[Alignment][NFC] Migrate Instructions to Align
[llvm-core.git] / lib / IR / Function.cpp
bloba4632762c20e287517f9158d4ce43dfeb8e3cc37
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/SymbolTableListTraits.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Use.h"
42 #include "llvm/IR/User.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/IR/ValueSymbolTable.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstddef>
51 #include <cstdint>
52 #include <cstring>
53 #include <string>
55 using namespace llvm;
56 using ProfileCount = Function::ProfileCount;
58 // Explicit instantiations of SymbolTableListTraits since some of the methods
59 // are not in the public header file...
60 template class llvm::SymbolTableListTraits<BasicBlock>;
62 //===----------------------------------------------------------------------===//
63 // Argument Implementation
64 //===----------------------------------------------------------------------===//
66 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
67 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
68 setName(Name);
71 void Argument::setParent(Function *parent) {
72 Parent = parent;
75 bool Argument::hasNonNullAttr() const {
76 if (!getType()->isPointerTy()) return false;
77 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
78 return true;
79 else if (getDereferenceableBytes() > 0 &&
80 !NullPointerIsDefined(getParent(),
81 getType()->getPointerAddressSpace()))
82 return true;
83 return false;
86 bool Argument::hasByValAttr() const {
87 if (!getType()->isPointerTy()) return false;
88 return hasAttribute(Attribute::ByVal);
91 bool Argument::hasSwiftSelfAttr() const {
92 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
95 bool Argument::hasSwiftErrorAttr() const {
96 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
99 bool Argument::hasInAllocaAttr() const {
100 if (!getType()->isPointerTy()) return false;
101 return hasAttribute(Attribute::InAlloca);
104 bool Argument::hasByValOrInAllocaAttr() const {
105 if (!getType()->isPointerTy()) return false;
106 AttributeList Attrs = getParent()->getAttributes();
107 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
108 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca);
111 unsigned Argument::getParamAlignment() const {
112 assert(getType()->isPointerTy() && "Only pointers have alignments");
113 return getParent()->getParamAlignment(getArgNo());
116 Type *Argument::getParamByValType() const {
117 assert(getType()->isPointerTy() && "Only pointers have byval types");
118 return getParent()->getParamByValType(getArgNo());
121 uint64_t Argument::getDereferenceableBytes() const {
122 assert(getType()->isPointerTy() &&
123 "Only pointers have dereferenceable bytes");
124 return getParent()->getParamDereferenceableBytes(getArgNo());
127 uint64_t Argument::getDereferenceableOrNullBytes() const {
128 assert(getType()->isPointerTy() &&
129 "Only pointers have dereferenceable bytes");
130 return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
133 bool Argument::hasNestAttr() const {
134 if (!getType()->isPointerTy()) return false;
135 return hasAttribute(Attribute::Nest);
138 bool Argument::hasNoAliasAttr() const {
139 if (!getType()->isPointerTy()) return false;
140 return hasAttribute(Attribute::NoAlias);
143 bool Argument::hasNoCaptureAttr() const {
144 if (!getType()->isPointerTy()) return false;
145 return hasAttribute(Attribute::NoCapture);
148 bool Argument::hasStructRetAttr() const {
149 if (!getType()->isPointerTy()) return false;
150 return hasAttribute(Attribute::StructRet);
153 bool Argument::hasInRegAttr() const {
154 return hasAttribute(Attribute::InReg);
157 bool Argument::hasReturnedAttr() const {
158 return hasAttribute(Attribute::Returned);
161 bool Argument::hasZExtAttr() const {
162 return hasAttribute(Attribute::ZExt);
165 bool Argument::hasSExtAttr() const {
166 return hasAttribute(Attribute::SExt);
169 bool Argument::onlyReadsMemory() const {
170 AttributeList Attrs = getParent()->getAttributes();
171 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
172 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
175 void Argument::addAttrs(AttrBuilder &B) {
176 AttributeList AL = getParent()->getAttributes();
177 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
178 getParent()->setAttributes(AL);
181 void Argument::addAttr(Attribute::AttrKind Kind) {
182 getParent()->addParamAttr(getArgNo(), Kind);
185 void Argument::addAttr(Attribute Attr) {
186 getParent()->addParamAttr(getArgNo(), Attr);
189 void Argument::removeAttr(Attribute::AttrKind Kind) {
190 getParent()->removeParamAttr(getArgNo(), Kind);
193 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
194 return getParent()->hasParamAttribute(getArgNo(), Kind);
197 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
198 return getParent()->getParamAttribute(getArgNo(), Kind);
201 //===----------------------------------------------------------------------===//
202 // Helper Methods in Function
203 //===----------------------------------------------------------------------===//
205 LLVMContext &Function::getContext() const {
206 return getType()->getContext();
209 unsigned Function::getInstructionCount() const {
210 unsigned NumInstrs = 0;
211 for (const BasicBlock &BB : BasicBlocks)
212 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
213 BB.instructionsWithoutDebug().end());
214 return NumInstrs;
217 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
218 const Twine &N, Module &M) {
219 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
222 void Function::removeFromParent() {
223 getParent()->getFunctionList().remove(getIterator());
226 void Function::eraseFromParent() {
227 getParent()->getFunctionList().erase(getIterator());
230 //===----------------------------------------------------------------------===//
231 // Function Implementation
232 //===----------------------------------------------------------------------===//
234 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
235 // If AS == -1 and we are passed a valid module pointer we place the function
236 // in the program address space. Otherwise we default to AS0.
237 if (AddrSpace == static_cast<unsigned>(-1))
238 return M ? M->getDataLayout().getProgramAddressSpace() : 0;
239 return AddrSpace;
242 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
243 const Twine &name, Module *ParentModule)
244 : GlobalObject(Ty, Value::FunctionVal,
245 OperandTraits<Function>::op_begin(this), 0, Linkage, name,
246 computeAddrSpace(AddrSpace, ParentModule)),
247 NumArgs(Ty->getNumParams()) {
248 assert(FunctionType::isValidReturnType(getReturnType()) &&
249 "invalid return type");
250 setGlobalObjectSubClassData(0);
252 // We only need a symbol table for a function if the context keeps value names
253 if (!getContext().shouldDiscardValueNames())
254 SymTab = std::make_unique<ValueSymbolTable>();
256 // If the function has arguments, mark them as lazily built.
257 if (Ty->getNumParams())
258 setValueSubclassData(1); // Set the "has lazy arguments" bit.
260 if (ParentModule)
261 ParentModule->getFunctionList().push_back(this);
263 HasLLVMReservedName = getName().startswith("llvm.");
264 // Ensure intrinsics have the right parameter attributes.
265 // Note, the IntID field will have been set in Value::setName if this function
266 // name is a valid intrinsic ID.
267 if (IntID)
268 setAttributes(Intrinsic::getAttributes(getContext(), IntID));
271 Function::~Function() {
272 dropAllReferences(); // After this it is safe to delete instructions.
274 // Delete all of the method arguments and unlink from symbol table...
275 if (Arguments)
276 clearArguments();
278 // Remove the function from the on-the-side GC table.
279 clearGC();
282 void Function::BuildLazyArguments() const {
283 // Create the arguments vector, all arguments start out unnamed.
284 auto *FT = getFunctionType();
285 if (NumArgs > 0) {
286 Arguments = std::allocator<Argument>().allocate(NumArgs);
287 for (unsigned i = 0, e = NumArgs; i != e; ++i) {
288 Type *ArgTy = FT->getParamType(i);
289 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
290 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
294 // Clear the lazy arguments bit.
295 unsigned SDC = getSubclassDataFromValue();
296 SDC &= ~(1 << 0);
297 const_cast<Function*>(this)->setValueSubclassData(SDC);
298 assert(!hasLazyArguments());
301 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
302 return MutableArrayRef<Argument>(Args, Count);
305 void Function::clearArguments() {
306 for (Argument &A : makeArgArray(Arguments, NumArgs)) {
307 A.setName("");
308 A.~Argument();
310 std::allocator<Argument>().deallocate(Arguments, NumArgs);
311 Arguments = nullptr;
314 void Function::stealArgumentListFrom(Function &Src) {
315 assert(isDeclaration() && "Expected no references to current arguments");
317 // Drop the current arguments, if any, and set the lazy argument bit.
318 if (!hasLazyArguments()) {
319 assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
320 [](const Argument &A) { return A.use_empty(); }) &&
321 "Expected arguments to be unused in declaration");
322 clearArguments();
323 setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
326 // Nothing to steal if Src has lazy arguments.
327 if (Src.hasLazyArguments())
328 return;
330 // Steal arguments from Src, and fix the lazy argument bits.
331 assert(arg_size() == Src.arg_size());
332 Arguments = Src.Arguments;
333 Src.Arguments = nullptr;
334 for (Argument &A : makeArgArray(Arguments, NumArgs)) {
335 // FIXME: This does the work of transferNodesFromList inefficiently.
336 SmallString<128> Name;
337 if (A.hasName())
338 Name = A.getName();
339 if (!Name.empty())
340 A.setName("");
341 A.setParent(this);
342 if (!Name.empty())
343 A.setName(Name);
346 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
347 assert(!hasLazyArguments());
348 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
351 // dropAllReferences() - This function causes all the subinstructions to "let
352 // go" of all references that they are maintaining. This allows one to
353 // 'delete' a whole class at a time, even though there may be circular
354 // references... first all references are dropped, and all use counts go to
355 // zero. Then everything is deleted for real. Note that no operations are
356 // valid on an object that has "dropped all references", except operator
357 // delete.
359 void Function::dropAllReferences() {
360 setIsMaterializable(false);
362 for (BasicBlock &BB : *this)
363 BB.dropAllReferences();
365 // Delete all basic blocks. They are now unused, except possibly by
366 // blockaddresses, but BasicBlock's destructor takes care of those.
367 while (!BasicBlocks.empty())
368 BasicBlocks.begin()->eraseFromParent();
370 // Drop uses of any optional data (real or placeholder).
371 if (getNumOperands()) {
372 User::dropAllReferences();
373 setNumHungOffUseOperands(0);
374 setValueSubclassData(getSubclassDataFromValue() & ~0xe);
377 // Metadata is stored in a side-table.
378 clearMetadata();
381 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
382 AttributeList PAL = getAttributes();
383 PAL = PAL.addAttribute(getContext(), i, Kind);
384 setAttributes(PAL);
387 void Function::addAttribute(unsigned i, Attribute Attr) {
388 AttributeList PAL = getAttributes();
389 PAL = PAL.addAttribute(getContext(), i, Attr);
390 setAttributes(PAL);
393 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
394 AttributeList PAL = getAttributes();
395 PAL = PAL.addAttributes(getContext(), i, Attrs);
396 setAttributes(PAL);
399 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
400 AttributeList PAL = getAttributes();
401 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
402 setAttributes(PAL);
405 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
406 AttributeList PAL = getAttributes();
407 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
408 setAttributes(PAL);
411 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
412 AttributeList PAL = getAttributes();
413 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
414 setAttributes(PAL);
417 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
418 AttributeList PAL = getAttributes();
419 PAL = PAL.removeAttribute(getContext(), i, Kind);
420 setAttributes(PAL);
423 void Function::removeAttribute(unsigned i, StringRef Kind) {
424 AttributeList PAL = getAttributes();
425 PAL = PAL.removeAttribute(getContext(), i, Kind);
426 setAttributes(PAL);
429 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
430 AttributeList PAL = getAttributes();
431 PAL = PAL.removeAttributes(getContext(), i, Attrs);
432 setAttributes(PAL);
435 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
436 AttributeList PAL = getAttributes();
437 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
438 setAttributes(PAL);
441 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
442 AttributeList PAL = getAttributes();
443 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
444 setAttributes(PAL);
447 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
448 AttributeList PAL = getAttributes();
449 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
450 setAttributes(PAL);
453 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
454 AttributeList PAL = getAttributes();
455 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
456 setAttributes(PAL);
459 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
460 AttributeList PAL = getAttributes();
461 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
462 setAttributes(PAL);
465 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
466 AttributeList PAL = getAttributes();
467 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
468 setAttributes(PAL);
471 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
472 uint64_t Bytes) {
473 AttributeList PAL = getAttributes();
474 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
475 setAttributes(PAL);
478 const std::string &Function::getGC() const {
479 assert(hasGC() && "Function has no collector");
480 return getContext().getGC(*this);
483 void Function::setGC(std::string Str) {
484 setValueSubclassDataBit(14, !Str.empty());
485 getContext().setGC(*this, std::move(Str));
488 void Function::clearGC() {
489 if (!hasGC())
490 return;
491 getContext().deleteGC(*this);
492 setValueSubclassDataBit(14, false);
495 /// Copy all additional attributes (those not needed to create a Function) from
496 /// the Function Src to this one.
497 void Function::copyAttributesFrom(const Function *Src) {
498 GlobalObject::copyAttributesFrom(Src);
499 setCallingConv(Src->getCallingConv());
500 setAttributes(Src->getAttributes());
501 if (Src->hasGC())
502 setGC(Src->getGC());
503 else
504 clearGC();
505 if (Src->hasPersonalityFn())
506 setPersonalityFn(Src->getPersonalityFn());
507 if (Src->hasPrefixData())
508 setPrefixData(Src->getPrefixData());
509 if (Src->hasPrologueData())
510 setPrologueData(Src->getPrologueData());
513 /// Table of string intrinsic names indexed by enum value.
514 static const char * const IntrinsicNameTable[] = {
515 "not_intrinsic",
516 #define GET_INTRINSIC_NAME_TABLE
517 #include "llvm/IR/IntrinsicImpl.inc"
518 #undef GET_INTRINSIC_NAME_TABLE
521 /// Table of per-target intrinsic name tables.
522 #define GET_INTRINSIC_TARGET_DATA
523 #include "llvm/IR/IntrinsicImpl.inc"
524 #undef GET_INTRINSIC_TARGET_DATA
526 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
527 /// target as \c Name, or the generic table if \c Name is not target specific.
529 /// Returns the relevant slice of \c IntrinsicNameTable
530 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
531 assert(Name.startswith("llvm."));
533 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
534 // Drop "llvm." and take the first dotted component. That will be the target
535 // if this is target specific.
536 StringRef Target = Name.drop_front(5).split('.').first;
537 auto It = partition_point(
538 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
539 // We've either found the target or just fall back to the generic set, which
540 // is always first.
541 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
542 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
545 /// This does the actual lookup of an intrinsic ID which
546 /// matches the given function name.
547 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
548 ArrayRef<const char *> NameTable = findTargetSubtable(Name);
549 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
550 if (Idx == -1)
551 return Intrinsic::not_intrinsic;
553 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
554 // an index into a sub-table.
555 int Adjust = NameTable.data() - IntrinsicNameTable;
556 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
558 // If the intrinsic is not overloaded, require an exact match. If it is
559 // overloaded, require either exact or prefix match.
560 const auto MatchSize = strlen(NameTable[Idx]);
561 assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
562 bool IsExactMatch = Name.size() == MatchSize;
563 return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
566 void Function::recalculateIntrinsicID() {
567 StringRef Name = getName();
568 if (!Name.startswith("llvm.")) {
569 HasLLVMReservedName = false;
570 IntID = Intrinsic::not_intrinsic;
571 return;
573 HasLLVMReservedName = true;
574 IntID = lookupIntrinsicID(Name);
577 /// Returns a stable mangling for the type specified for use in the name
578 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling
579 /// of named types is simply their name. Manglings for unnamed types consist
580 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
581 /// combined with the mangling of their component types. A vararg function
582 /// type will have a suffix of 'vararg'. Since function types can contain
583 /// other function types, we close a function type mangling with suffix 'f'
584 /// which can't be confused with it's prefix. This ensures we don't have
585 /// collisions between two unrelated function types. Otherwise, you might
586 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
588 static std::string getMangledTypeStr(Type* Ty) {
589 std::string Result;
590 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
591 Result += "p" + utostr(PTyp->getAddressSpace()) +
592 getMangledTypeStr(PTyp->getElementType());
593 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
594 Result += "a" + utostr(ATyp->getNumElements()) +
595 getMangledTypeStr(ATyp->getElementType());
596 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
597 if (!STyp->isLiteral()) {
598 Result += "s_";
599 Result += STyp->getName();
600 } else {
601 Result += "sl_";
602 for (auto Elem : STyp->elements())
603 Result += getMangledTypeStr(Elem);
605 // Ensure nested structs are distinguishable.
606 Result += "s";
607 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
608 Result += "f_" + getMangledTypeStr(FT->getReturnType());
609 for (size_t i = 0; i < FT->getNumParams(); i++)
610 Result += getMangledTypeStr(FT->getParamType(i));
611 if (FT->isVarArg())
612 Result += "vararg";
613 // Ensure nested function types are distinguishable.
614 Result += "f";
615 } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
616 if (VTy->isScalable())
617 Result += "nx";
618 Result += "v" + utostr(VTy->getVectorNumElements()) +
619 getMangledTypeStr(VTy->getVectorElementType());
620 } else if (Ty) {
621 switch (Ty->getTypeID()) {
622 default: llvm_unreachable("Unhandled type");
623 case Type::VoidTyID: Result += "isVoid"; break;
624 case Type::MetadataTyID: Result += "Metadata"; break;
625 case Type::HalfTyID: Result += "f16"; break;
626 case Type::FloatTyID: Result += "f32"; break;
627 case Type::DoubleTyID: Result += "f64"; break;
628 case Type::X86_FP80TyID: Result += "f80"; break;
629 case Type::FP128TyID: Result += "f128"; break;
630 case Type::PPC_FP128TyID: Result += "ppcf128"; break;
631 case Type::X86_MMXTyID: Result += "x86mmx"; break;
632 case Type::IntegerTyID:
633 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
634 break;
637 return Result;
640 StringRef Intrinsic::getName(ID id) {
641 assert(id < num_intrinsics && "Invalid intrinsic ID!");
642 assert(!isOverloaded(id) &&
643 "This version of getName does not support overloading");
644 return IntrinsicNameTable[id];
647 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
648 assert(id < num_intrinsics && "Invalid intrinsic ID!");
649 std::string Result(IntrinsicNameTable[id]);
650 for (Type *Ty : Tys) {
651 Result += "." + getMangledTypeStr(Ty);
653 return Result;
656 /// IIT_Info - These are enumerators that describe the entries returned by the
657 /// getIntrinsicInfoTableEntries function.
659 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
660 enum IIT_Info {
661 // Common values should be encoded with 0-15.
662 IIT_Done = 0,
663 IIT_I1 = 1,
664 IIT_I8 = 2,
665 IIT_I16 = 3,
666 IIT_I32 = 4,
667 IIT_I64 = 5,
668 IIT_F16 = 6,
669 IIT_F32 = 7,
670 IIT_F64 = 8,
671 IIT_V2 = 9,
672 IIT_V4 = 10,
673 IIT_V8 = 11,
674 IIT_V16 = 12,
675 IIT_V32 = 13,
676 IIT_PTR = 14,
677 IIT_ARG = 15,
679 // Values from 16+ are only encodable with the inefficient encoding.
680 IIT_V64 = 16,
681 IIT_MMX = 17,
682 IIT_TOKEN = 18,
683 IIT_METADATA = 19,
684 IIT_EMPTYSTRUCT = 20,
685 IIT_STRUCT2 = 21,
686 IIT_STRUCT3 = 22,
687 IIT_STRUCT4 = 23,
688 IIT_STRUCT5 = 24,
689 IIT_EXTEND_ARG = 25,
690 IIT_TRUNC_ARG = 26,
691 IIT_ANYPTR = 27,
692 IIT_V1 = 28,
693 IIT_VARARG = 29,
694 IIT_HALF_VEC_ARG = 30,
695 IIT_SAME_VEC_WIDTH_ARG = 31,
696 IIT_PTR_TO_ARG = 32,
697 IIT_PTR_TO_ELT = 33,
698 IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
699 IIT_I128 = 35,
700 IIT_V512 = 36,
701 IIT_V1024 = 37,
702 IIT_STRUCT6 = 38,
703 IIT_STRUCT7 = 39,
704 IIT_STRUCT8 = 40,
705 IIT_F128 = 41,
706 IIT_VEC_ELEMENT = 42,
707 IIT_SCALABLE_VEC = 43,
708 IIT_SUBDIVIDE2_ARG = 44,
709 IIT_SUBDIVIDE4_ARG = 45
712 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
713 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
714 using namespace Intrinsic;
716 IIT_Info Info = IIT_Info(Infos[NextElt++]);
717 unsigned StructElts = 2;
719 switch (Info) {
720 case IIT_Done:
721 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
722 return;
723 case IIT_VARARG:
724 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
725 return;
726 case IIT_MMX:
727 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
728 return;
729 case IIT_TOKEN:
730 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
731 return;
732 case IIT_METADATA:
733 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
734 return;
735 case IIT_F16:
736 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
737 return;
738 case IIT_F32:
739 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
740 return;
741 case IIT_F64:
742 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
743 return;
744 case IIT_F128:
745 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
746 return;
747 case IIT_I1:
748 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
749 return;
750 case IIT_I8:
751 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
752 return;
753 case IIT_I16:
754 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
755 return;
756 case IIT_I32:
757 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
758 return;
759 case IIT_I64:
760 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
761 return;
762 case IIT_I128:
763 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
764 return;
765 case IIT_V1:
766 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
767 DecodeIITType(NextElt, Infos, OutputTable);
768 return;
769 case IIT_V2:
770 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
771 DecodeIITType(NextElt, Infos, OutputTable);
772 return;
773 case IIT_V4:
774 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
775 DecodeIITType(NextElt, Infos, OutputTable);
776 return;
777 case IIT_V8:
778 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
779 DecodeIITType(NextElt, Infos, OutputTable);
780 return;
781 case IIT_V16:
782 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
783 DecodeIITType(NextElt, Infos, OutputTable);
784 return;
785 case IIT_V32:
786 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
787 DecodeIITType(NextElt, Infos, OutputTable);
788 return;
789 case IIT_V64:
790 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
791 DecodeIITType(NextElt, Infos, OutputTable);
792 return;
793 case IIT_V512:
794 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
795 DecodeIITType(NextElt, Infos, OutputTable);
796 return;
797 case IIT_V1024:
798 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
799 DecodeIITType(NextElt, Infos, OutputTable);
800 return;
801 case IIT_PTR:
802 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
803 DecodeIITType(NextElt, Infos, OutputTable);
804 return;
805 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype]
806 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
807 Infos[NextElt++]));
808 DecodeIITType(NextElt, Infos, OutputTable);
809 return;
811 case IIT_ARG: {
812 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
813 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
814 return;
816 case IIT_EXTEND_ARG: {
817 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
818 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
819 ArgInfo));
820 return;
822 case IIT_TRUNC_ARG: {
823 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
824 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
825 ArgInfo));
826 return;
828 case IIT_HALF_VEC_ARG: {
829 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
830 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
831 ArgInfo));
832 return;
834 case IIT_SAME_VEC_WIDTH_ARG: {
835 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
836 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
837 ArgInfo));
838 return;
840 case IIT_PTR_TO_ARG: {
841 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
842 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
843 ArgInfo));
844 return;
846 case IIT_PTR_TO_ELT: {
847 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
848 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
849 return;
851 case IIT_VEC_OF_ANYPTRS_TO_ELT: {
852 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
853 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
854 OutputTable.push_back(
855 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
856 return;
858 case IIT_EMPTYSTRUCT:
859 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
860 return;
861 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
862 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
863 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
864 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
865 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
866 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
867 case IIT_STRUCT2: {
868 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
870 for (unsigned i = 0; i != StructElts; ++i)
871 DecodeIITType(NextElt, Infos, OutputTable);
872 return;
874 case IIT_SUBDIVIDE2_ARG: {
875 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
876 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
877 ArgInfo));
878 return;
880 case IIT_SUBDIVIDE4_ARG: {
881 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
882 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
883 ArgInfo));
884 return;
886 case IIT_VEC_ELEMENT: {
887 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
888 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
889 ArgInfo));
890 return;
892 case IIT_SCALABLE_VEC: {
893 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ScalableVecArgument,
894 0));
895 DecodeIITType(NextElt, Infos, OutputTable);
896 return;
899 llvm_unreachable("unhandled");
902 #define GET_INTRINSIC_GENERATOR_GLOBAL
903 #include "llvm/IR/IntrinsicImpl.inc"
904 #undef GET_INTRINSIC_GENERATOR_GLOBAL
906 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
907 SmallVectorImpl<IITDescriptor> &T){
908 // Check to see if the intrinsic's type was expressible by the table.
909 unsigned TableVal = IIT_Table[id-1];
911 // Decode the TableVal into an array of IITValues.
912 SmallVector<unsigned char, 8> IITValues;
913 ArrayRef<unsigned char> IITEntries;
914 unsigned NextElt = 0;
915 if ((TableVal >> 31) != 0) {
916 // This is an offset into the IIT_LongEncodingTable.
917 IITEntries = IIT_LongEncodingTable;
919 // Strip sentinel bit.
920 NextElt = (TableVal << 1) >> 1;
921 } else {
922 // Decode the TableVal into an array of IITValues. If the entry was encoded
923 // into a single word in the table itself, decode it now.
924 do {
925 IITValues.push_back(TableVal & 0xF);
926 TableVal >>= 4;
927 } while (TableVal);
929 IITEntries = IITValues;
930 NextElt = 0;
933 // Okay, decode the table into the output vector of IITDescriptors.
934 DecodeIITType(NextElt, IITEntries, T);
935 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
936 DecodeIITType(NextElt, IITEntries, T);
939 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
940 ArrayRef<Type*> Tys, LLVMContext &Context) {
941 using namespace Intrinsic;
943 IITDescriptor D = Infos.front();
944 Infos = Infos.slice(1);
946 switch (D.Kind) {
947 case IITDescriptor::Void: return Type::getVoidTy(Context);
948 case IITDescriptor::VarArg: return Type::getVoidTy(Context);
949 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
950 case IITDescriptor::Token: return Type::getTokenTy(Context);
951 case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
952 case IITDescriptor::Half: return Type::getHalfTy(Context);
953 case IITDescriptor::Float: return Type::getFloatTy(Context);
954 case IITDescriptor::Double: return Type::getDoubleTy(Context);
955 case IITDescriptor::Quad: return Type::getFP128Ty(Context);
957 case IITDescriptor::Integer:
958 return IntegerType::get(Context, D.Integer_Width);
959 case IITDescriptor::Vector:
960 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
961 case IITDescriptor::Pointer:
962 return PointerType::get(DecodeFixedType(Infos, Tys, Context),
963 D.Pointer_AddressSpace);
964 case IITDescriptor::Struct: {
965 SmallVector<Type *, 8> Elts;
966 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
967 Elts.push_back(DecodeFixedType(Infos, Tys, Context));
968 return StructType::get(Context, Elts);
970 case IITDescriptor::Argument:
971 return Tys[D.getArgumentNumber()];
972 case IITDescriptor::ExtendArgument: {
973 Type *Ty = Tys[D.getArgumentNumber()];
974 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
975 return VectorType::getExtendedElementVectorType(VTy);
977 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
979 case IITDescriptor::TruncArgument: {
980 Type *Ty = Tys[D.getArgumentNumber()];
981 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
982 return VectorType::getTruncatedElementVectorType(VTy);
984 IntegerType *ITy = cast<IntegerType>(Ty);
985 assert(ITy->getBitWidth() % 2 == 0);
986 return IntegerType::get(Context, ITy->getBitWidth() / 2);
988 case IITDescriptor::Subdivide2Argument:
989 case IITDescriptor::Subdivide4Argument: {
990 Type *Ty = Tys[D.getArgumentNumber()];
991 VectorType *VTy = dyn_cast<VectorType>(Ty);
992 assert(VTy && "Expected an argument of Vector Type");
993 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
994 return VectorType::getSubdividedVectorType(VTy, SubDivs);
996 case IITDescriptor::HalfVecArgument:
997 return VectorType::getHalfElementsVectorType(cast<VectorType>(
998 Tys[D.getArgumentNumber()]));
999 case IITDescriptor::SameVecWidthArgument: {
1000 Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1001 Type *Ty = Tys[D.getArgumentNumber()];
1002 if (auto *VTy = dyn_cast<VectorType>(Ty))
1003 return VectorType::get(EltTy, VTy->getElementCount());
1004 return EltTy;
1006 case IITDescriptor::PtrToArgument: {
1007 Type *Ty = Tys[D.getArgumentNumber()];
1008 return PointerType::getUnqual(Ty);
1010 case IITDescriptor::PtrToElt: {
1011 Type *Ty = Tys[D.getArgumentNumber()];
1012 VectorType *VTy = dyn_cast<VectorType>(Ty);
1013 if (!VTy)
1014 llvm_unreachable("Expected an argument of Vector Type");
1015 Type *EltTy = VTy->getVectorElementType();
1016 return PointerType::getUnqual(EltTy);
1018 case IITDescriptor::VecElementArgument: {
1019 Type *Ty = Tys[D.getArgumentNumber()];
1020 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1021 return VTy->getElementType();
1022 llvm_unreachable("Expected an argument of Vector Type");
1024 case IITDescriptor::VecOfAnyPtrsToElt:
1025 // Return the overloaded type (which determines the pointers address space)
1026 return Tys[D.getOverloadArgNumber()];
1027 case IITDescriptor::ScalableVecArgument: {
1028 Type *Ty = DecodeFixedType(Infos, Tys, Context);
1029 return VectorType::get(Ty->getVectorElementType(),
1030 { Ty->getVectorNumElements(), true });
1033 llvm_unreachable("unhandled");
1036 FunctionType *Intrinsic::getType(LLVMContext &Context,
1037 ID id, ArrayRef<Type*> Tys) {
1038 SmallVector<IITDescriptor, 8> Table;
1039 getIntrinsicInfoTableEntries(id, Table);
1041 ArrayRef<IITDescriptor> TableRef = Table;
1042 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1044 SmallVector<Type*, 8> ArgTys;
1045 while (!TableRef.empty())
1046 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1048 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1049 // If we see void type as the type of the last argument, it is vararg intrinsic
1050 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1051 ArgTys.pop_back();
1052 return FunctionType::get(ResultTy, ArgTys, true);
1054 return FunctionType::get(ResultTy, ArgTys, false);
1057 bool Intrinsic::isOverloaded(ID id) {
1058 #define GET_INTRINSIC_OVERLOAD_TABLE
1059 #include "llvm/IR/IntrinsicImpl.inc"
1060 #undef GET_INTRINSIC_OVERLOAD_TABLE
1063 bool Intrinsic::isLeaf(ID id) {
1064 switch (id) {
1065 default:
1066 return true;
1068 case Intrinsic::experimental_gc_statepoint:
1069 case Intrinsic::experimental_patchpoint_void:
1070 case Intrinsic::experimental_patchpoint_i64:
1071 return false;
1075 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1076 #define GET_INTRINSIC_ATTRIBUTES
1077 #include "llvm/IR/IntrinsicImpl.inc"
1078 #undef GET_INTRINSIC_ATTRIBUTES
1080 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1081 // There can never be multiple globals with the same name of different types,
1082 // because intrinsics must be a specific type.
1083 return cast<Function>(
1084 M->getOrInsertFunction(getName(id, Tys),
1085 getType(M->getContext(), id, Tys))
1086 .getCallee());
1089 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1090 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1091 #include "llvm/IR/IntrinsicImpl.inc"
1092 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1094 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1095 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1096 #include "llvm/IR/IntrinsicImpl.inc"
1097 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1099 using DeferredIntrinsicMatchPair =
1100 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1102 static bool matchIntrinsicType(
1103 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1104 SmallVectorImpl<Type *> &ArgTys,
1105 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1106 bool IsDeferredCheck) {
1107 using namespace Intrinsic;
1109 // If we ran out of descriptors, there are too many arguments.
1110 if (Infos.empty()) return true;
1112 // Do this before slicing off the 'front' part
1113 auto InfosRef = Infos;
1114 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1115 DeferredChecks.emplace_back(T, InfosRef);
1116 return false;
1119 IITDescriptor D = Infos.front();
1120 Infos = Infos.slice(1);
1122 switch (D.Kind) {
1123 case IITDescriptor::Void: return !Ty->isVoidTy();
1124 case IITDescriptor::VarArg: return true;
1125 case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
1126 case IITDescriptor::Token: return !Ty->isTokenTy();
1127 case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1128 case IITDescriptor::Half: return !Ty->isHalfTy();
1129 case IITDescriptor::Float: return !Ty->isFloatTy();
1130 case IITDescriptor::Double: return !Ty->isDoubleTy();
1131 case IITDescriptor::Quad: return !Ty->isFP128Ty();
1132 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1133 case IITDescriptor::Vector: {
1134 VectorType *VT = dyn_cast<VectorType>(Ty);
1135 return !VT || VT->getNumElements() != D.Vector_Width ||
1136 matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1137 DeferredChecks, IsDeferredCheck);
1139 case IITDescriptor::Pointer: {
1140 PointerType *PT = dyn_cast<PointerType>(Ty);
1141 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1142 matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1143 DeferredChecks, IsDeferredCheck);
1146 case IITDescriptor::Struct: {
1147 StructType *ST = dyn_cast<StructType>(Ty);
1148 if (!ST || ST->getNumElements() != D.Struct_NumElements)
1149 return true;
1151 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1152 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1153 DeferredChecks, IsDeferredCheck))
1154 return true;
1155 return false;
1158 case IITDescriptor::Argument:
1159 // If this is the second occurrence of an argument,
1160 // verify that the later instance matches the previous instance.
1161 if (D.getArgumentNumber() < ArgTys.size())
1162 return Ty != ArgTys[D.getArgumentNumber()];
1164 if (D.getArgumentNumber() > ArgTys.size() ||
1165 D.getArgumentKind() == IITDescriptor::AK_MatchType)
1166 return IsDeferredCheck || DeferCheck(Ty);
1168 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1169 "Table consistency error");
1170 ArgTys.push_back(Ty);
1172 switch (D.getArgumentKind()) {
1173 case IITDescriptor::AK_Any: return false; // Success
1174 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1175 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
1176 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
1177 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1178 default: break;
1180 llvm_unreachable("all argument kinds not covered");
1182 case IITDescriptor::ExtendArgument: {
1183 // If this is a forward reference, defer the check for later.
1184 if (D.getArgumentNumber() >= ArgTys.size())
1185 return IsDeferredCheck || DeferCheck(Ty);
1187 Type *NewTy = ArgTys[D.getArgumentNumber()];
1188 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1189 NewTy = VectorType::getExtendedElementVectorType(VTy);
1190 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1191 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1192 else
1193 return true;
1195 return Ty != NewTy;
1197 case IITDescriptor::TruncArgument: {
1198 // If this is a forward reference, defer the check for later.
1199 if (D.getArgumentNumber() >= ArgTys.size())
1200 return IsDeferredCheck || DeferCheck(Ty);
1202 Type *NewTy = ArgTys[D.getArgumentNumber()];
1203 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1204 NewTy = VectorType::getTruncatedElementVectorType(VTy);
1205 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1206 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1207 else
1208 return true;
1210 return Ty != NewTy;
1212 case IITDescriptor::HalfVecArgument:
1213 // If this is a forward reference, defer the check for later.
1214 return D.getArgumentNumber() >= ArgTys.size() ||
1215 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1216 VectorType::getHalfElementsVectorType(
1217 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1218 case IITDescriptor::SameVecWidthArgument: {
1219 if (D.getArgumentNumber() >= ArgTys.size()) {
1220 // Defer check and subsequent check for the vector element type.
1221 Infos = Infos.slice(1);
1222 return IsDeferredCheck || DeferCheck(Ty);
1224 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1225 auto *ThisArgType = dyn_cast<VectorType>(Ty);
1226 // Both must be vectors of the same number of elements or neither.
1227 if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1228 return true;
1229 Type *EltTy = Ty;
1230 if (ThisArgType) {
1231 if (ReferenceType->getElementCount() !=
1232 ThisArgType->getElementCount())
1233 return true;
1234 EltTy = ThisArgType->getVectorElementType();
1236 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1237 IsDeferredCheck);
1239 case IITDescriptor::PtrToArgument: {
1240 if (D.getArgumentNumber() >= ArgTys.size())
1241 return IsDeferredCheck || DeferCheck(Ty);
1242 Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1243 PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1244 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1246 case IITDescriptor::PtrToElt: {
1247 if (D.getArgumentNumber() >= ArgTys.size())
1248 return IsDeferredCheck || DeferCheck(Ty);
1249 VectorType * ReferenceType =
1250 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1251 PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1253 return (!ThisArgType || !ReferenceType ||
1254 ThisArgType->getElementType() != ReferenceType->getElementType());
1256 case IITDescriptor::VecOfAnyPtrsToElt: {
1257 unsigned RefArgNumber = D.getRefArgNumber();
1258 if (RefArgNumber >= ArgTys.size()) {
1259 if (IsDeferredCheck)
1260 return true;
1261 // If forward referencing, already add the pointer-vector type and
1262 // defer the checks for later.
1263 ArgTys.push_back(Ty);
1264 return DeferCheck(Ty);
1267 if (!IsDeferredCheck){
1268 assert(D.getOverloadArgNumber() == ArgTys.size() &&
1269 "Table consistency error");
1270 ArgTys.push_back(Ty);
1273 // Verify the overloaded type "matches" the Ref type.
1274 // i.e. Ty is a vector with the same width as Ref.
1275 // Composed of pointers to the same element type as Ref.
1276 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1277 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1278 if (!ThisArgVecTy || !ReferenceType ||
1279 (ReferenceType->getVectorNumElements() !=
1280 ThisArgVecTy->getVectorNumElements()))
1281 return true;
1282 PointerType *ThisArgEltTy =
1283 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1284 if (!ThisArgEltTy)
1285 return true;
1286 return ThisArgEltTy->getElementType() !=
1287 ReferenceType->getVectorElementType();
1289 case IITDescriptor::VecElementArgument: {
1290 if (D.getArgumentNumber() >= ArgTys.size())
1291 return IsDeferredCheck ? true : DeferCheck(Ty);
1292 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1293 return !ReferenceType || Ty != ReferenceType->getElementType();
1295 case IITDescriptor::Subdivide2Argument:
1296 case IITDescriptor::Subdivide4Argument: {
1297 // If this is a forward reference, defer the check for later.
1298 if (D.getArgumentNumber() >= ArgTys.size())
1299 return IsDeferredCheck || DeferCheck(Ty);
1301 Type *NewTy = ArgTys[D.getArgumentNumber()];
1302 if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1303 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1304 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1305 return Ty != NewTy;
1307 return true;
1309 case IITDescriptor::ScalableVecArgument: {
1310 VectorType *VTy = dyn_cast<VectorType>(Ty);
1311 if (!VTy || !VTy->isScalable())
1312 return true;
1313 return matchIntrinsicType(VTy, Infos, ArgTys, DeferredChecks,
1314 IsDeferredCheck);
1317 llvm_unreachable("unhandled");
1320 Intrinsic::MatchIntrinsicTypesResult
1321 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1322 ArrayRef<Intrinsic::IITDescriptor> &Infos,
1323 SmallVectorImpl<Type *> &ArgTys) {
1324 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1325 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1326 false))
1327 return MatchIntrinsicTypes_NoMatchRet;
1329 unsigned NumDeferredReturnChecks = DeferredChecks.size();
1331 for (auto Ty : FTy->params())
1332 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1333 return MatchIntrinsicTypes_NoMatchArg;
1335 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1336 DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1337 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1338 true))
1339 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1340 : MatchIntrinsicTypes_NoMatchArg;
1343 return MatchIntrinsicTypes_Match;
1346 bool
1347 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1348 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1349 // If there are no descriptors left, then it can't be a vararg.
1350 if (Infos.empty())
1351 return isVarArg;
1353 // There should be only one descriptor remaining at this point.
1354 if (Infos.size() != 1)
1355 return true;
1357 // Check and verify the descriptor.
1358 IITDescriptor D = Infos.front();
1359 Infos = Infos.slice(1);
1360 if (D.Kind == IITDescriptor::VarArg)
1361 return !isVarArg;
1363 return true;
1366 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1367 Intrinsic::ID ID = F->getIntrinsicID();
1368 if (!ID)
1369 return None;
1371 FunctionType *FTy = F->getFunctionType();
1372 // Accumulate an array of overloaded types for the given intrinsic
1373 SmallVector<Type *, 4> ArgTys;
1375 SmallVector<Intrinsic::IITDescriptor, 8> Table;
1376 getIntrinsicInfoTableEntries(ID, Table);
1377 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1379 if (Intrinsic::matchIntrinsicSignature(FTy, TableRef, ArgTys))
1380 return None;
1381 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1382 return None;
1385 StringRef Name = F->getName();
1386 if (Name == Intrinsic::getName(ID, ArgTys))
1387 return None;
1389 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1390 NewDecl->setCallingConv(F->getCallingConv());
1391 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1392 return NewDecl;
1395 /// hasAddressTaken - returns true if there are any uses of this function
1396 /// other than direct calls or invokes to it.
1397 bool Function::hasAddressTaken(const User* *PutOffender) const {
1398 for (const Use &U : uses()) {
1399 const User *FU = U.getUser();
1400 if (isa<BlockAddress>(FU))
1401 continue;
1402 const auto *Call = dyn_cast<CallBase>(FU);
1403 if (!Call) {
1404 if (PutOffender)
1405 *PutOffender = FU;
1406 return true;
1408 if (!Call->isCallee(&U)) {
1409 if (PutOffender)
1410 *PutOffender = FU;
1411 return true;
1414 return false;
1417 bool Function::isDefTriviallyDead() const {
1418 // Check the linkage
1419 if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1420 !hasAvailableExternallyLinkage())
1421 return false;
1423 // Check if the function is used by anything other than a blockaddress.
1424 for (const User *U : users())
1425 if (!isa<BlockAddress>(U))
1426 return false;
1428 return true;
1431 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1432 /// setjmp or other function that gcc recognizes as "returning twice".
1433 bool Function::callsFunctionThatReturnsTwice() const {
1434 for (const Instruction &I : instructions(this))
1435 if (const auto *Call = dyn_cast<CallBase>(&I))
1436 if (Call->hasFnAttr(Attribute::ReturnsTwice))
1437 return true;
1439 return false;
1442 Constant *Function::getPersonalityFn() const {
1443 assert(hasPersonalityFn() && getNumOperands());
1444 return cast<Constant>(Op<0>());
1447 void Function::setPersonalityFn(Constant *Fn) {
1448 setHungoffOperand<0>(Fn);
1449 setValueSubclassDataBit(3, Fn != nullptr);
1452 Constant *Function::getPrefixData() const {
1453 assert(hasPrefixData() && getNumOperands());
1454 return cast<Constant>(Op<1>());
1457 void Function::setPrefixData(Constant *PrefixData) {
1458 setHungoffOperand<1>(PrefixData);
1459 setValueSubclassDataBit(1, PrefixData != nullptr);
1462 Constant *Function::getPrologueData() const {
1463 assert(hasPrologueData() && getNumOperands());
1464 return cast<Constant>(Op<2>());
1467 void Function::setPrologueData(Constant *PrologueData) {
1468 setHungoffOperand<2>(PrologueData);
1469 setValueSubclassDataBit(2, PrologueData != nullptr);
1472 void Function::allocHungoffUselist() {
1473 // If we've already allocated a uselist, stop here.
1474 if (getNumOperands())
1475 return;
1477 allocHungoffUses(3, /*IsPhi=*/ false);
1478 setNumHungOffUseOperands(3);
1480 // Initialize the uselist with placeholder operands to allow traversal.
1481 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1482 Op<0>().set(CPN);
1483 Op<1>().set(CPN);
1484 Op<2>().set(CPN);
1487 template <int Idx>
1488 void Function::setHungoffOperand(Constant *C) {
1489 if (C) {
1490 allocHungoffUselist();
1491 Op<Idx>().set(C);
1492 } else if (getNumOperands()) {
1493 Op<Idx>().set(
1494 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1498 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1499 assert(Bit < 16 && "SubclassData contains only 16 bits");
1500 if (On)
1501 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1502 else
1503 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1506 void Function::setEntryCount(ProfileCount Count,
1507 const DenseSet<GlobalValue::GUID> *S) {
1508 assert(Count.hasValue());
1509 #if !defined(NDEBUG)
1510 auto PrevCount = getEntryCount();
1511 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1512 #endif
1513 MDBuilder MDB(getContext());
1514 setMetadata(
1515 LLVMContext::MD_prof,
1516 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1519 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1520 const DenseSet<GlobalValue::GUID> *Imports) {
1521 setEntryCount(ProfileCount(Count, Type), Imports);
1524 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1525 MDNode *MD = getMetadata(LLVMContext::MD_prof);
1526 if (MD && MD->getOperand(0))
1527 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1528 if (MDS->getString().equals("function_entry_count")) {
1529 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1530 uint64_t Count = CI->getValue().getZExtValue();
1531 // A value of -1 is used for SamplePGO when there were no samples.
1532 // Treat this the same as unknown.
1533 if (Count == (uint64_t)-1)
1534 return ProfileCount::getInvalid();
1535 return ProfileCount(Count, PCT_Real);
1536 } else if (AllowSynthetic &&
1537 MDS->getString().equals("synthetic_function_entry_count")) {
1538 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1539 uint64_t Count = CI->getValue().getZExtValue();
1540 return ProfileCount(Count, PCT_Synthetic);
1543 return ProfileCount::getInvalid();
1546 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1547 DenseSet<GlobalValue::GUID> R;
1548 if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1549 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1550 if (MDS->getString().equals("function_entry_count"))
1551 for (unsigned i = 2; i < MD->getNumOperands(); i++)
1552 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1553 ->getValue()
1554 .getZExtValue());
1555 return R;
1558 void Function::setSectionPrefix(StringRef Prefix) {
1559 MDBuilder MDB(getContext());
1560 setMetadata(LLVMContext::MD_section_prefix,
1561 MDB.createFunctionSectionPrefix(Prefix));
1564 Optional<StringRef> Function::getSectionPrefix() const {
1565 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1566 assert(cast<MDString>(MD->getOperand(0))
1567 ->getString()
1568 .equals("function_section_prefix") &&
1569 "Metadata not match");
1570 return cast<MDString>(MD->getOperand(1))->getString();
1572 return None;
1575 bool Function::nullPointerIsDefined() const {
1576 return getFnAttribute("null-pointer-is-valid")
1577 .getValueAsString()
1578 .equals("true");
1581 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1582 if (F && F->nullPointerIsDefined())
1583 return true;
1585 if (AS != 0)
1586 return true;
1588 return false;