1 //===- Attributor.h --- Module-wide attribute deduction ---------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Attributor: An inter procedural (abstract) "attribute" deduction framework.
11 // The Attributor framework is an inter procedural abstract analysis (fixpoint
12 // iteration analysis). The goal is to allow easy deduction of new attributes as
13 // well as information exchange between abstract attributes in-flight.
15 // The Attributor class is the driver and the link between the various abstract
16 // attributes. The Attributor will iterate until a fixpoint state is reached by
17 // all abstract attributes in-flight, or until it will enforce a pessimistic fix
18 // point because an iteration limit is reached.
20 // Abstract attributes, derived from the AbstractAttribute class, actually
21 // describe properties of the code. They can correspond to actual LLVM-IR
22 // attributes, or they can be more general, ultimately unrelated to LLVM-IR
23 // attributes. The latter is useful when an abstract attributes provides
24 // information to other abstract attributes in-flight but we might not want to
25 // manifest the information. The Attributor allows to query in-flight abstract
26 // attributes through the `Attributor::getAAFor` method (see the method
27 // description for an example). If the method is used by an abstract attribute
28 // P, and it results in an abstract attribute Q, the Attributor will
29 // automatically capture a potential dependence from Q to P. This dependence
30 // will cause P to be reevaluated whenever Q changes in the future.
32 // The Attributor will only reevaluated abstract attributes that might have
33 // changed since the last iteration. That means that the Attribute will not
34 // revisit all instructions/blocks/functions in the module but only query
35 // an update from a subset of the abstract attributes.
37 // The update method `AbstractAttribute::updateImpl` is implemented by the
38 // specific "abstract attribute" subclasses. The method is invoked whenever the
39 // currently assumed state (see the AbstractState class) might not be valid
40 // anymore. This can, for example, happen if the state was dependent on another
41 // abstract attribute that changed. In every invocation, the update method has
42 // to adjust the internal state of an abstract attribute to a point that is
43 // justifiable by the underlying IR and the current state of abstract attributes
44 // in-flight. Since the IR is given and assumed to be valid, the information
45 // derived from it can be assumed to hold. However, information derived from
46 // other abstract attributes is conditional on various things. If the justifying
47 // state changed, the `updateImpl` has to revisit the situation and potentially
48 // find another justification or limit the optimistic assumes made.
50 // Change is the key in this framework. Until a state of no-change, thus a
51 // fixpoint, is reached, the Attributor will query the abstract attributes
52 // in-flight to re-evaluate their state. If the (current) state is too
53 // optimistic, hence it cannot be justified anymore through other abstract
54 // attributes or the state of the IR, the state of the abstract attribute will
55 // have to change. Generally, we assume abstract attribute state to be a finite
56 // height lattice and the update function to be monotone. However, these
57 // conditions are not enforced because the iteration limit will guarantee
58 // termination. If an optimistic fixpoint is reached, or a pessimistic fix
59 // point is enforced after a timeout, the abstract attributes are tasked to
60 // manifest their result in the IR for passes to come.
62 // Attribute manifestation is not mandatory. If desired, there is support to
63 // generate a single or multiple LLVM-IR attributes already in the helper struct
64 // IRAttribute. In the simplest case, a subclass inherits from IRAttribute with
65 // a proper Attribute::AttrKind as template parameter. The Attributor
66 // manifestation framework will then create and place a new attribute if it is
67 // allowed to do so (based on the abstract state). Other use cases can be
68 // achieved by overloading AbstractAttribute or IRAttribute methods.
71 // The "mechanics" of adding a new "abstract attribute":
72 // - Define a class (transitively) inheriting from AbstractAttribute and one
73 // (which could be the same) that (transitively) inherits from AbstractState.
74 // For the latter, consider the already available BooleanState and
75 // IntegerState if they fit your needs, e.g., you require only a bit-encoding.
76 // - Implement all pure methods. Also use overloading if the attribute is not
77 // conforming with the "default" behavior: A (set of) LLVM-IR attribute(s) for
78 // an argument, call site argument, function return value, or function. See
79 // the class and method descriptions for more information on the two
80 // "Abstract" classes and their respective methods.
81 // - Register opportunities for the new abstract attribute in the
82 // `Attributor::identifyDefaultAbstractAttributes` method if it should be
83 // counted as a 'default' attribute.
84 // - Add sufficient tests.
85 // - Add a Statistics object for bookkeeping. If it is a simple (set of)
86 // attribute(s) manifested through the Attributor manifestation framework, see
87 // the bookkeeping function in Attributor.cpp.
88 // - If instructions with a certain opcode are interesting to the attribute, add
89 // that opcode to the switch in `Attributor::identifyAbstractAttributes`. This
90 // will make it possible to query all those instructions through the
91 // `InformationCache::getOpcodeInstMapForFunction` interface and eliminate the
92 // need to traverse the IR repeatedly.
94 //===----------------------------------------------------------------------===//
96 #ifndef LLVM_TRANSFORMS_IPO_ATTRIBUTOR_H
97 #define LLVM_TRANSFORMS_IPO_ATTRIBUTOR_H
99 #include "llvm/ADT/MapVector.h"
100 #include "llvm/ADT/SCCIterator.h"
101 #include "llvm/ADT/SetVector.h"
102 #include "llvm/Analysis/AliasAnalysis.h"
103 #include "llvm/Analysis/CallGraph.h"
104 #include "llvm/Analysis/MustExecute.h"
105 #include "llvm/Analysis/TargetLibraryInfo.h"
106 #include "llvm/IR/CallSite.h"
107 #include "llvm/IR/PassManager.h"
111 struct AbstractAttribute
;
112 struct InformationCache
;
117 /// Simple enum class that forces the status to be spelled out explicitly.
120 enum class ChangeStatus
{
125 ChangeStatus
operator|(ChangeStatus l
, ChangeStatus r
);
126 ChangeStatus
operator&(ChangeStatus l
, ChangeStatus r
);
129 /// Helper to describe and deal with positions in the LLVM-IR.
131 /// A position in the IR is described by an anchor value and an "offset" that
132 /// could be the argument number, for call sites and arguments, or an indicator
133 /// of the "position kind". The kinds, specified in the Kind enum below, include
134 /// the locations in the attribute list, i.a., function scope and return value,
135 /// as well as a distinction between call sites and functions. Finally, there
136 /// are floating values that do not have a corresponding attribute list
139 virtual ~IRPosition() {}
141 /// The positions we distinguish in the IR.
143 /// The values are chosen such that the KindOrArgNo member has a value >= 1
144 /// if it is an argument or call site argument while a value < 1 indicates the
145 /// respective kind of that value.
147 IRP_INVALID
= -6, ///< An invalid position.
148 IRP_FLOAT
= -5, ///< A position that is not associated with a spot suitable
149 ///< for attributes. This could be any value or instruction.
150 IRP_RETURNED
= -4, ///< An attribute for the function return value.
151 IRP_CALL_SITE_RETURNED
= -3, ///< An attribute for a call site return value.
152 IRP_FUNCTION
= -2, ///< An attribute for a function (scope).
153 IRP_CALL_SITE
= -1, ///< An attribute for a call site (function scope).
154 IRP_ARGUMENT
= 0, ///< An attribute for a function argument.
155 IRP_CALL_SITE_ARGUMENT
= 1, ///< An attribute for a call site argument.
158 /// Default constructor available to create invalid positions implicitly. All
159 /// other positions need to be created explicitly through the appropriate
160 /// static member function.
161 IRPosition() : AnchorVal(nullptr), KindOrArgNo(IRP_INVALID
) { verify(); }
163 /// Create a position describing the value of \p V.
164 static const IRPosition
value(const Value
&V
) {
165 if (auto *Arg
= dyn_cast
<Argument
>(&V
))
166 return IRPosition::argument(*Arg
);
167 if (auto *CB
= dyn_cast
<CallBase
>(&V
))
168 return IRPosition::callsite_returned(*CB
);
169 return IRPosition(const_cast<Value
&>(V
), IRP_FLOAT
);
172 /// Create a position describing the function scope of \p F.
173 static const IRPosition
function(const Function
&F
) {
174 return IRPosition(const_cast<Function
&>(F
), IRP_FUNCTION
);
177 /// Create a position describing the returned value of \p F.
178 static const IRPosition
returned(const Function
&F
) {
179 return IRPosition(const_cast<Function
&>(F
), IRP_RETURNED
);
182 /// Create a position describing the argument \p Arg.
183 static const IRPosition
argument(const Argument
&Arg
) {
184 return IRPosition(const_cast<Argument
&>(Arg
), Kind(Arg
.getArgNo()));
187 /// Create a position describing the function scope of \p CB.
188 static const IRPosition
callsite_function(const CallBase
&CB
) {
189 return IRPosition(const_cast<CallBase
&>(CB
), IRP_CALL_SITE
);
192 /// Create a position describing the returned value of \p CB.
193 static const IRPosition
callsite_returned(const CallBase
&CB
) {
194 return IRPosition(const_cast<CallBase
&>(CB
), IRP_CALL_SITE_RETURNED
);
197 /// Create a position describing the argument of \p CB at position \p ArgNo.
198 static const IRPosition
callsite_argument(const CallBase
&CB
,
200 return IRPosition(const_cast<CallBase
&>(CB
), Kind(ArgNo
));
203 /// Create a position describing the function scope of \p ICS.
204 static const IRPosition
callsite_function(ImmutableCallSite ICS
) {
205 return IRPosition::callsite_function(cast
<CallBase
>(*ICS
.getInstruction()));
208 /// Create a position describing the returned value of \p ICS.
209 static const IRPosition
callsite_returned(ImmutableCallSite ICS
) {
210 return IRPosition::callsite_returned(cast
<CallBase
>(*ICS
.getInstruction()));
213 /// Create a position describing the argument of \p ICS at position \p ArgNo.
214 static const IRPosition
callsite_argument(ImmutableCallSite ICS
,
216 return IRPosition::callsite_argument(cast
<CallBase
>(*ICS
.getInstruction()),
220 /// Create a position describing the argument of \p ACS at position \p ArgNo.
221 static const IRPosition
callsite_argument(AbstractCallSite ACS
,
223 int CSArgNo
= ACS
.getCallArgOperandNo(ArgNo
);
225 return IRPosition::callsite_argument(
226 cast
<CallBase
>(*ACS
.getInstruction()), CSArgNo
);
230 /// Create a position with function scope matching the "context" of \p IRP.
231 /// If \p IRP is a call site (see isAnyCallSitePosition()) then the result
232 /// will be a call site position, otherwise the function position of the
233 /// associated function.
234 static const IRPosition
function_scope(const IRPosition
&IRP
) {
235 if (IRP
.isAnyCallSitePosition()) {
236 return IRPosition::callsite_function(
237 cast
<CallBase
>(IRP
.getAnchorValue()));
239 assert(IRP
.getAssociatedFunction());
240 return IRPosition::function(*IRP
.getAssociatedFunction());
243 bool operator==(const IRPosition
&RHS
) const {
244 return (AnchorVal
== RHS
.AnchorVal
) && (KindOrArgNo
== RHS
.KindOrArgNo
);
246 bool operator!=(const IRPosition
&RHS
) const { return !(*this == RHS
); }
248 /// Return the value this abstract attribute is anchored with.
250 /// The anchor value might not be the associated value if the latter is not
251 /// sufficient to determine where arguments will be manifested. This is, so
252 /// far, only the case for call site arguments as the value is not sufficient
253 /// to pinpoint them. Instead, we can use the call site as an anchor.
256 Value
&getAnchorValue() {
257 assert(KindOrArgNo
!= IRP_INVALID
&&
258 "Invalid position does not have an anchor value!");
261 const Value
&getAnchorValue() const {
262 return const_cast<IRPosition
*>(this)->getAnchorValue();
266 /// Return the associated function, if any.
269 Function
*getAssociatedFunction() {
270 if (auto *CB
= dyn_cast
<CallBase
>(AnchorVal
))
271 return CB
->getCalledFunction();
272 assert(KindOrArgNo
!= IRP_INVALID
&&
273 "Invalid position does not have an anchor scope!");
274 Value
&V
= getAnchorValue();
275 if (isa
<Function
>(V
))
276 return &cast
<Function
>(V
);
277 if (isa
<Argument
>(V
))
278 return cast
<Argument
>(V
).getParent();
279 if (isa
<Instruction
>(V
))
280 return cast
<Instruction
>(V
).getFunction();
283 const Function
*getAssociatedFunction() const {
284 return const_cast<IRPosition
*>(this)->getAssociatedFunction();
288 /// Return the associated argument, if any.
291 Argument
*getAssociatedArgument() {
292 if (auto *Arg
= dyn_cast
<Argument
>(&getAnchorValue()))
294 int ArgNo
= getArgNo();
297 Function
*AssociatedFn
= getAssociatedFunction();
298 if (!AssociatedFn
|| AssociatedFn
->arg_size() <= unsigned(ArgNo
))
300 return AssociatedFn
->arg_begin() + ArgNo
;
302 const Argument
*getAssociatedArgument() const {
303 return const_cast<IRPosition
*>(this)->getAssociatedArgument();
307 /// Return true if the position refers to a function interface, that is the
308 /// function scope, the function return, or an argumnt.
309 bool isFnInterfaceKind() const {
310 switch (getPositionKind()) {
311 case IRPosition::IRP_FUNCTION
:
312 case IRPosition::IRP_RETURNED
:
313 case IRPosition::IRP_ARGUMENT
:
320 /// Return the Function surrounding the anchor value.
323 Function
*getAnchorScope() {
324 Value
&V
= getAnchorValue();
325 if (isa
<Function
>(V
))
326 return &cast
<Function
>(V
);
327 if (isa
<Argument
>(V
))
328 return cast
<Argument
>(V
).getParent();
329 if (isa
<Instruction
>(V
))
330 return cast
<Instruction
>(V
).getFunction();
333 const Function
*getAnchorScope() const {
334 return const_cast<IRPosition
*>(this)->getAnchorScope();
338 /// Return the context instruction, if any.
341 Instruction
*getCtxI() {
342 Value
&V
= getAnchorValue();
343 if (auto *I
= dyn_cast
<Instruction
>(&V
))
345 if (auto *Arg
= dyn_cast
<Argument
>(&V
))
346 if (!Arg
->getParent()->isDeclaration())
347 return &Arg
->getParent()->getEntryBlock().front();
348 if (auto *F
= dyn_cast
<Function
>(&V
))
349 if (!F
->isDeclaration())
350 return &(F
->getEntryBlock().front());
353 const Instruction
*getCtxI() const {
354 return const_cast<IRPosition
*>(this)->getCtxI();
358 /// Return the value this abstract attribute is associated with.
361 Value
&getAssociatedValue() {
362 assert(KindOrArgNo
!= IRP_INVALID
&&
363 "Invalid position does not have an associated value!");
364 if (getArgNo() < 0 || isa
<Argument
>(AnchorVal
))
366 assert(isa
<CallBase
>(AnchorVal
) && "Expected a call base!");
367 return *cast
<CallBase
>(AnchorVal
)->getArgOperand(getArgNo());
369 const Value
&getAssociatedValue() const {
370 return const_cast<IRPosition
*>(this)->getAssociatedValue();
374 /// Return the argument number of the associated value if it is an argument or
375 /// call site argument, otherwise a negative value.
376 int getArgNo() const { return KindOrArgNo
; }
378 /// Return the index in the attribute list for this position.
379 unsigned getAttrIdx() const {
380 switch (getPositionKind()) {
381 case IRPosition::IRP_INVALID
:
382 case IRPosition::IRP_FLOAT
:
384 case IRPosition::IRP_FUNCTION
:
385 case IRPosition::IRP_CALL_SITE
:
386 return AttributeList::FunctionIndex
;
387 case IRPosition::IRP_RETURNED
:
388 case IRPosition::IRP_CALL_SITE_RETURNED
:
389 return AttributeList::ReturnIndex
;
390 case IRPosition::IRP_ARGUMENT
:
391 case IRPosition::IRP_CALL_SITE_ARGUMENT
:
392 return KindOrArgNo
+ AttributeList::FirstArgIndex
;
395 "There is no attribute index for a floating or invalid position!");
398 /// Return the associated position kind.
399 Kind
getPositionKind() const {
400 if (getArgNo() >= 0) {
401 assert(((isa
<Argument
>(getAnchorValue()) &&
402 isa
<Argument
>(getAssociatedValue())) ||
403 isa
<CallBase
>(getAnchorValue())) &&
404 "Expected argument or call base due to argument number!");
405 if (isa
<CallBase
>(getAnchorValue()))
406 return IRP_CALL_SITE_ARGUMENT
;
410 assert(KindOrArgNo
< 0 &&
411 "Expected (call site) arguments to never reach this point!");
412 return Kind(KindOrArgNo
);
415 /// TODO: Figure out if the attribute related helper functions should live
416 /// here or somewhere else.
418 /// Return true if any kind in \p AKs existing in the IR at a position that
419 /// will affect this one. See also getAttrs(...).
420 /// \param IgnoreSubsumingPositions Flag to determine if subsuming positions,
421 /// e.g., the function position if this is an
422 /// argument position, should be ignored.
423 bool hasAttr(ArrayRef
<Attribute::AttrKind
> AKs
,
424 bool IgnoreSubsumingPositions
= false) const;
426 /// Return the attributes of any kind in \p AKs existing in the IR at a
427 /// position that will affect this one. While each position can only have a
428 /// single attribute of any kind in \p AKs, there are "subsuming" positions
429 /// that could have an attribute as well. This method returns all attributes
430 /// found in \p Attrs.
431 void getAttrs(ArrayRef
<Attribute::AttrKind
> AKs
,
432 SmallVectorImpl
<Attribute
> &Attrs
) const;
434 /// Return the attribute of kind \p AK existing in the IR at this position.
435 Attribute
getAttr(Attribute::AttrKind AK
) const {
436 if (getPositionKind() == IRP_INVALID
|| getPositionKind() == IRP_FLOAT
)
439 AttributeList AttrList
;
440 if (ImmutableCallSite ICS
= ImmutableCallSite(&getAnchorValue()))
441 AttrList
= ICS
.getAttributes();
443 AttrList
= getAssociatedFunction()->getAttributes();
445 if (AttrList
.hasAttribute(getAttrIdx(), AK
))
446 return AttrList
.getAttribute(getAttrIdx(), AK
);
450 /// Remove the attribute of kind \p AKs existing in the IR at this position.
451 void removeAttrs(ArrayRef
<Attribute::AttrKind
> AKs
) {
452 if (getPositionKind() == IRP_INVALID
|| getPositionKind() == IRP_FLOAT
)
455 AttributeList AttrList
;
456 CallSite CS
= CallSite(&getAnchorValue());
458 AttrList
= CS
.getAttributes();
460 AttrList
= getAssociatedFunction()->getAttributes();
462 LLVMContext
&Ctx
= getAnchorValue().getContext();
463 for (Attribute::AttrKind AK
: AKs
)
464 AttrList
= AttrList
.removeAttribute(Ctx
, getAttrIdx(), AK
);
467 CS
.setAttributes(AttrList
);
469 getAssociatedFunction()->setAttributes(AttrList
);
472 bool isAnyCallSitePosition() const {
473 switch (getPositionKind()) {
474 case IRPosition::IRP_CALL_SITE
:
475 case IRPosition::IRP_CALL_SITE_RETURNED
:
476 case IRPosition::IRP_CALL_SITE_ARGUMENT
:
483 /// Special DenseMap key values.
486 static const IRPosition EmptyKey
;
487 static const IRPosition TombstoneKey
;
491 /// Private constructor for special values only!
492 explicit IRPosition(int KindOrArgNo
)
493 : AnchorVal(0), KindOrArgNo(KindOrArgNo
) {}
495 /// IRPosition anchored at \p AnchorVal with kind/argument numbet \p PK.
496 explicit IRPosition(Value
&AnchorVal
, Kind PK
)
497 : AnchorVal(&AnchorVal
), KindOrArgNo(PK
) {
501 /// Verify internal invariants.
504 /// The value this position is anchored at.
507 /// The argument number, if non-negative, or the position "kind".
511 /// Helper that allows IRPosition as a key in a DenseMap.
512 template <> struct DenseMapInfo
<IRPosition
> {
513 static inline IRPosition
getEmptyKey() { return IRPosition::EmptyKey
; }
514 static inline IRPosition
getTombstoneKey() {
515 return IRPosition::TombstoneKey
;
517 static unsigned getHashValue(const IRPosition
&IRP
) {
518 return (DenseMapInfo
<Value
*>::getHashValue(&IRP
.getAnchorValue()) << 4) ^
519 (unsigned(IRP
.getArgNo()));
521 static bool isEqual(const IRPosition
&LHS
, const IRPosition
&RHS
) {
526 /// A visitor class for IR positions.
528 /// Given a position P, the SubsumingPositionIterator allows to visit "subsuming
529 /// positions" wrt. attributes/information. Thus, if a piece of information
530 /// holds for a subsuming position, it also holds for the position P.
532 /// The subsuming positions always include the initial position and then,
533 /// depending on the position kind, additionally the following ones:
534 /// - for IRP_RETURNED:
535 /// - the function (IRP_FUNCTION)
536 /// - for IRP_ARGUMENT:
537 /// - the function (IRP_FUNCTION)
538 /// - for IRP_CALL_SITE:
539 /// - the callee (IRP_FUNCTION), if known
540 /// - for IRP_CALL_SITE_RETURNED:
541 /// - the callee (IRP_RETURNED), if known
542 /// - the call site (IRP_FUNCTION)
543 /// - the callee (IRP_FUNCTION), if known
544 /// - for IRP_CALL_SITE_ARGUMENT:
545 /// - the argument of the callee (IRP_ARGUMENT), if known
546 /// - the callee (IRP_FUNCTION), if known
547 /// - the position the call site argument is associated with if it is not
548 /// anchored to the call site, e.g., if it is an arugment then the argument
550 class SubsumingPositionIterator
{
551 SmallVector
<IRPosition
, 4> IRPositions
;
552 using iterator
= decltype(IRPositions
)::iterator
;
555 SubsumingPositionIterator(const IRPosition
&IRP
);
556 iterator
begin() { return IRPositions
.begin(); }
557 iterator
end() { return IRPositions
.end(); }
560 /// Wrapper for FunctoinAnalysisManager.
561 struct AnalysisGetter
{
562 template <typename Analysis
>
563 typename
Analysis::Result
*getAnalysis(const Function
&F
) {
564 if (!MAM
|| !F
.getParent())
566 auto &FAM
= MAM
->getResult
<FunctionAnalysisManagerModuleProxy
>(
567 const_cast<Module
&>(*F
.getParent()))
569 return &FAM
.getResult
<Analysis
>(const_cast<Function
&>(F
));
572 template <typename Analysis
>
573 typename
Analysis::Result
*getAnalysis(const Module
&M
) {
576 return &MAM
->getResult
<Analysis
>(const_cast<Module
&>(M
));
578 AnalysisGetter(ModuleAnalysisManager
&MAM
) : MAM(&MAM
) {}
582 ModuleAnalysisManager
*MAM
= nullptr;
585 /// Data structure to hold cached (LLVM-IR) information.
587 /// All attributes are given an InformationCache object at creation time to
588 /// avoid inspection of the IR by all of them individually. This default
589 /// InformationCache will hold information required by 'default' attributes,
590 /// thus the ones deduced when Attributor::identifyDefaultAbstractAttributes(..)
593 /// If custom abstract attributes, registered manually through
594 /// Attributor::registerAA(...), need more information, especially if it is not
595 /// reusable, it is advised to inherit from the InformationCache and cast the
596 /// instance down in the abstract attributes.
597 struct InformationCache
{
598 InformationCache(const Module
&M
, AnalysisGetter
&AG
)
599 : DL(M
.getDataLayout()), Explorer(/* ExploreInterBlock */ true), AG(AG
) {
601 CallGraph
*CG
= AG
.getAnalysis
<CallGraphAnalysis
>(M
);
605 DenseMap
<const Function
*, unsigned> SccSize
;
606 for (scc_iterator
<CallGraph
*> I
= scc_begin(CG
); !I
.isAtEnd(); ++I
) {
607 for (CallGraphNode
*Node
: *I
)
608 SccSize
[Node
->getFunction()] = I
->size();
610 SccSizeOpt
= std::move(SccSize
);
613 /// A map type from opcodes to instructions with this opcode.
614 using OpcodeInstMapTy
= DenseMap
<unsigned, SmallVector
<Instruction
*, 32>>;
616 /// Return the map that relates "interesting" opcodes with all instructions
617 /// with that opcode in \p F.
618 OpcodeInstMapTy
&getOpcodeInstMapForFunction(const Function
&F
) {
619 return FuncInstOpcodeMap
[&F
];
622 /// A vector type to hold instructions.
623 using InstructionVectorTy
= std::vector
<Instruction
*>;
625 /// Return the instructions in \p F that may read or write memory.
626 InstructionVectorTy
&getReadOrWriteInstsForFunction(const Function
&F
) {
627 return FuncRWInstsMap
[&F
];
630 /// Return MustBeExecutedContextExplorer
631 MustBeExecutedContextExplorer
&getMustBeExecutedContextExplorer() {
635 /// Return TargetLibraryInfo for function \p F.
636 TargetLibraryInfo
*getTargetLibraryInfoForFunction(const Function
&F
) {
637 return AG
.getAnalysis
<TargetLibraryAnalysis
>(F
);
640 /// Return AliasAnalysis Result for function \p F.
641 AAResults
*getAAResultsForFunction(const Function
&F
) {
642 return AG
.getAnalysis
<AAManager
>(F
);
645 /// Return SCC size on call graph for function \p F.
646 unsigned getSccSize(const Function
&F
) {
647 if (!SccSizeOpt
.hasValue())
649 return (SccSizeOpt
.getValue())[&F
];
652 /// Return datalayout used in the module.
653 const DataLayout
&getDL() { return DL
; }
656 /// A map type from functions to opcode to instruction maps.
657 using FuncInstOpcodeMapTy
= DenseMap
<const Function
*, OpcodeInstMapTy
>;
659 /// A map type from functions to their read or write instructions.
660 using FuncRWInstsMapTy
= DenseMap
<const Function
*, InstructionVectorTy
>;
662 /// A nested map that remembers all instructions in a function with a certain
663 /// instruction opcode (Instruction::getOpcode()).
664 FuncInstOpcodeMapTy FuncInstOpcodeMap
;
666 /// A map from functions to their instructions that may read or write memory.
667 FuncRWInstsMapTy FuncRWInstsMap
;
669 /// The datalayout used in the module.
670 const DataLayout
&DL
;
672 /// MustBeExecutedContextExplorer
673 MustBeExecutedContextExplorer Explorer
;
675 /// Getters for analysis.
678 /// Cache result for scc size in the call graph
679 Optional
<DenseMap
<const Function
*, unsigned>> SccSizeOpt
;
681 /// Give the Attributor access to the members so
682 /// Attributor::identifyDefaultAbstractAttributes(...) can initialize them.
683 friend struct Attributor
;
686 /// The fixpoint analysis framework that orchestrates the attribute deduction.
688 /// The Attributor provides a general abstract analysis framework (guided
689 /// fixpoint iteration) as well as helper functions for the deduction of
690 /// (LLVM-IR) attributes. However, also other code properties can be deduced,
691 /// propagated, and ultimately manifested through the Attributor framework. This
692 /// is particularly useful if these properties interact with attributes and a
693 /// co-scheduled deduction allows to improve the solution. Even if not, thus if
694 /// attributes/properties are completely isolated, they should use the
695 /// Attributor framework to reduce the number of fixpoint iteration frameworks
696 /// in the code base. Note that the Attributor design makes sure that isolated
697 /// attributes are not impacted, in any way, by others derived at the same time
698 /// if there is no cross-reasoning performed.
700 /// The public facing interface of the Attributor is kept simple and basically
701 /// allows abstract attributes to one thing, query abstract attributes
702 /// in-flight. There are two reasons to do this:
703 /// a) The optimistic state of one abstract attribute can justify an
704 /// optimistic state of another, allowing to framework to end up with an
705 /// optimistic (=best possible) fixpoint instead of one based solely on
706 /// information in the IR.
707 /// b) This avoids reimplementing various kinds of lookups, e.g., to check
708 /// for existing IR attributes, in favor of a single lookups interface
709 /// provided by an abstract attribute subclass.
711 /// NOTE: The mechanics of adding a new "concrete" abstract attribute are
712 /// described in the file comment.
716 /// \param InfoCache Cache to hold various information accessible for
717 /// the abstract attributes.
718 /// \param DepRecomputeInterval Number of iterations until the dependences
719 /// between abstract attributes are recomputed.
720 /// \param Whitelist If not null, a set limiting the attribute opportunities.
721 Attributor(InformationCache
&InfoCache
, unsigned DepRecomputeInterval
,
722 DenseSet
<const char *> *Whitelist
= nullptr)
723 : InfoCache(InfoCache
), DepRecomputeInterval(DepRecomputeInterval
),
724 Whitelist(Whitelist
) {}
726 ~Attributor() { DeleteContainerPointers(AllAbstractAttributes
); }
728 /// Run the analyses until a fixpoint is reached or enforced (timeout).
730 /// The attributes registered with this Attributor can be used after as long
731 /// as the Attributor is not destroyed (it owns the attributes now).
733 /// \Returns CHANGED if the IR was changed, otherwise UNCHANGED.
734 ChangeStatus
run(Module
&M
);
736 /// Lookup an abstract attribute of type \p AAType at position \p IRP. While
737 /// no abstract attribute is found equivalent positions are checked, see
738 /// SubsumingPositionIterator. Thus, the returned abstract attribute
739 /// might be anchored at a different position, e.g., the callee if \p IRP is a
742 /// This method is the only (supported) way an abstract attribute can retrieve
743 /// information from another abstract attribute. As an example, take an
744 /// abstract attribute that determines the memory access behavior for a
745 /// argument (readnone, readonly, ...). It should use `getAAFor` to get the
746 /// most optimistic information for other abstract attributes in-flight, e.g.
747 /// the one reasoning about the "captured" state for the argument or the one
748 /// reasoning on the memory access behavior of the function as a whole.
750 /// If the flag \p TrackDependence is set to false the dependence from
751 /// \p QueryingAA to the return abstract attribute is not automatically
752 /// recorded. This should only be used if the caller will record the
753 /// dependence explicitly if necessary, thus if it the returned abstract
754 /// attribute is used for reasoning. To record the dependences explicitly use
755 /// the `Attributor::recordDependence` method.
756 template <typename AAType
>
757 const AAType
&getAAFor(const AbstractAttribute
&QueryingAA
,
758 const IRPosition
&IRP
, bool TrackDependence
= true) {
759 return getOrCreateAAFor
<AAType
>(IRP
, &QueryingAA
, TrackDependence
);
762 /// Explicitly record a dependence from \p FromAA to \p ToAA, that is if
763 /// \p FromAA changes \p ToAA should be updated as well.
765 /// This method should be used in conjunction with the `getAAFor` method and
766 /// with the TrackDependence flag passed to the method set to false. This can
767 /// be beneficial to avoid false dependences but it requires the users of
768 /// `getAAFor` to explicitly record true dependences through this method.
769 void recordDependence(const AbstractAttribute
&FromAA
,
770 const AbstractAttribute
&ToAA
) {
771 QueryMap
[&FromAA
].insert(const_cast<AbstractAttribute
*>(&ToAA
));
774 /// Introduce a new abstract attribute into the fixpoint analysis.
776 /// Note that ownership of the attribute is given to the Attributor. It will
777 /// invoke delete for the Attributor on destruction of the Attributor.
779 /// Attributes are identified by their IR position (AAType::getIRPosition())
780 /// and the address of their static member (see AAType::ID).
781 template <typename AAType
> AAType
®isterAA(AAType
&AA
) {
782 static_assert(std::is_base_of
<AbstractAttribute
, AAType
>::value
,
783 "Cannot register an attribute with a type not derived from "
784 "'AbstractAttribute'!");
785 // Put the attribute in the lookup map structure and the container we use to
786 // keep track of all attributes.
787 IRPosition
&IRP
= AA
.getIRPosition();
788 auto &KindToAbstractAttributeMap
= AAMap
[IRP
];
789 assert(!KindToAbstractAttributeMap
.count(&AAType::ID
) &&
790 "Attribute already in map!");
791 KindToAbstractAttributeMap
[&AAType::ID
] = &AA
;
792 AllAbstractAttributes
.push_back(&AA
);
796 /// Return the internal information cache.
797 InformationCache
&getInfoCache() { return InfoCache
; }
799 /// Determine opportunities to derive 'default' attributes in \p F and create
800 /// abstract attribute objects for them.
802 /// \param F The function that is checked for attribute opportunities.
804 /// Note that abstract attribute instances are generally created even if the
805 /// IR already contains the information they would deduce. The most important
806 /// reason for this is the single interface, the one of the abstract attribute
807 /// instance, which can be queried without the need to look at the IR in
809 void identifyDefaultAbstractAttributes(Function
&F
);
811 /// Initialize the information cache for queries regarding function \p F.
813 /// This method needs to be called for all function that might be looked at
814 /// through the information cache interface *prior* to looking at them.
815 void initializeInformationCache(Function
&F
);
817 /// Mark the internal function \p F as live.
819 /// This will trigger the identification and initialization of attributes for
821 void markLiveInternalFunction(const Function
&F
) {
822 assert(F
.hasLocalLinkage() &&
823 "Only local linkage is assumed dead initially.");
825 identifyDefaultAbstractAttributes(const_cast<Function
&>(F
));
828 /// Record that \p I is deleted after information was manifested.
829 void deleteAfterManifest(Instruction
&I
) { ToBeDeletedInsts
.insert(&I
); }
831 /// Record that \p BB is deleted after information was manifested.
832 void deleteAfterManifest(BasicBlock
&BB
) { ToBeDeletedBlocks
.insert(&BB
); }
834 /// Record that \p F is deleted after information was manifested.
835 void deleteAfterManifest(Function
&F
) { ToBeDeletedFunctions
.insert(&F
); }
837 /// Return true if \p AA (or its context instruction) is assumed dead.
839 /// If \p LivenessAA is not provided it is queried.
840 bool isAssumedDead(const AbstractAttribute
&AA
, const AAIsDead
*LivenessAA
);
842 /// Check \p Pred on all function call sites.
844 /// This method will evaluate \p Pred on call sites and return
845 /// true if \p Pred holds in every call sites. However, this is only possible
846 /// all call sites are known, hence the function has internal linkage.
847 bool checkForAllCallSites(const function_ref
<bool(AbstractCallSite
)> &Pred
,
848 const AbstractAttribute
&QueryingAA
,
849 bool RequireAllCallSites
);
851 /// Check \p Pred on all values potentially returned by \p F.
853 /// This method will evaluate \p Pred on all values potentially returned by
854 /// the function associated with \p QueryingAA. The returned values are
855 /// matched with their respective return instructions. Returns true if \p Pred
856 /// holds on all of them.
857 bool checkForAllReturnedValuesAndReturnInsts(
858 const function_ref
<bool(Value
&, const SmallSetVector
<ReturnInst
*, 4> &)>
860 const AbstractAttribute
&QueryingAA
);
862 /// Check \p Pred on all values potentially returned by the function
863 /// associated with \p QueryingAA.
865 /// This is the context insensitive version of the method above.
866 bool checkForAllReturnedValues(const function_ref
<bool(Value
&)> &Pred
,
867 const AbstractAttribute
&QueryingAA
);
869 /// Check \p Pred on all instructions with an opcode present in \p Opcodes.
871 /// This method will evaluate \p Pred on all instructions with an opcode
872 /// present in \p Opcode and return true if \p Pred holds on all of them.
873 bool checkForAllInstructions(const function_ref
<bool(Instruction
&)> &Pred
,
874 const AbstractAttribute
&QueryingAA
,
875 const ArrayRef
<unsigned> &Opcodes
);
877 /// Check \p Pred on all call-like instructions (=CallBased derived).
879 /// See checkForAllCallLikeInstructions(...) for more information.
881 checkForAllCallLikeInstructions(const function_ref
<bool(Instruction
&)> &Pred
,
882 const AbstractAttribute
&QueryingAA
) {
883 return checkForAllInstructions(Pred
, QueryingAA
,
884 {(unsigned)Instruction::Invoke
,
885 (unsigned)Instruction::CallBr
,
886 (unsigned)Instruction::Call
});
889 /// Check \p Pred on all Read/Write instructions.
891 /// This method will evaluate \p Pred on all instructions that read or write
892 /// to memory present in the information cache and return true if \p Pred
893 /// holds on all of them.
894 bool checkForAllReadWriteInstructions(
895 const llvm::function_ref
<bool(Instruction
&)> &Pred
,
896 AbstractAttribute
&QueryingAA
);
898 /// Return the data layout associated with the anchor scope.
899 const DataLayout
&getDataLayout() const { return InfoCache
.DL
; }
902 /// Check \p Pred on all call sites of \p Fn.
904 /// This method will evaluate \p Pred on call sites and return
905 /// true if \p Pred holds in every call sites. However, this is only possible
906 /// all call sites are known, hence the function has internal linkage.
907 bool checkForAllCallSites(const function_ref
<bool(AbstractCallSite
)> &Pred
,
908 const Function
&Fn
, bool RequireAllCallSites
,
909 const AbstractAttribute
*QueryingAA
);
911 /// The private version of getAAFor that allows to omit a querying abstract
912 /// attribute. See also the public getAAFor method.
913 template <typename AAType
>
914 const AAType
&getOrCreateAAFor(const IRPosition
&IRP
,
915 const AbstractAttribute
*QueryingAA
= nullptr,
916 bool TrackDependence
= false) {
917 if (const AAType
*AAPtr
=
918 lookupAAFor
<AAType
>(IRP
, QueryingAA
, TrackDependence
))
921 // No matching attribute found, create one.
922 // Use the static create method.
923 auto &AA
= AAType::createForPosition(IRP
, *this);
926 // For now we ignore naked and optnone functions.
927 bool Invalidate
= Whitelist
&& !Whitelist
->count(&AAType::ID
);
928 if (const Function
*Fn
= IRP
.getAnchorScope())
929 Invalidate
|= Fn
->hasFnAttribute(Attribute::Naked
) ||
930 Fn
->hasFnAttribute(Attribute::OptimizeNone
);
932 // Bootstrap the new attribute with an initial update to propagate
933 // information, e.g., function -> call site. If it is not on a given
934 // whitelist we will not perform updates at all.
936 AA
.getState().indicatePessimisticFixpoint();
940 AA
.initialize(*this);
943 if (TrackDependence
&& AA
.getState().isValidState())
944 QueryMap
[&AA
].insert(const_cast<AbstractAttribute
*>(QueryingAA
));
948 /// Return the attribute of \p AAType for \p IRP if existing.
949 template <typename AAType
>
950 const AAType
*lookupAAFor(const IRPosition
&IRP
,
951 const AbstractAttribute
*QueryingAA
= nullptr,
952 bool TrackDependence
= false) {
953 static_assert(std::is_base_of
<AbstractAttribute
, AAType
>::value
,
954 "Cannot query an attribute with a type not derived from "
955 "'AbstractAttribute'!");
956 assert((QueryingAA
|| !TrackDependence
) &&
957 "Cannot track dependences without a QueryingAA!");
959 // Lookup the abstract attribute of type AAType. If found, return it after
960 // registering a dependence of QueryingAA on the one returned attribute.
961 const auto &KindToAbstractAttributeMap
= AAMap
.lookup(IRP
);
962 if (AAType
*AA
= static_cast<AAType
*>(
963 KindToAbstractAttributeMap
.lookup(&AAType::ID
))) {
964 // Do not register a dependence on an attribute with an invalid state.
965 if (TrackDependence
&& AA
->getState().isValidState())
966 QueryMap
[AA
].insert(const_cast<AbstractAttribute
*>(QueryingAA
));
972 /// The set of all abstract attributes.
974 using AAVector
= SmallVector
<AbstractAttribute
*, 64>;
975 AAVector AllAbstractAttributes
;
978 /// A nested map to lookup abstract attributes based on the argument position
979 /// on the outer level, and the addresses of the static member (AAType::ID) on
982 using KindToAbstractAttributeMap
=
983 DenseMap
<const char *, AbstractAttribute
*>;
984 DenseMap
<IRPosition
, KindToAbstractAttributeMap
> AAMap
;
987 /// A map from abstract attributes to the ones that queried them through calls
988 /// to the getAAFor<...>(...) method.
991 MapVector
<const AbstractAttribute
*, SetVector
<AbstractAttribute
*>>;
995 /// The information cache that holds pre-processed (LLVM-IR) information.
996 InformationCache
&InfoCache
;
998 /// Number of iterations until the dependences between abstract attributes are
1000 const unsigned DepRecomputeInterval
;
1002 /// If not null, a set limiting the attribute opportunities.
1003 const DenseSet
<const char *> *Whitelist
;
1005 /// A set to remember the functions we already assume to be live and visited.
1006 DenseSet
<const Function
*> VisitedFunctions
;
1008 /// Functions, blocks, and instructions we delete after manifest is done.
1011 SmallPtrSet
<Function
*, 8> ToBeDeletedFunctions
;
1012 SmallPtrSet
<BasicBlock
*, 8> ToBeDeletedBlocks
;
1013 SmallPtrSet
<Instruction
*, 8> ToBeDeletedInsts
;
1017 /// An interface to query the internal state of an abstract attribute.
1019 /// The abstract state is a minimal interface that allows the Attributor to
1020 /// communicate with the abstract attributes about their internal state without
1021 /// enforcing or exposing implementation details, e.g., the (existence of an)
1022 /// underlying lattice.
1024 /// It is sufficient to be able to query if a state is (1) valid or invalid, (2)
1025 /// at a fixpoint, and to indicate to the state that (3) an optimistic fixpoint
1026 /// was reached or (4) a pessimistic fixpoint was enforced.
1028 /// All methods need to be implemented by the subclass. For the common use case,
1029 /// a single boolean state or a bit-encoded state, the BooleanState and
1030 /// IntegerState classes are already provided. An abstract attribute can inherit
1031 /// from them to get the abstract state interface and additional methods to
1032 /// directly modify the state based if needed. See the class comments for help.
1033 struct AbstractState
{
1034 virtual ~AbstractState() {}
1036 /// Return if this abstract state is in a valid state. If false, no
1037 /// information provided should be used.
1038 virtual bool isValidState() const = 0;
1040 /// Return if this abstract state is fixed, thus does not need to be updated
1041 /// if information changes as it cannot change itself.
1042 virtual bool isAtFixpoint() const = 0;
1044 /// Indicate that the abstract state should converge to the optimistic state.
1046 /// This will usually make the optimistically assumed state the known to be
1049 /// \returns ChangeStatus::UNCHANGED as the assumed value should not change.
1050 virtual ChangeStatus
indicateOptimisticFixpoint() = 0;
1052 /// Indicate that the abstract state should converge to the pessimistic state.
1054 /// This will usually revert the optimistically assumed state to the known to
1057 /// \returns ChangeStatus::CHANGED as the assumed value may change.
1058 virtual ChangeStatus
indicatePessimisticFixpoint() = 0;
1061 /// Simple state with integers encoding.
1063 /// The interface ensures that the assumed bits are always a subset of the known
1064 /// bits. Users can only add known bits and, except through adding known bits,
1065 /// they can only remove assumed bits. This should guarantee monotoniticy and
1066 /// thereby the existence of a fixpoint (if used corretly). The fixpoint is
1067 /// reached when the assumed and known state/bits are equal. Users can
1068 /// force/inidicate a fixpoint. If an optimistic one is indicated, the known
1069 /// state will catch up with the assumed one, for a pessimistic fixpoint it is
1070 /// the other way around.
1071 struct IntegerState
: public AbstractState
{
1072 /// Underlying integer type, we assume 32 bits to be enough.
1073 using base_t
= uint32_t;
1075 /// Initialize the (best) state.
1076 IntegerState(base_t BestState
= ~0) : Assumed(BestState
) {}
1078 /// Return the worst possible representable state.
1079 static constexpr base_t
getWorstState() { return 0; }
1081 /// See AbstractState::isValidState()
1082 /// NOTE: For now we simply pretend that the worst possible state is invalid.
1083 bool isValidState() const override
{ return Assumed
!= getWorstState(); }
1085 /// See AbstractState::isAtFixpoint()
1086 bool isAtFixpoint() const override
{ return Assumed
== Known
; }
1088 /// See AbstractState::indicateOptimisticFixpoint(...)
1089 ChangeStatus
indicateOptimisticFixpoint() override
{
1091 return ChangeStatus::UNCHANGED
;
1094 /// See AbstractState::indicatePessimisticFixpoint(...)
1095 ChangeStatus
indicatePessimisticFixpoint() override
{
1097 return ChangeStatus::CHANGED
;
1100 /// Return the known state encoding
1101 base_t
getKnown() const { return Known
; }
1103 /// Return the assumed state encoding.
1104 base_t
getAssumed() const { return Assumed
; }
1106 /// Return true if the bits set in \p BitsEncoding are "known bits".
1107 bool isKnown(base_t BitsEncoding
) const {
1108 return (Known
& BitsEncoding
) == BitsEncoding
;
1111 /// Return true if the bits set in \p BitsEncoding are "assumed bits".
1112 bool isAssumed(base_t BitsEncoding
) const {
1113 return (Assumed
& BitsEncoding
) == BitsEncoding
;
1116 /// Add the bits in \p BitsEncoding to the "known bits".
1117 IntegerState
&addKnownBits(base_t Bits
) {
1118 // Make sure we never miss any "known bits".
1124 /// Remove the bits in \p BitsEncoding from the "assumed bits" if not known.
1125 IntegerState
&removeAssumedBits(base_t BitsEncoding
) {
1126 // Make sure we never loose any "known bits".
1127 Assumed
= (Assumed
& ~BitsEncoding
) | Known
;
1131 /// Remove the bits in \p BitsEncoding from the "known bits".
1132 IntegerState
&removeKnownBits(base_t BitsEncoding
) {
1133 Known
= (Known
& ~BitsEncoding
);
1137 /// Keep only "assumed bits" also set in \p BitsEncoding but all known ones.
1138 IntegerState
&intersectAssumedBits(base_t BitsEncoding
) {
1139 // Make sure we never loose any "known bits".
1140 Assumed
= (Assumed
& BitsEncoding
) | Known
;
1144 /// Take minimum of assumed and \p Value.
1145 IntegerState
&takeAssumedMinimum(base_t Value
) {
1146 // Make sure we never loose "known value".
1147 Assumed
= std::max(std::min(Assumed
, Value
), Known
);
1151 /// Take maximum of known and \p Value.
1152 IntegerState
&takeKnownMaximum(base_t Value
) {
1153 // Make sure we never loose "known value".
1154 Assumed
= std::max(Value
, Assumed
);
1155 Known
= std::max(Value
, Known
);
1159 /// Equality for IntegerState.
1160 bool operator==(const IntegerState
&R
) const {
1161 return this->getAssumed() == R
.getAssumed() &&
1162 this->getKnown() == R
.getKnown();
1165 /// Inequality for IntegerState.
1166 bool operator!=(const IntegerState
&R
) const { return !(*this == R
); }
1168 /// "Clamp" this state with \p R. The result is the minimum of the assumed
1169 /// information but not less than what was known before.
1171 /// TODO: Consider replacing the operator with a call or using it only when
1172 /// we can also take the maximum of the known information, thus when
1173 /// \p R is not dependent on additional assumed state.
1174 IntegerState
operator^=(const IntegerState
&R
) {
1175 takeAssumedMinimum(R
.Assumed
);
1179 /// "Clamp" this state with \p R. The result is the maximum of the known
1180 /// information but not more than what was assumed before.
1181 IntegerState
operator+=(const IntegerState
&R
) {
1182 takeKnownMaximum(R
.Known
);
1186 /// Make this the minimum, known and assumed, of this state and \p R.
1187 IntegerState
operator&=(const IntegerState
&R
) {
1188 Known
= std::min(Known
, R
.Known
);
1189 Assumed
= std::min(Assumed
, R
.Assumed
);
1193 /// Make this the maximum, known and assumed, of this state and \p R.
1194 IntegerState
operator|=(const IntegerState
&R
) {
1195 Known
= std::max(Known
, R
.Known
);
1196 Assumed
= std::max(Assumed
, R
.Assumed
);
1201 /// The known state encoding in an integer of type base_t.
1202 base_t Known
= getWorstState();
1204 /// The assumed state encoding in an integer of type base_t.
1208 /// Simple wrapper for a single bit (boolean) state.
1209 struct BooleanState
: public IntegerState
{
1210 BooleanState() : IntegerState(1){};
1213 /// Helper struct necessary as the modular build fails if the virtual method
1214 /// IRAttribute::manifest is defined in the Attributor.cpp.
1215 struct IRAttributeManifest
{
1216 static ChangeStatus
manifestAttrs(Attributor
&A
, IRPosition
&IRP
,
1217 const ArrayRef
<Attribute
> &DeducedAttrs
);
1220 /// Helper to tie a abstract state implementation to an abstract attribute.
1221 template <typename StateTy
, typename Base
>
1222 struct StateWrapper
: public StateTy
, public Base
{
1223 /// Provide static access to the type of the state.
1224 using StateType
= StateTy
;
1226 /// See AbstractAttribute::getState(...).
1227 StateType
&getState() override
{ return *this; }
1229 /// See AbstractAttribute::getState(...).
1230 const AbstractState
&getState() const override
{ return *this; }
1233 /// Helper class that provides common functionality to manifest IR attributes.
1234 template <Attribute::AttrKind AK
, typename Base
>
1235 struct IRAttribute
: public IRPosition
, public Base
{
1236 IRAttribute(const IRPosition
&IRP
) : IRPosition(IRP
) {}
1239 /// See AbstractAttribute::initialize(...).
1240 virtual void initialize(Attributor
&A
) override
{
1241 if (hasAttr(getAttrKind())) {
1242 this->getState().indicateOptimisticFixpoint();
1246 const IRPosition
&IRP
= this->getIRPosition();
1247 bool IsFnInterface
= IRP
.isFnInterfaceKind();
1248 const Function
*FnScope
= IRP
.getAnchorScope();
1249 // TODO: Not all attributes require an exact definition. Find a way to
1250 // enable deduction for some but not all attributes in case the
1251 // definition might be changed at runtime, see also
1252 // http://lists.llvm.org/pipermail/llvm-dev/2018-February/121275.html.
1253 // TODO: We could always determine abstract attributes and if sufficient
1254 // information was found we could duplicate the functions that do not
1255 // have an exact definition.
1256 if (IsFnInterface
&& (!FnScope
|| !FnScope
->hasExactDefinition()))
1257 this->getState().indicatePessimisticFixpoint();
1260 /// See AbstractAttribute::manifest(...).
1261 ChangeStatus
manifest(Attributor
&A
) override
{
1262 SmallVector
<Attribute
, 4> DeducedAttrs
;
1263 getDeducedAttributes(getAnchorValue().getContext(), DeducedAttrs
);
1264 return IRAttributeManifest::manifestAttrs(A
, getIRPosition(), DeducedAttrs
);
1267 /// Return the kind that identifies the abstract attribute implementation.
1268 Attribute::AttrKind
getAttrKind() const { return AK
; }
1270 /// Return the deduced attributes in \p Attrs.
1271 virtual void getDeducedAttributes(LLVMContext
&Ctx
,
1272 SmallVectorImpl
<Attribute
> &Attrs
) const {
1273 Attrs
.emplace_back(Attribute::get(Ctx
, getAttrKind()));
1276 /// Return an IR position, see struct IRPosition.
1279 IRPosition
&getIRPosition() override
{ return *this; }
1280 const IRPosition
&getIRPosition() const override
{ return *this; }
1284 /// Base struct for all "concrete attribute" deductions.
1286 /// The abstract attribute is a minimal interface that allows the Attributor to
1287 /// orchestrate the abstract/fixpoint analysis. The design allows to hide away
1288 /// implementation choices made for the subclasses but also to structure their
1289 /// implementation and simplify the use of other abstract attributes in-flight.
1291 /// To allow easy creation of new attributes, most methods have default
1292 /// implementations. The ones that do not are generally straight forward, except
1293 /// `AbstractAttribute::updateImpl` which is the location of most reasoning
1294 /// associated with the abstract attribute. The update is invoked by the
1295 /// Attributor in case the situation used to justify the current optimistic
1296 /// state might have changed. The Attributor determines this automatically
1297 /// by monitoring the `Attributor::getAAFor` calls made by abstract attributes.
1299 /// The `updateImpl` method should inspect the IR and other abstract attributes
1300 /// in-flight to justify the best possible (=optimistic) state. The actual
1301 /// implementation is, similar to the underlying abstract state encoding, not
1302 /// exposed. In the most common case, the `updateImpl` will go through a list of
1303 /// reasons why its optimistic state is valid given the current information. If
1304 /// any combination of them holds and is sufficient to justify the current
1305 /// optimistic state, the method shall return UNCHAGED. If not, the optimistic
1306 /// state is adjusted to the situation and the method shall return CHANGED.
1308 /// If the manifestation of the "concrete attribute" deduced by the subclass
1309 /// differs from the "default" behavior, which is a (set of) LLVM-IR
1310 /// attribute(s) for an argument, call site argument, function return value, or
1311 /// function, the `AbstractAttribute::manifest` method should be overloaded.
1313 /// NOTE: If the state obtained via getState() is INVALID, thus if
1314 /// AbstractAttribute::getState().isValidState() returns false, no
1315 /// information provided by the methods of this class should be used.
1316 /// NOTE: The Attributor currently has certain limitations to what we can do.
1317 /// As a general rule of thumb, "concrete" abstract attributes should *for
1318 /// now* only perform "backward" information propagation. That means
1319 /// optimistic information obtained through abstract attributes should
1320 /// only be used at positions that precede the origin of the information
1321 /// with regards to the program flow. More practically, information can
1322 /// *now* be propagated from instructions to their enclosing function, but
1323 /// *not* from call sites to the called function. The mechanisms to allow
1324 /// both directions will be added in the future.
1325 /// NOTE: The mechanics of adding a new "concrete" abstract attribute are
1326 /// described in the file comment.
1327 struct AbstractAttribute
{
1328 using StateType
= AbstractState
;
1330 /// Virtual destructor.
1331 virtual ~AbstractAttribute() {}
1333 /// Initialize the state with the information in the Attributor \p A.
1335 /// This function is called by the Attributor once all abstract attributes
1336 /// have been identified. It can and shall be used for task like:
1337 /// - identify existing knowledge in the IR and use it for the "known state"
1338 /// - perform any work that is not going to change over time, e.g., determine
1339 /// a subset of the IR, or attributes in-flight, that have to be looked at
1340 /// in the `updateImpl` method.
1341 virtual void initialize(Attributor
&A
) {}
1343 /// Return the internal abstract state for inspection.
1344 virtual StateType
&getState() = 0;
1345 virtual const StateType
&getState() const = 0;
1347 /// Return an IR position, see struct IRPosition.
1348 virtual const IRPosition
&getIRPosition() const = 0;
1350 /// Helper functions, for debug purposes only.
1352 virtual void print(raw_ostream
&OS
) const;
1353 void dump() const { print(dbgs()); }
1355 /// This function should return the "summarized" assumed state as string.
1356 virtual const std::string
getAsStr() const = 0;
1359 /// Allow the Attributor access to the protected methods.
1360 friend struct Attributor
;
1363 /// Hook for the Attributor to trigger an update of the internal state.
1365 /// If this attribute is already fixed, this method will return UNCHANGED,
1366 /// otherwise it delegates to `AbstractAttribute::updateImpl`.
1368 /// \Return CHANGED if the internal state changed, otherwise UNCHANGED.
1369 ChangeStatus
update(Attributor
&A
);
1371 /// Hook for the Attributor to trigger the manifestation of the information
1372 /// represented by the abstract attribute in the LLVM-IR.
1374 /// \Return CHANGED if the IR was altered, otherwise UNCHANGED.
1375 virtual ChangeStatus
manifest(Attributor
&A
) {
1376 return ChangeStatus::UNCHANGED
;
1379 /// Hook to enable custom statistic tracking, called after manifest that
1380 /// resulted in a change if statistics are enabled.
1382 /// We require subclasses to provide an implementation so we remember to
1383 /// add statistics for them.
1384 virtual void trackStatistics() const = 0;
1386 /// Return an IR position, see struct IRPosition.
1387 virtual IRPosition
&getIRPosition() = 0;
1389 /// The actual update/transfer function which has to be implemented by the
1390 /// derived classes.
1392 /// If it is called, the environment has changed and we have to determine if
1393 /// the current information is still valid or adjust it otherwise.
1395 /// \Return CHANGED if the internal state changed, otherwise UNCHANGED.
1396 virtual ChangeStatus
updateImpl(Attributor
&A
) = 0;
1399 /// Forward declarations of output streams for debug purposes.
1402 raw_ostream
&operator<<(raw_ostream
&OS
, const AbstractAttribute
&AA
);
1403 raw_ostream
&operator<<(raw_ostream
&OS
, ChangeStatus S
);
1404 raw_ostream
&operator<<(raw_ostream
&OS
, IRPosition::Kind
);
1405 raw_ostream
&operator<<(raw_ostream
&OS
, const IRPosition
&);
1406 raw_ostream
&operator<<(raw_ostream
&OS
, const AbstractState
&State
);
1407 raw_ostream
&operator<<(raw_ostream
&OS
, const IntegerState
&S
);
1410 struct AttributorPass
: public PassInfoMixin
<AttributorPass
> {
1411 PreservedAnalyses
run(Module
&M
, ModuleAnalysisManager
&AM
);
1414 Pass
*createAttributorLegacyPass();
1416 /// ----------------------------------------------------------------------------
1417 /// Abstract Attribute Classes
1418 /// ----------------------------------------------------------------------------
1420 /// An abstract attribute for the returned values of a function.
1421 struct AAReturnedValues
1422 : public IRAttribute
<Attribute::Returned
, AbstractAttribute
> {
1423 AAReturnedValues(const IRPosition
&IRP
) : IRAttribute(IRP
) {}
1425 /// Return an assumed unique return value if a single candidate is found. If
1426 /// there cannot be one, return a nullptr. If it is not clear yet, return the
1427 /// Optional::NoneType.
1428 Optional
<Value
*> getAssumedUniqueReturnValue(Attributor
&A
) const;
1430 /// Check \p Pred on all returned values.
1432 /// This method will evaluate \p Pred on returned values and return
1433 /// true if (1) all returned values are known, and (2) \p Pred returned true
1434 /// for all returned values.
1436 /// Note: Unlike the Attributor::checkForAllReturnedValuesAndReturnInsts
1437 /// method, this one will not filter dead return instructions.
1438 virtual bool checkForAllReturnedValuesAndReturnInsts(
1439 const function_ref
<bool(Value
&, const SmallSetVector
<ReturnInst
*, 4> &)>
1443 MapVector
<Value
*, SmallSetVector
<ReturnInst
*, 4>>::iterator
;
1444 using const_iterator
=
1445 MapVector
<Value
*, SmallSetVector
<ReturnInst
*, 4>>::const_iterator
;
1446 virtual llvm::iterator_range
<iterator
> returned_values() = 0;
1447 virtual llvm::iterator_range
<const_iterator
> returned_values() const = 0;
1449 virtual size_t getNumReturnValues() const = 0;
1450 virtual const SmallSetVector
<CallBase
*, 4> &getUnresolvedCalls() const = 0;
1452 /// Create an abstract attribute view for the position \p IRP.
1453 static AAReturnedValues
&createForPosition(const IRPosition
&IRP
,
1456 /// Unique ID (due to the unique address)
1457 static const char ID
;
1461 : public IRAttribute
<Attribute::NoUnwind
,
1462 StateWrapper
<BooleanState
, AbstractAttribute
>> {
1463 AANoUnwind(const IRPosition
&IRP
) : IRAttribute(IRP
) {}
1465 /// Returns true if nounwind is assumed.
1466 bool isAssumedNoUnwind() const { return getAssumed(); }
1468 /// Returns true if nounwind is known.
1469 bool isKnownNoUnwind() const { return getKnown(); }
1471 /// Create an abstract attribute view for the position \p IRP.
1472 static AANoUnwind
&createForPosition(const IRPosition
&IRP
, Attributor
&A
);
1474 /// Unique ID (due to the unique address)
1475 static const char ID
;
1479 : public IRAttribute
<Attribute::NoSync
,
1480 StateWrapper
<BooleanState
, AbstractAttribute
>> {
1481 AANoSync(const IRPosition
&IRP
) : IRAttribute(IRP
) {}
1483 /// Returns true if "nosync" is assumed.
1484 bool isAssumedNoSync() const { return getAssumed(); }
1486 /// Returns true if "nosync" is known.
1487 bool isKnownNoSync() const { return getKnown(); }
1489 /// Create an abstract attribute view for the position \p IRP.
1490 static AANoSync
&createForPosition(const IRPosition
&IRP
, Attributor
&A
);
1492 /// Unique ID (due to the unique address)
1493 static const char ID
;
1496 /// An abstract interface for all nonnull attributes.
1498 : public IRAttribute
<Attribute::NonNull
,
1499 StateWrapper
<BooleanState
, AbstractAttribute
>> {
1500 AANonNull(const IRPosition
&IRP
) : IRAttribute(IRP
) {}
1502 /// Return true if we assume that the underlying value is nonnull.
1503 bool isAssumedNonNull() const { return getAssumed(); }
1505 /// Return true if we know that underlying value is nonnull.
1506 bool isKnownNonNull() const { return getKnown(); }
1508 /// Create an abstract attribute view for the position \p IRP.
1509 static AANonNull
&createForPosition(const IRPosition
&IRP
, Attributor
&A
);
1511 /// Unique ID (due to the unique address)
1512 static const char ID
;
1515 /// An abstract attribute for norecurse.
1517 : public IRAttribute
<Attribute::NoRecurse
,
1518 StateWrapper
<BooleanState
, AbstractAttribute
>> {
1519 AANoRecurse(const IRPosition
&IRP
) : IRAttribute(IRP
) {}
1521 /// Return true if "norecurse" is assumed.
1522 bool isAssumedNoRecurse() const { return getAssumed(); }
1524 /// Return true if "norecurse" is known.
1525 bool isKnownNoRecurse() const { return getKnown(); }
1527 /// Create an abstract attribute view for the position \p IRP.
1528 static AANoRecurse
&createForPosition(const IRPosition
&IRP
, Attributor
&A
);
1530 /// Unique ID (due to the unique address)
1531 static const char ID
;
1534 /// An abstract attribute for willreturn.
1536 : public IRAttribute
<Attribute::WillReturn
,
1537 StateWrapper
<BooleanState
, AbstractAttribute
>> {
1538 AAWillReturn(const IRPosition
&IRP
) : IRAttribute(IRP
) {}
1540 /// Return true if "willreturn" is assumed.
1541 bool isAssumedWillReturn() const { return getAssumed(); }
1543 /// Return true if "willreturn" is known.
1544 bool isKnownWillReturn() const { return getKnown(); }
1546 /// Create an abstract attribute view for the position \p IRP.
1547 static AAWillReturn
&createForPosition(const IRPosition
&IRP
, Attributor
&A
);
1549 /// Unique ID (due to the unique address)
1550 static const char ID
;
1553 /// An abstract interface for all noalias attributes.
1555 : public IRAttribute
<Attribute::NoAlias
,
1556 StateWrapper
<BooleanState
, AbstractAttribute
>> {
1557 AANoAlias(const IRPosition
&IRP
) : IRAttribute(IRP
) {}
1559 /// Return true if we assume that the underlying value is alias.
1560 bool isAssumedNoAlias() const { return getAssumed(); }
1562 /// Return true if we know that underlying value is noalias.
1563 bool isKnownNoAlias() const { return getKnown(); }
1565 /// Create an abstract attribute view for the position \p IRP.
1566 static AANoAlias
&createForPosition(const IRPosition
&IRP
, Attributor
&A
);
1568 /// Unique ID (due to the unique address)
1569 static const char ID
;
1572 /// An AbstractAttribute for nofree.
1574 : public IRAttribute
<Attribute::NoFree
,
1575 StateWrapper
<BooleanState
, AbstractAttribute
>> {
1576 AANoFree(const IRPosition
&IRP
) : IRAttribute(IRP
) {}
1578 /// Return true if "nofree" is assumed.
1579 bool isAssumedNoFree() const { return getAssumed(); }
1581 /// Return true if "nofree" is known.
1582 bool isKnownNoFree() const { return getKnown(); }
1584 /// Create an abstract attribute view for the position \p IRP.
1585 static AANoFree
&createForPosition(const IRPosition
&IRP
, Attributor
&A
);
1587 /// Unique ID (due to the unique address)
1588 static const char ID
;
1591 /// An AbstractAttribute for noreturn.
1593 : public IRAttribute
<Attribute::NoReturn
,
1594 StateWrapper
<BooleanState
, AbstractAttribute
>> {
1595 AANoReturn(const IRPosition
&IRP
) : IRAttribute(IRP
) {}
1597 /// Return true if the underlying object is assumed to never return.
1598 bool isAssumedNoReturn() const { return getAssumed(); }
1600 /// Return true if the underlying object is known to never return.
1601 bool isKnownNoReturn() const { return getKnown(); }
1603 /// Create an abstract attribute view for the position \p IRP.
1604 static AANoReturn
&createForPosition(const IRPosition
&IRP
, Attributor
&A
);
1606 /// Unique ID (due to the unique address)
1607 static const char ID
;
1610 /// An abstract interface for liveness abstract attribute.
1611 struct AAIsDead
: public StateWrapper
<BooleanState
, AbstractAttribute
>,
1613 AAIsDead(const IRPosition
&IRP
) : IRPosition(IRP
) {}
1615 /// Returns true if \p BB is assumed dead.
1616 virtual bool isAssumedDead(const BasicBlock
*BB
) const = 0;
1618 /// Returns true if \p BB is known dead.
1619 virtual bool isKnownDead(const BasicBlock
*BB
) const = 0;
1621 /// Returns true if \p I is assumed dead.
1622 virtual bool isAssumedDead(const Instruction
*I
) const = 0;
1624 /// Returns true if \p I is known dead.
1625 virtual bool isKnownDead(const Instruction
*I
) const = 0;
1627 /// This method is used to check if at least one instruction in a collection
1628 /// of instructions is live.
1629 template <typename T
> bool isLiveInstSet(T begin
, T end
) const {
1630 for (const auto &I
: llvm::make_range(begin
, end
)) {
1631 assert(I
->getFunction() == getIRPosition().getAssociatedFunction() &&
1632 "Instruction must be in the same anchor scope function.");
1634 if (!isAssumedDead(I
))
1641 /// Return an IR position, see struct IRPosition.
1644 IRPosition
&getIRPosition() override
{ return *this; }
1645 const IRPosition
&getIRPosition() const override
{ return *this; }
1648 /// Create an abstract attribute view for the position \p IRP.
1649 static AAIsDead
&createForPosition(const IRPosition
&IRP
, Attributor
&A
);
1651 /// Unique ID (due to the unique address)
1652 static const char ID
;
1655 /// State for dereferenceable attribute
1656 struct DerefState
: AbstractState
{
1658 /// State representing for dereferenceable bytes.
1659 IntegerState DerefBytesState
;
1661 /// State representing that whether the value is globaly dereferenceable.
1662 BooleanState GlobalState
;
1664 /// See AbstractState::isValidState()
1665 bool isValidState() const override
{ return DerefBytesState
.isValidState(); }
1667 /// See AbstractState::isAtFixpoint()
1668 bool isAtFixpoint() const override
{
1669 return !isValidState() ||
1670 (DerefBytesState
.isAtFixpoint() && GlobalState
.isAtFixpoint());
1673 /// See AbstractState::indicateOptimisticFixpoint(...)
1674 ChangeStatus
indicateOptimisticFixpoint() override
{
1675 DerefBytesState
.indicateOptimisticFixpoint();
1676 GlobalState
.indicateOptimisticFixpoint();
1677 return ChangeStatus::UNCHANGED
;
1680 /// See AbstractState::indicatePessimisticFixpoint(...)
1681 ChangeStatus
indicatePessimisticFixpoint() override
{
1682 DerefBytesState
.indicatePessimisticFixpoint();
1683 GlobalState
.indicatePessimisticFixpoint();
1684 return ChangeStatus::CHANGED
;
1687 /// Update known dereferenceable bytes.
1688 void takeKnownDerefBytesMaximum(uint64_t Bytes
) {
1689 DerefBytesState
.takeKnownMaximum(Bytes
);
1692 /// Update assumed dereferenceable bytes.
1693 void takeAssumedDerefBytesMinimum(uint64_t Bytes
) {
1694 DerefBytesState
.takeAssumedMinimum(Bytes
);
1697 /// Equality for DerefState.
1698 bool operator==(const DerefState
&R
) {
1699 return this->DerefBytesState
== R
.DerefBytesState
&&
1700 this->GlobalState
== R
.GlobalState
;
1703 /// Inequality for IntegerState.
1704 bool operator!=(const DerefState
&R
) { return !(*this == R
); }
1706 /// See IntegerState::operator^=
1707 DerefState
operator^=(const DerefState
&R
) {
1708 DerefBytesState
^= R
.DerefBytesState
;
1709 GlobalState
^= R
.GlobalState
;
1713 /// See IntegerState::operator+=
1714 DerefState
operator+=(const DerefState
&R
) {
1715 DerefBytesState
+= R
.DerefBytesState
;
1716 GlobalState
+= R
.GlobalState
;
1720 /// See IntegerState::operator&=
1721 DerefState
operator&=(const DerefState
&R
) {
1722 DerefBytesState
&= R
.DerefBytesState
;
1723 GlobalState
&= R
.GlobalState
;
1727 /// See IntegerState::operator|=
1728 DerefState
operator|=(const DerefState
&R
) {
1729 DerefBytesState
|= R
.DerefBytesState
;
1730 GlobalState
|= R
.GlobalState
;
1735 const AANonNull
*NonNullAA
= nullptr;
1738 /// An abstract interface for all dereferenceable attribute.
1739 struct AADereferenceable
1740 : public IRAttribute
<Attribute::Dereferenceable
,
1741 StateWrapper
<DerefState
, AbstractAttribute
>> {
1742 AADereferenceable(const IRPosition
&IRP
) : IRAttribute(IRP
) {}
1744 /// Return true if we assume that the underlying value is nonnull.
1745 bool isAssumedNonNull() const {
1746 return NonNullAA
&& NonNullAA
->isAssumedNonNull();
1749 /// Return true if we know that the underlying value is nonnull.
1750 bool isKnownNonNull() const {
1751 return NonNullAA
&& NonNullAA
->isKnownNonNull();
1754 /// Return true if we assume that underlying value is
1755 /// dereferenceable(_or_null) globally.
1756 bool isAssumedGlobal() const { return GlobalState
.getAssumed(); }
1758 /// Return true if we know that underlying value is
1759 /// dereferenceable(_or_null) globally.
1760 bool isKnownGlobal() const { return GlobalState
.getKnown(); }
1762 /// Return assumed dereferenceable bytes.
1763 uint32_t getAssumedDereferenceableBytes() const {
1764 return DerefBytesState
.getAssumed();
1767 /// Return known dereferenceable bytes.
1768 uint32_t getKnownDereferenceableBytes() const {
1769 return DerefBytesState
.getKnown();
1772 /// Create an abstract attribute view for the position \p IRP.
1773 static AADereferenceable
&createForPosition(const IRPosition
&IRP
,
1776 /// Unique ID (due to the unique address)
1777 static const char ID
;
1780 /// An abstract interface for all align attributes.
1782 : public IRAttribute
<Attribute::Alignment
,
1783 StateWrapper
<IntegerState
, AbstractAttribute
>> {
1784 AAAlign(const IRPosition
&IRP
) : IRAttribute(IRP
) {}
1786 /// Return assumed alignment.
1787 unsigned getAssumedAlign() const { return getAssumed(); }
1789 /// Return known alignemnt.
1790 unsigned getKnownAlign() const { return getKnown(); }
1792 /// Create an abstract attribute view for the position \p IRP.
1793 static AAAlign
&createForPosition(const IRPosition
&IRP
, Attributor
&A
);
1795 /// Unique ID (due to the unique address)
1796 static const char ID
;
1799 /// An abstract interface for all nocapture attributes.
1801 : public IRAttribute
<Attribute::NoCapture
,
1802 StateWrapper
<IntegerState
, AbstractAttribute
>> {
1803 AANoCapture(const IRPosition
&IRP
) : IRAttribute(IRP
) {}
1805 /// State encoding bits. A set bit in the state means the property holds.
1806 /// NO_CAPTURE is the best possible state, 0 the worst possible state.
1808 NOT_CAPTURED_IN_MEM
= 1 << 0,
1809 NOT_CAPTURED_IN_INT
= 1 << 1,
1810 NOT_CAPTURED_IN_RET
= 1 << 2,
1812 /// If we do not capture the value in memory or through integers we can only
1813 /// communicate it back as a derived pointer.
1814 NO_CAPTURE_MAYBE_RETURNED
= NOT_CAPTURED_IN_MEM
| NOT_CAPTURED_IN_INT
,
1816 /// If we do not capture the value in memory, through integers, or as a
1817 /// derived pointer we know it is not captured.
1819 NOT_CAPTURED_IN_MEM
| NOT_CAPTURED_IN_INT
| NOT_CAPTURED_IN_RET
,
1822 /// Return true if we know that the underlying value is not captured in its
1823 /// respective scope.
1824 bool isKnownNoCapture() const { return isKnown(NO_CAPTURE
); }
1826 /// Return true if we assume that the underlying value is not captured in its
1827 /// respective scope.
1828 bool isAssumedNoCapture() const { return isAssumed(NO_CAPTURE
); }
1830 /// Return true if we know that the underlying value is not captured in its
1831 /// respective scope but we allow it to escape through a "return".
1832 bool isKnownNoCaptureMaybeReturned() const {
1833 return isKnown(NO_CAPTURE_MAYBE_RETURNED
);
1836 /// Return true if we assume that the underlying value is not captured in its
1837 /// respective scope but we allow it to escape through a "return".
1838 bool isAssumedNoCaptureMaybeReturned() const {
1839 return isAssumed(NO_CAPTURE_MAYBE_RETURNED
);
1842 /// Create an abstract attribute view for the position \p IRP.
1843 static AANoCapture
&createForPosition(const IRPosition
&IRP
, Attributor
&A
);
1845 /// Unique ID (due to the unique address)
1846 static const char ID
;
1849 /// An abstract interface for value simplify abstract attribute.
1850 struct AAValueSimplify
: public StateWrapper
<BooleanState
, AbstractAttribute
>,
1852 AAValueSimplify(const IRPosition
&IRP
) : IRPosition(IRP
) {}
1854 /// Return an IR position, see struct IRPosition.
1857 IRPosition
&getIRPosition() { return *this; }
1858 const IRPosition
&getIRPosition() const { return *this; }
1861 /// Return an assumed simplified value if a single candidate is found. If
1862 /// there cannot be one, return original value. If it is not clear yet, return
1863 /// the Optional::NoneType.
1864 virtual Optional
<Value
*> getAssumedSimplifiedValue(Attributor
&A
) const = 0;
1866 /// Create an abstract attribute view for the position \p IRP.
1867 static AAValueSimplify
&createForPosition(const IRPosition
&IRP
,
1870 /// Unique ID (due to the unique address)
1871 static const char ID
;
1874 struct AAHeapToStack
: public StateWrapper
<BooleanState
, AbstractAttribute
>,
1876 AAHeapToStack(const IRPosition
&IRP
) : IRPosition(IRP
) {}
1878 /// Returns true if HeapToStack conversion is assumed to be possible.
1879 bool isAssumedHeapToStack() const { return getAssumed(); }
1881 /// Returns true if HeapToStack conversion is known to be possible.
1882 bool isKnownHeapToStack() const { return getKnown(); }
1884 /// Return an IR position, see struct IRPosition.
1887 IRPosition
&getIRPosition() { return *this; }
1888 const IRPosition
&getIRPosition() const { return *this; }
1891 /// Create an abstract attribute view for the position \p IRP.
1892 static AAHeapToStack
&createForPosition(const IRPosition
&IRP
, Attributor
&A
);
1894 /// Unique ID (due to the unique address)
1895 static const char ID
;
1898 /// An abstract interface for all memory related attributes.
1899 struct AAMemoryBehavior
1900 : public IRAttribute
<Attribute::ReadNone
,
1901 StateWrapper
<IntegerState
, AbstractAttribute
>> {
1902 AAMemoryBehavior(const IRPosition
&IRP
) : IRAttribute(IRP
) {}
1904 /// State encoding bits. A set bit in the state means the property holds.
1905 /// BEST_STATE is the best possible state, 0 the worst possible state.
1909 NO_ACCESSES
= NO_READS
| NO_WRITES
,
1911 BEST_STATE
= NO_ACCESSES
,
1914 /// Return true if we know that the underlying value is not read or accessed
1915 /// in its respective scope.
1916 bool isKnownReadNone() const { return isKnown(NO_ACCESSES
); }
1918 /// Return true if we assume that the underlying value is not read or accessed
1919 /// in its respective scope.
1920 bool isAssumedReadNone() const { return isAssumed(NO_ACCESSES
); }
1922 /// Return true if we know that the underlying value is not accessed
1923 /// (=written) in its respective scope.
1924 bool isKnownReadOnly() const { return isKnown(NO_WRITES
); }
1926 /// Return true if we assume that the underlying value is not accessed
1927 /// (=written) in its respective scope.
1928 bool isAssumedReadOnly() const { return isAssumed(NO_WRITES
); }
1930 /// Return true if we know that the underlying value is not read in its
1931 /// respective scope.
1932 bool isKnownWriteOnly() const { return isKnown(NO_READS
); }
1934 /// Return true if we assume that the underlying value is not read in its
1935 /// respective scope.
1936 bool isAssumedWriteOnly() const { return isAssumed(NO_READS
); }
1938 /// Create an abstract attribute view for the position \p IRP.
1939 static AAMemoryBehavior
&createForPosition(const IRPosition
&IRP
,
1942 /// Unique ID (due to the unique address)
1943 static const char ID
;
1946 } // end namespace llvm
1948 #endif // LLVM_TRANSFORMS_IPO_FUNCTIONATTRS_H