[Alignment][NFC] Migrate Instructions to Align
[llvm-core.git] / lib / IR / Instructions.cpp
blob118711ab65d28c8ef25120bd1f108bbd62352d60
1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Constant.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/AtomicOrdering.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/MathExtras.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <vector>
46 using namespace llvm;
48 //===----------------------------------------------------------------------===//
49 // AllocaInst Class
50 //===----------------------------------------------------------------------===//
52 Optional<uint64_t>
53 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
54 uint64_t Size = DL.getTypeAllocSizeInBits(getAllocatedType());
55 if (isArrayAllocation()) {
56 auto C = dyn_cast<ConstantInt>(getArraySize());
57 if (!C)
58 return None;
59 Size *= C->getZExtValue();
61 return Size;
64 //===----------------------------------------------------------------------===//
65 // CallSite Class
66 //===----------------------------------------------------------------------===//
68 User::op_iterator CallSite::getCallee() const {
69 return cast<CallBase>(getInstruction())->op_end() - 1;
72 //===----------------------------------------------------------------------===//
73 // SelectInst Class
74 //===----------------------------------------------------------------------===//
76 /// areInvalidOperands - Return a string if the specified operands are invalid
77 /// for a select operation, otherwise return null.
78 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
79 if (Op1->getType() != Op2->getType())
80 return "both values to select must have same type";
82 if (Op1->getType()->isTokenTy())
83 return "select values cannot have token type";
85 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
86 // Vector select.
87 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
88 return "vector select condition element type must be i1";
89 VectorType *ET = dyn_cast<VectorType>(Op1->getType());
90 if (!ET)
91 return "selected values for vector select must be vectors";
92 if (ET->getNumElements() != VT->getNumElements())
93 return "vector select requires selected vectors to have "
94 "the same vector length as select condition";
95 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
96 return "select condition must be i1 or <n x i1>";
98 return nullptr;
101 //===----------------------------------------------------------------------===//
102 // PHINode Class
103 //===----------------------------------------------------------------------===//
105 PHINode::PHINode(const PHINode &PN)
106 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
107 ReservedSpace(PN.getNumOperands()) {
108 allocHungoffUses(PN.getNumOperands());
109 std::copy(PN.op_begin(), PN.op_end(), op_begin());
110 std::copy(PN.block_begin(), PN.block_end(), block_begin());
111 SubclassOptionalData = PN.SubclassOptionalData;
114 // removeIncomingValue - Remove an incoming value. This is useful if a
115 // predecessor basic block is deleted.
116 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
117 Value *Removed = getIncomingValue(Idx);
119 // Move everything after this operand down.
121 // FIXME: we could just swap with the end of the list, then erase. However,
122 // clients might not expect this to happen. The code as it is thrashes the
123 // use/def lists, which is kinda lame.
124 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
125 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
127 // Nuke the last value.
128 Op<-1>().set(nullptr);
129 setNumHungOffUseOperands(getNumOperands() - 1);
131 // If the PHI node is dead, because it has zero entries, nuke it now.
132 if (getNumOperands() == 0 && DeletePHIIfEmpty) {
133 // If anyone is using this PHI, make them use a dummy value instead...
134 replaceAllUsesWith(UndefValue::get(getType()));
135 eraseFromParent();
137 return Removed;
140 /// growOperands - grow operands - This grows the operand list in response
141 /// to a push_back style of operation. This grows the number of ops by 1.5
142 /// times.
144 void PHINode::growOperands() {
145 unsigned e = getNumOperands();
146 unsigned NumOps = e + e / 2;
147 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
149 ReservedSpace = NumOps;
150 growHungoffUses(ReservedSpace, /* IsPhi */ true);
153 /// hasConstantValue - If the specified PHI node always merges together the same
154 /// value, return the value, otherwise return null.
155 Value *PHINode::hasConstantValue() const {
156 // Exploit the fact that phi nodes always have at least one entry.
157 Value *ConstantValue = getIncomingValue(0);
158 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
159 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
160 if (ConstantValue != this)
161 return nullptr; // Incoming values not all the same.
162 // The case where the first value is this PHI.
163 ConstantValue = getIncomingValue(i);
165 if (ConstantValue == this)
166 return UndefValue::get(getType());
167 return ConstantValue;
170 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
171 /// together the same value, assuming that undefs result in the same value as
172 /// non-undefs.
173 /// Unlike \ref hasConstantValue, this does not return a value because the
174 /// unique non-undef incoming value need not dominate the PHI node.
175 bool PHINode::hasConstantOrUndefValue() const {
176 Value *ConstantValue = nullptr;
177 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
178 Value *Incoming = getIncomingValue(i);
179 if (Incoming != this && !isa<UndefValue>(Incoming)) {
180 if (ConstantValue && ConstantValue != Incoming)
181 return false;
182 ConstantValue = Incoming;
185 return true;
188 //===----------------------------------------------------------------------===//
189 // LandingPadInst Implementation
190 //===----------------------------------------------------------------------===//
192 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
193 const Twine &NameStr, Instruction *InsertBefore)
194 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
195 init(NumReservedValues, NameStr);
198 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
199 const Twine &NameStr, BasicBlock *InsertAtEnd)
200 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
201 init(NumReservedValues, NameStr);
204 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
205 : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
206 LP.getNumOperands()),
207 ReservedSpace(LP.getNumOperands()) {
208 allocHungoffUses(LP.getNumOperands());
209 Use *OL = getOperandList();
210 const Use *InOL = LP.getOperandList();
211 for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
212 OL[I] = InOL[I];
214 setCleanup(LP.isCleanup());
217 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
218 const Twine &NameStr,
219 Instruction *InsertBefore) {
220 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
223 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
224 const Twine &NameStr,
225 BasicBlock *InsertAtEnd) {
226 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
229 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
230 ReservedSpace = NumReservedValues;
231 setNumHungOffUseOperands(0);
232 allocHungoffUses(ReservedSpace);
233 setName(NameStr);
234 setCleanup(false);
237 /// growOperands - grow operands - This grows the operand list in response to a
238 /// push_back style of operation. This grows the number of ops by 2 times.
239 void LandingPadInst::growOperands(unsigned Size) {
240 unsigned e = getNumOperands();
241 if (ReservedSpace >= e + Size) return;
242 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
243 growHungoffUses(ReservedSpace);
246 void LandingPadInst::addClause(Constant *Val) {
247 unsigned OpNo = getNumOperands();
248 growOperands(1);
249 assert(OpNo < ReservedSpace && "Growing didn't work!");
250 setNumHungOffUseOperands(getNumOperands() + 1);
251 getOperandList()[OpNo] = Val;
254 //===----------------------------------------------------------------------===//
255 // CallBase Implementation
256 //===----------------------------------------------------------------------===//
258 Function *CallBase::getCaller() { return getParent()->getParent(); }
260 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
261 assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
262 return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
265 bool CallBase::isIndirectCall() const {
266 const Value *V = getCalledValue();
267 if (isa<Function>(V) || isa<Constant>(V))
268 return false;
269 if (const CallInst *CI = dyn_cast<CallInst>(this))
270 if (CI->isInlineAsm())
271 return false;
272 return true;
275 /// Tests if this call site must be tail call optimized. Only a CallInst can
276 /// be tail call optimized.
277 bool CallBase::isMustTailCall() const {
278 if (auto *CI = dyn_cast<CallInst>(this))
279 return CI->isMustTailCall();
280 return false;
283 /// Tests if this call site is marked as a tail call.
284 bool CallBase::isTailCall() const {
285 if (auto *CI = dyn_cast<CallInst>(this))
286 return CI->isTailCall();
287 return false;
290 Intrinsic::ID CallBase::getIntrinsicID() const {
291 if (auto *F = getCalledFunction())
292 return F->getIntrinsicID();
293 return Intrinsic::not_intrinsic;
296 bool CallBase::isReturnNonNull() const {
297 if (hasRetAttr(Attribute::NonNull))
298 return true;
300 if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
301 !NullPointerIsDefined(getCaller(),
302 getType()->getPointerAddressSpace()))
303 return true;
305 return false;
308 Value *CallBase::getReturnedArgOperand() const {
309 unsigned Index;
311 if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
312 return getArgOperand(Index - AttributeList::FirstArgIndex);
313 if (const Function *F = getCalledFunction())
314 if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
315 Index)
316 return getArgOperand(Index - AttributeList::FirstArgIndex);
318 return nullptr;
321 bool CallBase::hasRetAttr(Attribute::AttrKind Kind) const {
322 if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind))
323 return true;
325 // Look at the callee, if available.
326 if (const Function *F = getCalledFunction())
327 return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind);
328 return false;
331 /// Determine whether the argument or parameter has the given attribute.
332 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
333 assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
335 if (Attrs.hasParamAttribute(ArgNo, Kind))
336 return true;
337 if (const Function *F = getCalledFunction())
338 return F->getAttributes().hasParamAttribute(ArgNo, Kind);
339 return false;
342 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
343 if (const Function *F = getCalledFunction())
344 return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
345 return false;
348 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
349 if (const Function *F = getCalledFunction())
350 return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
351 return false;
354 CallBase::op_iterator
355 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
356 const unsigned BeginIndex) {
357 auto It = op_begin() + BeginIndex;
358 for (auto &B : Bundles)
359 It = std::copy(B.input_begin(), B.input_end(), It);
361 auto *ContextImpl = getContext().pImpl;
362 auto BI = Bundles.begin();
363 unsigned CurrentIndex = BeginIndex;
365 for (auto &BOI : bundle_op_infos()) {
366 assert(BI != Bundles.end() && "Incorrect allocation?");
368 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
369 BOI.Begin = CurrentIndex;
370 BOI.End = CurrentIndex + BI->input_size();
371 CurrentIndex = BOI.End;
372 BI++;
375 assert(BI == Bundles.end() && "Incorrect allocation?");
377 return It;
380 //===----------------------------------------------------------------------===//
381 // CallInst Implementation
382 //===----------------------------------------------------------------------===//
384 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
385 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
386 this->FTy = FTy;
387 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
388 "NumOperands not set up?");
389 setCalledOperand(Func);
391 #ifndef NDEBUG
392 assert((Args.size() == FTy->getNumParams() ||
393 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
394 "Calling a function with bad signature!");
396 for (unsigned i = 0; i != Args.size(); ++i)
397 assert((i >= FTy->getNumParams() ||
398 FTy->getParamType(i) == Args[i]->getType()) &&
399 "Calling a function with a bad signature!");
400 #endif
402 llvm::copy(Args, op_begin());
404 auto It = populateBundleOperandInfos(Bundles, Args.size());
405 (void)It;
406 assert(It + 1 == op_end() && "Should add up!");
408 setName(NameStr);
411 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
412 this->FTy = FTy;
413 assert(getNumOperands() == 1 && "NumOperands not set up?");
414 setCalledOperand(Func);
416 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
418 setName(NameStr);
421 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
422 Instruction *InsertBefore)
423 : CallBase(Ty->getReturnType(), Instruction::Call,
424 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
425 init(Ty, Func, Name);
428 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
429 BasicBlock *InsertAtEnd)
430 : CallBase(Ty->getReturnType(), Instruction::Call,
431 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
432 init(Ty, Func, Name);
435 CallInst::CallInst(const CallInst &CI)
436 : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
437 OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
438 CI.getNumOperands()) {
439 setTailCallKind(CI.getTailCallKind());
440 setCallingConv(CI.getCallingConv());
442 std::copy(CI.op_begin(), CI.op_end(), op_begin());
443 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
444 bundle_op_info_begin());
445 SubclassOptionalData = CI.SubclassOptionalData;
448 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
449 Instruction *InsertPt) {
450 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
452 auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledValue(),
453 Args, OpB, CI->getName(), InsertPt);
454 NewCI->setTailCallKind(CI->getTailCallKind());
455 NewCI->setCallingConv(CI->getCallingConv());
456 NewCI->SubclassOptionalData = CI->SubclassOptionalData;
457 NewCI->setAttributes(CI->getAttributes());
458 NewCI->setDebugLoc(CI->getDebugLoc());
459 return NewCI;
462 // Update profile weight for call instruction by scaling it using the ratio
463 // of S/T. The meaning of "branch_weights" meta data for call instruction is
464 // transfered to represent call count.
465 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
466 auto *ProfileData = getMetadata(LLVMContext::MD_prof);
467 if (ProfileData == nullptr)
468 return;
470 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
471 if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
472 !ProfDataName->getString().equals("VP")))
473 return;
475 if (T == 0) {
476 LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
477 "div by 0. Ignoring. Likely the function "
478 << getParent()->getParent()->getName()
479 << " has 0 entry count, and contains call instructions "
480 "with non-zero prof info.");
481 return;
484 MDBuilder MDB(getContext());
485 SmallVector<Metadata *, 3> Vals;
486 Vals.push_back(ProfileData->getOperand(0));
487 APInt APS(128, S), APT(128, T);
488 if (ProfDataName->getString().equals("branch_weights") &&
489 ProfileData->getNumOperands() > 0) {
490 // Using APInt::div may be expensive, but most cases should fit 64 bits.
491 APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
492 ->getValue()
493 .getZExtValue());
494 Val *= APS;
495 Vals.push_back(MDB.createConstant(ConstantInt::get(
496 Type::getInt64Ty(getContext()), Val.udiv(APT).getLimitedValue())));
497 } else if (ProfDataName->getString().equals("VP"))
498 for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
499 // The first value is the key of the value profile, which will not change.
500 Vals.push_back(ProfileData->getOperand(i));
501 // Using APInt::div may be expensive, but most cases should fit 64 bits.
502 APInt Val(128,
503 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
504 ->getValue()
505 .getZExtValue());
506 Val *= APS;
507 Vals.push_back(MDB.createConstant(
508 ConstantInt::get(Type::getInt64Ty(getContext()),
509 Val.udiv(APT).getLimitedValue())));
511 setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
514 /// IsConstantOne - Return true only if val is constant int 1
515 static bool IsConstantOne(Value *val) {
516 assert(val && "IsConstantOne does not work with nullptr val");
517 const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
518 return CVal && CVal->isOne();
521 static Instruction *createMalloc(Instruction *InsertBefore,
522 BasicBlock *InsertAtEnd, Type *IntPtrTy,
523 Type *AllocTy, Value *AllocSize,
524 Value *ArraySize,
525 ArrayRef<OperandBundleDef> OpB,
526 Function *MallocF, const Twine &Name) {
527 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
528 "createMalloc needs either InsertBefore or InsertAtEnd");
530 // malloc(type) becomes:
531 // bitcast (i8* malloc(typeSize)) to type*
532 // malloc(type, arraySize) becomes:
533 // bitcast (i8* malloc(typeSize*arraySize)) to type*
534 if (!ArraySize)
535 ArraySize = ConstantInt::get(IntPtrTy, 1);
536 else if (ArraySize->getType() != IntPtrTy) {
537 if (InsertBefore)
538 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
539 "", InsertBefore);
540 else
541 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
542 "", InsertAtEnd);
545 if (!IsConstantOne(ArraySize)) {
546 if (IsConstantOne(AllocSize)) {
547 AllocSize = ArraySize; // Operand * 1 = Operand
548 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
549 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
550 false /*ZExt*/);
551 // Malloc arg is constant product of type size and array size
552 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
553 } else {
554 // Multiply type size by the array size...
555 if (InsertBefore)
556 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
557 "mallocsize", InsertBefore);
558 else
559 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
560 "mallocsize", InsertAtEnd);
564 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
565 // Create the call to Malloc.
566 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
567 Module *M = BB->getParent()->getParent();
568 Type *BPTy = Type::getInt8PtrTy(BB->getContext());
569 FunctionCallee MallocFunc = MallocF;
570 if (!MallocFunc)
571 // prototype malloc as "void *malloc(size_t)"
572 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
573 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
574 CallInst *MCall = nullptr;
575 Instruction *Result = nullptr;
576 if (InsertBefore) {
577 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
578 InsertBefore);
579 Result = MCall;
580 if (Result->getType() != AllocPtrType)
581 // Create a cast instruction to convert to the right type...
582 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
583 } else {
584 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
585 Result = MCall;
586 if (Result->getType() != AllocPtrType) {
587 InsertAtEnd->getInstList().push_back(MCall);
588 // Create a cast instruction to convert to the right type...
589 Result = new BitCastInst(MCall, AllocPtrType, Name);
592 MCall->setTailCall();
593 if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
594 MCall->setCallingConv(F->getCallingConv());
595 if (!F->returnDoesNotAlias())
596 F->setReturnDoesNotAlias();
598 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
600 return Result;
603 /// CreateMalloc - Generate the IR for a call to malloc:
604 /// 1. Compute the malloc call's argument as the specified type's size,
605 /// possibly multiplied by the array size if the array size is not
606 /// constant 1.
607 /// 2. Call malloc with that argument.
608 /// 3. Bitcast the result of the malloc call to the specified type.
609 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
610 Type *IntPtrTy, Type *AllocTy,
611 Value *AllocSize, Value *ArraySize,
612 Function *MallocF,
613 const Twine &Name) {
614 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
615 ArraySize, None, MallocF, Name);
617 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
618 Type *IntPtrTy, Type *AllocTy,
619 Value *AllocSize, Value *ArraySize,
620 ArrayRef<OperandBundleDef> OpB,
621 Function *MallocF,
622 const Twine &Name) {
623 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
624 ArraySize, OpB, MallocF, Name);
627 /// CreateMalloc - Generate the IR for a call to malloc:
628 /// 1. Compute the malloc call's argument as the specified type's size,
629 /// possibly multiplied by the array size if the array size is not
630 /// constant 1.
631 /// 2. Call malloc with that argument.
632 /// 3. Bitcast the result of the malloc call to the specified type.
633 /// Note: This function does not add the bitcast to the basic block, that is the
634 /// responsibility of the caller.
635 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
636 Type *IntPtrTy, Type *AllocTy,
637 Value *AllocSize, Value *ArraySize,
638 Function *MallocF, const Twine &Name) {
639 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
640 ArraySize, None, MallocF, Name);
642 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
643 Type *IntPtrTy, Type *AllocTy,
644 Value *AllocSize, Value *ArraySize,
645 ArrayRef<OperandBundleDef> OpB,
646 Function *MallocF, const Twine &Name) {
647 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
648 ArraySize, OpB, MallocF, Name);
651 static Instruction *createFree(Value *Source,
652 ArrayRef<OperandBundleDef> Bundles,
653 Instruction *InsertBefore,
654 BasicBlock *InsertAtEnd) {
655 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
656 "createFree needs either InsertBefore or InsertAtEnd");
657 assert(Source->getType()->isPointerTy() &&
658 "Can not free something of nonpointer type!");
660 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
661 Module *M = BB->getParent()->getParent();
663 Type *VoidTy = Type::getVoidTy(M->getContext());
664 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
665 // prototype free as "void free(void*)"
666 FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
667 CallInst *Result = nullptr;
668 Value *PtrCast = Source;
669 if (InsertBefore) {
670 if (Source->getType() != IntPtrTy)
671 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
672 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
673 } else {
674 if (Source->getType() != IntPtrTy)
675 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
676 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
678 Result->setTailCall();
679 if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
680 Result->setCallingConv(F->getCallingConv());
682 return Result;
685 /// CreateFree - Generate the IR for a call to the builtin free function.
686 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
687 return createFree(Source, None, InsertBefore, nullptr);
689 Instruction *CallInst::CreateFree(Value *Source,
690 ArrayRef<OperandBundleDef> Bundles,
691 Instruction *InsertBefore) {
692 return createFree(Source, Bundles, InsertBefore, nullptr);
695 /// CreateFree - Generate the IR for a call to the builtin free function.
696 /// Note: This function does not add the call to the basic block, that is the
697 /// responsibility of the caller.
698 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
699 Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
700 assert(FreeCall && "CreateFree did not create a CallInst");
701 return FreeCall;
703 Instruction *CallInst::CreateFree(Value *Source,
704 ArrayRef<OperandBundleDef> Bundles,
705 BasicBlock *InsertAtEnd) {
706 Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
707 assert(FreeCall && "CreateFree did not create a CallInst");
708 return FreeCall;
711 //===----------------------------------------------------------------------===//
712 // InvokeInst Implementation
713 //===----------------------------------------------------------------------===//
715 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
716 BasicBlock *IfException, ArrayRef<Value *> Args,
717 ArrayRef<OperandBundleDef> Bundles,
718 const Twine &NameStr) {
719 this->FTy = FTy;
721 assert((int)getNumOperands() ==
722 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
723 "NumOperands not set up?");
724 setNormalDest(IfNormal);
725 setUnwindDest(IfException);
726 setCalledOperand(Fn);
728 #ifndef NDEBUG
729 assert(((Args.size() == FTy->getNumParams()) ||
730 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
731 "Invoking a function with bad signature");
733 for (unsigned i = 0, e = Args.size(); i != e; i++)
734 assert((i >= FTy->getNumParams() ||
735 FTy->getParamType(i) == Args[i]->getType()) &&
736 "Invoking a function with a bad signature!");
737 #endif
739 llvm::copy(Args, op_begin());
741 auto It = populateBundleOperandInfos(Bundles, Args.size());
742 (void)It;
743 assert(It + 3 == op_end() && "Should add up!");
745 setName(NameStr);
748 InvokeInst::InvokeInst(const InvokeInst &II)
749 : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
750 OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
751 II.getNumOperands()) {
752 setCallingConv(II.getCallingConv());
753 std::copy(II.op_begin(), II.op_end(), op_begin());
754 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
755 bundle_op_info_begin());
756 SubclassOptionalData = II.SubclassOptionalData;
759 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
760 Instruction *InsertPt) {
761 std::vector<Value *> Args(II->arg_begin(), II->arg_end());
763 auto *NewII = InvokeInst::Create(II->getFunctionType(), II->getCalledValue(),
764 II->getNormalDest(), II->getUnwindDest(),
765 Args, OpB, II->getName(), InsertPt);
766 NewII->setCallingConv(II->getCallingConv());
767 NewII->SubclassOptionalData = II->SubclassOptionalData;
768 NewII->setAttributes(II->getAttributes());
769 NewII->setDebugLoc(II->getDebugLoc());
770 return NewII;
774 LandingPadInst *InvokeInst::getLandingPadInst() const {
775 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
778 //===----------------------------------------------------------------------===//
779 // CallBrInst Implementation
780 //===----------------------------------------------------------------------===//
782 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
783 ArrayRef<BasicBlock *> IndirectDests,
784 ArrayRef<Value *> Args,
785 ArrayRef<OperandBundleDef> Bundles,
786 const Twine &NameStr) {
787 this->FTy = FTy;
789 assert((int)getNumOperands() ==
790 ComputeNumOperands(Args.size(), IndirectDests.size(),
791 CountBundleInputs(Bundles)) &&
792 "NumOperands not set up?");
793 NumIndirectDests = IndirectDests.size();
794 setDefaultDest(Fallthrough);
795 for (unsigned i = 0; i != NumIndirectDests; ++i)
796 setIndirectDest(i, IndirectDests[i]);
797 setCalledOperand(Fn);
799 #ifndef NDEBUG
800 assert(((Args.size() == FTy->getNumParams()) ||
801 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
802 "Calling a function with bad signature");
804 for (unsigned i = 0, e = Args.size(); i != e; i++)
805 assert((i >= FTy->getNumParams() ||
806 FTy->getParamType(i) == Args[i]->getType()) &&
807 "Calling a function with a bad signature!");
808 #endif
810 std::copy(Args.begin(), Args.end(), op_begin());
812 auto It = populateBundleOperandInfos(Bundles, Args.size());
813 (void)It;
814 assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
816 setName(NameStr);
819 void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) {
820 assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr");
821 if (BasicBlock *OldBB = getIndirectDest(i)) {
822 BlockAddress *Old = BlockAddress::get(OldBB);
823 BlockAddress *New = BlockAddress::get(B);
824 for (unsigned ArgNo = 0, e = getNumArgOperands(); ArgNo != e; ++ArgNo)
825 if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old)
826 setArgOperand(ArgNo, New);
830 CallBrInst::CallBrInst(const CallBrInst &CBI)
831 : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
832 OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
833 CBI.getNumOperands()) {
834 setCallingConv(CBI.getCallingConv());
835 std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
836 std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
837 bundle_op_info_begin());
838 SubclassOptionalData = CBI.SubclassOptionalData;
839 NumIndirectDests = CBI.NumIndirectDests;
842 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
843 Instruction *InsertPt) {
844 std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
846 auto *NewCBI = CallBrInst::Create(CBI->getFunctionType(),
847 CBI->getCalledValue(),
848 CBI->getDefaultDest(),
849 CBI->getIndirectDests(),
850 Args, OpB, CBI->getName(), InsertPt);
851 NewCBI->setCallingConv(CBI->getCallingConv());
852 NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
853 NewCBI->setAttributes(CBI->getAttributes());
854 NewCBI->setDebugLoc(CBI->getDebugLoc());
855 NewCBI->NumIndirectDests = CBI->NumIndirectDests;
856 return NewCBI;
859 //===----------------------------------------------------------------------===//
860 // ReturnInst Implementation
861 //===----------------------------------------------------------------------===//
863 ReturnInst::ReturnInst(const ReturnInst &RI)
864 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
865 OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
866 RI.getNumOperands()) {
867 if (RI.getNumOperands())
868 Op<0>() = RI.Op<0>();
869 SubclassOptionalData = RI.SubclassOptionalData;
872 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
873 : Instruction(Type::getVoidTy(C), Instruction::Ret,
874 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
875 InsertBefore) {
876 if (retVal)
877 Op<0>() = retVal;
880 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
881 : Instruction(Type::getVoidTy(C), Instruction::Ret,
882 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
883 InsertAtEnd) {
884 if (retVal)
885 Op<0>() = retVal;
888 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
889 : Instruction(Type::getVoidTy(Context), Instruction::Ret,
890 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
892 //===----------------------------------------------------------------------===//
893 // ResumeInst Implementation
894 //===----------------------------------------------------------------------===//
896 ResumeInst::ResumeInst(const ResumeInst &RI)
897 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
898 OperandTraits<ResumeInst>::op_begin(this), 1) {
899 Op<0>() = RI.Op<0>();
902 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
903 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
904 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
905 Op<0>() = Exn;
908 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
909 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
910 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
911 Op<0>() = Exn;
914 //===----------------------------------------------------------------------===//
915 // CleanupReturnInst Implementation
916 //===----------------------------------------------------------------------===//
918 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
919 : Instruction(CRI.getType(), Instruction::CleanupRet,
920 OperandTraits<CleanupReturnInst>::op_end(this) -
921 CRI.getNumOperands(),
922 CRI.getNumOperands()) {
923 setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
924 Op<0>() = CRI.Op<0>();
925 if (CRI.hasUnwindDest())
926 Op<1>() = CRI.Op<1>();
929 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
930 if (UnwindBB)
931 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
933 Op<0>() = CleanupPad;
934 if (UnwindBB)
935 Op<1>() = UnwindBB;
938 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
939 unsigned Values, Instruction *InsertBefore)
940 : Instruction(Type::getVoidTy(CleanupPad->getContext()),
941 Instruction::CleanupRet,
942 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
943 Values, InsertBefore) {
944 init(CleanupPad, UnwindBB);
947 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
948 unsigned Values, BasicBlock *InsertAtEnd)
949 : Instruction(Type::getVoidTy(CleanupPad->getContext()),
950 Instruction::CleanupRet,
951 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
952 Values, InsertAtEnd) {
953 init(CleanupPad, UnwindBB);
956 //===----------------------------------------------------------------------===//
957 // CatchReturnInst Implementation
958 //===----------------------------------------------------------------------===//
959 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
960 Op<0>() = CatchPad;
961 Op<1>() = BB;
964 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
965 : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
966 OperandTraits<CatchReturnInst>::op_begin(this), 2) {
967 Op<0>() = CRI.Op<0>();
968 Op<1>() = CRI.Op<1>();
971 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
972 Instruction *InsertBefore)
973 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
974 OperandTraits<CatchReturnInst>::op_begin(this), 2,
975 InsertBefore) {
976 init(CatchPad, BB);
979 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
980 BasicBlock *InsertAtEnd)
981 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
982 OperandTraits<CatchReturnInst>::op_begin(this), 2,
983 InsertAtEnd) {
984 init(CatchPad, BB);
987 //===----------------------------------------------------------------------===//
988 // CatchSwitchInst Implementation
989 //===----------------------------------------------------------------------===//
991 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
992 unsigned NumReservedValues,
993 const Twine &NameStr,
994 Instruction *InsertBefore)
995 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
996 InsertBefore) {
997 if (UnwindDest)
998 ++NumReservedValues;
999 init(ParentPad, UnwindDest, NumReservedValues + 1);
1000 setName(NameStr);
1003 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1004 unsigned NumReservedValues,
1005 const Twine &NameStr, BasicBlock *InsertAtEnd)
1006 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1007 InsertAtEnd) {
1008 if (UnwindDest)
1009 ++NumReservedValues;
1010 init(ParentPad, UnwindDest, NumReservedValues + 1);
1011 setName(NameStr);
1014 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1015 : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1016 CSI.getNumOperands()) {
1017 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1018 setNumHungOffUseOperands(ReservedSpace);
1019 Use *OL = getOperandList();
1020 const Use *InOL = CSI.getOperandList();
1021 for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1022 OL[I] = InOL[I];
1025 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1026 unsigned NumReservedValues) {
1027 assert(ParentPad && NumReservedValues);
1029 ReservedSpace = NumReservedValues;
1030 setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1031 allocHungoffUses(ReservedSpace);
1033 Op<0>() = ParentPad;
1034 if (UnwindDest) {
1035 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
1036 setUnwindDest(UnwindDest);
1040 /// growOperands - grow operands - This grows the operand list in response to a
1041 /// push_back style of operation. This grows the number of ops by 2 times.
1042 void CatchSwitchInst::growOperands(unsigned Size) {
1043 unsigned NumOperands = getNumOperands();
1044 assert(NumOperands >= 1);
1045 if (ReservedSpace >= NumOperands + Size)
1046 return;
1047 ReservedSpace = (NumOperands + Size / 2) * 2;
1048 growHungoffUses(ReservedSpace);
1051 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1052 unsigned OpNo = getNumOperands();
1053 growOperands(1);
1054 assert(OpNo < ReservedSpace && "Growing didn't work!");
1055 setNumHungOffUseOperands(getNumOperands() + 1);
1056 getOperandList()[OpNo] = Handler;
1059 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1060 // Move all subsequent handlers up one.
1061 Use *EndDst = op_end() - 1;
1062 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1063 *CurDst = *(CurDst + 1);
1064 // Null out the last handler use.
1065 *EndDst = nullptr;
1067 setNumHungOffUseOperands(getNumOperands() - 1);
1070 //===----------------------------------------------------------------------===//
1071 // FuncletPadInst Implementation
1072 //===----------------------------------------------------------------------===//
1073 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1074 const Twine &NameStr) {
1075 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1076 llvm::copy(Args, op_begin());
1077 setParentPad(ParentPad);
1078 setName(NameStr);
1081 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1082 : Instruction(FPI.getType(), FPI.getOpcode(),
1083 OperandTraits<FuncletPadInst>::op_end(this) -
1084 FPI.getNumOperands(),
1085 FPI.getNumOperands()) {
1086 std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1087 setParentPad(FPI.getParentPad());
1090 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1091 ArrayRef<Value *> Args, unsigned Values,
1092 const Twine &NameStr, Instruction *InsertBefore)
1093 : Instruction(ParentPad->getType(), Op,
1094 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1095 InsertBefore) {
1096 init(ParentPad, Args, NameStr);
1099 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1100 ArrayRef<Value *> Args, unsigned Values,
1101 const Twine &NameStr, BasicBlock *InsertAtEnd)
1102 : Instruction(ParentPad->getType(), Op,
1103 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1104 InsertAtEnd) {
1105 init(ParentPad, Args, NameStr);
1108 //===----------------------------------------------------------------------===//
1109 // UnreachableInst Implementation
1110 //===----------------------------------------------------------------------===//
1112 UnreachableInst::UnreachableInst(LLVMContext &Context,
1113 Instruction *InsertBefore)
1114 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1115 0, InsertBefore) {}
1116 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1117 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1118 0, InsertAtEnd) {}
1120 //===----------------------------------------------------------------------===//
1121 // BranchInst Implementation
1122 //===----------------------------------------------------------------------===//
1124 void BranchInst::AssertOK() {
1125 if (isConditional())
1126 assert(getCondition()->getType()->isIntegerTy(1) &&
1127 "May only branch on boolean predicates!");
1130 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1131 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1132 OperandTraits<BranchInst>::op_end(this) - 1, 1,
1133 InsertBefore) {
1134 assert(IfTrue && "Branch destination may not be null!");
1135 Op<-1>() = IfTrue;
1138 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1139 Instruction *InsertBefore)
1140 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1141 OperandTraits<BranchInst>::op_end(this) - 3, 3,
1142 InsertBefore) {
1143 Op<-1>() = IfTrue;
1144 Op<-2>() = IfFalse;
1145 Op<-3>() = Cond;
1146 #ifndef NDEBUG
1147 AssertOK();
1148 #endif
1151 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1152 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1153 OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1154 assert(IfTrue && "Branch destination may not be null!");
1155 Op<-1>() = IfTrue;
1158 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1159 BasicBlock *InsertAtEnd)
1160 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1161 OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1162 Op<-1>() = IfTrue;
1163 Op<-2>() = IfFalse;
1164 Op<-3>() = Cond;
1165 #ifndef NDEBUG
1166 AssertOK();
1167 #endif
1170 BranchInst::BranchInst(const BranchInst &BI)
1171 : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1172 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1173 BI.getNumOperands()) {
1174 Op<-1>() = BI.Op<-1>();
1175 if (BI.getNumOperands() != 1) {
1176 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1177 Op<-3>() = BI.Op<-3>();
1178 Op<-2>() = BI.Op<-2>();
1180 SubclassOptionalData = BI.SubclassOptionalData;
1183 void BranchInst::swapSuccessors() {
1184 assert(isConditional() &&
1185 "Cannot swap successors of an unconditional branch");
1186 Op<-1>().swap(Op<-2>());
1188 // Update profile metadata if present and it matches our structural
1189 // expectations.
1190 swapProfMetadata();
1193 //===----------------------------------------------------------------------===//
1194 // AllocaInst Implementation
1195 //===----------------------------------------------------------------------===//
1197 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1198 if (!Amt)
1199 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1200 else {
1201 assert(!isa<BasicBlock>(Amt) &&
1202 "Passed basic block into allocation size parameter! Use other ctor");
1203 assert(Amt->getType()->isIntegerTy() &&
1204 "Allocation array size is not an integer!");
1206 return Amt;
1209 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1210 Instruction *InsertBefore)
1211 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1213 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1214 BasicBlock *InsertAtEnd)
1215 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1217 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1218 const Twine &Name, Instruction *InsertBefore)
1219 : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertBefore) {}
1221 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1222 const Twine &Name, BasicBlock *InsertAtEnd)
1223 : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
1225 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1226 unsigned Align, const Twine &Name,
1227 Instruction *InsertBefore)
1228 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1229 getAISize(Ty->getContext(), ArraySize), InsertBefore),
1230 AllocatedType(Ty) {
1231 setAlignment(Align);
1232 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1233 setName(Name);
1236 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1237 unsigned Align, const Twine &Name,
1238 BasicBlock *InsertAtEnd)
1239 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1240 getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1241 AllocatedType(Ty) {
1242 setAlignment(Align);
1243 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1244 setName(Name);
1247 void AllocaInst::setAlignment(unsigned Align) {
1248 setAlignment(llvm::MaybeAlign(Align));
1251 void AllocaInst::setAlignment(llvm::MaybeAlign Align) {
1252 assert((!Align || *Align <= MaximumAlignment) &&
1253 "Alignment is greater than MaximumAlignment!");
1254 setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1255 encode(Align));
1256 if (Align)
1257 assert(getAlignment() == Align->value() &&
1258 "Alignment representation error!");
1259 else
1260 assert(getAlignment() == 0 && "Alignment representation error!");
1263 bool AllocaInst::isArrayAllocation() const {
1264 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1265 return !CI->isOne();
1266 return true;
1269 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1270 /// function and is a constant size. If so, the code generator will fold it
1271 /// into the prolog/epilog code, so it is basically free.
1272 bool AllocaInst::isStaticAlloca() const {
1273 // Must be constant size.
1274 if (!isa<ConstantInt>(getArraySize())) return false;
1276 // Must be in the entry block.
1277 const BasicBlock *Parent = getParent();
1278 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1281 //===----------------------------------------------------------------------===//
1282 // LoadInst Implementation
1283 //===----------------------------------------------------------------------===//
1285 void LoadInst::AssertOK() {
1286 assert(getOperand(0)->getType()->isPointerTy() &&
1287 "Ptr must have pointer type.");
1288 assert(!(isAtomic() && getAlignment() == 0) &&
1289 "Alignment required for atomic load");
1292 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1293 Instruction *InsertBef)
1294 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1296 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1297 BasicBlock *InsertAE)
1298 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1300 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1301 Instruction *InsertBef)
1302 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {}
1304 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1305 BasicBlock *InsertAE)
1306 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {}
1308 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1309 unsigned Align, Instruction *InsertBef)
1310 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1311 SyncScope::System, InsertBef) {}
1313 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1314 unsigned Align, BasicBlock *InsertAE)
1315 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1316 SyncScope::System, InsertAE) {}
1318 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1319 unsigned Align, AtomicOrdering Order,
1320 SyncScope::ID SSID, Instruction *InsertBef)
1321 : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1322 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1323 setVolatile(isVolatile);
1324 setAlignment(Align);
1325 setAtomic(Order, SSID);
1326 AssertOK();
1327 setName(Name);
1330 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1331 unsigned Align, AtomicOrdering Order, SyncScope::ID SSID,
1332 BasicBlock *InsertAE)
1333 : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1334 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1335 setVolatile(isVolatile);
1336 setAlignment(Align);
1337 setAtomic(Order, SSID);
1338 AssertOK();
1339 setName(Name);
1342 void LoadInst::setAlignment(unsigned Align) {
1343 setAlignment(llvm::MaybeAlign(Align));
1346 void LoadInst::setAlignment(llvm::MaybeAlign Align) {
1347 assert((!Align || *Align <= MaximumAlignment) &&
1348 "Alignment is greater than MaximumAlignment!");
1349 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1350 (encode(Align) << 1));
1351 if (Align)
1352 assert(getAlignment() == Align->value() &&
1353 "Alignment representation error!");
1354 else
1355 assert(getAlignment() == 0 && "Alignment representation error!");
1358 //===----------------------------------------------------------------------===//
1359 // StoreInst Implementation
1360 //===----------------------------------------------------------------------===//
1362 void StoreInst::AssertOK() {
1363 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1364 assert(getOperand(1)->getType()->isPointerTy() &&
1365 "Ptr must have pointer type!");
1366 assert(getOperand(0)->getType() ==
1367 cast<PointerType>(getOperand(1)->getType())->getElementType()
1368 && "Ptr must be a pointer to Val type!");
1369 assert(!(isAtomic() && getAlignment() == 0) &&
1370 "Alignment required for atomic store");
1373 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1374 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1376 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1377 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1379 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1380 Instruction *InsertBefore)
1381 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {}
1383 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1384 BasicBlock *InsertAtEnd)
1385 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {}
1387 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1388 Instruction *InsertBefore)
1389 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1390 SyncScope::System, InsertBefore) {}
1392 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1393 BasicBlock *InsertAtEnd)
1394 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1395 SyncScope::System, InsertAtEnd) {}
1397 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1398 unsigned Align, AtomicOrdering Order,
1399 SyncScope::ID SSID,
1400 Instruction *InsertBefore)
1401 : Instruction(Type::getVoidTy(val->getContext()), Store,
1402 OperandTraits<StoreInst>::op_begin(this),
1403 OperandTraits<StoreInst>::operands(this),
1404 InsertBefore) {
1405 Op<0>() = val;
1406 Op<1>() = addr;
1407 setVolatile(isVolatile);
1408 setAlignment(Align);
1409 setAtomic(Order, SSID);
1410 AssertOK();
1413 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1414 unsigned Align, AtomicOrdering Order,
1415 SyncScope::ID SSID,
1416 BasicBlock *InsertAtEnd)
1417 : Instruction(Type::getVoidTy(val->getContext()), Store,
1418 OperandTraits<StoreInst>::op_begin(this),
1419 OperandTraits<StoreInst>::operands(this),
1420 InsertAtEnd) {
1421 Op<0>() = val;
1422 Op<1>() = addr;
1423 setVolatile(isVolatile);
1424 setAlignment(Align);
1425 setAtomic(Order, SSID);
1426 AssertOK();
1429 void StoreInst::setAlignment(unsigned Align) {
1430 setAlignment(llvm::MaybeAlign(Align));
1433 void StoreInst::setAlignment(llvm::MaybeAlign Align) {
1434 assert((!Align || *Align <= MaximumAlignment) &&
1435 "Alignment is greater than MaximumAlignment!");
1436 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1437 (encode(Align) << 1));
1438 if (Align)
1439 assert(getAlignment() == Align->value() &&
1440 "Alignment representation error!");
1441 else
1442 assert(getAlignment() == 0 && "Alignment representation error!");
1445 //===----------------------------------------------------------------------===//
1446 // AtomicCmpXchgInst Implementation
1447 //===----------------------------------------------------------------------===//
1449 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1450 AtomicOrdering SuccessOrdering,
1451 AtomicOrdering FailureOrdering,
1452 SyncScope::ID SSID) {
1453 Op<0>() = Ptr;
1454 Op<1>() = Cmp;
1455 Op<2>() = NewVal;
1456 setSuccessOrdering(SuccessOrdering);
1457 setFailureOrdering(FailureOrdering);
1458 setSyncScopeID(SSID);
1460 assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1461 "All operands must be non-null!");
1462 assert(getOperand(0)->getType()->isPointerTy() &&
1463 "Ptr must have pointer type!");
1464 assert(getOperand(1)->getType() ==
1465 cast<PointerType>(getOperand(0)->getType())->getElementType()
1466 && "Ptr must be a pointer to Cmp type!");
1467 assert(getOperand(2)->getType() ==
1468 cast<PointerType>(getOperand(0)->getType())->getElementType()
1469 && "Ptr must be a pointer to NewVal type!");
1470 assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
1471 "AtomicCmpXchg instructions must be atomic!");
1472 assert(FailureOrdering != AtomicOrdering::NotAtomic &&
1473 "AtomicCmpXchg instructions must be atomic!");
1474 assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
1475 "AtomicCmpXchg failure argument shall be no stronger than the success "
1476 "argument");
1477 assert(FailureOrdering != AtomicOrdering::Release &&
1478 FailureOrdering != AtomicOrdering::AcquireRelease &&
1479 "AtomicCmpXchg failure ordering cannot include release semantics");
1482 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1483 AtomicOrdering SuccessOrdering,
1484 AtomicOrdering FailureOrdering,
1485 SyncScope::ID SSID,
1486 Instruction *InsertBefore)
1487 : Instruction(
1488 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1489 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1490 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1491 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1494 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1495 AtomicOrdering SuccessOrdering,
1496 AtomicOrdering FailureOrdering,
1497 SyncScope::ID SSID,
1498 BasicBlock *InsertAtEnd)
1499 : Instruction(
1500 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1501 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1502 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1503 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1506 //===----------------------------------------------------------------------===//
1507 // AtomicRMWInst Implementation
1508 //===----------------------------------------------------------------------===//
1510 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1511 AtomicOrdering Ordering,
1512 SyncScope::ID SSID) {
1513 Op<0>() = Ptr;
1514 Op<1>() = Val;
1515 setOperation(Operation);
1516 setOrdering(Ordering);
1517 setSyncScopeID(SSID);
1519 assert(getOperand(0) && getOperand(1) &&
1520 "All operands must be non-null!");
1521 assert(getOperand(0)->getType()->isPointerTy() &&
1522 "Ptr must have pointer type!");
1523 assert(getOperand(1)->getType() ==
1524 cast<PointerType>(getOperand(0)->getType())->getElementType()
1525 && "Ptr must be a pointer to Val type!");
1526 assert(Ordering != AtomicOrdering::NotAtomic &&
1527 "AtomicRMW instructions must be atomic!");
1530 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1531 AtomicOrdering Ordering,
1532 SyncScope::ID SSID,
1533 Instruction *InsertBefore)
1534 : Instruction(Val->getType(), AtomicRMW,
1535 OperandTraits<AtomicRMWInst>::op_begin(this),
1536 OperandTraits<AtomicRMWInst>::operands(this),
1537 InsertBefore) {
1538 Init(Operation, Ptr, Val, Ordering, SSID);
1541 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1542 AtomicOrdering Ordering,
1543 SyncScope::ID SSID,
1544 BasicBlock *InsertAtEnd)
1545 : Instruction(Val->getType(), AtomicRMW,
1546 OperandTraits<AtomicRMWInst>::op_begin(this),
1547 OperandTraits<AtomicRMWInst>::operands(this),
1548 InsertAtEnd) {
1549 Init(Operation, Ptr, Val, Ordering, SSID);
1552 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1553 switch (Op) {
1554 case AtomicRMWInst::Xchg:
1555 return "xchg";
1556 case AtomicRMWInst::Add:
1557 return "add";
1558 case AtomicRMWInst::Sub:
1559 return "sub";
1560 case AtomicRMWInst::And:
1561 return "and";
1562 case AtomicRMWInst::Nand:
1563 return "nand";
1564 case AtomicRMWInst::Or:
1565 return "or";
1566 case AtomicRMWInst::Xor:
1567 return "xor";
1568 case AtomicRMWInst::Max:
1569 return "max";
1570 case AtomicRMWInst::Min:
1571 return "min";
1572 case AtomicRMWInst::UMax:
1573 return "umax";
1574 case AtomicRMWInst::UMin:
1575 return "umin";
1576 case AtomicRMWInst::FAdd:
1577 return "fadd";
1578 case AtomicRMWInst::FSub:
1579 return "fsub";
1580 case AtomicRMWInst::BAD_BINOP:
1581 return "<invalid operation>";
1584 llvm_unreachable("invalid atomicrmw operation");
1587 //===----------------------------------------------------------------------===//
1588 // FenceInst Implementation
1589 //===----------------------------------------------------------------------===//
1591 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1592 SyncScope::ID SSID,
1593 Instruction *InsertBefore)
1594 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1595 setOrdering(Ordering);
1596 setSyncScopeID(SSID);
1599 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1600 SyncScope::ID SSID,
1601 BasicBlock *InsertAtEnd)
1602 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1603 setOrdering(Ordering);
1604 setSyncScopeID(SSID);
1607 //===----------------------------------------------------------------------===//
1608 // GetElementPtrInst Implementation
1609 //===----------------------------------------------------------------------===//
1611 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1612 const Twine &Name) {
1613 assert(getNumOperands() == 1 + IdxList.size() &&
1614 "NumOperands not initialized?");
1615 Op<0>() = Ptr;
1616 llvm::copy(IdxList, op_begin() + 1);
1617 setName(Name);
1620 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1621 : Instruction(GEPI.getType(), GetElementPtr,
1622 OperandTraits<GetElementPtrInst>::op_end(this) -
1623 GEPI.getNumOperands(),
1624 GEPI.getNumOperands()),
1625 SourceElementType(GEPI.SourceElementType),
1626 ResultElementType(GEPI.ResultElementType) {
1627 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1628 SubclassOptionalData = GEPI.SubclassOptionalData;
1631 /// getIndexedType - Returns the type of the element that would be accessed with
1632 /// a gep instruction with the specified parameters.
1634 /// The Idxs pointer should point to a continuous piece of memory containing the
1635 /// indices, either as Value* or uint64_t.
1637 /// A null type is returned if the indices are invalid for the specified
1638 /// pointer type.
1640 template <typename IndexTy>
1641 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
1642 // Handle the special case of the empty set index set, which is always valid.
1643 if (IdxList.empty())
1644 return Agg;
1646 // If there is at least one index, the top level type must be sized, otherwise
1647 // it cannot be 'stepped over'.
1648 if (!Agg->isSized())
1649 return nullptr;
1651 unsigned CurIdx = 1;
1652 for (; CurIdx != IdxList.size(); ++CurIdx) {
1653 CompositeType *CT = dyn_cast<CompositeType>(Agg);
1654 if (!CT || CT->isPointerTy()) return nullptr;
1655 IndexTy Index = IdxList[CurIdx];
1656 if (!CT->indexValid(Index)) return nullptr;
1657 Agg = CT->getTypeAtIndex(Index);
1659 return CurIdx == IdxList.size() ? Agg : nullptr;
1662 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1663 return getIndexedTypeInternal(Ty, IdxList);
1666 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1667 ArrayRef<Constant *> IdxList) {
1668 return getIndexedTypeInternal(Ty, IdxList);
1671 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1672 return getIndexedTypeInternal(Ty, IdxList);
1675 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1676 /// zeros. If so, the result pointer and the first operand have the same
1677 /// value, just potentially different types.
1678 bool GetElementPtrInst::hasAllZeroIndices() const {
1679 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1680 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1681 if (!CI->isZero()) return false;
1682 } else {
1683 return false;
1686 return true;
1689 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1690 /// constant integers. If so, the result pointer and the first operand have
1691 /// a constant offset between them.
1692 bool GetElementPtrInst::hasAllConstantIndices() const {
1693 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1694 if (!isa<ConstantInt>(getOperand(i)))
1695 return false;
1697 return true;
1700 void GetElementPtrInst::setIsInBounds(bool B) {
1701 cast<GEPOperator>(this)->setIsInBounds(B);
1704 bool GetElementPtrInst::isInBounds() const {
1705 return cast<GEPOperator>(this)->isInBounds();
1708 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1709 APInt &Offset) const {
1710 // Delegate to the generic GEPOperator implementation.
1711 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1714 //===----------------------------------------------------------------------===//
1715 // ExtractElementInst Implementation
1716 //===----------------------------------------------------------------------===//
1718 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1719 const Twine &Name,
1720 Instruction *InsertBef)
1721 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1722 ExtractElement,
1723 OperandTraits<ExtractElementInst>::op_begin(this),
1724 2, InsertBef) {
1725 assert(isValidOperands(Val, Index) &&
1726 "Invalid extractelement instruction operands!");
1727 Op<0>() = Val;
1728 Op<1>() = Index;
1729 setName(Name);
1732 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1733 const Twine &Name,
1734 BasicBlock *InsertAE)
1735 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1736 ExtractElement,
1737 OperandTraits<ExtractElementInst>::op_begin(this),
1738 2, InsertAE) {
1739 assert(isValidOperands(Val, Index) &&
1740 "Invalid extractelement instruction operands!");
1742 Op<0>() = Val;
1743 Op<1>() = Index;
1744 setName(Name);
1747 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1748 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1749 return false;
1750 return true;
1753 //===----------------------------------------------------------------------===//
1754 // InsertElementInst Implementation
1755 //===----------------------------------------------------------------------===//
1757 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1758 const Twine &Name,
1759 Instruction *InsertBef)
1760 : Instruction(Vec->getType(), InsertElement,
1761 OperandTraits<InsertElementInst>::op_begin(this),
1762 3, InsertBef) {
1763 assert(isValidOperands(Vec, Elt, Index) &&
1764 "Invalid insertelement instruction operands!");
1765 Op<0>() = Vec;
1766 Op<1>() = Elt;
1767 Op<2>() = Index;
1768 setName(Name);
1771 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1772 const Twine &Name,
1773 BasicBlock *InsertAE)
1774 : Instruction(Vec->getType(), InsertElement,
1775 OperandTraits<InsertElementInst>::op_begin(this),
1776 3, InsertAE) {
1777 assert(isValidOperands(Vec, Elt, Index) &&
1778 "Invalid insertelement instruction operands!");
1780 Op<0>() = Vec;
1781 Op<1>() = Elt;
1782 Op<2>() = Index;
1783 setName(Name);
1786 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1787 const Value *Index) {
1788 if (!Vec->getType()->isVectorTy())
1789 return false; // First operand of insertelement must be vector type.
1791 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1792 return false;// Second operand of insertelement must be vector element type.
1794 if (!Index->getType()->isIntegerTy())
1795 return false; // Third operand of insertelement must be i32.
1796 return true;
1799 //===----------------------------------------------------------------------===//
1800 // ShuffleVectorInst Implementation
1801 //===----------------------------------------------------------------------===//
1803 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1804 const Twine &Name,
1805 Instruction *InsertBefore)
1806 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1807 cast<VectorType>(Mask->getType())->getNumElements()),
1808 ShuffleVector,
1809 OperandTraits<ShuffleVectorInst>::op_begin(this),
1810 OperandTraits<ShuffleVectorInst>::operands(this),
1811 InsertBefore) {
1812 assert(isValidOperands(V1, V2, Mask) &&
1813 "Invalid shuffle vector instruction operands!");
1814 Op<0>() = V1;
1815 Op<1>() = V2;
1816 Op<2>() = Mask;
1817 setName(Name);
1820 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1821 const Twine &Name,
1822 BasicBlock *InsertAtEnd)
1823 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1824 cast<VectorType>(Mask->getType())->getNumElements()),
1825 ShuffleVector,
1826 OperandTraits<ShuffleVectorInst>::op_begin(this),
1827 OperandTraits<ShuffleVectorInst>::operands(this),
1828 InsertAtEnd) {
1829 assert(isValidOperands(V1, V2, Mask) &&
1830 "Invalid shuffle vector instruction operands!");
1832 Op<0>() = V1;
1833 Op<1>() = V2;
1834 Op<2>() = Mask;
1835 setName(Name);
1838 void ShuffleVectorInst::commute() {
1839 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
1840 int NumMaskElts = getMask()->getType()->getVectorNumElements();
1841 SmallVector<Constant*, 16> NewMask(NumMaskElts);
1842 Type *Int32Ty = Type::getInt32Ty(getContext());
1843 for (int i = 0; i != NumMaskElts; ++i) {
1844 int MaskElt = getMaskValue(i);
1845 if (MaskElt == -1) {
1846 NewMask[i] = UndefValue::get(Int32Ty);
1847 continue;
1849 assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1850 MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1851 NewMask[i] = ConstantInt::get(Int32Ty, MaskElt);
1853 Op<2>() = ConstantVector::get(NewMask);
1854 Op<0>().swap(Op<1>());
1857 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1858 const Value *Mask) {
1859 // V1 and V2 must be vectors of the same type.
1860 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1861 return false;
1863 // Mask must be vector of i32.
1864 auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1865 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1866 return false;
1868 // Check to see if Mask is valid.
1869 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1870 return true;
1872 if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1873 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1874 for (Value *Op : MV->operands()) {
1875 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1876 if (CI->uge(V1Size*2))
1877 return false;
1878 } else if (!isa<UndefValue>(Op)) {
1879 return false;
1882 return true;
1885 if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1886 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1887 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1888 if (CDS->getElementAsInteger(i) >= V1Size*2)
1889 return false;
1890 return true;
1893 // The bitcode reader can create a place holder for a forward reference
1894 // used as the shuffle mask. When this occurs, the shuffle mask will
1895 // fall into this case and fail. To avoid this error, do this bit of
1896 // ugliness to allow such a mask pass.
1897 if (const auto *CE = dyn_cast<ConstantExpr>(Mask))
1898 if (CE->getOpcode() == Instruction::UserOp1)
1899 return true;
1901 return false;
1904 int ShuffleVectorInst::getMaskValue(const Constant *Mask, unsigned i) {
1905 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1906 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask))
1907 return CDS->getElementAsInteger(i);
1908 Constant *C = Mask->getAggregateElement(i);
1909 if (isa<UndefValue>(C))
1910 return -1;
1911 return cast<ConstantInt>(C)->getZExtValue();
1914 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
1915 SmallVectorImpl<int> &Result) {
1916 unsigned NumElts = Mask->getType()->getVectorNumElements();
1918 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1919 for (unsigned i = 0; i != NumElts; ++i)
1920 Result.push_back(CDS->getElementAsInteger(i));
1921 return;
1923 for (unsigned i = 0; i != NumElts; ++i) {
1924 Constant *C = Mask->getAggregateElement(i);
1925 Result.push_back(isa<UndefValue>(C) ? -1 :
1926 cast<ConstantInt>(C)->getZExtValue());
1930 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1931 assert(!Mask.empty() && "Shuffle mask must contain elements");
1932 bool UsesLHS = false;
1933 bool UsesRHS = false;
1934 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1935 if (Mask[i] == -1)
1936 continue;
1937 assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) &&
1938 "Out-of-bounds shuffle mask element");
1939 UsesLHS |= (Mask[i] < NumOpElts);
1940 UsesRHS |= (Mask[i] >= NumOpElts);
1941 if (UsesLHS && UsesRHS)
1942 return false;
1944 assert((UsesLHS ^ UsesRHS) && "Should have selected from exactly 1 source");
1945 return true;
1948 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
1949 // We don't have vector operand size information, so assume operands are the
1950 // same size as the mask.
1951 return isSingleSourceMaskImpl(Mask, Mask.size());
1954 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1955 if (!isSingleSourceMaskImpl(Mask, NumOpElts))
1956 return false;
1957 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1958 if (Mask[i] == -1)
1959 continue;
1960 if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1961 return false;
1963 return true;
1966 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
1967 // We don't have vector operand size information, so assume operands are the
1968 // same size as the mask.
1969 return isIdentityMaskImpl(Mask, Mask.size());
1972 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
1973 if (!isSingleSourceMask(Mask))
1974 return false;
1975 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1976 if (Mask[i] == -1)
1977 continue;
1978 if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
1979 return false;
1981 return true;
1984 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
1985 if (!isSingleSourceMask(Mask))
1986 return false;
1987 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1988 if (Mask[i] == -1)
1989 continue;
1990 if (Mask[i] != 0 && Mask[i] != NumElts)
1991 return false;
1993 return true;
1996 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
1997 // Select is differentiated from identity. It requires using both sources.
1998 if (isSingleSourceMask(Mask))
1999 return false;
2000 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2001 if (Mask[i] == -1)
2002 continue;
2003 if (Mask[i] != i && Mask[i] != (NumElts + i))
2004 return false;
2006 return true;
2009 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
2010 // Example masks that will return true:
2011 // v1 = <a, b, c, d>
2012 // v2 = <e, f, g, h>
2013 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
2014 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
2016 // 1. The number of elements in the mask must be a power-of-2 and at least 2.
2017 int NumElts = Mask.size();
2018 if (NumElts < 2 || !isPowerOf2_32(NumElts))
2019 return false;
2021 // 2. The first element of the mask must be either a 0 or a 1.
2022 if (Mask[0] != 0 && Mask[0] != 1)
2023 return false;
2025 // 3. The difference between the first 2 elements must be equal to the
2026 // number of elements in the mask.
2027 if ((Mask[1] - Mask[0]) != NumElts)
2028 return false;
2030 // 4. The difference between consecutive even-numbered and odd-numbered
2031 // elements must be equal to 2.
2032 for (int i = 2; i < NumElts; ++i) {
2033 int MaskEltVal = Mask[i];
2034 if (MaskEltVal == -1)
2035 return false;
2036 int MaskEltPrevVal = Mask[i - 2];
2037 if (MaskEltVal - MaskEltPrevVal != 2)
2038 return false;
2040 return true;
2043 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2044 int NumSrcElts, int &Index) {
2045 // Must extract from a single source.
2046 if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2047 return false;
2049 // Must be smaller (else this is an Identity shuffle).
2050 if (NumSrcElts <= (int)Mask.size())
2051 return false;
2053 // Find start of extraction, accounting that we may start with an UNDEF.
2054 int SubIndex = -1;
2055 for (int i = 0, e = Mask.size(); i != e; ++i) {
2056 int M = Mask[i];
2057 if (M < 0)
2058 continue;
2059 int Offset = (M % NumSrcElts) - i;
2060 if (0 <= SubIndex && SubIndex != Offset)
2061 return false;
2062 SubIndex = Offset;
2065 if (0 <= SubIndex) {
2066 Index = SubIndex;
2067 return true;
2069 return false;
2072 bool ShuffleVectorInst::isIdentityWithPadding() const {
2073 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2074 int NumMaskElts = getType()->getVectorNumElements();
2075 if (NumMaskElts <= NumOpElts)
2076 return false;
2078 // The first part of the mask must choose elements from exactly 1 source op.
2079 SmallVector<int, 16> Mask = getShuffleMask();
2080 if (!isIdentityMaskImpl(Mask, NumOpElts))
2081 return false;
2083 // All extending must be with undef elements.
2084 for (int i = NumOpElts; i < NumMaskElts; ++i)
2085 if (Mask[i] != -1)
2086 return false;
2088 return true;
2091 bool ShuffleVectorInst::isIdentityWithExtract() const {
2092 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2093 int NumMaskElts = getType()->getVectorNumElements();
2094 if (NumMaskElts >= NumOpElts)
2095 return false;
2097 return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2100 bool ShuffleVectorInst::isConcat() const {
2101 // Vector concatenation is differentiated from identity with padding.
2102 if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()))
2103 return false;
2105 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2106 int NumMaskElts = getType()->getVectorNumElements();
2107 if (NumMaskElts != NumOpElts * 2)
2108 return false;
2110 // Use the mask length rather than the operands' vector lengths here. We
2111 // already know that the shuffle returns a vector twice as long as the inputs,
2112 // and neither of the inputs are undef vectors. If the mask picks consecutive
2113 // elements from both inputs, then this is a concatenation of the inputs.
2114 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2117 //===----------------------------------------------------------------------===//
2118 // InsertValueInst Class
2119 //===----------------------------------------------------------------------===//
2121 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2122 const Twine &Name) {
2123 assert(getNumOperands() == 2 && "NumOperands not initialized?");
2125 // There's no fundamental reason why we require at least one index
2126 // (other than weirdness with &*IdxBegin being invalid; see
2127 // getelementptr's init routine for example). But there's no
2128 // present need to support it.
2129 assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2131 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2132 Val->getType() && "Inserted value must match indexed type!");
2133 Op<0>() = Agg;
2134 Op<1>() = Val;
2136 Indices.append(Idxs.begin(), Idxs.end());
2137 setName(Name);
2140 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2141 : Instruction(IVI.getType(), InsertValue,
2142 OperandTraits<InsertValueInst>::op_begin(this), 2),
2143 Indices(IVI.Indices) {
2144 Op<0>() = IVI.getOperand(0);
2145 Op<1>() = IVI.getOperand(1);
2146 SubclassOptionalData = IVI.SubclassOptionalData;
2149 //===----------------------------------------------------------------------===//
2150 // ExtractValueInst Class
2151 //===----------------------------------------------------------------------===//
2153 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2154 assert(getNumOperands() == 1 && "NumOperands not initialized?");
2156 // There's no fundamental reason why we require at least one index.
2157 // But there's no present need to support it.
2158 assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2160 Indices.append(Idxs.begin(), Idxs.end());
2161 setName(Name);
2164 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2165 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2166 Indices(EVI.Indices) {
2167 SubclassOptionalData = EVI.SubclassOptionalData;
2170 // getIndexedType - Returns the type of the element that would be extracted
2171 // with an extractvalue instruction with the specified parameters.
2173 // A null type is returned if the indices are invalid for the specified
2174 // pointer type.
2176 Type *ExtractValueInst::getIndexedType(Type *Agg,
2177 ArrayRef<unsigned> Idxs) {
2178 for (unsigned Index : Idxs) {
2179 // We can't use CompositeType::indexValid(Index) here.
2180 // indexValid() always returns true for arrays because getelementptr allows
2181 // out-of-bounds indices. Since we don't allow those for extractvalue and
2182 // insertvalue we need to check array indexing manually.
2183 // Since the only other types we can index into are struct types it's just
2184 // as easy to check those manually as well.
2185 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2186 if (Index >= AT->getNumElements())
2187 return nullptr;
2188 } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2189 if (Index >= ST->getNumElements())
2190 return nullptr;
2191 } else {
2192 // Not a valid type to index into.
2193 return nullptr;
2196 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
2198 return const_cast<Type*>(Agg);
2201 //===----------------------------------------------------------------------===//
2202 // UnaryOperator Class
2203 //===----------------------------------------------------------------------===//
2205 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2206 Type *Ty, const Twine &Name,
2207 Instruction *InsertBefore)
2208 : UnaryInstruction(Ty, iType, S, InsertBefore) {
2209 Op<0>() = S;
2210 setName(Name);
2211 AssertOK();
2214 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2215 Type *Ty, const Twine &Name,
2216 BasicBlock *InsertAtEnd)
2217 : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2218 Op<0>() = S;
2219 setName(Name);
2220 AssertOK();
2223 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2224 const Twine &Name,
2225 Instruction *InsertBefore) {
2226 return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2229 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2230 const Twine &Name,
2231 BasicBlock *InsertAtEnd) {
2232 UnaryOperator *Res = Create(Op, S, Name);
2233 InsertAtEnd->getInstList().push_back(Res);
2234 return Res;
2237 void UnaryOperator::AssertOK() {
2238 Value *LHS = getOperand(0);
2239 (void)LHS; // Silence warnings.
2240 #ifndef NDEBUG
2241 switch (getOpcode()) {
2242 case FNeg:
2243 assert(getType() == LHS->getType() &&
2244 "Unary operation should return same type as operand!");
2245 assert(getType()->isFPOrFPVectorTy() &&
2246 "Tried to create a floating-point operation on a "
2247 "non-floating-point type!");
2248 break;
2249 default: llvm_unreachable("Invalid opcode provided");
2251 #endif
2254 //===----------------------------------------------------------------------===//
2255 // BinaryOperator Class
2256 //===----------------------------------------------------------------------===//
2258 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2259 Type *Ty, const Twine &Name,
2260 Instruction *InsertBefore)
2261 : Instruction(Ty, iType,
2262 OperandTraits<BinaryOperator>::op_begin(this),
2263 OperandTraits<BinaryOperator>::operands(this),
2264 InsertBefore) {
2265 Op<0>() = S1;
2266 Op<1>() = S2;
2267 setName(Name);
2268 AssertOK();
2271 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2272 Type *Ty, const Twine &Name,
2273 BasicBlock *InsertAtEnd)
2274 : Instruction(Ty, iType,
2275 OperandTraits<BinaryOperator>::op_begin(this),
2276 OperandTraits<BinaryOperator>::operands(this),
2277 InsertAtEnd) {
2278 Op<0>() = S1;
2279 Op<1>() = S2;
2280 setName(Name);
2281 AssertOK();
2284 void BinaryOperator::AssertOK() {
2285 Value *LHS = getOperand(0), *RHS = getOperand(1);
2286 (void)LHS; (void)RHS; // Silence warnings.
2287 assert(LHS->getType() == RHS->getType() &&
2288 "Binary operator operand types must match!");
2289 #ifndef NDEBUG
2290 switch (getOpcode()) {
2291 case Add: case Sub:
2292 case Mul:
2293 assert(getType() == LHS->getType() &&
2294 "Arithmetic operation should return same type as operands!");
2295 assert(getType()->isIntOrIntVectorTy() &&
2296 "Tried to create an integer operation on a non-integer type!");
2297 break;
2298 case FAdd: case FSub:
2299 case FMul:
2300 assert(getType() == LHS->getType() &&
2301 "Arithmetic operation should return same type as operands!");
2302 assert(getType()->isFPOrFPVectorTy() &&
2303 "Tried to create a floating-point operation on a "
2304 "non-floating-point type!");
2305 break;
2306 case UDiv:
2307 case SDiv:
2308 assert(getType() == LHS->getType() &&
2309 "Arithmetic operation should return same type as operands!");
2310 assert(getType()->isIntOrIntVectorTy() &&
2311 "Incorrect operand type (not integer) for S/UDIV");
2312 break;
2313 case FDiv:
2314 assert(getType() == LHS->getType() &&
2315 "Arithmetic operation should return same type as operands!");
2316 assert(getType()->isFPOrFPVectorTy() &&
2317 "Incorrect operand type (not floating point) for FDIV");
2318 break;
2319 case URem:
2320 case SRem:
2321 assert(getType() == LHS->getType() &&
2322 "Arithmetic operation should return same type as operands!");
2323 assert(getType()->isIntOrIntVectorTy() &&
2324 "Incorrect operand type (not integer) for S/UREM");
2325 break;
2326 case FRem:
2327 assert(getType() == LHS->getType() &&
2328 "Arithmetic operation should return same type as operands!");
2329 assert(getType()->isFPOrFPVectorTy() &&
2330 "Incorrect operand type (not floating point) for FREM");
2331 break;
2332 case Shl:
2333 case LShr:
2334 case AShr:
2335 assert(getType() == LHS->getType() &&
2336 "Shift operation should return same type as operands!");
2337 assert(getType()->isIntOrIntVectorTy() &&
2338 "Tried to create a shift operation on a non-integral type!");
2339 break;
2340 case And: case Or:
2341 case Xor:
2342 assert(getType() == LHS->getType() &&
2343 "Logical operation should return same type as operands!");
2344 assert(getType()->isIntOrIntVectorTy() &&
2345 "Tried to create a logical operation on a non-integral type!");
2346 break;
2347 default: llvm_unreachable("Invalid opcode provided");
2349 #endif
2352 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2353 const Twine &Name,
2354 Instruction *InsertBefore) {
2355 assert(S1->getType() == S2->getType() &&
2356 "Cannot create binary operator with two operands of differing type!");
2357 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2360 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2361 const Twine &Name,
2362 BasicBlock *InsertAtEnd) {
2363 BinaryOperator *Res = Create(Op, S1, S2, Name);
2364 InsertAtEnd->getInstList().push_back(Res);
2365 return Res;
2368 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2369 Instruction *InsertBefore) {
2370 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2371 return new BinaryOperator(Instruction::Sub,
2372 zero, Op,
2373 Op->getType(), Name, InsertBefore);
2376 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2377 BasicBlock *InsertAtEnd) {
2378 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2379 return new BinaryOperator(Instruction::Sub,
2380 zero, Op,
2381 Op->getType(), Name, InsertAtEnd);
2384 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2385 Instruction *InsertBefore) {
2386 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2387 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2390 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2391 BasicBlock *InsertAtEnd) {
2392 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2393 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2396 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2397 Instruction *InsertBefore) {
2398 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2399 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2402 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2403 BasicBlock *InsertAtEnd) {
2404 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2405 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2408 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2409 Instruction *InsertBefore) {
2410 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2411 return new BinaryOperator(Instruction::FSub, zero, Op,
2412 Op->getType(), Name, InsertBefore);
2415 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2416 BasicBlock *InsertAtEnd) {
2417 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2418 return new BinaryOperator(Instruction::FSub, zero, Op,
2419 Op->getType(), Name, InsertAtEnd);
2422 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2423 Instruction *InsertBefore) {
2424 Constant *C = Constant::getAllOnesValue(Op->getType());
2425 return new BinaryOperator(Instruction::Xor, Op, C,
2426 Op->getType(), Name, InsertBefore);
2429 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2430 BasicBlock *InsertAtEnd) {
2431 Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2432 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2433 Op->getType(), Name, InsertAtEnd);
2436 // Exchange the two operands to this instruction. This instruction is safe to
2437 // use on any binary instruction and does not modify the semantics of the
2438 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2439 // is changed.
2440 bool BinaryOperator::swapOperands() {
2441 if (!isCommutative())
2442 return true; // Can't commute operands
2443 Op<0>().swap(Op<1>());
2444 return false;
2447 //===----------------------------------------------------------------------===//
2448 // FPMathOperator Class
2449 //===----------------------------------------------------------------------===//
2451 float FPMathOperator::getFPAccuracy() const {
2452 const MDNode *MD =
2453 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2454 if (!MD)
2455 return 0.0;
2456 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2457 return Accuracy->getValueAPF().convertToFloat();
2460 //===----------------------------------------------------------------------===//
2461 // CastInst Class
2462 //===----------------------------------------------------------------------===//
2464 // Just determine if this cast only deals with integral->integral conversion.
2465 bool CastInst::isIntegerCast() const {
2466 switch (getOpcode()) {
2467 default: return false;
2468 case Instruction::ZExt:
2469 case Instruction::SExt:
2470 case Instruction::Trunc:
2471 return true;
2472 case Instruction::BitCast:
2473 return getOperand(0)->getType()->isIntegerTy() &&
2474 getType()->isIntegerTy();
2478 bool CastInst::isLosslessCast() const {
2479 // Only BitCast can be lossless, exit fast if we're not BitCast
2480 if (getOpcode() != Instruction::BitCast)
2481 return false;
2483 // Identity cast is always lossless
2484 Type *SrcTy = getOperand(0)->getType();
2485 Type *DstTy = getType();
2486 if (SrcTy == DstTy)
2487 return true;
2489 // Pointer to pointer is always lossless.
2490 if (SrcTy->isPointerTy())
2491 return DstTy->isPointerTy();
2492 return false; // Other types have no identity values
2495 /// This function determines if the CastInst does not require any bits to be
2496 /// changed in order to effect the cast. Essentially, it identifies cases where
2497 /// no code gen is necessary for the cast, hence the name no-op cast. For
2498 /// example, the following are all no-op casts:
2499 /// # bitcast i32* %x to i8*
2500 /// # bitcast <2 x i32> %x to <4 x i16>
2501 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2502 /// Determine if the described cast is a no-op.
2503 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2504 Type *SrcTy,
2505 Type *DestTy,
2506 const DataLayout &DL) {
2507 switch (Opcode) {
2508 default: llvm_unreachable("Invalid CastOp");
2509 case Instruction::Trunc:
2510 case Instruction::ZExt:
2511 case Instruction::SExt:
2512 case Instruction::FPTrunc:
2513 case Instruction::FPExt:
2514 case Instruction::UIToFP:
2515 case Instruction::SIToFP:
2516 case Instruction::FPToUI:
2517 case Instruction::FPToSI:
2518 case Instruction::AddrSpaceCast:
2519 // TODO: Target informations may give a more accurate answer here.
2520 return false;
2521 case Instruction::BitCast:
2522 return true; // BitCast never modifies bits.
2523 case Instruction::PtrToInt:
2524 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2525 DestTy->getScalarSizeInBits();
2526 case Instruction::IntToPtr:
2527 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2528 SrcTy->getScalarSizeInBits();
2532 bool CastInst::isNoopCast(const DataLayout &DL) const {
2533 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2536 /// This function determines if a pair of casts can be eliminated and what
2537 /// opcode should be used in the elimination. This assumes that there are two
2538 /// instructions like this:
2539 /// * %F = firstOpcode SrcTy %x to MidTy
2540 /// * %S = secondOpcode MidTy %F to DstTy
2541 /// The function returns a resultOpcode so these two casts can be replaced with:
2542 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2543 /// If no such cast is permitted, the function returns 0.
2544 unsigned CastInst::isEliminableCastPair(
2545 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2546 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2547 Type *DstIntPtrTy) {
2548 // Define the 144 possibilities for these two cast instructions. The values
2549 // in this matrix determine what to do in a given situation and select the
2550 // case in the switch below. The rows correspond to firstOp, the columns
2551 // correspond to secondOp. In looking at the table below, keep in mind
2552 // the following cast properties:
2554 // Size Compare Source Destination
2555 // Operator Src ? Size Type Sign Type Sign
2556 // -------- ------------ ------------------- ---------------------
2557 // TRUNC > Integer Any Integral Any
2558 // ZEXT < Integral Unsigned Integer Any
2559 // SEXT < Integral Signed Integer Any
2560 // FPTOUI n/a FloatPt n/a Integral Unsigned
2561 // FPTOSI n/a FloatPt n/a Integral Signed
2562 // UITOFP n/a Integral Unsigned FloatPt n/a
2563 // SITOFP n/a Integral Signed FloatPt n/a
2564 // FPTRUNC > FloatPt n/a FloatPt n/a
2565 // FPEXT < FloatPt n/a FloatPt n/a
2566 // PTRTOINT n/a Pointer n/a Integral Unsigned
2567 // INTTOPTR n/a Integral Unsigned Pointer n/a
2568 // BITCAST = FirstClass n/a FirstClass n/a
2569 // ADDRSPCST n/a Pointer n/a Pointer n/a
2571 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2572 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2573 // into "fptoui double to i64", but this loses information about the range
2574 // of the produced value (we no longer know the top-part is all zeros).
2575 // Further this conversion is often much more expensive for typical hardware,
2576 // and causes issues when building libgcc. We disallow fptosi+sext for the
2577 // same reason.
2578 const unsigned numCastOps =
2579 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2580 static const uint8_t CastResults[numCastOps][numCastOps] = {
2581 // T F F U S F F P I B A -+
2582 // R Z S P P I I T P 2 N T S |
2583 // U E E 2 2 2 2 R E I T C C +- secondOp
2584 // N X X U S F F N X N 2 V V |
2585 // C T T I I P P C T T P T T -+
2586 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
2587 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
2588 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
2589 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
2590 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
2591 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
2592 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
2593 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
2594 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt |
2595 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
2596 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
2597 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
2598 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2601 // TODO: This logic could be encoded into the table above and handled in the
2602 // switch below.
2603 // If either of the casts are a bitcast from scalar to vector, disallow the
2604 // merging. However, any pair of bitcasts are allowed.
2605 bool IsFirstBitcast = (firstOp == Instruction::BitCast);
2606 bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2607 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2609 // Check if any of the casts convert scalars <-> vectors.
2610 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2611 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2612 if (!AreBothBitcasts)
2613 return 0;
2615 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2616 [secondOp-Instruction::CastOpsBegin];
2617 switch (ElimCase) {
2618 case 0:
2619 // Categorically disallowed.
2620 return 0;
2621 case 1:
2622 // Allowed, use first cast's opcode.
2623 return firstOp;
2624 case 2:
2625 // Allowed, use second cast's opcode.
2626 return secondOp;
2627 case 3:
2628 // No-op cast in second op implies firstOp as long as the DestTy
2629 // is integer and we are not converting between a vector and a
2630 // non-vector type.
2631 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2632 return firstOp;
2633 return 0;
2634 case 4:
2635 // No-op cast in second op implies firstOp as long as the DestTy
2636 // is floating point.
2637 if (DstTy->isFloatingPointTy())
2638 return firstOp;
2639 return 0;
2640 case 5:
2641 // No-op cast in first op implies secondOp as long as the SrcTy
2642 // is an integer.
2643 if (SrcTy->isIntegerTy())
2644 return secondOp;
2645 return 0;
2646 case 6:
2647 // No-op cast in first op implies secondOp as long as the SrcTy
2648 // is a floating point.
2649 if (SrcTy->isFloatingPointTy())
2650 return secondOp;
2651 return 0;
2652 case 7: {
2653 // Cannot simplify if address spaces are different!
2654 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2655 return 0;
2657 unsigned MidSize = MidTy->getScalarSizeInBits();
2658 // We can still fold this without knowing the actual sizes as long we
2659 // know that the intermediate pointer is the largest possible
2660 // pointer size.
2661 // FIXME: Is this always true?
2662 if (MidSize == 64)
2663 return Instruction::BitCast;
2665 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2666 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2667 return 0;
2668 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2669 if (MidSize >= PtrSize)
2670 return Instruction::BitCast;
2671 return 0;
2673 case 8: {
2674 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2675 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2676 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2677 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2678 unsigned DstSize = DstTy->getScalarSizeInBits();
2679 if (SrcSize == DstSize)
2680 return Instruction::BitCast;
2681 else if (SrcSize < DstSize)
2682 return firstOp;
2683 return secondOp;
2685 case 9:
2686 // zext, sext -> zext, because sext can't sign extend after zext
2687 return Instruction::ZExt;
2688 case 11: {
2689 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2690 if (!MidIntPtrTy)
2691 return 0;
2692 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2693 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2694 unsigned DstSize = DstTy->getScalarSizeInBits();
2695 if (SrcSize <= PtrSize && SrcSize == DstSize)
2696 return Instruction::BitCast;
2697 return 0;
2699 case 12:
2700 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2701 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2702 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2703 return Instruction::AddrSpaceCast;
2704 return Instruction::BitCast;
2705 case 13:
2706 // FIXME: this state can be merged with (1), but the following assert
2707 // is useful to check the correcteness of the sequence due to semantic
2708 // change of bitcast.
2709 assert(
2710 SrcTy->isPtrOrPtrVectorTy() &&
2711 MidTy->isPtrOrPtrVectorTy() &&
2712 DstTy->isPtrOrPtrVectorTy() &&
2713 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2714 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2715 "Illegal addrspacecast, bitcast sequence!");
2716 // Allowed, use first cast's opcode
2717 return firstOp;
2718 case 14:
2719 // bitcast, addrspacecast -> addrspacecast if the element type of
2720 // bitcast's source is the same as that of addrspacecast's destination.
2721 if (SrcTy->getScalarType()->getPointerElementType() ==
2722 DstTy->getScalarType()->getPointerElementType())
2723 return Instruction::AddrSpaceCast;
2724 return 0;
2725 case 15:
2726 // FIXME: this state can be merged with (1), but the following assert
2727 // is useful to check the correcteness of the sequence due to semantic
2728 // change of bitcast.
2729 assert(
2730 SrcTy->isIntOrIntVectorTy() &&
2731 MidTy->isPtrOrPtrVectorTy() &&
2732 DstTy->isPtrOrPtrVectorTy() &&
2733 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2734 "Illegal inttoptr, bitcast sequence!");
2735 // Allowed, use first cast's opcode
2736 return firstOp;
2737 case 16:
2738 // FIXME: this state can be merged with (2), but the following assert
2739 // is useful to check the correcteness of the sequence due to semantic
2740 // change of bitcast.
2741 assert(
2742 SrcTy->isPtrOrPtrVectorTy() &&
2743 MidTy->isPtrOrPtrVectorTy() &&
2744 DstTy->isIntOrIntVectorTy() &&
2745 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2746 "Illegal bitcast, ptrtoint sequence!");
2747 // Allowed, use second cast's opcode
2748 return secondOp;
2749 case 17:
2750 // (sitofp (zext x)) -> (uitofp x)
2751 return Instruction::UIToFP;
2752 case 99:
2753 // Cast combination can't happen (error in input). This is for all cases
2754 // where the MidTy is not the same for the two cast instructions.
2755 llvm_unreachable("Invalid Cast Combination");
2756 default:
2757 llvm_unreachable("Error in CastResults table!!!");
2761 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2762 const Twine &Name, Instruction *InsertBefore) {
2763 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2764 // Construct and return the appropriate CastInst subclass
2765 switch (op) {
2766 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2767 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2768 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2769 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2770 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2771 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2772 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2773 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2774 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2775 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2776 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2777 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
2778 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2779 default: llvm_unreachable("Invalid opcode provided");
2783 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2784 const Twine &Name, BasicBlock *InsertAtEnd) {
2785 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2786 // Construct and return the appropriate CastInst subclass
2787 switch (op) {
2788 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
2789 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
2790 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
2791 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
2792 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
2793 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
2794 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
2795 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
2796 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
2797 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2798 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2799 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
2800 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2801 default: llvm_unreachable("Invalid opcode provided");
2805 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2806 const Twine &Name,
2807 Instruction *InsertBefore) {
2808 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2809 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2810 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2813 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2814 const Twine &Name,
2815 BasicBlock *InsertAtEnd) {
2816 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2817 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2818 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2821 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2822 const Twine &Name,
2823 Instruction *InsertBefore) {
2824 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2825 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2826 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2829 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2830 const Twine &Name,
2831 BasicBlock *InsertAtEnd) {
2832 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2833 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2834 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2837 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2838 const Twine &Name,
2839 Instruction *InsertBefore) {
2840 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2841 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2842 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2845 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2846 const Twine &Name,
2847 BasicBlock *InsertAtEnd) {
2848 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2849 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2850 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2853 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2854 const Twine &Name,
2855 BasicBlock *InsertAtEnd) {
2856 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2857 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2858 "Invalid cast");
2859 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2860 assert((!Ty->isVectorTy() ||
2861 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2862 "Invalid cast");
2864 if (Ty->isIntOrIntVectorTy())
2865 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2867 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2870 /// Create a BitCast or a PtrToInt cast instruction
2871 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2872 const Twine &Name,
2873 Instruction *InsertBefore) {
2874 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2875 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2876 "Invalid cast");
2877 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2878 assert((!Ty->isVectorTy() ||
2879 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2880 "Invalid cast");
2882 if (Ty->isIntOrIntVectorTy())
2883 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2885 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2888 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2889 Value *S, Type *Ty,
2890 const Twine &Name,
2891 BasicBlock *InsertAtEnd) {
2892 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2893 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2895 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2896 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2898 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2901 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2902 Value *S, Type *Ty,
2903 const Twine &Name,
2904 Instruction *InsertBefore) {
2905 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2906 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2908 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2909 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2911 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2914 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2915 const Twine &Name,
2916 Instruction *InsertBefore) {
2917 if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2918 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2919 if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2920 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2922 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2925 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2926 bool isSigned, const Twine &Name,
2927 Instruction *InsertBefore) {
2928 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2929 "Invalid integer cast");
2930 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2931 unsigned DstBits = Ty->getScalarSizeInBits();
2932 Instruction::CastOps opcode =
2933 (SrcBits == DstBits ? Instruction::BitCast :
2934 (SrcBits > DstBits ? Instruction::Trunc :
2935 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2936 return Create(opcode, C, Ty, Name, InsertBefore);
2939 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2940 bool isSigned, const Twine &Name,
2941 BasicBlock *InsertAtEnd) {
2942 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2943 "Invalid cast");
2944 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2945 unsigned DstBits = Ty->getScalarSizeInBits();
2946 Instruction::CastOps opcode =
2947 (SrcBits == DstBits ? Instruction::BitCast :
2948 (SrcBits > DstBits ? Instruction::Trunc :
2949 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2950 return Create(opcode, C, Ty, Name, InsertAtEnd);
2953 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2954 const Twine &Name,
2955 Instruction *InsertBefore) {
2956 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2957 "Invalid cast");
2958 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2959 unsigned DstBits = Ty->getScalarSizeInBits();
2960 Instruction::CastOps opcode =
2961 (SrcBits == DstBits ? Instruction::BitCast :
2962 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2963 return Create(opcode, C, Ty, Name, InsertBefore);
2966 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2967 const Twine &Name,
2968 BasicBlock *InsertAtEnd) {
2969 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2970 "Invalid cast");
2971 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2972 unsigned DstBits = Ty->getScalarSizeInBits();
2973 Instruction::CastOps opcode =
2974 (SrcBits == DstBits ? Instruction::BitCast :
2975 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2976 return Create(opcode, C, Ty, Name, InsertAtEnd);
2979 // Check whether it is valid to call getCastOpcode for these types.
2980 // This routine must be kept in sync with getCastOpcode.
2981 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2982 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2983 return false;
2985 if (SrcTy == DestTy)
2986 return true;
2988 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2989 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2990 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2991 // An element by element cast. Valid if casting the elements is valid.
2992 SrcTy = SrcVecTy->getElementType();
2993 DestTy = DestVecTy->getElementType();
2996 // Get the bit sizes, we'll need these
2997 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2998 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3000 // Run through the possibilities ...
3001 if (DestTy->isIntegerTy()) { // Casting to integral
3002 if (SrcTy->isIntegerTy()) // Casting from integral
3003 return true;
3004 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
3005 return true;
3006 if (SrcTy->isVectorTy()) // Casting from vector
3007 return DestBits == SrcBits;
3008 // Casting from something else
3009 return SrcTy->isPointerTy();
3011 if (DestTy->isFloatingPointTy()) { // Casting to floating pt
3012 if (SrcTy->isIntegerTy()) // Casting from integral
3013 return true;
3014 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
3015 return true;
3016 if (SrcTy->isVectorTy()) // Casting from vector
3017 return DestBits == SrcBits;
3018 // Casting from something else
3019 return false;
3021 if (DestTy->isVectorTy()) // Casting to vector
3022 return DestBits == SrcBits;
3023 if (DestTy->isPointerTy()) { // Casting to pointer
3024 if (SrcTy->isPointerTy()) // Casting from pointer
3025 return true;
3026 return SrcTy->isIntegerTy(); // Casting from integral
3028 if (DestTy->isX86_MMXTy()) {
3029 if (SrcTy->isVectorTy())
3030 return DestBits == SrcBits; // 64-bit vector to MMX
3031 return false;
3032 } // Casting to something else
3033 return false;
3036 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3037 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3038 return false;
3040 if (SrcTy == DestTy)
3041 return true;
3043 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3044 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3045 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
3046 // An element by element cast. Valid if casting the elements is valid.
3047 SrcTy = SrcVecTy->getElementType();
3048 DestTy = DestVecTy->getElementType();
3053 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3054 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3055 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3059 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3060 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3062 // Could still have vectors of pointers if the number of elements doesn't
3063 // match
3064 if (SrcBits == 0 || DestBits == 0)
3065 return false;
3067 if (SrcBits != DestBits)
3068 return false;
3070 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3071 return false;
3073 return true;
3076 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3077 const DataLayout &DL) {
3078 // ptrtoint and inttoptr are not allowed on non-integral pointers
3079 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3080 if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3081 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3082 !DL.isNonIntegralPointerType(PtrTy));
3083 if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3084 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3085 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3086 !DL.isNonIntegralPointerType(PtrTy));
3088 return isBitCastable(SrcTy, DestTy);
3091 // Provide a way to get a "cast" where the cast opcode is inferred from the
3092 // types and size of the operand. This, basically, is a parallel of the
3093 // logic in the castIsValid function below. This axiom should hold:
3094 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3095 // should not assert in castIsValid. In other words, this produces a "correct"
3096 // casting opcode for the arguments passed to it.
3097 // This routine must be kept in sync with isCastable.
3098 Instruction::CastOps
3099 CastInst::getCastOpcode(
3100 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3101 Type *SrcTy = Src->getType();
3103 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3104 "Only first class types are castable!");
3106 if (SrcTy == DestTy)
3107 return BitCast;
3109 // FIXME: Check address space sizes here
3110 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3111 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3112 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
3113 // An element by element cast. Find the appropriate opcode based on the
3114 // element types.
3115 SrcTy = SrcVecTy->getElementType();
3116 DestTy = DestVecTy->getElementType();
3119 // Get the bit sizes, we'll need these
3120 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3121 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3123 // Run through the possibilities ...
3124 if (DestTy->isIntegerTy()) { // Casting to integral
3125 if (SrcTy->isIntegerTy()) { // Casting from integral
3126 if (DestBits < SrcBits)
3127 return Trunc; // int -> smaller int
3128 else if (DestBits > SrcBits) { // its an extension
3129 if (SrcIsSigned)
3130 return SExt; // signed -> SEXT
3131 else
3132 return ZExt; // unsigned -> ZEXT
3133 } else {
3134 return BitCast; // Same size, No-op cast
3136 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3137 if (DestIsSigned)
3138 return FPToSI; // FP -> sint
3139 else
3140 return FPToUI; // FP -> uint
3141 } else if (SrcTy->isVectorTy()) {
3142 assert(DestBits == SrcBits &&
3143 "Casting vector to integer of different width");
3144 return BitCast; // Same size, no-op cast
3145 } else {
3146 assert(SrcTy->isPointerTy() &&
3147 "Casting from a value that is not first-class type");
3148 return PtrToInt; // ptr -> int
3150 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
3151 if (SrcTy->isIntegerTy()) { // Casting from integral
3152 if (SrcIsSigned)
3153 return SIToFP; // sint -> FP
3154 else
3155 return UIToFP; // uint -> FP
3156 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3157 if (DestBits < SrcBits) {
3158 return FPTrunc; // FP -> smaller FP
3159 } else if (DestBits > SrcBits) {
3160 return FPExt; // FP -> larger FP
3161 } else {
3162 return BitCast; // same size, no-op cast
3164 } else if (SrcTy->isVectorTy()) {
3165 assert(DestBits == SrcBits &&
3166 "Casting vector to floating point of different width");
3167 return BitCast; // same size, no-op cast
3169 llvm_unreachable("Casting pointer or non-first class to float");
3170 } else if (DestTy->isVectorTy()) {
3171 assert(DestBits == SrcBits &&
3172 "Illegal cast to vector (wrong type or size)");
3173 return BitCast;
3174 } else if (DestTy->isPointerTy()) {
3175 if (SrcTy->isPointerTy()) {
3176 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3177 return AddrSpaceCast;
3178 return BitCast; // ptr -> ptr
3179 } else if (SrcTy->isIntegerTy()) {
3180 return IntToPtr; // int -> ptr
3182 llvm_unreachable("Casting pointer to other than pointer or int");
3183 } else if (DestTy->isX86_MMXTy()) {
3184 if (SrcTy->isVectorTy()) {
3185 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3186 return BitCast; // 64-bit vector to MMX
3188 llvm_unreachable("Illegal cast to X86_MMX");
3190 llvm_unreachable("Casting to type that is not first-class");
3193 //===----------------------------------------------------------------------===//
3194 // CastInst SubClass Constructors
3195 //===----------------------------------------------------------------------===//
3197 /// Check that the construction parameters for a CastInst are correct. This
3198 /// could be broken out into the separate constructors but it is useful to have
3199 /// it in one place and to eliminate the redundant code for getting the sizes
3200 /// of the types involved.
3201 bool
3202 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
3203 // Check for type sanity on the arguments
3204 Type *SrcTy = S->getType();
3206 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3207 SrcTy->isAggregateType() || DstTy->isAggregateType())
3208 return false;
3210 // Get the size of the types in bits, we'll need this later
3211 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3212 unsigned DstBitSize = DstTy->getScalarSizeInBits();
3214 // If these are vector types, get the lengths of the vectors (using zero for
3215 // scalar types means that checking that vector lengths match also checks that
3216 // scalars are not being converted to vectors or vectors to scalars).
3217 unsigned SrcLength = SrcTy->isVectorTy() ?
3218 cast<VectorType>(SrcTy)->getNumElements() : 0;
3219 unsigned DstLength = DstTy->isVectorTy() ?
3220 cast<VectorType>(DstTy)->getNumElements() : 0;
3222 // Switch on the opcode provided
3223 switch (op) {
3224 default: return false; // This is an input error
3225 case Instruction::Trunc:
3226 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3227 SrcLength == DstLength && SrcBitSize > DstBitSize;
3228 case Instruction::ZExt:
3229 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3230 SrcLength == DstLength && SrcBitSize < DstBitSize;
3231 case Instruction::SExt:
3232 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3233 SrcLength == DstLength && SrcBitSize < DstBitSize;
3234 case Instruction::FPTrunc:
3235 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3236 SrcLength == DstLength && SrcBitSize > DstBitSize;
3237 case Instruction::FPExt:
3238 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3239 SrcLength == DstLength && SrcBitSize < DstBitSize;
3240 case Instruction::UIToFP:
3241 case Instruction::SIToFP:
3242 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3243 SrcLength == DstLength;
3244 case Instruction::FPToUI:
3245 case Instruction::FPToSI:
3246 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3247 SrcLength == DstLength;
3248 case Instruction::PtrToInt:
3249 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3250 return false;
3251 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3252 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3253 return false;
3254 return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3255 case Instruction::IntToPtr:
3256 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3257 return false;
3258 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3259 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3260 return false;
3261 return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3262 case Instruction::BitCast: {
3263 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3264 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3266 // BitCast implies a no-op cast of type only. No bits change.
3267 // However, you can't cast pointers to anything but pointers.
3268 if (!SrcPtrTy != !DstPtrTy)
3269 return false;
3271 // For non-pointer cases, the cast is okay if the source and destination bit
3272 // widths are identical.
3273 if (!SrcPtrTy)
3274 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3276 // If both are pointers then the address spaces must match.
3277 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3278 return false;
3280 // A vector of pointers must have the same number of elements.
3281 VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy);
3282 VectorType *DstVecTy = dyn_cast<VectorType>(DstTy);
3283 if (SrcVecTy && DstVecTy)
3284 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3285 if (SrcVecTy)
3286 return SrcVecTy->getNumElements() == 1;
3287 if (DstVecTy)
3288 return DstVecTy->getNumElements() == 1;
3290 return true;
3292 case Instruction::AddrSpaceCast: {
3293 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3294 if (!SrcPtrTy)
3295 return false;
3297 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3298 if (!DstPtrTy)
3299 return false;
3301 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3302 return false;
3304 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3305 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3306 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3308 return false;
3311 return true;
3316 TruncInst::TruncInst(
3317 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3318 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3319 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3322 TruncInst::TruncInst(
3323 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3324 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3325 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3328 ZExtInst::ZExtInst(
3329 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3330 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3331 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3334 ZExtInst::ZExtInst(
3335 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3336 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3337 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3339 SExtInst::SExtInst(
3340 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3341 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3342 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3345 SExtInst::SExtInst(
3346 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3347 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3348 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3351 FPTruncInst::FPTruncInst(
3352 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3353 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3354 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3357 FPTruncInst::FPTruncInst(
3358 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3359 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3360 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3363 FPExtInst::FPExtInst(
3364 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3365 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3366 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3369 FPExtInst::FPExtInst(
3370 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3371 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3372 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3375 UIToFPInst::UIToFPInst(
3376 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3377 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3378 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3381 UIToFPInst::UIToFPInst(
3382 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3383 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3384 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3387 SIToFPInst::SIToFPInst(
3388 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3389 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3390 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3393 SIToFPInst::SIToFPInst(
3394 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3395 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3396 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3399 FPToUIInst::FPToUIInst(
3400 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3401 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3402 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3405 FPToUIInst::FPToUIInst(
3406 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3407 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3408 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3411 FPToSIInst::FPToSIInst(
3412 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3413 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3414 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3417 FPToSIInst::FPToSIInst(
3418 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3419 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3420 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3423 PtrToIntInst::PtrToIntInst(
3424 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3425 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3426 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3429 PtrToIntInst::PtrToIntInst(
3430 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3431 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3432 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3435 IntToPtrInst::IntToPtrInst(
3436 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3437 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3438 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3441 IntToPtrInst::IntToPtrInst(
3442 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3443 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3444 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3447 BitCastInst::BitCastInst(
3448 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3449 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3450 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3453 BitCastInst::BitCastInst(
3454 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3455 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3456 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3459 AddrSpaceCastInst::AddrSpaceCastInst(
3460 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3461 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3462 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3465 AddrSpaceCastInst::AddrSpaceCastInst(
3466 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3467 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3468 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3471 //===----------------------------------------------------------------------===//
3472 // CmpInst Classes
3473 //===----------------------------------------------------------------------===//
3475 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3476 Value *RHS, const Twine &Name, Instruction *InsertBefore,
3477 Instruction *FlagsSource)
3478 : Instruction(ty, op,
3479 OperandTraits<CmpInst>::op_begin(this),
3480 OperandTraits<CmpInst>::operands(this),
3481 InsertBefore) {
3482 Op<0>() = LHS;
3483 Op<1>() = RHS;
3484 setPredicate((Predicate)predicate);
3485 setName(Name);
3486 if (FlagsSource)
3487 copyIRFlags(FlagsSource);
3490 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3491 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3492 : Instruction(ty, op,
3493 OperandTraits<CmpInst>::op_begin(this),
3494 OperandTraits<CmpInst>::operands(this),
3495 InsertAtEnd) {
3496 Op<0>() = LHS;
3497 Op<1>() = RHS;
3498 setPredicate((Predicate)predicate);
3499 setName(Name);
3502 CmpInst *
3503 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3504 const Twine &Name, Instruction *InsertBefore) {
3505 if (Op == Instruction::ICmp) {
3506 if (InsertBefore)
3507 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3508 S1, S2, Name);
3509 else
3510 return new ICmpInst(CmpInst::Predicate(predicate),
3511 S1, S2, Name);
3514 if (InsertBefore)
3515 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3516 S1, S2, Name);
3517 else
3518 return new FCmpInst(CmpInst::Predicate(predicate),
3519 S1, S2, Name);
3522 CmpInst *
3523 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3524 const Twine &Name, BasicBlock *InsertAtEnd) {
3525 if (Op == Instruction::ICmp) {
3526 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3527 S1, S2, Name);
3529 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3530 S1, S2, Name);
3533 void CmpInst::swapOperands() {
3534 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3535 IC->swapOperands();
3536 else
3537 cast<FCmpInst>(this)->swapOperands();
3540 bool CmpInst::isCommutative() const {
3541 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3542 return IC->isCommutative();
3543 return cast<FCmpInst>(this)->isCommutative();
3546 bool CmpInst::isEquality() const {
3547 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3548 return IC->isEquality();
3549 return cast<FCmpInst>(this)->isEquality();
3552 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3553 switch (pred) {
3554 default: llvm_unreachable("Unknown cmp predicate!");
3555 case ICMP_EQ: return ICMP_NE;
3556 case ICMP_NE: return ICMP_EQ;
3557 case ICMP_UGT: return ICMP_ULE;
3558 case ICMP_ULT: return ICMP_UGE;
3559 case ICMP_UGE: return ICMP_ULT;
3560 case ICMP_ULE: return ICMP_UGT;
3561 case ICMP_SGT: return ICMP_SLE;
3562 case ICMP_SLT: return ICMP_SGE;
3563 case ICMP_SGE: return ICMP_SLT;
3564 case ICMP_SLE: return ICMP_SGT;
3566 case FCMP_OEQ: return FCMP_UNE;
3567 case FCMP_ONE: return FCMP_UEQ;
3568 case FCMP_OGT: return FCMP_ULE;
3569 case FCMP_OLT: return FCMP_UGE;
3570 case FCMP_OGE: return FCMP_ULT;
3571 case FCMP_OLE: return FCMP_UGT;
3572 case FCMP_UEQ: return FCMP_ONE;
3573 case FCMP_UNE: return FCMP_OEQ;
3574 case FCMP_UGT: return FCMP_OLE;
3575 case FCMP_ULT: return FCMP_OGE;
3576 case FCMP_UGE: return FCMP_OLT;
3577 case FCMP_ULE: return FCMP_OGT;
3578 case FCMP_ORD: return FCMP_UNO;
3579 case FCMP_UNO: return FCMP_ORD;
3580 case FCMP_TRUE: return FCMP_FALSE;
3581 case FCMP_FALSE: return FCMP_TRUE;
3585 StringRef CmpInst::getPredicateName(Predicate Pred) {
3586 switch (Pred) {
3587 default: return "unknown";
3588 case FCmpInst::FCMP_FALSE: return "false";
3589 case FCmpInst::FCMP_OEQ: return "oeq";
3590 case FCmpInst::FCMP_OGT: return "ogt";
3591 case FCmpInst::FCMP_OGE: return "oge";
3592 case FCmpInst::FCMP_OLT: return "olt";
3593 case FCmpInst::FCMP_OLE: return "ole";
3594 case FCmpInst::FCMP_ONE: return "one";
3595 case FCmpInst::FCMP_ORD: return "ord";
3596 case FCmpInst::FCMP_UNO: return "uno";
3597 case FCmpInst::FCMP_UEQ: return "ueq";
3598 case FCmpInst::FCMP_UGT: return "ugt";
3599 case FCmpInst::FCMP_UGE: return "uge";
3600 case FCmpInst::FCMP_ULT: return "ult";
3601 case FCmpInst::FCMP_ULE: return "ule";
3602 case FCmpInst::FCMP_UNE: return "une";
3603 case FCmpInst::FCMP_TRUE: return "true";
3604 case ICmpInst::ICMP_EQ: return "eq";
3605 case ICmpInst::ICMP_NE: return "ne";
3606 case ICmpInst::ICMP_SGT: return "sgt";
3607 case ICmpInst::ICMP_SGE: return "sge";
3608 case ICmpInst::ICMP_SLT: return "slt";
3609 case ICmpInst::ICMP_SLE: return "sle";
3610 case ICmpInst::ICMP_UGT: return "ugt";
3611 case ICmpInst::ICMP_UGE: return "uge";
3612 case ICmpInst::ICMP_ULT: return "ult";
3613 case ICmpInst::ICMP_ULE: return "ule";
3617 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3618 switch (pred) {
3619 default: llvm_unreachable("Unknown icmp predicate!");
3620 case ICMP_EQ: case ICMP_NE:
3621 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3622 return pred;
3623 case ICMP_UGT: return ICMP_SGT;
3624 case ICMP_ULT: return ICMP_SLT;
3625 case ICMP_UGE: return ICMP_SGE;
3626 case ICMP_ULE: return ICMP_SLE;
3630 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3631 switch (pred) {
3632 default: llvm_unreachable("Unknown icmp predicate!");
3633 case ICMP_EQ: case ICMP_NE:
3634 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3635 return pred;
3636 case ICMP_SGT: return ICMP_UGT;
3637 case ICMP_SLT: return ICMP_ULT;
3638 case ICMP_SGE: return ICMP_UGE;
3639 case ICMP_SLE: return ICMP_ULE;
3643 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3644 switch (pred) {
3645 default: llvm_unreachable("Unknown or unsupported cmp predicate!");
3646 case ICMP_SGT: return ICMP_SGE;
3647 case ICMP_SLT: return ICMP_SLE;
3648 case ICMP_SGE: return ICMP_SGT;
3649 case ICMP_SLE: return ICMP_SLT;
3650 case ICMP_UGT: return ICMP_UGE;
3651 case ICMP_ULT: return ICMP_ULE;
3652 case ICMP_UGE: return ICMP_UGT;
3653 case ICMP_ULE: return ICMP_ULT;
3655 case FCMP_OGT: return FCMP_OGE;
3656 case FCMP_OLT: return FCMP_OLE;
3657 case FCMP_OGE: return FCMP_OGT;
3658 case FCMP_OLE: return FCMP_OLT;
3659 case FCMP_UGT: return FCMP_UGE;
3660 case FCMP_ULT: return FCMP_ULE;
3661 case FCMP_UGE: return FCMP_UGT;
3662 case FCMP_ULE: return FCMP_ULT;
3666 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3667 switch (pred) {
3668 default: llvm_unreachable("Unknown cmp predicate!");
3669 case ICMP_EQ: case ICMP_NE:
3670 return pred;
3671 case ICMP_SGT: return ICMP_SLT;
3672 case ICMP_SLT: return ICMP_SGT;
3673 case ICMP_SGE: return ICMP_SLE;
3674 case ICMP_SLE: return ICMP_SGE;
3675 case ICMP_UGT: return ICMP_ULT;
3676 case ICMP_ULT: return ICMP_UGT;
3677 case ICMP_UGE: return ICMP_ULE;
3678 case ICMP_ULE: return ICMP_UGE;
3680 case FCMP_FALSE: case FCMP_TRUE:
3681 case FCMP_OEQ: case FCMP_ONE:
3682 case FCMP_UEQ: case FCMP_UNE:
3683 case FCMP_ORD: case FCMP_UNO:
3684 return pred;
3685 case FCMP_OGT: return FCMP_OLT;
3686 case FCMP_OLT: return FCMP_OGT;
3687 case FCMP_OGE: return FCMP_OLE;
3688 case FCMP_OLE: return FCMP_OGE;
3689 case FCMP_UGT: return FCMP_ULT;
3690 case FCMP_ULT: return FCMP_UGT;
3691 case FCMP_UGE: return FCMP_ULE;
3692 case FCMP_ULE: return FCMP_UGE;
3696 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3697 switch (pred) {
3698 case ICMP_SGT: return ICMP_SGE;
3699 case ICMP_SLT: return ICMP_SLE;
3700 case ICMP_UGT: return ICMP_UGE;
3701 case ICMP_ULT: return ICMP_ULE;
3702 case FCMP_OGT: return FCMP_OGE;
3703 case FCMP_OLT: return FCMP_OLE;
3704 case FCMP_UGT: return FCMP_UGE;
3705 case FCMP_ULT: return FCMP_ULE;
3706 default: return pred;
3710 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3711 assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!");
3713 switch (pred) {
3714 default:
3715 llvm_unreachable("Unknown predicate!");
3716 case CmpInst::ICMP_ULT:
3717 return CmpInst::ICMP_SLT;
3718 case CmpInst::ICMP_ULE:
3719 return CmpInst::ICMP_SLE;
3720 case CmpInst::ICMP_UGT:
3721 return CmpInst::ICMP_SGT;
3722 case CmpInst::ICMP_UGE:
3723 return CmpInst::ICMP_SGE;
3727 bool CmpInst::isUnsigned(Predicate predicate) {
3728 switch (predicate) {
3729 default: return false;
3730 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3731 case ICmpInst::ICMP_UGE: return true;
3735 bool CmpInst::isSigned(Predicate predicate) {
3736 switch (predicate) {
3737 default: return false;
3738 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3739 case ICmpInst::ICMP_SGE: return true;
3743 bool CmpInst::isOrdered(Predicate predicate) {
3744 switch (predicate) {
3745 default: return false;
3746 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3747 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3748 case FCmpInst::FCMP_ORD: return true;
3752 bool CmpInst::isUnordered(Predicate predicate) {
3753 switch (predicate) {
3754 default: return false;
3755 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3756 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3757 case FCmpInst::FCMP_UNO: return true;
3761 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3762 switch(predicate) {
3763 default: return false;
3764 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3765 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3769 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3770 switch(predicate) {
3771 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3772 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3773 default: return false;
3777 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3778 // If the predicates match, then we know the first condition implies the
3779 // second is true.
3780 if (Pred1 == Pred2)
3781 return true;
3783 switch (Pred1) {
3784 default:
3785 break;
3786 case ICMP_EQ:
3787 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3788 return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3789 Pred2 == ICMP_SLE;
3790 case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3791 return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3792 case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3793 return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3794 case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3795 return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3796 case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3797 return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3799 return false;
3802 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3803 return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3806 //===----------------------------------------------------------------------===//
3807 // SwitchInst Implementation
3808 //===----------------------------------------------------------------------===//
3810 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3811 assert(Value && Default && NumReserved);
3812 ReservedSpace = NumReserved;
3813 setNumHungOffUseOperands(2);
3814 allocHungoffUses(ReservedSpace);
3816 Op<0>() = Value;
3817 Op<1>() = Default;
3820 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3821 /// switch on and a default destination. The number of additional cases can
3822 /// be specified here to make memory allocation more efficient. This
3823 /// constructor can also autoinsert before another instruction.
3824 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3825 Instruction *InsertBefore)
3826 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3827 nullptr, 0, InsertBefore) {
3828 init(Value, Default, 2+NumCases*2);
3831 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3832 /// switch on and a default destination. The number of additional cases can
3833 /// be specified here to make memory allocation more efficient. This
3834 /// constructor also autoinserts at the end of the specified BasicBlock.
3835 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3836 BasicBlock *InsertAtEnd)
3837 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3838 nullptr, 0, InsertAtEnd) {
3839 init(Value, Default, 2+NumCases*2);
3842 SwitchInst::SwitchInst(const SwitchInst &SI)
3843 : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
3844 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3845 setNumHungOffUseOperands(SI.getNumOperands());
3846 Use *OL = getOperandList();
3847 const Use *InOL = SI.getOperandList();
3848 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3849 OL[i] = InOL[i];
3850 OL[i+1] = InOL[i+1];
3852 SubclassOptionalData = SI.SubclassOptionalData;
3855 /// addCase - Add an entry to the switch instruction...
3857 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3858 unsigned NewCaseIdx = getNumCases();
3859 unsigned OpNo = getNumOperands();
3860 if (OpNo+2 > ReservedSpace)
3861 growOperands(); // Get more space!
3862 // Initialize some new operands.
3863 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3864 setNumHungOffUseOperands(OpNo+2);
3865 CaseHandle Case(this, NewCaseIdx);
3866 Case.setValue(OnVal);
3867 Case.setSuccessor(Dest);
3870 /// removeCase - This method removes the specified case and its successor
3871 /// from the switch instruction.
3872 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
3873 unsigned idx = I->getCaseIndex();
3875 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3877 unsigned NumOps = getNumOperands();
3878 Use *OL = getOperandList();
3880 // Overwrite this case with the end of the list.
3881 if (2 + (idx + 1) * 2 != NumOps) {
3882 OL[2 + idx * 2] = OL[NumOps - 2];
3883 OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3886 // Nuke the last value.
3887 OL[NumOps-2].set(nullptr);
3888 OL[NumOps-2+1].set(nullptr);
3889 setNumHungOffUseOperands(NumOps-2);
3891 return CaseIt(this, idx);
3894 /// growOperands - grow operands - This grows the operand list in response
3895 /// to a push_back style of operation. This grows the number of ops by 3 times.
3897 void SwitchInst::growOperands() {
3898 unsigned e = getNumOperands();
3899 unsigned NumOps = e*3;
3901 ReservedSpace = NumOps;
3902 growHungoffUses(ReservedSpace);
3905 MDNode *
3906 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
3907 if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
3908 if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
3909 if (MDName->getString() == "branch_weights")
3910 return ProfileData;
3911 return nullptr;
3914 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
3915 assert(Changed && "called only if metadata has changed");
3917 if (!Weights)
3918 return nullptr;
3920 assert(SI.getNumSuccessors() == Weights->size() &&
3921 "num of prof branch_weights must accord with num of successors");
3923 bool AllZeroes =
3924 all_of(Weights.getValue(), [](uint32_t W) { return W == 0; });
3926 if (AllZeroes || Weights.getValue().size() < 2)
3927 return nullptr;
3929 return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
3932 void SwitchInstProfUpdateWrapper::init() {
3933 MDNode *ProfileData = getProfBranchWeightsMD(SI);
3934 if (!ProfileData)
3935 return;
3937 if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
3938 llvm_unreachable("number of prof branch_weights metadata operands does "
3939 "not correspond to number of succesors");
3942 SmallVector<uint32_t, 8> Weights;
3943 for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
3944 ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
3945 uint32_t CW = C->getValue().getZExtValue();
3946 Weights.push_back(CW);
3948 this->Weights = std::move(Weights);
3951 SwitchInst::CaseIt
3952 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
3953 if (Weights) {
3954 assert(SI.getNumSuccessors() == Weights->size() &&
3955 "num of prof branch_weights must accord with num of successors");
3956 Changed = true;
3957 // Copy the last case to the place of the removed one and shrink.
3958 // This is tightly coupled with the way SwitchInst::removeCase() removes
3959 // the cases in SwitchInst::removeCase(CaseIt).
3960 Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back();
3961 Weights.getValue().pop_back();
3963 return SI.removeCase(I);
3966 void SwitchInstProfUpdateWrapper::addCase(
3967 ConstantInt *OnVal, BasicBlock *Dest,
3968 SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
3969 SI.addCase(OnVal, Dest);
3971 if (!Weights && W && *W) {
3972 Changed = true;
3973 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
3974 Weights.getValue()[SI.getNumSuccessors() - 1] = *W;
3975 } else if (Weights) {
3976 Changed = true;
3977 Weights.getValue().push_back(W ? *W : 0);
3979 if (Weights)
3980 assert(SI.getNumSuccessors() == Weights->size() &&
3981 "num of prof branch_weights must accord with num of successors");
3984 SymbolTableList<Instruction>::iterator
3985 SwitchInstProfUpdateWrapper::eraseFromParent() {
3986 // Instruction is erased. Mark as unchanged to not touch it in the destructor.
3987 Changed = false;
3988 if (Weights)
3989 Weights->resize(0);
3990 return SI.eraseFromParent();
3993 SwitchInstProfUpdateWrapper::CaseWeightOpt
3994 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
3995 if (!Weights)
3996 return None;
3997 return Weights.getValue()[idx];
4000 void SwitchInstProfUpdateWrapper::setSuccessorWeight(
4001 unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4002 if (!W)
4003 return;
4005 if (!Weights && *W)
4006 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4008 if (Weights) {
4009 auto &OldW = Weights.getValue()[idx];
4010 if (*W != OldW) {
4011 Changed = true;
4012 OldW = *W;
4017 SwitchInstProfUpdateWrapper::CaseWeightOpt
4018 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
4019 unsigned idx) {
4020 if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
4021 if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4022 return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4023 ->getValue()
4024 .getZExtValue();
4026 return None;
4029 //===----------------------------------------------------------------------===//
4030 // IndirectBrInst Implementation
4031 //===----------------------------------------------------------------------===//
4033 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4034 assert(Address && Address->getType()->isPointerTy() &&
4035 "Address of indirectbr must be a pointer");
4036 ReservedSpace = 1+NumDests;
4037 setNumHungOffUseOperands(1);
4038 allocHungoffUses(ReservedSpace);
4040 Op<0>() = Address;
4044 /// growOperands - grow operands - This grows the operand list in response
4045 /// to a push_back style of operation. This grows the number of ops by 2 times.
4047 void IndirectBrInst::growOperands() {
4048 unsigned e = getNumOperands();
4049 unsigned NumOps = e*2;
4051 ReservedSpace = NumOps;
4052 growHungoffUses(ReservedSpace);
4055 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4056 Instruction *InsertBefore)
4057 : Instruction(Type::getVoidTy(Address->getContext()),
4058 Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4059 init(Address, NumCases);
4062 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4063 BasicBlock *InsertAtEnd)
4064 : Instruction(Type::getVoidTy(Address->getContext()),
4065 Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
4066 init(Address, NumCases);
4069 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4070 : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4071 nullptr, IBI.getNumOperands()) {
4072 allocHungoffUses(IBI.getNumOperands());
4073 Use *OL = getOperandList();
4074 const Use *InOL = IBI.getOperandList();
4075 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4076 OL[i] = InOL[i];
4077 SubclassOptionalData = IBI.SubclassOptionalData;
4080 /// addDestination - Add a destination.
4082 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4083 unsigned OpNo = getNumOperands();
4084 if (OpNo+1 > ReservedSpace)
4085 growOperands(); // Get more space!
4086 // Initialize some new operands.
4087 assert(OpNo < ReservedSpace && "Growing didn't work!");
4088 setNumHungOffUseOperands(OpNo+1);
4089 getOperandList()[OpNo] = DestBB;
4092 /// removeDestination - This method removes the specified successor from the
4093 /// indirectbr instruction.
4094 void IndirectBrInst::removeDestination(unsigned idx) {
4095 assert(idx < getNumOperands()-1 && "Successor index out of range!");
4097 unsigned NumOps = getNumOperands();
4098 Use *OL = getOperandList();
4100 // Replace this value with the last one.
4101 OL[idx+1] = OL[NumOps-1];
4103 // Nuke the last value.
4104 OL[NumOps-1].set(nullptr);
4105 setNumHungOffUseOperands(NumOps-1);
4108 //===----------------------------------------------------------------------===//
4109 // cloneImpl() implementations
4110 //===----------------------------------------------------------------------===//
4112 // Define these methods here so vtables don't get emitted into every translation
4113 // unit that uses these classes.
4115 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4116 return new (getNumOperands()) GetElementPtrInst(*this);
4119 UnaryOperator *UnaryOperator::cloneImpl() const {
4120 return Create(getOpcode(), Op<0>());
4123 BinaryOperator *BinaryOperator::cloneImpl() const {
4124 return Create(getOpcode(), Op<0>(), Op<1>());
4127 FCmpInst *FCmpInst::cloneImpl() const {
4128 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4131 ICmpInst *ICmpInst::cloneImpl() const {
4132 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4135 ExtractValueInst *ExtractValueInst::cloneImpl() const {
4136 return new ExtractValueInst(*this);
4139 InsertValueInst *InsertValueInst::cloneImpl() const {
4140 return new InsertValueInst(*this);
4143 AllocaInst *AllocaInst::cloneImpl() const {
4144 AllocaInst *Result = new AllocaInst(getAllocatedType(),
4145 getType()->getAddressSpace(),
4146 (Value *)getOperand(0), getAlignment());
4147 Result->setUsedWithInAlloca(isUsedWithInAlloca());
4148 Result->setSwiftError(isSwiftError());
4149 return Result;
4152 LoadInst *LoadInst::cloneImpl() const {
4153 return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4154 getAlignment(), getOrdering(), getSyncScopeID());
4157 StoreInst *StoreInst::cloneImpl() const {
4158 return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
4159 getAlignment(), getOrdering(), getSyncScopeID());
4163 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4164 AtomicCmpXchgInst *Result =
4165 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
4166 getSuccessOrdering(), getFailureOrdering(),
4167 getSyncScopeID());
4168 Result->setVolatile(isVolatile());
4169 Result->setWeak(isWeak());
4170 return Result;
4173 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4174 AtomicRMWInst *Result =
4175 new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4176 getOrdering(), getSyncScopeID());
4177 Result->setVolatile(isVolatile());
4178 return Result;
4181 FenceInst *FenceInst::cloneImpl() const {
4182 return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4185 TruncInst *TruncInst::cloneImpl() const {
4186 return new TruncInst(getOperand(0), getType());
4189 ZExtInst *ZExtInst::cloneImpl() const {
4190 return new ZExtInst(getOperand(0), getType());
4193 SExtInst *SExtInst::cloneImpl() const {
4194 return new SExtInst(getOperand(0), getType());
4197 FPTruncInst *FPTruncInst::cloneImpl() const {
4198 return new FPTruncInst(getOperand(0), getType());
4201 FPExtInst *FPExtInst::cloneImpl() const {
4202 return new FPExtInst(getOperand(0), getType());
4205 UIToFPInst *UIToFPInst::cloneImpl() const {
4206 return new UIToFPInst(getOperand(0), getType());
4209 SIToFPInst *SIToFPInst::cloneImpl() const {
4210 return new SIToFPInst(getOperand(0), getType());
4213 FPToUIInst *FPToUIInst::cloneImpl() const {
4214 return new FPToUIInst(getOperand(0), getType());
4217 FPToSIInst *FPToSIInst::cloneImpl() const {
4218 return new FPToSIInst(getOperand(0), getType());
4221 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4222 return new PtrToIntInst(getOperand(0), getType());
4225 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4226 return new IntToPtrInst(getOperand(0), getType());
4229 BitCastInst *BitCastInst::cloneImpl() const {
4230 return new BitCastInst(getOperand(0), getType());
4233 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4234 return new AddrSpaceCastInst(getOperand(0), getType());
4237 CallInst *CallInst::cloneImpl() const {
4238 if (hasOperandBundles()) {
4239 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4240 return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4242 return new(getNumOperands()) CallInst(*this);
4245 SelectInst *SelectInst::cloneImpl() const {
4246 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4249 VAArgInst *VAArgInst::cloneImpl() const {
4250 return new VAArgInst(getOperand(0), getType());
4253 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4254 return ExtractElementInst::Create(getOperand(0), getOperand(1));
4257 InsertElementInst *InsertElementInst::cloneImpl() const {
4258 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4261 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4262 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
4265 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4267 LandingPadInst *LandingPadInst::cloneImpl() const {
4268 return new LandingPadInst(*this);
4271 ReturnInst *ReturnInst::cloneImpl() const {
4272 return new(getNumOperands()) ReturnInst(*this);
4275 BranchInst *BranchInst::cloneImpl() const {
4276 return new(getNumOperands()) BranchInst(*this);
4279 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4281 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4282 return new IndirectBrInst(*this);
4285 InvokeInst *InvokeInst::cloneImpl() const {
4286 if (hasOperandBundles()) {
4287 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4288 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4290 return new(getNumOperands()) InvokeInst(*this);
4293 CallBrInst *CallBrInst::cloneImpl() const {
4294 if (hasOperandBundles()) {
4295 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4296 return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4298 return new (getNumOperands()) CallBrInst(*this);
4301 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4303 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4304 return new (getNumOperands()) CleanupReturnInst(*this);
4307 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4308 return new (getNumOperands()) CatchReturnInst(*this);
4311 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4312 return new CatchSwitchInst(*this);
4315 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4316 return new (getNumOperands()) FuncletPadInst(*this);
4319 UnreachableInst *UnreachableInst::cloneImpl() const {
4320 LLVMContext &Context = getContext();
4321 return new UnreachableInst(Context);