
314 return (Upper - Lower).ult(Other.Upper - Other.Lower);
317 bool
318 ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
319 assert(MaxSize && "MaxSize can't be 0.");
320 // If this a full set, we need special handling to avoid needing an extra bit
321 // to represent the size.
322 if (isFullSet())
323 return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);
325 return (Upper - Lower).ugt(MaxSize);
328 bool ConstantRange::isAllNegative() const {
329 // Empty set is all negative, full set is not.
330 if (isEmptySet())
331 return true;
332 if (isFullSet())
333 return false;
335 return !isUpperSignWrapped() && !Upper.isStrictlyPositive();
338 bool ConstantRange::isAllNonNegative() const {
339 // Empty and full set are automatically treated correctly.
340 return !isSignWrappedSet() && Lower.isNonNegative();
343 APInt ConstantRange::getUnsignedMax() const {
344 if (isFullSet() || isUpperWrapped())
345 return APInt::getMaxValue(getBitWidth());
346 return getUpper() - 1;
349 APInt ConstantRange::getUnsignedMin() const {
350 if (isFullSet() || isWrappedSet())
351 return APInt::getMinValue(getBitWidth());
352 return getLower();
355 APInt ConstantRange::getSignedMax() const {
356 if (isFullSet() || isUpperSignWrapped())
357 return APInt::getSignedMaxValue(getBitWidth());
358 return getUpper() - 1;
361 APInt ConstantRange::getSignedMin() const {
362 if (isFullSet() || isSignWrappedSet())
363 return APInt::getSignedMinValue(getBitWidth());
364 return getLower();
367 bool ConstantRange::contains(const APInt &V) const {
368 if (Lower == Upper)
369 return isFullSet();
371 if (!isUpperWrapped())
372 return Lower.ule(V) && V.ult(Upper);
373 return Lower.ule(V) || V.ult(Upper);
376 bool ConstantRange::contains(const ConstantRange &Other) const {
377 if (isFullSet() || Other.isEmptySet()) return true;
378 if (isEmptySet() || Other.isFullSet()) return false;
380 if (!isUpperWrapped()) {
381 if (Other.isUpperWrapped())
382 return false;
384 return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
387 if (!Other.isUpperWrapped())
388 return Other.getUpper().ule(Upper) ||
389 Lower.ule(Other.getLower());
391 return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
394 ConstantRange ConstantRange::subtract(const APInt &Val) const {
395 assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
396 // If the set is empty or full, don't modify the endpoints.
397 if (Lower == Upper)
398 return *this;
399 return ConstantRange(Lower - Val, Upper - Val);
402 ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
403 return intersectWith(CR.inverse());
406 static ConstantRange getPreferredRange(
407 const ConstantRange &CR1, const ConstantRange &CR2,
408 ConstantRange::PreferredRangeType Type) {
409 if (Type == ConstantRange::Unsigned) {
410 if (!CR1.isWrappedSet() && CR2.isWrappedSet())
411 return CR1;
412 if (CR1.isWrappedSet() && !CR2.isWrappedSet())
413 return CR2;
414 } else if (Type == ConstantRange::Signed) {
415 if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet())
416 return CR1;
417 if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet())
418 return CR2;
421 if (CR1.isSizeStrictlySmallerThan(CR2))
422 return CR1;
423 return CR2;
426 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
427 PreferredRangeType Type) const {
428 assert(getBitWidth() == CR.getBitWidth() &&
429 "ConstantRange types don't agree!");
431 // Handle common cases.
432 if ( isEmptySet() || CR.isFullSet()) return *this;
433 if (CR.isEmptySet() || isFullSet()) return CR;
435 if (!isUpperWrapped() && CR.isUpperWrapped())
436 return CR.intersectWith(*this, Type);
438 if (!isUpperWrapped() && !CR.isUpperWrapped()) {
439 if (Lower.ult(CR.Lower)) {
440 // L---U : this
441 // L---U : CR
442 if (Upper.ule(CR.Lower))
443 return getEmpty();
445 // L---U : this
446 // L---U : CR
447 if (Upper.ult(CR.Upper))
448 return ConstantRange(CR.Lower, Upper);
450 // L-------U : this
451 // L---U : CR
452 return CR;
454 // L---U : this
455 // L-------U : CR
456 if (Upper.ult(CR.Upper))
457 return *this;
459 // L-----U : this
460 // L-----U : CR
461 if (Lower.ult(CR.Upper))
462 return ConstantRange(Lower, CR.Upper);
464 // L---U : this
465 // L---U : CR
466 return getEmpty();
469 if (isUpperWrapped() && !CR.isUpperWrapped()) {
470 if (CR.Lower.ult(Upper)) {
471 // ------U L--- : this
472 // L--U : CR
473 if (CR.Upper.ult(Upper))
474 return CR;
476 // ------U L--- : this
477 // L------U : CR
478 if (CR.Upper.ule(Lower))
479 return ConstantRange(CR.Lower, Upper);
481 // ------U L--- : this
482 // L----------U : CR
483 return getPreferredRange(*this, CR, Type);
485 if (CR.Lower.ult(Lower)) {
486 // --U L---- : this
487 // L--U : CR
488 if (CR.Upper.ule(Lower))
489 return getEmpty();
491 // --U L---- : this
492 // L------U : CR
493 return ConstantRange(Lower, CR.Upper);
496 // --U L------ : this
497 // L--U : CR
498 return CR;
501 if (CR.Upper.ult(Upper)) {
502 // ------U L-- : this
503 // --U L------ : CR
504 if (CR.Lower.ult(Upper))
505 return getPreferredRange(*this, CR, Type);
507 // ----U L-- : this
508 // --U L---- : CR
509 if (CR.Lower.ult(Lower))
510 return ConstantRange(Lower, CR.Upper);
512 // ----U L---- : this
513 // --U L-- : CR
514 return CR;
516 if (CR.Upper.ule(Lower)) {
517 // --U L-- : this
518 // ----U L---- : CR
519 if (CR.Lower.ult(Lower))
520 return *this;
522 // --U L---- : this
523 // ----U L-- : CR
524 return ConstantRange(CR.Lower, Upper);
527 // --U L------ : this
528 // ------U L-- : CR
529 return getPreferredRange(*this, CR, Type);
532 ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
533 PreferredRangeType Type) const {
534 assert(getBitWidth() == CR.getBitWidth() &&
535 "ConstantRange types don't agree!");
537 if ( isFullSet() || CR.isEmptySet()) return *this;
538 if (CR.isFullSet() || isEmptySet()) return CR;
540 if (!isUpperWrapped() && CR.isUpperWrapped())
541 return CR.unionWith(*this, Type);
543 if (!isUpperWrapped() && !CR.isUpperWrapped()) {
544 // L---U and L---U : this
545 // L---U L---U : CR
546 // result in one of
547 // L---------U
548 // -----U L-----
549 if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower))
550 return getPreferredRange(
551 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
553 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
554 APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;
556 if (L.isNullValue() && U.isNullValue())
557 return getFull();
559 return ConstantRange(std::move(L), std::move(U));
562 if (!CR.isUpperWrapped()) {
563 // ------U L----- and ------U L----- : this
564 // L--U L--U : CR
565 if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
566 return *this;
568 // ------U L----- : this
569 // L---------U : CR
570 if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
571 return getFull();
573 // ----U L---- : this
574 // L---U : CR
575 // results in one of
576 // ----------U L----
577 // ----U L----------
578 if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower))
579 return getPreferredRange(
580 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
582 // ----U L----- : this
583 // L----U : CR
584 if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper))
585 return ConstantRange(CR.Lower, Upper);
587 // ------U L---- : this
588 // L-----U : CR
589 assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) &&
590 "ConstantRange::unionWith missed a case with one range wrapped");
591 return ConstantRange(Lower, CR.Upper);
594 // ------U L---- and ------U L---- : this
595 // -U L----------- and ------------U L : CR
596 if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
597 return getFull();
599 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
600 APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;
602 return ConstantRange(std::move(L), std::move(U));
605 ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
606 uint32_t ResultBitWidth) const {
607 switch (CastOp) {
608 default:
609 llvm_unreachable("unsupported cast type");
610 case Instruction::Trunc:
611 return truncate(ResultBitWidth);
612 case Instruction::SExt:
613 return signExtend(ResultBitWidth);
614 case Instruction::ZExt:
615 return zeroExtend(ResultBitWidth);
616 case Instruction::BitCast:
617 return *this;
618 case Instruction::FPToUI:
619 case Instruction::FPToSI:
620 if (getBitWidth() == ResultBitWidth)
621 return *this;
622 else
623 return getFull();
624 case Instruction::UIToFP: {
625 // TODO: use input range if available
626 auto BW = getBitWidth();
627 APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth);
628 APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth);
629 return ConstantRange(std::move(Min), std::move(Max));
631 case Instruction::SIToFP: {
632 // TODO: use input range if available
633 auto BW = getBitWidth();
634 APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth);
635 APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth);
636 return ConstantRange(std::move(SMin), std::move(SMax));
638 case Instruction::FPTrunc:
639 case Instruction::FPExt:
640 case Instruction::IntToPtr:
641 case Instruction::PtrToInt:
642 case Instruction::AddrSpaceCast:
643 // Conservatively return getFull set.
644 return getFull();
648 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
649 if (isEmptySet()) return getEmpty(DstTySize);
651 unsigned SrcTySize = getBitWidth();
652 assert(SrcTySize < DstTySize && "Not a value extension");
653 if (isFullSet() || isUpperWrapped()) {
654 // Change into [0, 1 << src bit width)
655 APInt LowerExt(DstTySize, 0);
656 if (!Upper) // special case: [X, 0) -- not really wrapping around
657 LowerExt = Lower.zext(DstTySize);
658 return ConstantRange(std::move(LowerExt),
659 APInt::getOneBitSet(DstTySize, SrcTySize));
662 return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
665 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
666 if (isEmptySet()) return getEmpty(DstTySize);
668 unsigned SrcTySize = getBitWidth();
669 assert(SrcTySize < DstTySize && "Not a value extension");
671 // special case: [X, INT_MIN) -- not really wrapping around
672 if (Upper.isMinSignedValue())
673 return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
675 if (isFullSet() || isSignWrappedSet()) {
676 return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
677 APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
680 return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
683 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
684 assert(getBitWidth() > DstTySize && "Not a value truncation");
685 if (isEmptySet())
686 return getEmpty(DstTySize);
687 if (isFullSet())
688 return getFull(DstTySize);
690 APInt LowerDiv(Lower), UpperDiv(Upper);
691 ConstantRange Union(DstTySize, /*isFullSet=*/false);
693 // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
694 // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
695 // then we do the union with [MaxValue, Upper)
696 if (isUpperWrapped()) {
697 // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
698 // truncated range.
699 if (Upper.getActiveBits() > DstTySize ||
700 Upper.countTrailingOnes() == DstTySize)
701 return getFull(DstTySize);
703 Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
704 UpperDiv.setAllBits();
706 // Union covers the MaxValue case, so return if the remaining range is just
707 // MaxValue(DstTy).
708 if (LowerDiv == UpperDiv)
709 return Union;
712 // Chop off the most significant bits that are past the destination bitwidth.
713 if (LowerDiv.getActiveBits() > DstTySize) {
714 // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
715 APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
716 LowerDiv -= Adjust;
717 UpperDiv -= Adjust;
720 unsigned UpperDivWidth = UpperDiv.getActiveBits();
721 if (UpperDivWidth <= DstTySize)
722 return ConstantRange(LowerDiv.trunc(DstTySize),
723 UpperDiv.trunc(DstTySize)).unionWith(Union);
725 // The truncated value wraps around. Check if we can do better than fullset.
726 if (UpperDivWidth == DstTySize + 1) {
727 // Clear the MSB so that UpperDiv wraps around.
728 UpperDiv.clearBit(DstTySize);
729 if (UpperDiv.ult(LowerDiv))
730 return ConstantRange(LowerDiv.trunc(DstTySize),
731 UpperDiv.trunc(DstTySize)).unionWith(Union);
734 return getFull(DstTySize);
737 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
738 unsigned SrcTySize = getBitWidth();
739 if (SrcTySize > DstTySize)
740 return truncate(DstTySize);
741 if (SrcTySize < DstTySize)
742 return zeroExtend(DstTySize);
743 return *this;
746 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
747 unsigned SrcTySize = getBitWidth();
748 if (SrcTySize > DstTySize)
749 return truncate(DstTySize);
750 if (SrcTySize < DstTySize)
751 return signExtend(DstTySize);
752 return *this;
755 ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
756 const ConstantRange &Other) const {
757 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
759 switch (BinOp) {
760 case Instruction::Add:
761 return add(Other);
762 case Instruction::Sub:
763 return sub(Other);
764 case Instruction::Mul:
765 return multiply(Other);
766 case Instruction::UDiv:
767 return udiv(Other);
768 case Instruction::SDiv:
769 return sdiv(Other);
770 case Instruction::URem:
771 return urem(Other);
772 case Instruction::SRem:
773 return srem(Other);
774 case Instruction::Shl:
775 return shl(Other);
776 case Instruction::LShr:
777 return lshr(Other);
778 case Instruction::AShr:
779 return ashr(Other);
780 case Instruction::And:
781 return binaryAnd(Other);
782 case Instruction::Or:
783 return binaryOr(Other);
784 // Note: floating point operations applied to abstract ranges are just
785 // ideal integer operations with a lossy representation
786 case Instruction::FAdd:
787 return add(Other);
788 case Instruction::FSub:
789 return sub(Other);
790 case Instruction::FMul:
791 return multiply(Other);
792 default:
793 // Conservatively return getFull set.
794 return getFull();
798 ConstantRange
799 ConstantRange::add(const ConstantRange &Other) const {
800 if (isEmptySet() || Other.isEmptySet())
801 return getEmpty();
802 if (isFullSet() || Other.isFullSet())
803 return getFull();
805 APInt NewLower = getLower() + Other.getLower();
806 APInt NewUpper = getUpper() + Other.getUpper() - 1;
807 if (NewLower == NewUpper)
808 return getFull();
810 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
811 if (X.isSizeStrictlySmallerThan(*this) ||
812 X.isSizeStrictlySmallerThan(Other))
813 // We've wrapped, therefore, full set.
814 return getFull();
815 return X;
818 ConstantRange ConstantRange::addWithNoSignedWrap(const APInt &Other) const {
819 // Calculate the subset of this range such that "X + Other" is
820 // guaranteed not to wrap (overflow) for all X in this subset.
821 auto NSWRange = ConstantRange::makeExactNoWrapRegion(
822 BinaryOperator::Add, Other, OverflowingBinaryOperator::NoSignedWrap);
823 auto NSWConstrainedRange = intersectWith(NSWRange);
825 return NSWConstrainedRange.add(ConstantRange(Other));
828 ConstantRange
829 ConstantRange::sub(const ConstantRange &Other) const {
830 if (isEmptySet() || Other.isEmptySet())
831 return getEmpty();
832 if (isFullSet() || Other.isFullSet())
833 return getFull();
835 APInt NewLower = getLower() - Other.getUpper() + 1;
836 APInt NewUpper = getUpper() - Other.getLower();
837 if (NewLower == NewUpper)
838 return getFull();
840 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
841 if (X.isSizeStrictlySmallerThan(*this) ||
842 X.isSizeStrictlySmallerThan(Other))
843 // We've wrapped, therefore, full set.
844 return getFull();
845 return X;
848 ConstantRange
849 ConstantRange::multiply(const ConstantRange &Other) const {
850 // TODO: If either operand is a single element and the multiply is known to
851 // be non-wrapping, round the result min and max value to the appropriate
852 // multiple of that element. If wrapping is possible, at least adjust the
853 // range according to the greatest power-of-two factor of the single element.
855 if (isEmptySet() || Other.isEmptySet())
856 return getEmpty();
858 // Multiplication is signedness-independent. However different ranges can be
859 // obtained depending on how the input ranges are treated. These different
860 // ranges are all conservatively correct, but one might be better than the
861 // other. We calculate two ranges; one treating the inputs as unsigned
862 // and the other signed, then return the smallest of these ranges.
864 // Unsigned range first.
865 APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
866 APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
867 APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
868 APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
870 ConstantRange Result_zext = ConstantRange(this_min * Other_min,
871 this_max * Other_max + 1);
872 ConstantRange UR = Result_zext.truncate(getBitWidth());
874 // If the unsigned range doesn't wrap, and isn't negative then it's a range
875 // from one positive number to another which is as good as we can generate.
876 // In this case, skip the extra work of generating signed ranges which aren't
877 // going to be better than this range.
878 if (!UR.isUpperWrapped() &&
879 (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
880 return UR;
882 // Now the signed range. Because we could be dealing with negative numbers
883 // here, the lower bound is the smallest of the cartesian product of the
884 // lower and upper ranges; for example:
885 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
886 // Similarly for the upper bound, swapping min for max.
888 this_min = getSignedMin().sext(getBitWidth() * 2);
889 this_max = getSignedMax().sext(getBitWidth() * 2);
890 Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
891 Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
893 auto L = {this_min * Other_min, this_min * Other_max,
894 this_max * Other_min, this_max * Other_max};
895 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
896 ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
897 ConstantRange SR = Result_sext.truncate(getBitWidth());
899 return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
902 ConstantRange
903 ConstantRange::smax(const ConstantRange &Other) const {
904 // X smax Y is: range(smax(X_smin, Y_smin),
905 // smax(X_smax, Y_smax))
906 if (isEmptySet() || Other.isEmptySet())
907 return getEmpty();
908 APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
909 APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
910 return getNonEmpty(std::move(NewL), std::move(NewU));
913 ConstantRange
914 ConstantRange::umax(const ConstantRange &Other) const {
915 // X umax Y is: range(umax(X_umin, Y_umin),
916 // umax(X_umax, Y_umax))
917 if (isEmptySet() || Other.isEmptySet())
918 return getEmpty();
919 APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
920 APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
921 return getNonEmpty(std::move(NewL), std::move(NewU));
924 ConstantRange
925 ConstantRange::smin(const ConstantRange &Other) const {
926 // X smin Y is: range(smin(X_smin, Y_smin),
927 // smin(X_smax, Y_smax))
928 if (isEmptySet() || Other.isEmptySet())
929 return getEmpty();
930 APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
931 APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
932 return getNonEmpty(std::move(NewL), std::move(NewU));
935 ConstantRange
936 ConstantRange::umin(const ConstantRange &Other) const {
937 // X umin Y is: range(umin(X_umin, Y_umin),
938 // umin(X_umax, Y_umax))
939 if (isEmptySet() || Other.isEmptySet())
940 return getEmpty();
941 APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
942 APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
943 return getNonEmpty(std::move(NewL), std::move(NewU));
946 ConstantRange
947 ConstantRange::udiv(const ConstantRange &RHS) const {
948 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
949 return getEmpty();
951 APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
953 APInt RHS_umin = RHS.getUnsignedMin();
954 if (RHS_umin.isNullValue()) {
955 // We want the lowest value in RHS excluding zero. Usually that would be 1
956 // except for a range in the form of [X, 1) in which case it would be X.
957 if (RHS.getUpper() == 1)
958 RHS_umin = RHS.getLower();
959 else
960 RHS_umin = 1;
963 APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
964 return getNonEmpty(std::move(Lower), std::move(Upper));
967 ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const {
968 // We split up the LHS and RHS into positive and negative components
969 // and then also compute the positive and negative components of the result
970 // separately by combining division results with the appropriate signs.
971 APInt Zero = APInt::getNullValue(getBitWidth());
972 APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
973 ConstantRange PosFilter(APInt(getBitWidth(), 1), SignedMin);
974 ConstantRange NegFilter(SignedMin, Zero);
975 ConstantRange PosL = intersectWith(PosFilter);
976 ConstantRange NegL = intersectWith(NegFilter);
977 ConstantRange PosR = RHS.intersectWith(PosFilter);
978 ConstantRange NegR = RHS.intersectWith(NegFilter);
980 ConstantRange PosRes = getEmpty();
981 if (!PosL.isEmptySet() && !PosR.isEmptySet())
982 // pos / pos = pos.
983 PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1),
984 (PosL.Upper - 1).sdiv(PosR.Lower) + 1);
986 if (!NegL.isEmptySet() && !NegR.isEmptySet()) {
987 // neg / neg = pos.
989 // We need to deal with one tricky case here: SignedMin / -1 is UB on the
990 // IR level, so we'll want to exclude this case when calculating bounds.
991 // (For APInts the operation is well-defined and yields SignedMin.) We
992 // handle this by dropping either SignedMin from the LHS or -1 from the RHS.
993 APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower);
994 if (NegL.Lower.isMinSignedValue() && NegR.Upper.isNullValue()) {
995 // Remove -1 from the LHS. Skip if it's the only element, as this would
996 // leave us with an empty set.
997 if (!NegR.Lower.isAllOnesValue()) {
998 APInt AdjNegRUpper;
999 if (RHS.Lower.isAllOnesValue())
1000 // Negative part of [-1, X] without -1 is [SignedMin, X].
1001 AdjNegRUpper = RHS.Upper;
1002 else
1003 // [X, -1] without -1 is [X, -2].
1004 AdjNegRUpper = NegR.Upper - 1;
1006 PosRes = PosRes.unionWith(
1007 ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1));
1010 // Remove SignedMin from the RHS. Skip if it's the only element, as this
1011 // would leave us with an empty set.
1012 if (NegL.Upper != SignedMin + 1) {
1013 APInt AdjNegLLower;
1014 if (Upper == SignedMin + 1)
1015 // Negative part of [X, SignedMin] without SignedMin is [X, -1].
1016 AdjNegLLower = Lower;
1017 else
1018 // [SignedMin, X] without SignedMin is [SignedMin + 1, X].
1019 AdjNegLLower = NegL.Lower + 1;
1021 PosRes = PosRes.unionWith(
1022 ConstantRange(std::move(Lo),
1023 AdjNegLLower.sdiv(NegR.Upper - 1) + 1));
1025 } else {
1026 PosRes = PosRes.unionWith(
1027 ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1));
1031 ConstantRange NegRes = getEmpty();
1032 if (!PosL.isEmptySet() && !NegR.isEmptySet())
1033 // pos / neg = neg.
1034 NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1),
1035 PosL.Lower.sdiv(NegR.Lower) + 1);
1037 if (!NegL.isEmptySet() && !PosR.isEmptySet())
1038 // neg / pos = neg.
1039 NegRes = NegRes.unionWith(
1040 ConstantRange(NegL.Lower.sdiv(PosR.Lower),
1041 (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1));
1043 // Prefer a non-wrapping signed range here.
1044 ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed);
1046 // Preserve the zero that we dropped when splitting the LHS by sign.
1047 if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet()))
1048 Res = Res.unionWith(ConstantRange(Zero));
1049 return Res;
1052 ConstantRange ConstantRange::urem(const ConstantRange &RHS) const {
1053 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
1054 return getEmpty();
1056 // L % R for L < R is L.
1057 if (getUnsignedMax().ult(RHS.getUnsignedMin()))
1058 return *this;
1060 // L % R is <= L and < R.
1061 APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1;
1062 return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(Upper));
1065 ConstantRange ConstantRange::srem(const ConstantRange &RHS) const {
1066 if (isEmptySet() || RHS.isEmptySet())
1067 return getEmpty();
1069 ConstantRange AbsRHS = RHS.abs();
1070 APInt MinAbsRHS = AbsRHS.getUnsignedMin();
1071 APInt MaxAbsRHS = AbsRHS.getUnsignedMax();
1073 // Modulus by zero is UB.
1074 if (MaxAbsRHS.isNullValue())
1075 return getEmpty();
1077 if (MinAbsRHS.isNullValue())
1078 ++MinAbsRHS;
1080 APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax();
1082 if (MinLHS.isNonNegative()) {
1083 // L % R for L < R is L.
1084 if (MaxLHS.ult(MinAbsRHS))
1085 return *this;
1087 // L % R is <= L and < R.
1088 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1089 return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(Upper));
1092 // Same basic logic as above, but the result is negative.
1093 if (MaxLHS.isNegative()) {
1094 if (MinLHS.ugt(-MinAbsRHS))
1095 return *this;
1097 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1098 return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1));
1101 // LHS range crosses zero.
1102 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1103 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1104 return ConstantRange(std::move(Lower), std::move(Upper));
1107 ConstantRange
1108 ConstantRange::binaryAnd(const ConstantRange &Other) const {
1109 if (isEmptySet() || Other.isEmptySet())
1110 return getEmpty();
1112 // TODO: replace this with something less conservative
1114 APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
1115 return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(umin) + 1);
1118 ConstantRange
1119 ConstantRange::binaryOr(const ConstantRange &Other) const {
1120 if (isEmptySet() || Other.isEmptySet())
1121 return getEmpty();
1123 // TODO: replace this with something less conservative
1125 APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
1126 return getNonEmpty(std::move(umax), APInt::getNullValue(getBitWidth()));
1129 ConstantRange
1130 ConstantRange::shl(const ConstantRange &Other) const {
1131 if (isEmptySet() || Other.isEmptySet())
1132 return getEmpty();
1134 APInt max = getUnsignedMax();
1135 APInt Other_umax = Other.getUnsignedMax();
1137 // If we are shifting by maximum amount of
1138 // zero return return the original range.
1139 if (Other_umax.isNullValue())
1140 return *this;
1141 // there's overflow!
1142 if (Other_umax.ugt(max.countLeadingZeros()))
1143 return getFull();
1145 // FIXME: implement the other tricky cases
1147 APInt min = getUnsignedMin();
1148 min <<= Other.getUnsignedMin();
1149 max <<= Other_umax;
1151 return ConstantRange(std::move(min), std::move(max) + 1);
1154 ConstantRange
1155 ConstantRange::lshr(const ConstantRange &Other) const {
1156 if (isEmptySet() || Other.isEmptySet())
1157 return getEmpty();
1159 APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
1160 APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
1161 return getNonEmpty(std::move(min), std::move(max));
1164 ConstantRange
1165 ConstantRange::ashr(const ConstantRange &Other) const {
1166 if (isEmptySet() || Other.isEmptySet())
1167 return getEmpty();
1169 // May straddle zero, so handle both positive and negative cases.
1170 // 'PosMax' is the upper bound of the result of the ashr
1171 // operation, when Upper of the LHS of ashr is a non-negative.
1172 // number. Since ashr of a non-negative number will result in a
1173 // smaller number, the Upper value of LHS is shifted right with
1174 // the minimum value of 'Other' instead of the maximum value.
1175 APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;
1177 // 'PosMin' is the lower bound of the result of the ashr
1178 // operation, when Lower of the LHS is a non-negative number.
1179 // Since ashr of a non-negative number will result in a smaller
1180 // number, the Lower value of LHS is shifted right with the
1181 // maximum value of 'Other'.
1182 APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());
1184 // 'NegMax' is the upper bound of the result of the ashr
1185 // operation, when Upper of the LHS of ashr is a negative number.
1186 // Since 'ashr' of a negative number will result in a bigger
1187 // number, the Upper value of LHS is shifted right with the
1188 // maximum value of 'Other'.
1189 APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;
1191 // 'NegMin' is the lower bound of the result of the ashr
1192 // operation, when Lower of the LHS of ashr is a negative number.
1193 // Since 'ashr' of a negative number will result in a bigger
1194 // number, the Lower value of LHS is shifted right with the
1195 // minimum value of 'Other'.
1196 APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());
1198 APInt max, min;
1199 if (getSignedMin().isNonNegative()) {
1200 // Upper and Lower of LHS are non-negative.
1201 min = PosMin;
1202 max = PosMax;
1203 } else if (getSignedMax().isNegative()) {
1204 // Upper and Lower of LHS are negative.
1205 min = NegMin;
1206 max = NegMax;
1207 } else {
1208 // Upper is non-negative and Lower is negative.
1209 min = NegMin;
1210 max = PosMax;
1212 return getNonEmpty(std::move(min), std::move(max));
1215 ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const {
1216 if (isEmptySet() || Other.isEmptySet())
1217 return getEmpty();
1219 APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin());
1220 APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1;
1221 return getNonEmpty(std::move(NewL), std::move(NewU));
1224 ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const {
1225 if (isEmptySet() || Other.isEmptySet())
1226 return getEmpty();
1228 APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin());
1229 APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1;
1230 return getNonEmpty(std::move(NewL), std::move(NewU));
1233 ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const {
1234 if (isEmptySet() || Other.isEmptySet())
1235 return getEmpty();
1237 APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax());
1238 APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1;
1239 return getNonEmpty(std::move(NewL), std::move(NewU));
1242 ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const {
1243 if (isEmptySet() || Other.isEmptySet())
1244 return getEmpty();
1246 APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax());
1247 APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1;
1248 return getNonEmpty(std::move(NewL), std::move(NewU));
1251 ConstantRange ConstantRange::inverse() const {
1252 if (isFullSet())
1253 return getEmpty();
1254 if (isEmptySet())
1255 return getFull();
1256 return ConstantRange(Upper, Lower);
1259 ConstantRange ConstantRange::abs() const {
1260 if (isEmptySet())
1261 return getEmpty();
1263 if (isSignWrappedSet()) {
1264 APInt Lo;
1265 // Check whether the range crosses zero.
1266 if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive())
1267 Lo = APInt::getNullValue(getBitWidth());
1268 else
1269 Lo = APIntOps::umin(Lower, -Upper + 1);
1271 // SignedMin is included in the result range.
1272 return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1);
1275 APInt SMin = getSignedMin(), SMax = getSignedMax();
1277 // All non-negative.
1278 if (SMin.isNonNegative())
1279 return *this;
1281 // All negative.
1282 if (SMax.isNegative())
1283 return ConstantRange(-SMax, -SMin + 1);
1285 // Range crosses zero.
1286 return ConstantRange(APInt::getNullValue(getBitWidth()),
1287 APIntOps::umax(-SMin, SMax) + 1);
1290 ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow(
1291 const ConstantRange &Other) const {
1292 if (isEmptySet() || Other.isEmptySet())
1293 return OverflowResult::MayOverflow;
1295 APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1296 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1298 // a u+ b overflows high iff a u> ~b.
1299 if (Min.ugt(~OtherMin))
1300 return OverflowResult::AlwaysOverflowsHigh;
1301 if (Max.ugt(~OtherMax))
1302 return OverflowResult::MayOverflow;
1303 return OverflowResult::NeverOverflows;
1306 ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow(
1307 const ConstantRange &Other) const {
1308 if (isEmptySet() || Other.isEmptySet())
1309 return OverflowResult::MayOverflow;
1311 APInt Min = getSignedMin(), Max = getSignedMax();
1312 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1314 APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1315 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1317 // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
1318 // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
1319 if (Min.isNonNegative() && OtherMin.isNonNegative() &&
1320 Min.sgt(SignedMax - OtherMin))
1321 return OverflowResult::AlwaysOverflowsHigh;
1322 if (Max.isNegative() && OtherMax.isNegative() &&
1323 Max.slt(SignedMin - OtherMax))
1324 return OverflowResult::AlwaysOverflowsLow;
1326 if (Max.isNonNegative() && OtherMax.isNonNegative() &&
1327 Max.sgt(SignedMax - OtherMax))
1328 return OverflowResult::MayOverflow;
1329 if (Min.isNegative() && OtherMin.isNegative() &&
1330 Min.slt(SignedMin - OtherMin))
1331 return OverflowResult::MayOverflow;
1333 return OverflowResult::NeverOverflows;
1336 ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow(
1337 const ConstantRange &Other) const {
1338 if (isEmptySet() || Other.isEmptySet())
1339 return OverflowResult::MayOverflow;
1341 APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1342 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1344 // a u- b overflows low iff a u< b.
1345 if (Max.ult(OtherMin))
1346 return OverflowResult::AlwaysOverflowsLow;
1347 if (Min.ult(OtherMax))
1348 return OverflowResult::MayOverflow;
1349 return OverflowResult::NeverOverflows;
1352 ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow(
1353 const ConstantRange &Other) const {
1354 if (isEmptySet() || Other.isEmptySet())
1355 return OverflowResult::MayOverflow;
1357 APInt Min = getSignedMin(), Max = getSignedMax();
1358 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1360 APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1361 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1363 // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
1364 // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
1365 if (Min.isNonNegative() && OtherMax.isNegative() &&
1366 Min.sgt(SignedMax + OtherMax))
1367 return OverflowResult::AlwaysOverflowsHigh;
1368 if (Max.isNegative() && OtherMin.isNonNegative() &&
1369 Max.slt(SignedMin + OtherMin))
1370 return OverflowResult::AlwaysOverflowsLow;
1372 if (Max.isNonNegative() && OtherMin.isNegative() &&
1373 Max.sgt(SignedMax + OtherMin))
1374 return OverflowResult::MayOverflow;
1375 if (Min.isNegative() && OtherMax.isNonNegative() &&
1376 Min.slt(SignedMin + OtherMax))
1377 return OverflowResult::MayOverflow;
1379 return OverflowResult::NeverOverflows;
1382 ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow(
1383 const ConstantRange &Other) const {
1384 if (isEmptySet() || Other.isEmptySet())
1385 return OverflowResult::MayOverflow;
1387 APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1388 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1389 bool Overflow;
1391 (void) Min.umul_ov(OtherMin, Overflow);
1392 if (Overflow)
1393 return OverflowResult::AlwaysOverflowsHigh;
1395 (void) Max.umul_ov(OtherMax, Overflow);
1396 if (Overflow)
1397 return OverflowResult::MayOverflow;
1399 return OverflowResult::NeverOverflows;
1402 void ConstantRange::print(raw_ostream &OS) const {
1403 if (isFullSet())
1404 OS << "full-set";
1405 else if (isEmptySet())
1406 OS << "empty-set";
1407 else
1408 OS << "[" << Lower << "," << Upper << ")";
1411 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1412 LLVM_DUMP_METHOD void ConstantRange::dump() const {
1413 print(dbgs());
1415 #endif
1417 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
1418 const unsigned NumRanges = Ranges.getNumOperands() / 2;
1419 assert(NumRanges >= 1 && "Must have at least one range!");
1420 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
1422 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
1423 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
1425 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
1427 for (unsigned i = 1; i < NumRanges; ++i) {
1428 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
1429 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
1431 // Note: unionWith will potentially create a range that contains values not
1432 // contained in any of the original N ranges.
1433 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
1436 return CR;